BIFURCATION AND SYMMETRY BREAKING FOR BREZIS-NIRENBERG PROBLEM ON Sⁿ

Kohtaro Watanabe^a and Naoki Shioji^b

^aDepartment of Computer Science, National Defense Academy,
 1-10-20 Hashirimizu, Yokosuka 239-8686, Japan
 ^bFaculty of Engineering, Yokohama National University,
 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan

1. Introduction

This note presents a brief review of the progressing article [20]. We consider the Brezis-Nirenberg problem on thin annuli in a n-dimensional standard sphere \mathbb{S}^n as an extension of work of Gladiali-Grossi-Pacella-Srikanth [8] that considers the problem on expanding annuli in \mathbb{R}^n . We note a similar extension has done by Morabito [15] dealing the problem on expanding annuli in the space which includes a n-dimensional hyperbolic space \mathbb{H}^n as a typical case.

Let $\Delta_{\mathbb{S}^n}$ be a Laplace-Beltrami operator on *n*-dimensional $(n \geq 2)$ sphere $\mathbb{S}^n = \{X = (X_1, \ldots, X_n, X_{n+1}) \in \mathbb{R}^{n+1} : |X| = 1\}$. Further, let p > 1 and $\Omega_{\theta_1, \theta_2} = \{X \in \mathbb{S}^n : \cos \theta_1 < X_{n+1} < \cos \theta_2\}$, $\theta_1, \theta_2 \in (0, \pi)$ be a thin annulus on \mathbb{S}^n . We consider following Brezis-Nirenberg problem on $\Omega_{\theta_1, \theta_2}$:

(1)
$$\begin{cases} \Delta_{\mathbb{S}^n} U + \lambda U + U^p = 0, \ U > 0 & \text{in } \Omega_{\theta_1, \theta_2}, \\ U = 0 & \text{on } \partial \Omega_{\theta_1, \theta_2}, \end{cases}$$

Let λ_1 be the first eigenvalue of $-\Delta_{\mathbb{S}^n}$ on $\Omega_{\theta_1,\theta_2}$ and assume $\lambda < \lambda_1$. Moreover let $P: \mathbb{S}^n \setminus \{(0,\ldots,0,-1)\} \to \mathbb{R}^n$ be a stereographic projection defined by

(2)
$$P(X_1, \dots, X_n, X_{n+1}) = \frac{1}{X_{n+1} + 1} (X_1, \dots, X_n), \quad X \in \mathbb{S}^n \setminus \{(0, \dots, 0, -1)\}.$$

We define $A_{R,\epsilon} = P(\Omega_{\theta_1,\theta_2})$, concretely

(3)
$$R - \epsilon = \tan \frac{\theta_2}{2}, R + \epsilon = \tan \frac{\theta_1}{2}$$
 and $A_{R,\epsilon} = \{x \in \mathbb{R}^n : R - \epsilon < |x| < R + \epsilon\}.$

We note on $A_{R,\epsilon}$, Riemannian metric $g = \sum_{i,j} g_{ij} dx_i \otimes dx_j$ is induced, where $g_{ij} = 4 (1 + |x|^2)^{-2} \delta_{ij}$. Hence (1) is expressed with this metric as:

(4)
$$\begin{cases} \Delta w + \frac{n(n-2) + 4\lambda}{(1+|x|^2)^2} w + 4(1+|x|^2)^{\frac{(n-2)p - (n+2)}{2}} w^p = 0, \ w > 0 & \text{in } A_{R,\epsilon}, \\ w = 0 & \text{on } \partial A_{R,\epsilon}, \end{cases}$$

here w satisfies

(5)
$$U(P^{-1}x) = (1+|x|^2)^{\frac{n-2}{2}}w(x) \quad \text{for } x \in \overline{A_{R,\epsilon}}.$$

In the next section, regarding ϵ a parameter of $A_{R,\epsilon}$, we obtain results for the existence of bifurcation solutions of (4) from radially symmetric positive solution.

