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Abstract

Adequate spatial and temporal estimates of NO2 concentrations are essential for1

proper prenatal exposure assessment. Here, we develop a spatiotemporal land2

use random forest (LURF) model of the monthly mean NO2 over four years in3

a metropolitan area of Japan. The overall objective is to obtain accurate NO24

estimates for use in prenatal exposure assessments. We use random forests to5

convey the non-linear relationship between NO2 concentrations and predictor6

variables, and compare the prediction accuracy with that of a linear regression.7

In addition, we include the distance decay effect of emission sources on NO28

concentrations for more efficient model construction. The prediction accuracy of9

the LURF model is evaluated through a leave-one-monitor-out cross validation.10

We obtain a high R2 value of 0.79, which is better than that of the conventional11

land use regression model using linear regression (R2 of 0.73). We also evaluate12

the LURF model via a temporal and overall cross validation and obtain R2
13

values of 0.84 and 0.92, respectively. We successfully integrate temporal and14

spatial components into our model, which exhibits higher accuracy than spatial15

models constructed individually for each month. Our findings illustrate the16

advantage of using a LURF to model the spatiotemporal variability of NO217

concentrations.18
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1. Introduction19

Exposure to air pollutants has been associated with adverse pregnancy out-20

comes in many epidemiological studies (Maroziene and Grazuleviciene, 2002;21

Rich et al., 2009; Faiz et al., 2012, 2013; Malmqvist et al., 2013; Fleischer et al.,22

2014; Stieb et al., 2016). Spatially and temporally adequate estimates of air23

pollutant concentrations are essential for proper exposure assessments in or-24

der to avoid potential misclassification or biased risk estimates. Land use re-25

gression (LUR) models have typically been used to satisfy this demand. In26

that approach, a linear regression model is developed incorporating both mon-27

itored concentrations, as the objective variable, and predictor variables that28

may affect the concentrations. The obtained regression model is then applied29

to unmonitored locations to estimate target air pollutant concentrations. LUR30

models are often applied for estimation of long-term averages, such as annual31

means of NO2 (Beelen et al., 2013; Vienneau et al., 2013), NOx (Beelen et al.,32

2013), PM2.5(Sampson et al., 2013), and PM10(Vienneau et al., 2013). Fur-33

ther, monthly averages of NO2 (Knibbs et al., 2014; Bechle et al., 2015; Proietti34

et al., 2016) and PM2.5 (Beckerman et al., 2013), biweekly means of NO2 (Ross35

et al., 2013; Proietti et al., 2016) and PM2.5 (Ross et al., 2013), and daily36

NO2 (Lee and Koutrakis, 2014; Cordioli et al., 2017), PM2.5 (Di et al., 2016a),37

and PM10 (Alam and McNabola, 2015) concentrations have been estimated in38

some studies.39

In many LUR studies, multiple linear regression has been applied to model40

pollutant concentrations(e.g., Beelen et al., 2013; Vienneau et al., 2013; Knibbs41

et al., 2014; Proietti et al., 2016). However, the relationship between the concen-42

trations and potential predictor variables is often complicated and not necessar-43

ily linear. Another problem with linear regression is the difficulty in capturing44

the complex interactions between predictors. To handle these disadvantages,45
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machine learning has been successfully applied in some recent studies. For46

example, Di et al. (2016a) used a neural network to model daily PM2.5 con-47

centrations across the continental United States with a cross validated R2 of48

more than 0.8. Further, Di et al. (2016b) estimated the PM2.5 constituents in49

the northern United States and obtained a cross validated R2 of 0.6–0.8 for the50

major components. Brokamp et al. (2017) compared the performance of ran-51

dom forest and multiple linear regression techniques by applying them to the52

prediction of PM2.5 elemental components, reporting that the random forest53

method was more accurate and precise.54

Random forests, proposed by Breiman (2001), are a non-parametric statis-55

tical method that can handle non-linear relationships. The method is based56

on decision trees; it constructs each tree using a bootstrap sample of the data57

