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1 Introduction

Let us consider the boundary value problem

2y + flu) =0, in (0,1),
uz(o) = ux(l) = 07 (NP)
u>0, in(0,1).

Here ¢ is a positive parameter and
fu)=—-u+vP

with p > 1. The problem (NP) is called the scalar field equation, which is motivated by
the parabolic PDEs modelling pattern formation and chemotaxis, and also by PDEs of
Klein-Gordon/nonlinear Schrodinger type ([2] and [4]).

In the 1-D problem (NP) a classical shooting argument solves the global bifurcation
structure of all solutions ([5]). In particular, one can observe the families of periodic
solutions: for any n, there exist €, > 0 such that there exist 1/n-periodic solutions
ux (x) for € € (0,&,);

Une(0) = max u (2), v (0) = min u, . (2). (1.1)
In view of pattern formation, we say w} . is interior spike solution, and u,,, is boundary
spike solution.

We fix n € N arbitrarily and assume ¢ € (0,e,). Consider the linearized eigenvalue
problems associated with v}, and u,,

%0e(7) + fultne(2))0(2) + Ap(z) =0 in (0,1),
¢2(0) = ¢(1) = 0.
For j € N U {0} we denote by A]" = A, and ¢ (z) = ¢;.(z), the (j + 1)-th eigenvalue

and the corresponding eigenfunction, respectively. By the Sturm-Liouville theory shows
that

(LPy)

+ + +
Aoe <A <0t <AJ < -o- < o0,
Aoe <ALe < o0 <A < --- < 00,

and the both ¢, have exactly j zeros in (0,1).
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We are interested in the e-dependence of the both eigenpairs )\ji,s and <p;.f6 for (LP.),
and the qualitative difference between {¢}.} and {¢;.}. In the above problems we focus
on the case p = 3:

flw) = —u+a’

In this case we can give expressions of uis in terms of the Jacobi elliptic function. We note
that the similar expressions could be observed for the case p = 2. Moreover, the method of
representation equation, which is proposed by the author and S. Yostsutani [7], [10] and
[12] for analyzing the linearized eigenvalue problems to (NP) with bistable nonlinearities,
can be applied to show the precise information on eigenvalues and eigenfunctions of (LP):

o representation formulas on eigenfunctions,
e characterization of eigenvalues,

¢ asymptotic formulas of eigenpairs as € — 0.

More precisely, we obtain the three special eigenfunctions for both (LP,) and (LP_)
when p = 3: ¢, @5, and ¢j, .. They are given explicitly in the algebraic expression
of elliptic function, and also possess fine symmetric and periodic properties. Moreover,
the other eigenfunctions can be given by the Liouvillian form ([3]). The corresponding
eigenvalues /\fE of (LP.) is determined by the characteristic equation,

Jm

Alk, ) =5

where A is the characteristic function, which can be expressed by the complete elliptic
integral (of the third kind).

The asymptotic formulas of every eigenvalue are obtained by asymptotic formulas on
elliptic integrals, and the asymptotic profiles of every eigenfunction are obtained by the
Floquet/Bloch type argument with the asymptotic formulas of eigenvalues ([11] and [13]).

It should be noted that in the both problem (LP.) for f(u) = —u+u? the three special
eigenpairs play an important role for the limit classification; every eigenpair is classified
into the three classes, and roughly speaking, each class is provided by the corresponding
special eigenpair. The limit classification above is described by the asymptotic formulas
of eigenvalues and the asymptotic profiles of eigenfunctions when ¢ is sufficiently small.
We will see that the limit classification on (LP,) is essentially the same type as the limit
classifications for the cases of nonlinear bistable f’s ([11] and [13]), which justify and gen-
eralize a conjecture by E. Yanagida on the asymptotic profiles of the first n-eigenfunctions.
The limit classification for (LP_) will show us that Yanagida’s conjecture also hold for
the first n-eigenfunctions. However, it appears a different asymptotic characterizaton on
the eigenfunctions from the case (LP.). which is due to the difference of the special
eigenvalues between in (LP,) and (LP_). See Figs. 1 and 2.

In this article we obtain the representation formulas of eigenfunctions and derive the
characteristic functions for (LP.). Also, we discuss the asymtotic results on the eigen-
values and eigenfunctions. The organization of the article is as follows. In Section 2 we
prepare the elliptic integrals and functions. In Section 3 we give the main results. In
Section 4 we introduce some key lemmas in the analysis and give a sketch of proofs.



