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Abstract 29 

Air monitoring network design is a critical issue because monitoring stations should be 30 

allocated properly so that they adequately represent the concentrations in the domain of interest. 31 

Although the optimization methods using observations from existing monitoring networks are 32 

often applied to a network with a considerable number of stations, they are difficult to be applied 33 

to a sparse network or a network under development: there are too few observations to define an 34 

optimization criterion and the high number of potential monitor location combinations cannot be 35 

tested exhaustively. This paper develops a hybrid of genetic algorithm and simulated annealing to 36 

combine their power to search a big space and to find local optima. The hybrid algorithm as well 37 

as the two single algorithms are applied to optimize an air monitoring network of PM2.5, NO2 and 38 

O3 respectively, by minimization of the mean kriging variance derived from simulated values of a 39 

chemical transport model instead of observations. The hybrid algorithm performs best among the 40 

algorithms: kriging variance is on average about 4% better than for GA and variability between 41 

trials is less than 30% compared to SA. The optimized networks for the three pollutants are 42 

similar and maps interpolated from the simulated values at these locations are close to the 43 

original simulations (RMSE below 9% relative to the range of the field). This also holds for 44 

hourly and daily values although the networks are optimized for annual values. It is demonstrated 45 
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that the method using the hybrid algorithm and the model simulated values for the calculation of 46 

the mean kriging variance is of benefit to the optimization of air monitoring networks. 47 

48 
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1. Introduction 52 

Air monitoring networks have been developed in various areas in the world for environmental, 53 

epidemiological, policy evaluation and/or emission surveillance purposes by national or local 54 

governments. These networks should be allocated properly so that they adequately represent the 55 

concentrations in the domain of interest to accomplish the purposes of the network. This issue is 56 

often referred to as a network design problem and has been widely discussed (e.g., Brus et al., 57 

2007; Wu et al., 2011). The network design problem usually aims at minimization of a design 58 

criterion that may be based on observations or other information about the field of interest: to 59 

achieve this aim, subsets of potential monitor locations are selected by an algorithm.  60 

A design criterion is often defined with the notion of entropy where a set of locations which 61 

maximize the entropy at the monitored sites is searched for (e.g., Zidek et al., 2000; Fuentes et al., 62 

2007). Another popular criterion is defined with a geostatistical estimation method which is 63 

called kriging, where the theoretical interpolation error averaged over the region of interest, i.e. 64 

the mean kriging variance is minimized (e.g., Baume et al., 2011; Wu et al., 2011). When the 65 

mean kriging variance is used as a criterion, observations obtained from existing monitoring 66 

network are often used to construct a variogram for the calculation of the mean kriging variance. 67 

In these cases, it is assumed that the network represents the spatial distribution sufficiently, thus 68 

the network of interest is relatively dense where the efficiency of the network is focused, i.e. 69 
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reduction of stations. Therefore, this method is difficult to apply to a sparse network or a network 70 

under development that insufficiently represents the spatial distribution of the pollutant of interest. 71 

In the field of air quality study, the chemical transport model (CTM), that simulates physical 72 

and chemical processes including emission, advection, photochemical reactions and deposition, 73 

has been extensively used at various ranges of spatial and temporal scale, not only to obtain a 74 

spatial distribution, but also to establish an effective strategy for the control of the concentrations 75 

of air pollutants (e.g., Emmons et al., 2011; Chatani et al., 2014). Thus, simulated concentrations 76 

from CTM with sufficiently high spatial resolution can be an alternative to observations to derive 77 

a variogram to compute the mean kriging variance as a design criterion. Simulations have also 78 

been used for sampling optimization by Kumral and Ozer (2013) in mine planning. 79 

Once the criterion is defined, the network design problem can be treated as a combinatorial 80 

optimization problem. When a network is small enough, complete enumeration of all possible 81 

combinations is possible. For a large network, however, this will run into a combinatorial 82 

explosion. To deal with this difficulty, search algorithms have been applied to the optimization of 83 

large networks. For instance, Ruis-Cardenas et al. (2010) applied genetic algorithm (GA) for an 84 