and splits each point in the tree according to the best of a subset of randomly58

chosen predictors at each point (Liaw and Wiener, 2002). This method can be59

applied to both regression and classification problems. The advantage of ran-60

dom forests is better performance compared to other machine learning methods61

such as support vector machines and neural networks (Liaw and Wiener, 2002).62

Moreover, random forests are robust against overfitting (Breiman, 2001). An-63

other advantage is that random forests have only two user-defined parameters:64

the number of variables in the subset at each node and the number of trees in the65

forest (Liaw and Wiener, 2002). Furthermore, the random forest cross validated66

accuracy is typically very insensitive to the values of these parameters (Liaw and67

Wiener, 2002).68

Variable selection is an important step in LUR model construction that ex-69

cludes irrelevant or colinear predictors, which would otherwise generate unstable70

estimates (Brokamp et al., 2017). Several buffer sizes are usually defined to rep-71

resent the range of influence of the predictors. The concentration at the center72

of a buffer is regressed on the summed values in the buffer. This approach in-73

creases the number of potential variables to be considered by multiplying the74

number of variables by the number of buffer sizes. Given that some predictors75

represent emission intensity, the buffer approach assumes that emission sources76

3



of the same intensity in a buffer equally contribute to the concentration at the77

buffer centroid, regardless of the distance to the center. This assumption seems78

to be contradictory to the air pollutant behavior; air pollutant concentrations79

decrease with distance from its source due to diffusion. Vienneau et al. (2009)80

introduced the distance decay effect to the LUR framework. They applied the81

focal-sum approach and successfully modeled monitored NO2 concentrations us-82

ing the inverse distance-weighted sum of the emissions in the surrounding area.83

The clear advantage of this approach is that a large number of potential buffer84

sizes are not required. Furthermore, this approach is consistent with air pollu-85

tant behavior. Note that some studies have already included inverse distance-86

weighted variables, but several buffer sizes are simultaneously defined (Li et al.,87

2012, 2013; Eeftens et al., 2016). Su et al. (2009) proposed a variable selection88

method based on the distance decay effect, but did not use distance-weighted89

predictors for LUR model construction. Extending the focal-sum with the dis-90

tance decay effect to all potential predictors representing the emission intensity91

constitutes a reasonable attempt at higher-efficiency model construction in the92

LUR framework.93

In this study, we develop a spatiotemporal land use random forest (LURF)94

model of monthly mean NO2 in a metropolitan area of Japan, where a birth co-95

hort study has been conducted. The overall objective is to obtain accurate NO296

estimates for use in prenatal exposure assessments. We use random forests to97

capture the non-linear relationship between the NO2 concentrations and predic-98

tors. We consider the distance decay effect and apply a focal-sum approach to99

the preparation of potential predictors with the aim of constructing the model100

in the most efficient manner. We then evaluate the developed model using cross101

validation and compare the performance of our model to that of the LUR model102

using multiple linear regression and the same potential variables. Furthermore,103

we discuss the advantages of a spatiotemporal model using random forests.104
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2. Methods105

2.1. Study area106

The Japan Environment and Children’s Study (JECS) is an ongoing nation-107

wide birth cohort study implemented in January 2011 to evaluate the effects108

of various environmental factors on child health and development (Kawamoto109

et al., 2014). The JECS incorporates 15 regions across Japan in which preg-110

nant women were recruited as study participants from 2011 to 2014 (Kawamoto111

et al., 2014). Our study area included one of the JECS regions, Amagasaki City112

