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Exact blow-up profile for a heat equation with a nonlinear
boundary condition
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We study the asymptotic behavior of positive blow-up solutions for the heat equation.

uy=Au, z€RY, te(0,T),

du=ul, xze€dRy}, te(0,T), (P)
u = ug, z€RY, t=0,

where R? = {z = (2/,z,) € R" ! x R;z, > 0}, 8, = —8/0zp and 1 < ¢ < n/(n—2). A

function u(z, t) is said to be z,-axial symmetric, if u(z,t) depends only on |z| and z, for any

t € [0,T). We focus on z,-axial symmetric functions throughout this report. Let u(z,t) be a
blow-up solution of (P) and T be its blow-up time. If a limit

U(z) = th_)rr% u(z, t) € [0, 00]

exists for any = € R} UOR%, we call U(z) a blow-up profile of u(z, t).

U(z) blow-up profile

...... AR

+z,
A goal of this report is to determine the singularity of blow-up profiles. The blow-up profile

for (P) was first studied in [4, 5] for a one dimensional case. Indeed they constructed blow-up
solutions satisfying

U(zx) = Azt forze R;. (1)

The author [6] extended their results to a multidimensional case and proved that if u(z,t) is a
positive T,-axial symmetric blow-up solution, its blow-up profile is given by

U(z) = A(1 + o(l))(cosl9)t1_Tll|a:|<1_-_11 along z,, = |z|cos @ (2)

for any fixed 6 € [0,7/2). This profile function coincides with (1) if & = 0. Unfortunately (2)
does not hold on the boundary, since § = 7/2 on the boundary. On the other hand, the boundary
singularity was studied in [7]. He obtained the following inequalities under some monotonicity
conditions. )

1 1
ki (|log | |/12*) 2@ < Uz) < ke (|log |z]|/|2|*)™@", € ORY, |af < 1.



163

In this report, we improve this bound and consider more general situations.
Let u(z,t) be a positive z,-axial symmetric solution which blows up at the origin. We
introduce self-similar variables.

w(y,s) = (T — )@ Du(VT —t-y,t), T—t=e"
The rescaled function w(y, s) satisfies

ws——-Aw—%-Vw—i(q—“i—ﬁ, y€RY, s> —logT,
ow = wi, y € ORY, s> —logT.

It is known that w(y,s) converges to the x(y) as s — 0o, where k(y) = &(yn) is the unique
positive bounded solution of

& _ynde Kk _
&2 " Ty "2 =0 (3)

(see [3], [2]). To investigate the asymptotic behavior of solutions, we consider the linearization
around k(y).

Ap—%-Vé— gty =-2¢ inRY, 8,6 =gx""¢ on IR]. (4)
Under z,-axial symmetric case setting, the eigenfunction is written as
¢k,l(y) = hk(lleIl(yn)’ k= 07 11 27 ttty leN.

Let /\}C‘n_1 be the kth eigenvalue corresponding hi(|y’|) and /\;R" be the /th eigenvalue corre-
sponding I;(y,). The eigenvalue of (4) is given by A\; = /\',‘zﬂ_1 + /\ik+ + ﬁ. It is known
that

o1 <0, A1 =0, Akg >0 (k>2o0rl>2).
Let L2(R%) be a weighted Lebesgue space defined by L3(R%) = {w € L} (R%); ||w]| AR =

(fR'i w(y)? e~ */4dy)1/2 < 00}. We recall our previous result.

Theorem 1 (Theorem 1.1 [7]). Let u(z,t) be a positive z,-azial symmetric solution of (P) which
blows up at the origin. Then one of the following two cases occurs.

(c1) |lw(s) — (k + c13_1¢1,1)I|L‘2)(R1) = o(s7!), where c; < 0 is a constant depending only on
n,q or
(c2) w(s) — k decays exponentially in Lg(]R’_,‘_).

We now state our main result in this report.

Theorem 2. Let u(z,t) be a positive x,-azial symmetric solution of (P) which blows up atw
the origin.