O3 monitoring network with several hundred stations in the United States. Wu et al. (2011) 85 

applied simulated annealing (SA) to the optimization of an O3 monitoring network over France. 86 

Given that the search space is huge when using simulated fields, superior ability both for a global 87 
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and a local search is required for a search algorithm to be applied. GA is able to search in a large 88 

space, but is often not able to find the local optimal solution (Ruiz et. al., 2010). On the other 89 

hand, SA is able to find locally optimal solutions, but is often trapped in regions far from the 90 

global optimum (Ruiz et. al., 2010). Araki et al. (2015) developed a hybrid of GA and SA (HGS) 91 

and successfully applied it to the optimization of a PM2.5 monitoring network using simulated 92 

values obtained from CTM for the computation of the mean kriging variance. However, the 93 

performance of HGS was not compared to those of other optimization algorithms in their study, 94 

thus the advantages of HGS have not been demonstrated. In addition, HGS was applied only for a 95 

PM2.5 monitoring network, and the possibility of application to other pollutants, that might have 96 

different spatial distribution features, was not examined.  97 

In this paper, CTM is used to generate spatial distributions of air pollutant concentrations to 98 

derive variograms for the computation of the mean kriging variance as a design criterion, and 99 

each of the algorithm including HGS, GA and SA is applied to PM2.5, NO2 and O3 in the Kinki 100 

region of Japan respectively, repeating each setting 30 times to capture random effects. The 101 

performances of the algorithms are compared against each other in terms of the quality of the 102 

solutions such as the mean and the standard deviation of the mean kriging variance of the 103 

respective trials. Fields have been interpolated by ordinary kriging using the CTM simulated 104 

values at the selected sites in the optimized networks, and the errors between the interpolated and 105 
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simulated fields are computed. The difference between the algorithms for each of the pollutants is 106 

discussed and the capability and the applicability of HGS are evaluated.  107 

 108 

2  Methodology 109 

2.1 Chemical Transport Model 110 

The chemical transport model used in this study is the Community Multiscale Air Quality model 111 

(CMAQ) (Byun and Ching, 1999) version 5.0.1 which was driven with the Weather Research and 112 

Forecasting model (WRF) (Skamarock et al., 2009) version 3.5.1. Meteorological fields were 113 

produced using WRF configured with the same physics options as those used by Shimadera et al. 114 

(2014); also emission data for the air quality simulations was produced in a similar way. The 115 

other settings involved in the simulations and CMAQ configurations are detailed in Shimadera et 116 

al. (2015). 117 

The WRF/CMAQ model was run from April 2010 to March 2011 (Japanese fiscal year 2010) 118 

with an initial spin-up period of 22-31 in March 2011. The horizontal domains consisted of three 119 

domains: domain 1 covering a wide area of Northeast Asia, domain 2 covering the main land of 120 

Japan, and domain 3 covering the area where the optimization algorithms are tested, which is 121 

shown as colored area in Figure 1. The horizontal resolution is 4 km and the number of grids is 122 

68 × 72 for domain 3. The annual and daily values used for the network optimization are 123 
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computed by averaging the hourly CTM outputs over the corresponding time periods. This 124 

simulation is identical to that used in Araki et al. (2015). 125 

The performance of the model is detailed in Shimadera et al. (2015) and summarized as follows: 126 

the statistical measures obtained from the comparison between observed and simulated daily 127 

concentrations indicate that the model simulates the temporal and spatial variation patterns of 128 

PM2.5, NO2 and O3 well with the Pearson’s correlation coefficient being 0.76, 0.82, and 0.77 for 129 