(135.4◦E, 34.7◦N), and its surrounding area (Fig. S1). Amagasaki City has a113

population of 430,000 and an area of 50 km2. We extended the study area out-114

side Amagasaki City by approximately 20 km, because only three observations115

were available in the city. The study area covered approximately 46 km from116

east to west and 55 km from north to south. This area, containing more than117

10 million inhabitants, includes mega cities such as Osaka and Kobe. In the118

future, we intend to conduct an exposure assessment in Amagasaki City.119

2.2. Air quality measurements120

We obtained air quality observations from 2011 to 2014 from the database121

of the regulatory monitoring network in Japan. Network data are collected122

and stored in this database by the Japanese Ministry of Environment. Data123

quality is controlled according to the uniform national standard. The monitoring124

stations are categorized into two types, automobile exhaust stations and general125

environment stations, and are located according to their specific purpose. That126

is, the former are located at intersections or roads with heavy traffic to monitor127

severe air pollution, i.e., at hot spots. The latter are located such that they128

are not directly affected by specific emission sources, in order to measure the129

representative concentrations over a certain spatial extent. Accordingly, we130

utilized observations from general environment stations only in this work. In131

our study area, stations of this type are located at various distances from major132

traffic roads (highway, primary, and secondary roads defined in the road network133
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data used in this study, as described below). Specifically, some monitoring sites134

are located close to major roads (the shortest distance is less than 20 m), whereas135

others are positioned very far from major roads (the shortest distance is more136

than 2 km). Further, note that the shortest distances from the monitoring sites137

to the major roads are distributed relatively homogeneously, as apparent from138

Table S1. We believe the observations at the latter stations well represent the139

concentrations in our study area, covering not only the urban background, but140

also the areas where the concentrations are influenced by traffic.141

We used hourly mean concentrations to calculate the monthly mean values142

over a four-year period. Data with a temporal coverage of more than 80% on143

both daily and monthly bases were used for the analysis to ensure that it was144

temporally representative. The number of general environment stations under145

operation for NO2 monitoring was 81 in 2014, but only three monitors were146

located in Amagasaki City.147

Fig. 1 presents a plot of the monthly mean concentrations used in this study.148

The seasonal variation in concentration is clear: high in winter and low in149

summer.150
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Figure 1: Box plot of monthly NO2 concentrations used in this study.
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2.3. Data set151

We selected data sets considering key factors affecting the spatial distribution152

of air pollutants, including emission, advection, and deposition. Some of the153

gridded data were resampled to conform to an origin and resolution of 500 m.154

The built-up area ratio in a grid cell was calculated from land use data. The155

green area ratio was obtained by summing the ratio of rice fields, agricultural156

fields, and forest from the land use data.157

We calculated the road length in a grid cell using road network data instead158

of readily available road length data. This is because the spatial resolution of the159

publicly available road length data is, to the best of our knowledge, coarser than160

that of our 500-m resolution grid. In the road network data set, road types are161

classified into three categories: highway, primary, and secondary; in this study,162

the road length in a grid cell was calculated for each of these categories. We163

also calculated the shortest distances from a grid cell centroid to each road type164

and employed these values as predictors.165

We included the emission intensities of large point sources as a predictor.166

The emission intensity was obtained from EAGrid2010 (Fukui et al., 2014),167

which is a widely used emission inventory in Japan, being specially compiled for168

air quality models. This inventory has a spatial resolution of 1 km and a tempo-169

ral resolution of 1 month. We excluded the emission intensity of transportation170

in the EAGrid2010 database, because the road length used as a transportation171

proxy had a finer spatial resolution of 500 m.172

As for meteorological parameters, we utilized daily mean observations of pre-173

cipitation and wind speed from the Automated Meteorological Data Acquisition174

System (AMeDAS), the monitoring stations of which are densely and homoge-175

neously distributed throughout the country. We calculated the monthly means176

and interpolated them using ordinary kriging to obtain gridded data of monthly177

means with a 500-m resolution.178

Satellite-derived NO2 data have a wide temporal and spatial coverage. This179

feature is useful for constructing a spatiotemporal LUR model. In recent stud-180

ies, the NO2 tropospheric column abundance has been introduced as a predictor181
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variable for LUR, and good prediction performance has been reported (Knibbs182

et al., 2014; Bechle et al., 2015). The Ozone Monitoring Instrument (OMI)183

flown on the Aura satellite measures the spectrum in the ultraviolet/visible184

wavelength range with a very high spatial resolution and daily global cover-185

age (Levelt et al., 2006). We obtained the daily NO2 tropospheric column186

abundance from the version 3.0 release of the gridded OMINO2d product and187

calculated the monthly means. Because the spatial resolution of OMI NO2 data188

is 0.25◦ (approximately 25 km) and coarse compared to our prediction grid size189

of 500 m, we simply disaggregated these data into a 5-km-resolution data set190

through bilinear interpolation. Details of the data sets are presented in Table191