(i) If w(y, s). behaves as (c1) in Theorem 1, then the blow-up profile U(z) € C(R%} USRY \
{0}) exists and satisfies

1
U(z) = k(| log|e||/|2*) @D (1 +0(1)), =€ R}, |z <1,
where k is a positive constant depending only on n and q.

(ii) If w(y, s) behaves as (c2) in Theorem 1, then

U(z) =Kz @D (1+0(l)), zedR, |z|<1

for some k > 2.
o J

Generally a blow-up solution behaves like

w(s) = K+ cre 5y + o(e™ %) in Lf,(R:‘_)
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for some k =0,1,2,--- and [ € N. Unfortunately we have no idea about the case [ > 2.
Our proof is a slight modification of arguments in a series of papers [8, 9, 10, 11, 12]. We
here focus on the asymptotic behavior of w(y, s) for large |y|. We introduce another rescale.

W(z,¢(,s) = w(R(s)z,(,s) for z€ R™, ¢ >0.

The function R(s) (lims—e R(s) = oc0) is determined by the long time behavior of w(y,s). A
goal is to determine the asymptotic behavior of W(z,(,s) for |z| +|{| < R as s — 0o. We see
that W(z,(, s) satisfies

W, =R2A,W — (3 - )2 . VW + W — §W —mW, ze R, (>0, s> —logT,
W =Wy, zeR"™ (=0, s> —logT.

To investigate the long time behavior of W (z, {, s), we study a limiting problem of this equation.
For the case (i), since w(y,s) = k(y) + c1s71¢1,1(y) + o(s™!) in L2(R?}) (see Theorem 1 (c1))
and ¢1,1(y) = c(|y/[* — 2(n — 1)) 11 (yn), we take

R(s) = /5.
A limiting equation is given by
12 -V, W+ Wy — §W; —mW =0 for z€ R™, (>0, 5)
W =w? onzeR™! ¢=0.
We will see that
W(z,¢) = (1 + blzl?)"™r(=—=) (6)

V/1+bz?
gives a solution of (5) (see below), where b > 0 is a free parameter. We choose b to match (c1)
in Theorem 1. Then W(z,(, s) gives a better approximation of w(y, s) than & + c1s™1¢1 1.

From now, we derive (6) in a formal approach. Since z - V,|2|¥ = 2k|z|%, we look for
solutions in the form of

(o]
W(z,0) =Y a;(Q)l2%.
=0
Substituting this into (5), we have
a;'—%ag—(m+j)aj=0, ¢>0.
Let A,(n) = a,(¢) withn = 543 for n > 0. Then A, satisfies
nA3'+(% —nA) — (m+35)A4; =0, n > 0.

This is the confluent hypergeometric equation (see (8.1.1) p. 201 [1]). One solution of this
equation is give by the Kummer function M(m + j, %; 7), another is given by

Ulm +j, %) = gy oo e ™M™ H T (1 4+ £)5 (Mgt

(see (8.2.1) p. 204 [1]). Since M(m + j, 3;m) behaves like n™HI3eN as ) — oo (see (8.1.8) p.
203 [1]), we take
1 . .
Ay(n) = ayn™ 3 T(m+j + )U(m + 5, 3,m),

where a, is a constant. Since U(a,c;0) = %l;lf)c—) if 1 — ¢ > 0 (see (8.2.5) p. 205 [1]), it is clear
that

A)(0) = oy. (7
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Form now, we determine «;,. We substitute

[eo]

2
W(z,¢) =Y A, ()=
7=0
into a boundary condition in (5). Since U’(a,c;z) = —aU(a+1,c+ 1,z) (see (8.5.8) p. 212 [1])

and U(a, c;z) = F(%;)l)xl‘c(l +0(1)) as z — 0+ if 1 — ¢ < O (see p. 205 [1]), we get

. 2
U/ m+5,3, =0
SR LA Y
= _(m) oo () 72 (1 + 0(1))le=o

)] r(3)
~(m+ ) Fmas) = " Tmis)

. 2
HdZU(m + 7 %’ %)|(=0

Therefore it holds that
r3) _ T(m+3+3)