2. Main Results

Theorem 1. Assume $n \geq 2$, $\lambda < \lambda_1$, p > 1. Then there exists $\bar{k} \geq 0$, such that for $k \geq \bar{k}$, we have an unique ϵ_k and at $\epsilon = \epsilon_k$, non-radially symmetric positive bifurcation solution from radially symmetric positive solution of (4) exists. Especially, this bifurcation solution has O(n-1) group invariant symmetry. We note ϵ_k satisfies $\lim_{k\to\infty} \epsilon_k = 0$.

Under the same assumptions with Theorem 1 except that k is even number, we obtain the multiple existence result of bifurcation solutions.

Theorem 2. Assume $n \geq 2$, $\lambda < \lambda_1$, p > 1. Then there exists $\bar{k} \geq 0$, such that for $k \geq \bar{k}$ and k is even number, we have an unique ϵ_k and at $\epsilon = \epsilon_k$, $\lfloor n/2 \rfloor$ non-radially symmetric positive bifurcation solutions from radially symmetric positive solution of (4) exists. Especially these bifurcation solutions have $O(h) \times O(n-h)$ $(1 \leq h \leq \lfloor n/2 \rfloor)$ group invariant symmetry respectively. We note ϵ_k satisfies $\lim_{k \to \infty} \epsilon_k = 0$.

For the proof of Theorems 1 and 2, uniqueness of positive radial solution of (4) plays an important role (we rely the detail, how uniqueness of positive radial solution of (4) is used on [20]). Using the uniqueness result and Leray-Schauder degree argument we obtain Theorems 1 and 2.

3. Uniqueness of the radial positive solution of the equation (4)

We note positive radial solution of (4) satisfies

(6)
$$\begin{cases} w_{rr} + \frac{n-1}{r}w_r + \frac{n(n-2)+4\lambda}{(1+r^2)^2}w + 4(1+r^2)^{\frac{(n-2)p-(n+2)}{2}}w^p = 0, \ w > 0, \ r \in (R-\epsilon, R+\epsilon) \\ w(R \pm \epsilon) = 0. \end{cases}$$

By applying theorems 13 and 14 of [19], we obtain following theorem.

Theorem A. Let $\lambda_{n,p} = (6 + (6-4n)p)/((p+3)(p-1))$ and θ_{λ} be a unique $\theta \in (0, \pi/2)$ satisfying $G(\tan(\theta/2)) = 0$ where

$$G(r) = Ar^4 + Br^2 + A,$$

and

$$A = (n+2-(n-2)p)((n-2)p+n-4)$$

$$= (p+3)[3n^2 - 6n - (n^2 - 4n + 4)p] - 8(n-1)^2,$$

$$B = (p+3)[-6n^2 + 12n + (2n^2 + 4\lambda - 4)p + 2\lambda p^2 - 6\lambda - 12] + 16(n-1)^2.$$

Moreover, assume $\epsilon > 0$ be small enough. Then, the equation (6) has a unique positive solution for 1 < p and $\lambda \in (-\infty, \lambda_{1,\epsilon})$ except for the following four cases.

(i)
$$n \ge 3, 1$$

(ii)
$$n \ge 3$$
, $p > (n+2)/(n-2)$, $\lambda \in (-\infty, \lambda_{n,p}]$ and $1 \in (R - \epsilon, R + \epsilon)$.

(iii)
$$n = 2, 1 < p, \lambda \in (-\infty, -2/(p+3))$$
 and $1 \in (R - \epsilon, R + \epsilon)$.

(iv)
$$n \geq 3$$
, $p > (n+2)/(n-2)$, $\lambda \in (\lambda_{n,p}, \lambda_{1,\epsilon})$ and $\tan(\theta_{\lambda}/2) \in (R-\epsilon, R+\epsilon)$ or $\tan((\pi-\theta_{\lambda})/2) \in (R-\epsilon, R+\epsilon)$.

On the other hand, applying Theorem 2.21 and Theorem 2.24 of Ni-Nussbaum [17], we have the following result.

Theorem B . Let $\lambda \geq -n(n-2)/4$, $n \geq 2$ and

(7)
$$\left(\frac{R+\epsilon}{R-\epsilon}\right) \le \begin{cases} (n-1)^{\frac{1}{n-2}}, & n \ge 3\\ e, & n = 2. \end{cases}$$

Then equation (6) has a unique positive solution for 1 < p and $\lambda \in (-\infty, \lambda_{1,\epsilon})$.