PM2.5, NO2 and O3 respectively. The scatter plots of the simulated and observed values of annual 130 

means for PM2.5 and NO2, and annual means of daily maximum 8-hr mean concentrations for O3, 131 

which are used to derive variograms for the computation of the mean kriging variance, are 132 

presented in Figure 2 with root mean squared error (RMSE) and R2 between the observed and 133 

simulated values. The number of observations for PM2.5, NO2 and O3 is 8, 219 and 188 134 

respectively. The reason for the limited number of observations for PM2.5 is because the PM2.5 135 

network in Japan started to be developed since 2009, a year before the target year of this 136 

simulation. The concentrations of O3 lie in a relatively narrow range, which results in low R2 137 

value for O3. However, RMSE of O3 is approximately 10% of the mean values of O3. Therefore, 138 

these simulated concentrations have sufficient quality to derive variograms for the computation of 139 

the mean kriging variance as the optimization criterion. The spatial distributions of PM2.5, NO2 140 

and O3 are given in Figure 1. Both PM2.5 and NO2 show highest concentrations in densely 141 
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populated areas, where NO2 is more concentrated to the agglomeration of Osaka. The higher and 142 

lower concentration areas of PM2.5 are generally distributed evenly. On the other hand, higher 143 

concentrations of NO2 are found in limited areas where megacities are located, while the lower 144 

areas are widely distributed. The spatial distribution of O3 is generally the reverse of that of NO2. 145 

This is because the O3 concentrations are affected by titration with NOx, and higher NOx 146 

concentrations might cause lower O3 concentrations in urban areas with relatively large 147 

anthropogenic emissions. The histograms of the simulated values in the candidate areas i.e. in the 148 

colored area in Figure 1 are given in Figure 3, which reflect the characteristics of the distribution 149 

of each pollutant: PM2.5 concentrations are approximately normally-distributed, the distribution 150 

of NO2 concentrations is skewed to zero and that of O3 is relatively skewed to higher values.  151 

2.2 Design criterion 152 

  The optimization criterion is minimizing the mean kriging variance, which has been used as a 153 

design criterion in many previous studies (e.g., Van Groenigen, 2000; Brus et al., 2007; Wu et al., 154 

2010; Wu et al., 2011; Baume et al., 2011). A definition of a design criterion is an expression of a 155 

purpose of a monitoring network. When minimization of the mean kriging variance is used as a 156 

criterion, the purpose of the network can be seen to grasp the spatial distribution of a pollutant in 157 

the whole region of interest well.  158 
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The simulated concentrations are transformed to a natural logarithmic scale before analysis, and 159 

back transformed after analysis so that the predicted concentrations are positive, which is not 160 

always the case without transformation (Beelen et al., 2009). The concentrations simulated by 161 

CTM are treated as point values at the grid cell centroids and an empirical variogram is computed 162 

from all the candidate points. A theoretical variogram is fitted to it with spherical model by 163 

weighted least-squares fitting. The derived variograms for the three pollutants are given in Figure 164 

4. Although the ranges of the three variograms are slightly different, the variograms are generally 165 

similar, with nugget very close to zero.  166 

The fitness value for a selected set of points is the mean kriging variance: kriging variance is 167 

computed in all points of the grid in the region of interest from the variograms and the selected 168 

set of points and averaged over the area; to avoid overestimation of the kriging variance at the 169 

boundaries, fifteen equally-spaced points at the margins of the region of interest (see Figure 1) 170 

are in addition regarded as selected.  171 

2.3 Optimization algorithms 172 

The optimal combination of points is searched for by the optimization algorithms.  Each 173 

network configuration is given by a binary string, where each element represents a candidate 174 

location, with ones at gauged sites and zeros at ungauged sites. A subset of locations is selected 175 

from the candidate locations according to this binary string. 176 
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2.3.1 Genetic algorithms 177 

The basic scheme of GA algorithm in this paper is similar to the standard GA which consists of 178 

population, selection, crossover and mutation. The initial population is randomly generated and 179 

the population size is 100. In the crossover operation, gauged sites in both parents are gauged in 180 

the offspring, and ungauged sites in both parents are ungauged in the offspring. Half of the sites 181 

that are gauged in one of the parents and not gauged in the other are randomly conversed. The 182 

probability of crossover occurrence is set to 0.9. In the mutation operation, 5% of gauged sites are 183 

randomly selected and swapped with the same number of randomly selected ungauged sites with 184 

a mutation probability of 0.2. The solutions with the best 5% fitness, called elite, remain in the 185 

next generation, while others are rejected in order to keep the population size unchanged. These 186 

operations stop when the total number of generations reaches 500. The algorithm also stops when 187 

the number of generations without any improvement in the fitness reaches 40.  188 