S2.192

2.4. Implementation of distance decay effect193

To consider the distance decay effect, we applied the focal-sum approach (Vi-194

enneau et al., 2013) to the potential predictor variables that indicate emission195

intensity: land use, road length, population, and large point sources. In this196

approach, a moving window passes over all grid cells. The values inside the win-197

dow are multiplied by the corresponding factors defined by the inverse distance198

to the central cell. The sum of the products is assigned to the central cell (Vi-199

enneau et al., 2013). This new value is the distance-weighted measure for the200

central cell. Previously, Vienneau et al. (2013) examined various window shapes201

and weighting factors, and reported similar accuracies for NO2 concentration202

estimates. Here, we used a simple circular window and the squared inverse203

distance as a weighting factor, which was obtained by:204

w =
1

(d + 1)
2 , (1)

where w is the weighting factor and d is the distance (km) from the central205

cell. We used d+1 rather than d in the denominator to avoid division by zero.206

The central cell has a value of 1. Note that the radius of the moving window207

can be set to infinity to include all emission sources; however, for practicality,208

we set the window radius to 15 km so that the minimum weighting factor was209
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approximately 1 % of the largest factor at the central cell. Other variables such210

as OMI NO2 and meteorological parameters were supplied without implementa-211

tion of the focal-sum process, because these variables do not represent emission212

intensity.213

We also included the month and year as predictor variables in order to214

capture the temporal variations. These variables were treated as categorical215

variables. The monthly or annual trends were not considered. Table 1 presents216

the potential predictor variables.217

Table 1: Potential predictor variables.

Predictor variables Unit Direction of effect

Built-up area ratio unitless +

Green area ratio unitless –

Population number +

Road length, highway km/km2 +

Road length, primary road km/km2 +

Road length, secondary road km/km2 +

Distance to highway m -

Distance to primary road m -

Distance to secondary road m -

Point source Tg/year +

OMI NO2 10-15 molecules/cm2 +

Precipitation mm/h –

Wind speed m/s –

Month none not specified

Year none not specified

2.5. Land use random forest model218

We constructed a spatiotemporal LURF model using the variable selection219

method proposed by Genuer et al. (2015). First, we ran an initial random forest220

with all potential variables, repeating it 50 times. The potential predictors were221
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then ranked by sorting the variable importance measure, averaged over the222

repetitions, in descending order. Random forest models were constructed with223

k first predictors for k=1,2,..., m, where m is the number of potential predictors,224

with each being repeated 25 times. We selected the model with the smallest out-225

of-bag error averaged over the repetitions for each predictor combination. Next,226

the variables in the selected model were sequentially introduced to the random227

forest model in order of variable importance, as determined in the first step. A228

variable was retained in the model only if the out-of-bag error decreased by a229

greater degree than the averaged variations of the noisy variables removed in the230

second step. The variables in the last model were selected. During this process,231

the number of variables in the subset at each node (mtry) was set to 2p/3, where232

p is the number of predictor variables in the entire data set. Finally, the random233

forest model with the selected predictors was optimized for mtry. The number234

of trees (ntree) was consistently set to 500. The other parameters were set to235

the default values of the ranger package (Wright and Ziegler, 2017) used in this236

study, including a minimum node size of 5. The model R2 was calculated as237

1-MSE/var(Y) where Y is the observed values and MSE is the mean of the238

out-of-bag errors for all the prediction points (Brokamp et al., 2017).239

2.6. Land use regression model240

We constructed a spatiotemporal LUR model based on a supervised step-241

wise selection procedure used to develop LUR models for NO2 in Europe (Beelen242

et al., 2013). The potential predictor variables of the LUR models were identical243

to those of the LURF model presented in Table 1. We specified the direction of244

effect according to the relationship between the pollutants and predictor vari-245

ables (Beelen et al., 2013). First, univariate regression analyses were conducted246

for all potential predictors. The initial regression model was constructed using247

the predictor giving the highest adjusted R2 with the defined direction of effect.248

