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1. INTRODUCTION

This note presents a brief review of the progressing article [20]. We consider the Brezis-
Nirenberg problem on thin annuli in a n-dimensional standard sphere S” as an extension
of work of Gladiali-Grossi-Pacella-Srikanth [8] that considers the problem on expanding
annuli in R™”. We note a similar extension has done by Morabito [15] dealing the problem
on expanding annuli in the space which includes a n-dimensional hyperbolic space H" as
a typical case.

Let Agr be a Laplace-Beltrami operator on n-dimensional (n > 2) sphere S* = {X =
(X1,...y Xn, Xn+1) € R*! ¢ |X| = 1}. Further, let p > 1 and Qg, 9, = {X € S" :
cosf < Xp41 < cosfs}, 61,02 € (0,7) be a thin annulus on S*. We consider following

Brezis-Nirenberg problem on g, 6,:

(1)

AgnU+ AU +UP=0,U >0 in Qg 6,,
U=0 on 9, ¢,,

Let A\; be the first eigenvalue of —Agn on 2y, 9, and assume A < A;. Moreover let
P:s"\{(0,...,0,-1)} - R" be a stereographic projection defined by

1

2 P(X;,... X P —
( ) ( 1, 1X'n, n+1) Xn+1+l

(X1,...,Xn), X es*\{(,...,0,-1)}.
We define Ag = P(€%, 6,), concretely

(3) R—e=tan%,R+e:tan% and Ap,={z€R":R—-e<|z|<R+e€}.
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We note on Ag., Riemannian metric g = Zi’j gijdr; ® dz; is induced, where g;; =
4(1+ |z[2) 7% &;;. Hence (1) is expressed with this metric as:

n(n — 2) + 4\

" Bwt+ G w AL+ |z2) 2P =0, w > 0 in Ag,,
w=0 on OARy,

here w satisfies

(5) U(P~'z) = (1 + |z2)"T w(z) for z € Ar,.

In the next section, regarding e a parameter of Ag ., we obtain results for the existence of
bifurcation solutions of (4) from radially symmetric positive solution.

2. MAIN RESULTS

Theorem 1. Assume n > 2, A < A;, p > 1. Then there exists k > 0, such that for k > k,
we have an unique €, and at € = €, non-radially symmetric positive bifurcation solution
from radially symmetric positive solution of (4) exists. Especially, this bifurcation solution

has O(n — 1) group invariant symmetry. We note € satisfies limg_00 €5 = 0.

radial sol.

Under the same assumptions with Theorem 1 except that k is even number, we obtain
the multiple existence result of bifurcation solutions.

Theorem 2. Assume n > 2, A < A1, p > 1. Then there exists k > 0, such that for
k > k and k is even number, we have an unique €, and at € = e, |n/2] non-radially
symmetric positive bifurcation solutions from radially symmetric positive solution of (4)
exists. Especially these bifurcation solutions have O(h) x O(n—h) (1 < h < |n/2]) group

invariant symmetry respectively. We note ¢, satisfies limg_,o0 € = 0.
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For the proof of Theorems 1 and 2, uniqueness of positive radial solution of (4) plays
an important role (we rely the detail, how uniqueness of positive radial solution of (4) is
used on [20]). Using the uniqueness result and Leray-Schauder degree argument we obtain
Theorems 1 and 2.

3. UNIQUENESS OF THE RADIAL POSITIVE SOLUTION OF THE EQUATION (4)

We note positive radial solution of (4) satisfies

(6)
wrr+nT_1wr+n((1;_:3‘)2__;-#W+4(l )"2)” (e (nt) p=0,w>0,TG(R—6,R+€)
w(R+e€)=0.

By applying theorems 13 and 14 of [19], we obtain following theorem.
Theorem A . Let M\, p, = (6+ (6 —4n)p)/((p+ 3)(p — 1)) and 6, be a unique 6 € (0,7/2)
satisfying G(tan(6/2)) = 0 where
G(r) = Ar* + Br? + A,

and

A=(n+2-(n-2)p)((n—2)p+n—4)

=(p+3)[3n? — 6n — (n? — 4n +4)p| — 8(n — 1),
B =(p+3)[-6n% + 12n + (2n? + 4\ — 4)p + 22p® — 6A — 12] + 16(n — 1)%.

Moreover, assume € > 0 be small enough. Then, the equation (6) has a unigue positive
solution for 1 < p and A € (—o0o, A1) except for the following four cases.
(n>3,1<p<(n+2)/(n—2), A€ (—00,A\np) and 1 € (R— ¢, R+¢).
(i) n>3,p>M+2)/(n—2), A€ (—00,Anp] and 1 € (R—€,R+¢).
(i) n=2,1<p, A€ (—00,-2/(p+3)) and1 € (R—¢,R+¢).
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(iv)n >3, p>(n+2)/(n—-2), A € (Anp, A1) and tan(6)/2) € (R—¢€,R+¢€) or
tan((m — 6,)/2) € (R—¢,R+¢).

On the other hand, applying Theorem 2.21 and Theorem 2.24 of Ni-Nussbaum [17], we

have the following result.

Theorem B . Let A > —n(n—2)/4, n>2 and

™ (ﬁfi)s{("'”’%” ”Zz

e, n=2.

Then equation (6) has a unique positive solution for 1 < p and X € (—00, A1,¢).