2.3.2 Simulated annealing 189 

SA is an iterative search algorithm which starts with a randomly selected initial solution and the 190 

fitness value is computed. A new potential solution is created by exchanging a randomly selected 191 

gauged site for a randomly selected ungauged site in the pre-defined search window of the 192 

selected gauged site. The fitness value is then computed for the new potential solution and 193 

compared to that of the current solution. The new potential solution is accepted when the fitness 194 
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value improves. Even when the fitness value degrades, the new potential solution is accepted with 195 

a certain probability, which is given by 196 

)exp(
T

fp ∆−
= ,  (1) 197 

where Δf is the amount of degradation of the fitness value and T is a control parameter (Brus et al., 198 

2007). T is gradually decreased with iterations by  199 

kk TT α=+1 ,   (2) 200 

where α is 0.9 and k is a number of iterations. The initial T (i.e., T1) is set so that the average p in 201 

the equation (1) equals to 0.8 (Brus et al., 2007).  202 

The size of the search window is fixed in the first 500 iterations at 18 km (approximately equals 203 

to 7 × 7 cells window). Then it is decreased after 500 iterations down to 12 km (5 × 5 window), 204 

and 6 km (3 × 3 window) from 1,000 iterations and onward. The total number of iterations for 205 

each run is set to 50,000. The algorithm also stops when the number of iterations with no 206 

progress in the fitness value reaches 4000. 207 

2.3.3 Hybrid algorithm 208 

HGS algorithm is identical to that applied in Araki et al. (2015) and summarized as follows. The 209 

basic scheme of HGS is similar to GA. The initial population of the size of 100 is randomly 210 

generated and GA is applied for 75 iterations. After 75th generation, SA is applied to each of the 211 

15% best solutions for 30 iterations with the fixed search window size of 7 × 7. The rest 85% 212 
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solutions are kept unchanged and combined with the solutions obtained from SA. GA is then 213 

applied to this set of solutions i.e. population for 1 iteration, and the next generation is obtained. 214 

Again, SA is applied to the best 15% solutions for 30 iterations in the generation and the 215 

solutions are combined to the rest 85% solutions. The next generation is obtained by the 216 

application of 1 iteration of GA to the set of solutions. The parameters of HGS in the first 75 217 

generations are identical to GA algorithm described above. After 75 generations, the crossover 218 

and mutation probability is set to 0.3 and 0 respectively. After the 100th generation, the search 219 

window size is reduced to 5 × 5. This window size is again decreased to 3 × 3 after 125th 220 

generation and is keep unchanged. The total number of iterations is set to 155, but the algorithm 221 

also stops when the number of generations with no progress in the fitness value reaches 8 after 222 

75th generation. The flowchart of HGS is presented in Figure 5. 223 

2.4 Application of the algorithms 224 

The algorithms are tested in the area that includes the Kinki region in Japan (134.2°E – 225 

136.5°E, 33.4°N – 35.8°N) that consists of six prefectures, and its contiguous areas, which equals 226 

to the colored area in Figure 1. Only land areas are considered for the potential locations of the 227 

monitoring stations. The number of the candidate locations is 1984. Megacities such as Osaka, 228 

Kyoto and Kobe are located in this region. The number of monitoring stations for NO2 and O3 in 229 

the study area is 221 and 187 respectively in the year 2011, which has remained almost 230 
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unchanged in recent years, while that of PM2.5 is increasing rapidly from 57 stations in the year 231 