Remark 1. Since we assume $\epsilon > 0$ is small, we can remove the assumption (7). Nevertheless, even combining Theorem A and Theorem B, following three cases remain that do not guarantee the uniqueness of the positive solution of (6) (note that in the case p > (n+2)/(n-2), $\lambda_{n,p} > -n(n-2)/4$ holds).

(I)
$$n \ge 3$$
, $1 , $\lambda \in (-\infty, \lambda_{n,p})$ and $1 \in (R - \epsilon, R + \epsilon)$.$

(II)
$$n \ge 3$$
, $p > (n+2)/(n-2)$, $\lambda \in (-\infty, -n(n-2)/4)$ and $1 \in (R-\epsilon, R+\epsilon)$.

(III)
$$n = 2, 1 < p, \lambda \in (-\infty, -2/(p+3))$$
 and $1 \in (R - \epsilon, R + \epsilon)$.

We also note that in the case of Brezis-Nirenberg problem on thin annulus with Dirichlet boundary condition in \mathbb{R}^n , uniqueness of positive radial solution without any restriction can be obtained through Theorem 7 of [19] and Theorem 2.21 of [17]. This difference with \mathbb{S}^n case motivates the study of progressing article [20].

Assume p satisfies 1 < p. We consider (6) in somewhat generalized form:

(8)
$$\begin{cases} u_{rr} + \frac{f_r(r)}{f(r)} u_r - g(r)u + h(r)u^p = 0, \ u > 0, \quad r \in (R', R''), \\ u(R') = 0, \ u(R'') = 0, \end{cases}$$

where $-\infty < R' < R''$, $f \in C^1([R', R''])$ and f is positive and non-decreasing on (R', R''), $g \in C^1((R', R'')) \cap C([R', R''])$, $h \in C^1((R', R'')) \cap C([R', R''])$ and h is positive on [R', R'']. In the case $R'' = \infty$, u(R'') = 0 means $\lim_{r \to \infty} u(r) = 0$.

We consider the uniqueness of positive solution of (8). We can show the following lemma.

Lemma 1. Let u_1 and u_2 be solutions of (8) satisfying $u_{1,r}(R') > u_{2,r}(R')$. Then it holds that

(9)
$$\frac{d}{dr}\left(\frac{u_1(r)}{u_2(r)}\right) > 0, \quad r \in (R', R).$$

3.1. An application to equation (6).

First, we introduce an auxiliary function φ as

(10)
$$\begin{cases} \left(r^{n-1}\varphi_r(r)\right)_r + \frac{n(n-2)+4\lambda}{(1+r^2)^2}r^{n-1}\varphi(r) = 0 \text{ in } r \in (R-\epsilon_0, R+\epsilon_0) \\ \varphi(R-\epsilon_0) = 1, \ \varphi_r(R-\epsilon_0) = 1 \\ \varphi \text{ is monotone increasing on } r \in (R-\epsilon_0, R+\epsilon_0), \end{cases}$$

where ϵ_0 is a small positive number. We note if $\epsilon_0 > 0$ is sufficiently small, φ satisfying the above monotone property clearly exists. Here we put

(11)
$$w(r) = \varphi(r)u(r)$$

then (6) with $0 < \epsilon < \epsilon_0$ can be rewritten as

 $\begin{cases} (r^{n-1}\varphi(r)^{2}u_{r}(r))_{r} + 4r^{n-1}\left(1 + r^{2}\right)^{\frac{(n-2)p - (n+2)}{2}}\varphi(r)^{p+1}u(r)^{p} = 0, & r \in (R - \epsilon, R + \epsilon), \\ u(r) > 0, & r \in (R - \epsilon, R + \epsilon), \\ u(R \pm \epsilon) = 0. \end{cases}$

Hence putting $R' = R - \epsilon$, $R'' = R + \epsilon$ and

(13)
$$\begin{cases} f(r) = r^{n-1}\varphi(r)^2 \\ g(r) \equiv 0 \\ h(r) = 4\left(1 + r^2\right)^{\frac{(n-2)p - (n+2)}{2}} \varphi(r)^{p-1}, \end{cases}$$

we see that equation (12) takes the form of (8).