2 1 .
A (D=0 = —aym 2 T(m + j + §) pmdyy = ~ % T -

From now we consider the case ¢ = 2. Since m = bt ql_l) = %, it follows that

oo (o]
T(m+3+3), 12; T(1+j
BW = —OWlc=o = Y oy i |2 =) :ajﬁ%wt—’]))pm (8)
=0 7=0

On the other hand, it holds from (7) that

W2y = (a0 + a2l + azlz|* + ag|zl® + - )(ao + 12 + azlz|* + asl2l®+ )
a? + 200122 + (2002 + a?)|z|* + (2a0as + 2a102)|2(° (9)
+(200a4 + 20103 + a2)|2® + (2a0as5 + 20104 + 2a203) 2|10 + - - .

Therefore from (8) and (9), we obtain

ra _ 2 r2 _ re _ 2
aoﬁ{) = af, alﬁ{) = 2ap07, 02@ = 20902 + oF,
a;;ﬂ;]—)— = 2ap03 + 201 a2, a4[‘_(gl = 20004 + 20103 + a%,

r'(3) r(3)

L'(5)

asf:(-%—) = 2apas + 20104 + 20203

It is clear that ag = %il =72, For simplicity, we put a; = 71'_%,8]. Then we get
2

(‘%27!%' —2)B2 =B, (31 — 2)Bs = 28152, (ra5t — 2)B1 = 28153 + B3,

22 2222

~

(w133t — 2)Bs = 2B1B4 + 2B2Ps.

Furthermore we put 3, = (261)’v,. We easily see that

— 6 — 58, _ 130 —
8v=1, 513 =72 Bys=v3+3, %35 =74+ 27273.
This implies
1.3 5.3.1 7.5.3.1 9.7.53.1
_3_273 _ 5 _ 327373 _ 35 _ 32333 _ 63 _ 33332
’72—'5—"2@12'1 Y3=16 = T3 Y4 = 128 — A ) Y5 = 356 — Bl



From this relation, we assume

_spasegd _ yrodd
Y = ! =7 i

Since o, = 771(2B1)%;, W(z,() is written by

W(z,()

SL(LU(5 35m) + ETQUE, siml=? + 22D T +37)
xU(3 + 5, 33m)|2|%
= lU(gyzyﬂ)"'ﬂlU(2,21ﬂ)|z|2+—§ZF(J+g)U(2+J,2,TI)(2,31)J|Z|2]

= 4D TG+ HUG+5 56|27,
=0

We recall the following formula (see p. 219 [1]).

8

2 3 T(at+$)
Ua,3,%) = NT%Z(—I)I_[!LCL
=0
We apply this formula in (10).
W(z,¢) = ;;.rzr 3+ HUG + 34, ) (281)]2%

. %ZZ( 1) Gt (98,7 2,

1=01=
Since L'(p+1) [(p+2) . L(p+n)
—_ n
1-z)P=1+ Flzp) T+ 3G z%+- n,pr(p)x +-
we obtain

W(z,() = 12:2%; 2 (281)i2]¢!

JOlO

T + r(i+i+
= IZ( 1[ (2 ) Z]!(-;‘(§2+§J))(2Bllz'2)1
=0

= ‘Z '“7*5’('(1—2ﬁ1|z|i)—<%+%)

_ 1(1-2B1|z|2)"Z( 1y T oy

2 .
We set m; = T AER We again use (11) to get

r(3 +2)

W(z,Q) = 2(1 - 2822 "Z( 1)

= 11;(1 —2B1|Z| ) 2U(27 277’1)
We put —283; = b. We finally obtain

- . 2
W(z,¢) =11 +blz) 30U L), i = gpmy

(Frsss)
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(10)

(11)



167

Let x() be given in (3). Since s(¢) = 2U (3,1, 543) (see (3.6) in [5]), we obtain

W(z,¢) =1+ blzlz)—%ﬁ(\/ﬁ)-

By a direct computation, we can check this actually satisfies (5) with ¢ = 2. By the same way,

we find that 2 ¢
_ —-m
W(z,¢) = (14 blz|*)™x( 1+b|z|2)'

gives a solution of (5) for any g > 1.
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