2011 to 117 in the year 2013. This is because the national air quality standard for PM2.5 in Japan 232 

was set in the year 2009 and the monitoring network was initially developed by placing 233 

continuous monitors at existing stations. 234 

GA, SA and HGS algorithms were applied to three different network sizes; 1) 57 stations, 235 

which is consistent with the number of stations of PM2.5 in the year 2011, 2) 117 stations, 236 

consistent with that in the year 2013, 3) 150 stations, which is approximately 3 times as much as 237 

the first case. It should be noted that the locations of the existing stations were not considered 238 

because the application of the observation-free method is focused. Each of the algorithms are 239 

applied to each pollutant combined with each network size respectively, repeating each of these 240 

27 settings 30 times to capture random effects. The performances are compared in terms of the 241 

mean and the standard deviation (SD) of the fitness values of the respective 30 trials. The 242 

stopping parameters of iterations for GA, SA and HGS are set so that the total effort of all the 243 

three algorithms is similar for a fair comparison. 244 

Data analysis was carried out using R statistical software 3.1.2 (R Core Team, 2014) with the 245 

package GA (Scrucca, 2013) for the basic scheme of GA algorithm, the package gstat (Pebesma, 246 

2004) for kriging. 247 

 248 
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3. Results and discussion 249 

3.1 Performance of the algorithms 250 

The mean and standard deviation (SD) of the fitness values obtained from 30 random trials of 251 

each algorithm for the three network sizes and the three pollutants are presented in Figure 6. 252 

Regarding the comparison between the performance of GA and SA, SA gives smaller means in 253 

all the cases. However, SD of GA is consistently smaller than that of SA. In the case of the 254 

network size of n=117 for PM2.5, for instance, SD of GA is as small as 36 % of that of SA. These 255 

results indicate that SA is able to find a better solution but is not as stable as GA.  256 

The mean of HGS is between 95 and 96% of the means of GA in all the cases and SD is 26 - 257 

47% of that of GA. When compared to the results of SA, HGS gives smaller means than those of 258 

SA and the SD is as small as 13 - 29% of that of SA. This indicates that HGS outperforms GA 259 

and SA with a better search capability and stability. 260 

The best network placements out of the 30 trials for each network size and pollutant obtained 261 

by HGS are presented in Figure 7. The selected sites in the best network designs are generally 262 

placed homogeneously. Although the distributions of the simulated values for the three pollutants 263 

have unique characteristics, the difference in the optimized network between the pollutants is 264 

small. 265 

3.2 Spatial characteristics of the resulting best networks 266 
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As shown in Figure 7, there seems to be few differences between the optimal networks for the 267 

different pollutants. For a quantitative comparison, the fitness value of each pollutant is 268 

calculated using the optimized network obtained by HGS for all the pollutants. For instance, 269 

fitness values of PM2.5 are calculated using optimized network for NO2 and O3, which in turn are 270 

compared to that obtained using PM2.5-optimized network. The fitness value is computed for each 271 

solution of 30 trials. The obtained results are presented in Figure 8.  272 

The fitness values for each pollutant generally lie in the same range, no matter which pollutant 273 

is used in the optimization. Thus, the network optimized for one pollutant also result in good 274 

fitness for the other pollutants, and the relative goodness of a network compared to others does 275 

not change between the pollutants. 276 

As shown in Figure 4, the variograms of all said three pollutants used for the optimization are 277 

generally similar, spherical model with nugget very close to zero. Van Groenigen (2000) showed 278 

that the optimized networks obtained for linear, exponential and spherical variograms with a 279 

relatively low nugget were similar. The results in this study agree with this previous study. 280 

3.3 Interpolation error 281 

The monitoring network can be evaluated by how well it represents the spatial distribution of 282 

the concentrations in the domain of interest. More specifically, the concentration field is 283 

generated by ordinary kriging using the CTM simulated values at the selected sites in the 284 
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optimized network. The variogram is constructed using simulated values at the selected sites. 285 

Fifteen equally-spaced points on the outer side of the study area are included in the same way as 286 

described in the Section 2.2. The resulting map is compared to the CTM simulated field. 287 