Remark 1. Since we assume € > 0 is small, we can remove the assumption (7). Nev-
ertheless, even combining Theorem A and Theorem B, following three cases remain that
do not guarantee the uniqueness of the positive solution of (6) (note that in the case
p>(n+2)/(n—2), Anp > —n(n — 2)/4 holds).
MHn>3,1<p<(n+2)/(n—2), A€ (—00,A\np) and 1 € (R—¢,R+¢).

(M n>3,p>(Mn+2)/(n—2), A€ (—00,—n(n—2)/4) and1 € (R—¢€,R+¢).

(II) n=2,1<p, A€ (—00,—2/(p+3)) and1 € (R—¢,R+e¢).
We also note that in the case of Brezis-Nirenberg problem on thin annulus with Dirichlet
boundary condition in R™, uniqueness of positive radial solution without any restriction
can be obtained through Theorem 7 of [19] and Theorem 2.21 of [17]. This difference with

S™ case motivates the study of progressing article [20].
Assume p satisfies 1 < p. We consider (6) in somewhat generalized form:

fr(r) —al(ru PP = r ' i
® u"+f(r)ur g(r)u+h(r)uP =0, u>0, re(R,R"),

u(R') =0, u(R") =0,

where —o0o < R' < R", f € C!([R', R"]) and f is positive and non-decreasing on (R', R"),
g€ CY(R,R"))NC([R', R")), h € C((R', R"))NC(|R', R"]) and h is positive on [R', R").
In the case R” = oo, u(R") = 0 means lim,_,o, u(r) = 0.

We consider the uniqueness of positive solution of (8). We can show the following

lemma.

Lemma 1. Let u; and uy be solutions of (8) satisfying u1(R') > uz,(R'). Then it holds
that

9) dir (Z:E:;) >0, re(R,R).




3.1. An application to equation (6).
First, we introduce an auxiliary function ¢ as

(r"‘1<pr(r))r + n(r;:j ';'4)‘7""_1(,0(7") =0inr € (R—e€,R+€p)

(10) P(R—e) =1, pr(R—e0) =1

 is monotone increasing on r € (R — €, R + ),

where ¢ is a small positive number. We note if ¢g > 0 is sufficiently small, ¢ satisfying
the above monotone property clearly exists. Here we put

(11) w(r) = p(r)u(r)

then (6) with 0 < € < €p can be rewritten as

(12)
n—2)p—(n+2)
("ol un(r)), + 477 (1402) T (e =0, 1€ (R— e R+0),
u(r) > 0, r€(R—¢,R+e),
u(R+e)=0.

Hence putting R = R—¢,R” = R+ ¢ and
f(r) =r""top(r)?

(13) g(r)=0
B(r) = 4 (1+72) T gy,

we see that equation (12) takes the form of (8).

Remark 2. We note above f,g,h satisfies the properties assumed in (8). FEspecially,
non-decreasing property of f(r), r € (R',R") holds.

Now we introduce Pohozaev function.

Definition 1. For positive solutions u of (8) with f,g,h as (13) and a,b,c of class C}[R—

¢, R + €] functions, we define PohoZaev function J(r;u) as

(14)  J(riu) = %a(r)ur(r)z +b(r)ur (r)u(r) + %C(r)u(r)z +- L o) h(r)u(r)PH.

+1

For such J(r;u), we obtain by direct computation that

dirJ('r; u) = A(r)ur(r)2 + B(r)uru(r) + G(’r)u(r)2 + H(r)u(r)’”’l,
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where
A(r) = Sar(r) - E8ar) +5(r)
B(r) = br(r) — F5b(r) + clr)
G(r) = sor(r)
H(r) = =b(r)h(r) + p+1 (a(r)h(r))r.
Here we define Fi(r) and F»(r) as

(15)

_ [ o= [B®
(16) Fi(r) _/R ) and Fy(r) = 0 —2dt,
respectively. We put

cr) =-1
(17) b(r) =af(r)+ f(r)Fi(r)

a(r) = caf(r)? = 2c1f(r)*Fa(r) - 2f(r)* Fa(r),
where ¢1 and ¢y are arbitrary real constant. Then we can easily see that A(r) = B(r) =
G(r)=0on [R—¢, R+ ¢] and hence

—dJS: D) = H(r)u(r)P*L.

Now, we fix the constant ¢; and c; as
_ FB(R-¢) - F(R+e¢)

(18)

ci(e) = g

(19) _ 2 %%?(}i ) e)pé;l((g )) Fy(R— )Fy(R+¢)
ca(€) = Fi(R+e¢) - Fi(R—¢)

Then we can see that

(20) a(R+e) =0

holds.

Remark 3. In [18,19], a(r),b(r) and c(r) are taken to satisfy A(r) = B(r) = H(r) = 0.

Hence, in [18,19], PohoZaev function satisfies

i’%i) — G(r)u(r)2.

Next, we show that a(r) and b(r) are of order O(e).

Lemma 2. Let a(r) and b(r) be as (17), further c1(€) and ca(e) be as (19). Then, it holds
that

la(r)| < Cre, |b(r)| < Cae, T7€(R—¢,R+¢)

where Cy and Cy are positive constants independent of €.
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Using this lemma, we can show the monotone property of H.

Lemma 3. For sufficiently small ¢ > 0, H(r) is monotone decreasing on (R —¢,R +¢)
and it holds that H(R —¢) > 0, H(R+¢€) < 0.

Using these lemmas, we can prove the uniqueness of the positive solution of (12) without
assuming (I)-(III) of Remark 1.

Theorem 3. Let ¢ > 0 be sufficiently small. Then, the equation (6) has a unique positive
solution for 1 < p and A € (—00, A1 ¢).
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