Figure 2: Profiles of ¢;, (j =0,...,8) for f(u) = —u+u® with n = 3.
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2 Preliminaries

We start with giving standard notations on the elliptic integrals and elliptic functions.
See for instance, the Handbook by Byrd and Friedman[l]. Let k¥ € (0,1) and let v €
C\ (—o0,—1]. We denote by K(k), E(k) and II(v, k), the complete elliptic integrals of
the first, the second and the third kind, respectively. The Jacobi elliptic function sn(z, k)
is a periodic analytic function with the period 4K (k) as the function for the real domain,
and is defined locally by

sn(z,k) 1
0 V(1 —-82)(1 - k2s?)
for z € [0, K(k)]. In a standard manner the elliptic functions cn (z,k) and dn (z,k) is

defined by
sn(z,k)? + en(z, k) = 1, sn(z, k) + k*dn(z, k)? = 1

forz € R and k € (0,1).
Here we introduce the modified form of II (see [8] and [9])

1+ u) (k* +v) 1 ds
(1 +vs2)y/(1— ) (1 — k2s?)
<= (1 +u)(k2 +u)H(V, k))

14

for (v, k) € D, where
VZ = exp (%Log z) , z€C\ (-00,0],
D:={(r,k) € CxR|v¢&(~oc0,—1]U[-k%0]}.

T v

|

Figure 3: A Graph of M(v, k) for real v (k = 1/v/2).



3 Main results

Let us show the expressions of uZ, of (NP) for f(u) = —u +u®. A standard shooting
argument can be applied to (NP) (see Section 4 of [12]), and in a situation that ¢ is small
enough, one can obtain the monotone increasing and decreasing solutions of (NP), which
are symmetric with the line z = 1/2. In addition, one can describe the global bifurcation
structue of (NP) by using the two monotone solutions. In particular, we obtain the
1/n-periodic solutions u;:, for each n € N.

Proposition 3.1. Fiz n € N arbitrality and assume € € (0,v/2/(n7)). Let k. = kn. €
(0,1) be a solution of

VITRK(k) =~ (3.1)

ne
(note that it is uniquely determined). Then,

() = o[ s (k) (1 + 202, o),
u, (z) = ‘/2 _2k2dn(2nK(k5)x,k:6).

is the 1/n-periodic solutions of (NP) satisfying (1.1).

and

For a convenience, we introduce a notation of the two modified sn-functions
SN*(z; k) = sn(K(k)(1 + 2nz),k), SN (z;k) =sn(2nK(k)z,k).

Both functions have the same period 1/n for any k € (0,1). The functions CN* and DN*
are defined in a similar manner;

+ 2

uE,(0) = | 3= DN @ ko).
€

The representation formulas of eigenvalues and eigenfunctions are given by the follow-
ing two theorems.

Theorem 1. The Linearized problem (LP,) has the following pairs of eigenvalues and
eigenfunctions:

1 2y/1—k2+k?

(i) )\bfe =—1i= Tkg_’
Gio(@) = 1= (1+ K =TT R RSN (s )%,
_ 12
() Mo =-20=5) ot (z) = SN* (2, k)DN* (@, k),

oKz
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N

2-k2
Pine(@) = =1+ (1 + k2 + /1 — k2 + E2)SN™(z; k)%,

(iii) /\;,"H,E =-1+

where k. is the unique solution of (3.1).

Theorem 2. The Linearized problem (LP_) has the following pairs of eigenvalues and

eigenfunctions:
o 21 - K2+ k2
(W) de=-1-—"—F—7—
" 2— k2
Poe() =1— (L + k2 — /1 — k2 + k2)SN™(z; kc)?,
iy y— 3 _
(i) A= _2——k§’ ¢ne(x) = CN(z, k. )DN(z, k),
— 125 A
i) Ap, = —14 ViRt ke 12 k;f ke
- Pe

Pone(®) = =1+ (L+ k2 + /1 - k2 + k2)SN(z; ko),
where k. is the unique solution of (3.1).