RMSE and R2 between the simulated values and kriged values for each set of trials are 288 

computed. The obtained RMSE is given in Figure 9. RMSE is less than 0.6 (μg m-3) for all the 289 

three algorithms for PM2.5, less than 1.7 (ppb) for NO2 and less than 1.8 (ppb) for O3. These 290 

RMSE values are 6, 8 and 9% relative to the ranges of the simulated values of PM2.5, NO2 and O3 291 

respectively. The difference in RMSE between the three algorithms is minute for each network 292 

size and pollutant. R2 is generally higher than 0.62 for all the cases and the difference in R2 293 

between the algorithms is also marginal (not shown here).  294 

In addition, the kriged fields generated by the optimization result of the three algorithms for the 295 

same size and pollutant are similar to each other and generally capture the feature of the 296 

corresponding simulated fields. As an example, the error maps between the simulated and kriged  297 

fields obtained from the result of HGS for the size of n=57 and for the three pollutants are given 298 

in Figure 10, where positive values represent overestimates and negative values represent 299 

underestimates. The errors for PM2.5 are close to zero, between -3.6 and 1.6 (μg m-3), over the 300 

region of interest. On the other hand, underestimates for NO2 and overestimates for O3 are found 301 

in limited areas such as agglomeration of Osaka. These areas correspond to the areas of the 302 
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highest concentrations of NO2 or the lowest concentrations of O3. These under/overestimates are 303 

due to the lack of the selected site in such limited areas of high/low concentrations. However, 304 

under/overestimates are not significant for most of the region except for the limited areas. These 305 

results indicate that the optimized networks obtained by the three algorithms represent the spatial 306 

distribution of the concentrations in the region of interest sufficiently. 307 

3.4 Evaluation of the optimized network for daily and hourly values 308 

The monitoring networks should map not only annual mean concentrations but also daily or 309 

hourly mean concentrations well. In order to evaluate the optimized network versus daily and 310 

hourly means, interpolation errors (RMSE) between the simulated and kriged fields for each day 311 

and hour of the whole year are computed in the same way as described in the section 3.3. 312 

Variograms are derived in an automated way using package automap (Hiemstra et al., 2009), 313 

because manually constructing variograms for every single day or hour of the entire year would 314 

be too time consuming.  315 

The resulted RMSE are given in Table 1. The finer the temporal scale is, the larger RMSE 316 

becomes, which may be due to less homogeneous spatial distribution of pollutants at a finer 317 

temporal scale. However, RMSE of all the pollutants for all network sizes are relatively small 318 

compared to the ranges of the simulated daily or hourly means of the corresponding pollutants. 319 

Although not every daily or hourly result is checked manually, these results demonstrates that the 320 
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optimized network obtained using the annual mean is also optimal, at least to some extent, to 321 

produce maps of daily or hourly mean concentrations. 322 

 323 

4. Conclusions 324 

In this paper, the performance and the applicability of HGS that is a hybrid of GA and SA is 325 

evaluated and compared to the single GA and SA using CTM simulated values to derive 326 

variograms for the computation of the mean kriging variance as a design criterion for PM2.5, NO2 327 

and O3 in the Kinki region of Japan for three network sizes. HGS consistently outperforms the 328 

rest of the two algorithms for all the network sizes and pollutants. This demonstrates that HGS 329 

successfully combines the advantages of GA and SA. The optimized network for one pollutant is 330 

optimal for other pollutants and the relative goodness of a network compared to others does not 331 

change between the pollutants. This is because the variograms of the pollutants are similar. This 332 

implies that only one pollutant might be necessary to be considered when a network with multiple 333 

pollutants of similar variograms is optimized simultaneously. The concentration fields are 334 

generated by ordinary kriging using the simulated values at the selected sites in the optimized 335 

networks obtained by GA, SA and HGS respectively, and compared to the simulated fields to 336 

obtain interpolation errors. The difference between the algorithms is minute and the optimized 337 

networks obtained by the three algorithms represent the spatial distribution of the concentrations 338 
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in the region of interest sufficiently. The optimized network to well map the annual mean is 339 

optimal, to some extent, to produce maps of daily or hourly mean concentrations. 340 