Second, the remaining variables were consecutively tested through addition to249

the model. The predictor with the highest additional increase in adjusted R2
250

was retained, if the following conditions were fulfilled: 1) the predictor increased251
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the adjusted R2 by more than 0.01; 2) its coefficient conformed to the specified252

direction of effect for the variable; 3) it did not change the direction of effect253

for the predictors already in the model. This variable test was repeated un-254

til there were no more variables that increased the adjusted R2 by more than255

0.01. Third, variables with a p-value greater than 0.1 were removed and the256

regression model was reconstructed using the retained variables. For categorical257

variables, a likelihood ratio test was conducted between models with and with-258

out the variable; hence, a p-value was obtained. Finally, the variance inflation259

factors (VIF) were checked to determine whether they were less than or equal260

to 3. In addition, the Cook’s D statistics for all the observations were assessed261

to determine whether they were less than or equal to 1.262

The pollutant concentrations were transformed to a natural logarithmic scale263

before analysis and the predictions were back-transformed after analysis. This264

procedure has the advantage that the predicted concentrations are positive,265

which is not the case when analyses are performed without transformation (Bee-266

len et al., 2009).267

2.7. Evaluation268

We performed leave-one-monitor-out cross validation to assess the accuracy269

of the obtained models. The observed data were removed from one location for270

the entire period and the model was constructed using the remaining location271

data. This process was repeated for the remaining locations. The R2 and root272

mean squared error (RMSE) between the predicted and measured values were273

computed as indicators of the prediction accuracy. Note that the RMSE values274

are desired to be as small as possible. We refer to this validation process as spa-275

tial cross validation. We also conducted temporal and overall cross validations.276

For the temporal cross validation, monitoring data were omitted for a particular277

month and the model was constructed using the remaining 47 months of data.278

Concentrations at the monitored locations in the selected month were then pre-279

dicted using the model. This process was repeated for the remaining 47 months280

and R2 and RMSE values were computed. For the overall cross validation, we281
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performed 5-fold cross validation. The observations were evenly divided into282

five splits at random. One observation split was omitted and the model was283

constructed using the remaining four observation splits. The concentrations284

at the times and locations of the selected observations were predicted by the285

model. This process was repeated for the remaining four splits. The R2 and286

RMSE values were computed. For a fair comparison, the splits were identical287

for the LURF and LUR model evaluations. These statistical indicators were288

also calculated separately for monitoring locations in Amagasaki City. We refer289

to these stations and all stations in the study area as ”inside stations” and ”all290

stations”, respectively. We also construct LURF and LUR models using all the291

potential predictors and conducted spatial cross validation in order to compare292

R2 values with the corresponding ones obtained for the LURF and LUR model293

constructed using the selected variables (i.e., the final models) for a sensitivity294

analysis.295

To assess the advantages of a spatiotemporal LURF model over a spa-296

tial LURF model, we constructed spatial models for each month; thus, 48297

monthly models were obtained. We then individually evaluated the spatial298

models through leave-one-monitor-out cross validation and calculated R2 and299

RMSE values for each model. We constructed the spatial models with the same300

variables as those for the spatiotemporal model, except for month and year. We301

did not apply the variable selection process to the monthly models because of302

the computation costs . For the temporally variable predictors, we extracted303

the data from the corresponding year and month. We also constructed and304

evaluated spatial LUR models in the same manner for comparison purposes.305

We statistically evaluated the differences between the spatiotemporal LURF306

and LUR models using a paired t- test and F -tests (Hengl et al., 2015). The307

paired t-test evaluates whether two models have the same mean errors (ME).308

The F -test evaluates whether two models have the same variance, i.e. RMSE,309

assuming that the MEs are the same.310
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2.8. Computation311