Here we introduce the following notations

( 21— K2+ k2
Ao(k) = -1~ T o_z
3
AT (k) :i= ——,
- 305 (3.2)
AT (k) == T2
21— k2 + k4
\ Az(k) =14 —W

Note that Ag(k) < A7 (k) < AT (k) < 0 < Ay(k) for k € (0,1). In addition, the functions
Ao, AT and the functions Af, A, are monotone decreasing and increasing in k € (0, 1),
respectively. Also, A;(0) = —2, AT(0) = —3/2, A3(0) = 0 and Ag(1) = A7 (1) = -3,
AT (1) =0, Ay(1) = 1. We see from Theorems 1 and 2 that

’\(:)t,e = AO(k€)7 ’\2in,e = A2(k€)’
)‘7_;,6 = A]-(ks)a )‘;5 = Ar(ke),

and in particular,
- _ )\t - + - _\+
’\0,5 - )‘O,e’ )‘+,s < An,e’ ’\2n,e - ’\2n,s'

For j # 0,n,2n, let us show the representation formula of wji‘e. Set

Yo : E(kvp') | ke (07 1)’ “/(2 - kz) € (AO(k),Al_(k))} ’

T = {(kp) | k€ (0,1), u/(2—-Fk) € (A (K),0)}, (3:3)
Yo = {(k»/") | ke (Ov l)a ﬂ/(z - kz) € (A2(k)7+oo)} .
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and set
Y= EOUEI UZ2.

For (k,p) € L, the characteristic function is defined by
A(u, k) :== |\M_(k,un), k) — M(vy(k,p), k)|, (3.4)

where M is defined by (2.1),

3k p—3k* £ \/—3p% +6(k? — 2)p + 9k*

V:l:(ka l") = _2_ M(ﬂ +3— 3k2) (35)

Theorem 3. Suppose j # 0,n,2n. Let k. be the solution of (3.1) and let p;(k) be the
unique solution of

X
Alk,p) =22, (36)
where A is given by (3.4). Then,
s (ke)
/\;ts = 21_ Z,? ‘

Moreover,

£(@) = \fIhuk, (), X, (k)i ko) cos | = / p(Njer ko) "
Pie = n,e\L /) Nje\le ) Fe € Jo |h(uie(§),/\fs(k€);ke))| ’

where

2 2
h(u, A\, k) == — [(1—5@ - %u? + %u"] + %(zﬁ -2) - % (3.7)
and
POK) = 0= M)A~ AT~ AT - M), (39)

Combining Theorems 1-3 we have all eigenvalues and eigenfunctions to the both (LP.)
and (LP_).

4 Key lemmas on characteristic function

Proofs of Theorems 1-3 are done by an algorithm of the representation equation for the
linearized equation of (LP4) (see [12]). We would like to describe whole procedure in the
forth-coming papers.

Here we only focus on the two key lemmas for justyfing existence and uniqueness of
solution to (3.6).
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4.1 Fundamental properties on the modified elliptic integral
We prepare a fundamental properties on the modified elliptic integral M ([8] and [9]).

Proposition 4.1. Let (v,k) € D and let M be defined by (2.1) . Then

. OM (1+v)(k2 +v) kE(k)

W r (F) = v (- R)
.y OM A+ ) (K +v) K(k) E(k)
(i) W(U’ k) = v [_ 2v(1+v) 2(1+4v)(k2+v)]’

Remark 4.1. It is well known that (1—k?)K (k) < E(k) < K(k) for k € (0,1). Se we see
from (ii) of Proposition 4.1 that for each k € (0, 1) the real function M(- , k) is decreasing
for v € (—1,k%) U (0,00) (see Fig. 3).

Proposition 4.2. Fiz k € (0,1) and consider the real function M(- ,k) : (=1, —k?) U
(0,00) = R. Then the following formulas hold:

T

VI_I)H_IIM(V, k) - 57 (41)
limk2 M(v, k) =0, (4.2)
Ii—% M(v, k) = oo, (4.3)
: T

JLII;IOM(I/, k)= 5 (4.4)

4.2 Fundamental properties of v,

Recall the characteristic function
A(k, p) := |M(vy(k, 1), k) — M(v-(k, 1), k)|
for (k,u) € . We first remark that vy (k, 1) of (3.5) is characterized by

3k (u — 3k2)

vl ) -k, ) = 20

and

v (kv (b ) = —
+ ’l‘t —-— 7;“ _I.l(/.t—3+3k2).

Then an elementary algebra gives

—2Tk* (1 — (2 = K*)Ao(k)) (1 — (2 = k) As(K))
P2+ 3 — 3k?)?