Remark 2. We note above f, g, h satisfies the properties assumed in (8). Especially, non-decreasing property of f(r), $r \in (R', R'')$ holds.

Now we introduce Pohožaev function.

Definition 1. For positive solutions u of (8) with f, g, h as (13) and a, b, c of class $C^1[R - \epsilon, R + \epsilon]$ functions, we define Pohožaev function J(r; u) as

(14)
$$J(r;u) = \frac{1}{2}a(r)u_r(r)^2 + b(r)u_r(r)u(r) + \frac{1}{2}c(r)u(r)^2 + \frac{1}{p+1}a(r)h(r)u(r)^{p+1}.$$

For such J(r; u), we obtain by direct computation that

$$\frac{d}{dr}J(r;u) = A(r)u_r(r)^2 + B(r)u_ru(r) + G(r)u(r)^2 + H(r)u(r)^{p+1},$$

where

(15)
$$\begin{cases} A(r) = \frac{1}{2}a_r(r) - \frac{f_r(r)}{f(r)}a(r) + b(r) \\ B(r) = b_r(r) - \frac{f_r(r)}{f(r)}b(r) + c(r) \\ G(r) = \frac{1}{2}c_r(r) \\ H(r) = -b(r)h(r) + \frac{1}{p+1}(a(r)h(r))_r. \end{cases}$$

Here we define $F_1(r)$ and $F_2(r)$ as

(16)
$$F_1(r) = \int_R^r \frac{dt}{f(t)} \text{ and } F_2(r) = \int_R^r \frac{F_1(t)}{f(t)} dt,$$

respectively. We put

(17)
$$\begin{cases} c(r) &= -1 \\ b(r) &= c_1 f(r) + f(r) F_1(r) \\ a(r) &= c_2 f(r)^2 - 2c_1 f(r)^2 F_1(r) - 2f(r)^2 F_2(r), \end{cases}$$

where c_1 and c_2 are arbitrary real constant. Then we can easily see that $A(r) \equiv B(r) \equiv G(r) \equiv 0$ on $[R - \epsilon, R + \epsilon]$ and hence

(18)
$$\frac{dJ(r;u)}{dr} = H(r)u(r)^{p+1}.$$

Now, we fix the constant c_1 and c_2 as

(19)
$$\begin{cases} c_1(\epsilon) = \frac{F_2(R-\epsilon) - F_2(R+\epsilon)}{F_1(R+\epsilon) - F_1(R-\epsilon)} \\ c_2(\epsilon) = \frac{2(F_1(R+\epsilon)F_2(R-\epsilon) - F_1(R-\epsilon)F_2(R+\epsilon))}{F_1(R+\epsilon) - F_1(R-\epsilon)}. \end{cases}$$

Then we can see that

$$a(R \pm \epsilon) = 0$$

holds.

Remark 3. In [18,19], a(r),b(r) and c(r) are taken to satisfy $A(r) \equiv B(r) \equiv H(r) \equiv 0$. Hence, in [18,19], Pohožaev function satisfies

$$\frac{dJ(r;u)}{dr} = G(r)u(r)^2.$$

Next, we show that a(r) and b(r) are of order $O(\epsilon)$.

Lemma 2. Let a(r) and b(r) be as (17), further $c_1(\epsilon)$ and $c_2(\epsilon)$ be as (19). Then, it holds that

$$|a(r)| \le C_1 \epsilon$$
, $|b(r)| \le C_2 \epsilon$, $r \in (R - \epsilon, R + \epsilon)$

where C_1 and C_2 are positive constants independent of ϵ .

Using this lemma, we can show the monotone property of H.

Lemma 3. For sufficiently small $\epsilon > 0$, H(r) is monotone decreasing on $(R - \epsilon, R + \epsilon)$ and it holds that $H(R - \epsilon) > 0$, $H(R + \epsilon) < 0$.

Using these lemmas, we can prove the uniqueness of the positive solution of (12) without assuming (I)-(III) of Remark 1.