It is demonstrated that HGS is a valid and feasible method for the optimization of an air 341 

monitoring network. The combination of HGS and CTM simulation to derive a variogram for a 342 

criterion calculation is of benefit especially when a network with a limited number of stations or 343 

network under development is considered, and provide information of vital use on the air 344 

monitoring network optimization.  345 
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Figure Captions 407 

Figure 1. The area of interest and the spatial distribution of PM2.5, NO2 and O3 concentrations 408 

obtained by CTM for the Japanese fiscal year 2010. The values for PM2.5 and NO2 are annual 409 

means and that for O3 is annual mean of daily maximum 8-hr means. The circles represent the 15 410 

extra points used to derive variograms. Units are μg m-3 for PM2.5 and ppb for NO2 and O3. 411 

 412 

Figure 2. The scatter plots of the simulated and observed values for annual means of PM2.5 and 413 

NO2, and annual means of daily maximum 8-hr mean concentrations for O3. Units are μg m-3 for 414 

PM2.5 and ppb for NO2 and O3. 415 

 416 

Figure 3.  Histograms of the simulated values for PM2.5, NO2 and O3. Units are μg m-3 for PM2.5 417 

and ppb for NO2 and O3. 418 

 419 

Figure 4. The variograms derived for PM2.5, NO2 and O3. 420 

 421 

Figure 5. The flowchart of the HGS algorithm. 422 

 423 
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Figure 6. The mean fitness values obtained from 30 random trials of each algorithm for PM2.5 (in 424 

the left row panels), NO2 (in the middle row panels) and O3 (in the right row panels) for the 425 

network size of n=57 (in the upper column panels), n=117 (in the middle column panels) and 426 

n=150 (in the lower column panel). The fitness values are normalized by the mean values of GA 427 

of the corresponding network size and pollutant. The error bars represent SD. 428 

 429 

Figure 7. The optimized network by HGS for PM2.5 (in the left row panels), NO2 (in the middle 430 

row panels) and O3 (in the right row panels) for the network size of n=57 (in the upper column 431 

panels), n=117 (in the middle column panels) and n=150 (in the lower column panel). The 432 

crosses represent the selected sites. The circles represent the 15 extra points used to derive 433 

variograms. 434 

 435 

Figure 8. The mean fitness values of a set of 30 trials for PM2.5 (in the left row panels), NO2 (in 436 

the middle row panels) and O3 (in the right row panels) obtained using the network optimized for 437 

each pollutant for the network size of n=57 (in the upper column panels), n=117 (in the middle 438 

column panels) and n=150 (in the lower column panel). The top legend refers to the pollutant for 439 

which fitness value is computed using the optimized network of the three pollutants and the 440 

bottom legend refers to the pollutant for which the network is optimized for. The shaded areas 441 
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indicate that the fitness values are calculated for a pollutant using the optimized network of the 442 

same pollutant. The fitness values in each panel are normalized by mean values of PM2.5-443 

optimized network in the same panel. The error bars represent SD. 444 

 445 

Figure 9. RMSE between CTM simulated field and kriged field with the simulated values at the 446 

selected sites of the optimized network of each set of 30 trials by GA, SA and HGS for the 447 

network size of n=57, 117 and 150, and for PM2.5, NO2 and O3. The error bars represent SD. 448 

Units of RMSE for PM2.5 are μg m-3 and ppb for NO2 and O3. 449 

 450 

Figure 10. The error map between the CTM simulated fields and the kriged fields with the 451 

simulated values at the selected sites of the optimized network of a) PM2.5, b) NO2 and c) O3 by 452 

HGS for the network size of n=57. The positive values represent overestimates and the negative 453 

values represent underestimates. The crosses represent the selected sites. The circles represent the 454 

15 extra points used to derive variograms. Units of concentrations are μg m-3 for PM2.5 and ppb 455 

for NO2 and O3. 456 

 457 
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