(V+(ka/~l') - I/_(k,/.l,))z =
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Moreover, we see

1 N 1 p— 3K
vi(k,p) * v-(k,p) 3K (4.5)
1 _ 1  op(p+3- 3k?) ’
V+(k:, ll') V- (k’/"') B 9k4 ’

1 1 _ p+ 3k
1+L+(11c,u) - <1+V1—(k,u)> R (4.6)
S (1+,,( )ZM(IH‘ )’

vi(k, 1) k, 1) 9k*
k? ( K? u+ 6 — 3k?
1+ ——— )+ 1+ = ,
vi(k, 1) v_(k, p) 3k? (4.7)
1+ k? <1+ 2 )_(u+3)(u+3—3k2) :
V+(k’ll') V—(ky /-l') 9 ’

respectively.
The following proposition helps some calculations on the characteristic functions to-
gether with M.

Proposition 4.3. For vy = vy(k, ) of (3.5)
2 _ _ a2
i(1+i> (Hk_):u(u 3)(k+3 -3k

V4 Vg Vg 27k4

4.3 Several limit for characteristic function

Lemma 4.1. Let k € (0,1) be fized and (k,p) € £. Then the following (i) and (ii) hold
true:

i) Alk,) =0, lim, A(k,) = 7.

lim
p—(2—k2) Ao (k) 2

. . T
(ii) u—)—liligl—k?) Ak, u) = 3 }Lgr(l)A(k,u) =.

Proof of Lemma 4.1. (i) Suppose that (k,u) € £o. Then, it follows from (4.5)-(4.7) that
~1 <v_(k,p) < vy(k,pu) < —k?* and

Vi(ka/-‘) = V*(k) € (_lakz),

° lim
n—(2—k2)Ao(k)

o lim v_(k,u) = —1, lim v, (k,p) = —k>.
pu——3

u——3

Therefore, by using monotonicity of M
A(k, p) = “q(zll;f%Ao(k)(M("“(k’“)’k) — M(vi(k, 1), k)

= M(v.(k), k) — M(v.(k), )
=0.

lim
1—(2—k2)Ao(k)
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In the similar manner we see from (4.1) and (4.2) of Proposition 4.2 that
lim A(k ) = Tim (M(v-(k, 1), k) — M4 (5,12, )
(M(=1,k) = M(=k?, k))

o
=3

Thus it complete a proof.

(ii) of the lemma is similarly done. So we omit it. O

Previous results for the cases of bistable nonlinearities suggest that we will also have
lim Ak, p) = .
(i) #—*(2-1’62)/\2(/0) (k)

However, a different type of asymptotic formulas should be applied to show the above
claim. So we omit it.

4.4 Monotonicity of characteristic function

Lemma 4.2. Let (k,u) € X. For eachi=0,1,2, %E(k’”) >0in X,

Proof. Denote vy := vi(k, ) and set

e —3)(n +3 - 3k7)

Rk, ) = 27kA

For simplicity we only consider the case (k, i) € £o. By using (ii) of Proposition 4.1 and
Proposition 4.3, we are led to

0A M v v,
a_#_ ay( )k) aﬂ (+, ) aﬂ

A+ )RR +v) K(k) E(k) ov_
B v [‘2v_(1+1/_) +2(1+V_)(k2+u_)] rn

A+ ) (K + ) [_ Kk) E(k) ] Ovy
vy w (1+vy)  20+v)(R+vy)] op

= VR(s) (_V_%Lu_) [—21/—?1(?1/-) + 2(1+ :/]:J)((kk)2 + u_)]
_ \/m(_,,+%> [_ K(k) E(k) ]

wi(l+vy)  2(L+wy) (k2 +vy)

Rk, ) 1 ov 1 31/+> K(k)
- 2 1+v_0p 1+vy Op

V- ov_ Vi Ovy
B ((1 tv)R2+vo) op (T+v)(kR2+vy) 3_H) E(k)]
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and furthermore,

) K(k)

2 2
%(k,u)= 1 [(k +v_Ov. kK +v o,

2\/R(k, 1) v o 2 on
(o aa) )
- s e ) (5 (e ) e

5 (-0 =)

_ Si(k, p)K (k) + Sa(k, ) E(k)
6k2/R(k, j1)\/—3u% + 6(kZ — 2)p + 9k*’

where
S =12 4+32-K)u+6(1 -k, S:=-3(u—-k>+2).

Finally, the claim of the lemma is proved by repeating argument in [12, Proof of Lemma
6.2]. O
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