Theorem 3. Let $\epsilon > 0$ be sufficiently small. Then, the equation (6) has a unique positive solution for 1 < p and $\lambda \in (-\infty, \lambda_{1,\epsilon})$.

REFERENCES

- C. Bandle and R. Benguria, The Brezis-Nirenberg Problem on S³, J. Differential Equations 178 (2002), 264-279.
- [2] H. Bandle and L. A. Peletier, Elliptic Equations with critical exponent on spherical caps of S³, Journal D'Analysis mahtematique 98 (2006), 279-316.
- [3] T. Bartsch, M. Calpp, M. Grossi, and F. Pacella, Asymptotically radial solutions in expanding annular domains, Math. Ann. 352 (2012), no. 2, 485-515.
- [4] M. Bonforte, F. Gazzola, G. Grillo, and J. L. Vázquez, Classification of radial solutions to the Emden-Fowler equation on the hyperbolic space, Calc. Var. Partial Differential Equations 46 (2013), no. 1-2, 375-401.
- [5] R. Brown, A Topological Introduction to Nolinear Analysis (2nd. Ed.), Birkhauser, Boston, 2004.
- [6] C. V. Coffman, A nonlinear boundary value problem with many positive solutions, J. Differential Equations 54 (1984), 429-437.
- [7] P. Felmer, S. Martínez, and K. Tanaka, Uniqueness of radially symmetric positive solutions for $-\Delta u + u = u^p$ in an annulus, J. Differential Equations 245 (2008), 1198–1209.
- [8] F. Gladiali, M. Grossi, F. Pacella, and P. N. Srikanth, Bifurcation and symmetry breaking for a class of semilinear elliptic equations in an annulus, Calc. Var. 40 (2011), 295–317.
- [9] C. Bandle and Y. Kabeya, On the positive, "radial" solutions of a semilinear elliptic equation in H^N, Adv. Nonlinear Anal. 1 (2012), no. 1, 1-25.
- [10] Y. Kabeya and K. Tanaka, Uniqueness of positive radial solutions of semilinear elliptic equations in R^N and Séré's non-degeneracy condition, Comm. Partial Differential Equations 24 (1999), 563-598.
- [11] R. Kajikiya, Multiple positive solutions of the Emden-Fowler equation in hollow thin symmetric domains, Calc. Var. 52 (2015), 681-704.
- [12] A. Kosaka, Emden equation involving the critical Sobolev exponent with the third-kind boundary condition in S³, Kodai Math. J. 35 (2012), no. 3, 613–628.
- [13] Y. Y. Li, Existence of many positive solutions of semilinear elliptic equations on annulus, J. Differential Equations 83 (1990), 348-367.
- [14] G. Mancini and K. Sandeep, On a semilinear elliptic equation in Hⁿ, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 7 (2008), no. 4, 635-671.
- [15] F. Morabito, Radial and non-radial solutions to an elliptic problem on annular domains in Riemannian manifolds with radial symmetry, Calc. Var. 258 (2015), 1461–1493.
- [16] R. D. Nassbaum, The fixed point index for local condensing maps, Ann. Mat. Pura. Appl 89 (1971), 217-258.

- [17] W.-M. Ni and R. D. Nussbaum, Uniqueness and nonuniqueness for positive radial solutions of $\Delta u + f(u,r) = 0$, Commun. Pure and Appl. Math. 38 (1985), 67–108.
- [18] N. Shioji and K. Watanabe, A generalized Pohožaev identity and uniqueness of positive radial solutions of $\delta u + g(r)u + h(r)u^p = 0$, J. Differential Equations 255 (2013), 4448-4475.
- [19] _____, Uniqueness and nondegeneracy of positive radial solutions of $\operatorname{div}(\rho \nabla u) + \rho(-gu + hu^p) = 0$, Calc. Var. 55 (2016), 0-0.
- [20] _____, Bifurcation and symmetry breaking for Brezis-Nirenberg problem on \mathbb{S}^n , preprint.
- [21] J. Smoller and A. Wasserman, Bifurcation and symmetry-breaking, Invent. Math. 100 (1990), 63-95.