All spatial and statistical calculations were performed using R statistical312

software (3.4.3) (R Core Team, 2017), with the raster package (Hijmans, 2016)313

for integration and construction of the potential predictor variables, and the314

ranger package (Wright and Ziegler, 2017) for implementation of the random315

forests.316

3. Results317

3.1. Spatiotemporal LURF model318

Fig. 2 shows the variable importance plot of the final LURF model. In this319

plot, the selected variables are listed in order of importance from top to bottom.320

The horizontal axis represents the measure of importance. The green area ratio321

is the best predictor. Satellite-based NO2 is the second most influential variable,322

followed by point emission sources and month, reflecting the clear seasonality323

in the concentrations, as shown in Fig. 1. Highway road length and distance324

to highway are also important covariates. The remaining variables, including325

the meteorological parameters, built-up area ratio, and year, are ranked as less326

important. The variables removed from the model by the variable selection327

process are primary road length, secondary road length, distance to primary328

road, distance to secondary road, and population. The model R2 value is 0.92.329

Scatter plots of the predicted and observed concentrations obtained through330

cross validation are presented in panels (a)–(c) of Fig. 3. Panels (a) and (d), (b)331

and (e), and (c) and (f) show the results of the spatial, temporal, and overall332

cross validation, respectively. The dot color indicates the point density in the333

plot: red and green indicate higher and lower density, respectively. The triangles334

indicate the results for inside stations. R2 and RMSE values are given in each335

panel for all stations and inside stations.336

The R2 values for the spatial and temporal validation are 0.79 and 0.84,337

respectively. The RMSE values are 2.6 and 2.2 (ppb), respectively. A high R2
338

value of 0.92 is obtained for the overall cross validation, with an RMSE value339
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Figure 2: Variable importance plot for the LURF model. The variables are listed in order of

importance from top to bottom. The horizontal axis represents the measure of importance.

of 1.6 (ppb). Compared to the corresponding values for all stations, the R2
340

values for the inside stations are lower for the overall and temporal cross vali-341

dations, and higher for spatial cross validation. The RMSE values are similar342

for all stations and inside stations for the three types of cross validation. The343

LURF model constructed using all the potential predictors gives a cross vali-344

dated R2 value of 0.79 and RMSE of 2.6 (ppb), which are almost identical to345

those obtained for the final LURF model using the selected variables.346

The statistical indicators of the spatial LURF models for 48 months are347

presented as box plots in panels (a) and (c) of Fig. 4, showing the R2 and348

RMSE values, respectively. The indicators of the spatiotemporal LURF model349

are also presented for comparison, as a horizontal line on the left side of each350

panel. The median R2 values for the spatial models are 0.73 and 2.4 (ppb),351

respectively, indicating that the spatiotemporal model outperforms the spatial352

models in terms of R2.353
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R2 = 0.79
  RMSE = 2.6

R2 = 0.81
  RMSE = 2.4
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R2 = 0.73
  RMSE = 2.9

R2 = 0.64
  RMSE = 3.0

All stations:

Inside stations:

d

●

●

●

●●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●●
●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●●●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●
●

●●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●
●

●

●

●
●

●

●●

●

●●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

● ●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

● ●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

● ●●

●

●

●●

●

●

●

●

● ●

●

●
●

●●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●●
●

●

●

●

●

R2 = 0.84
  RMSE = 2.2

R2 = 0.67
  RMSE = 2.5

All stations:

Inside stations:
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R2 = 0.70
  RMSE = 3.1

R2 = 0.54
  RMSE = 3.3

All stations:
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R2 = 0.92
  RMSE = 1.6

R2 = 0.87
  RMSE = 1.7

All stations:

Inside stations:
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Figure 3: Scatter plots of predicted and observed concentrations obtained from cross valida-

tion. (a)–(c) and (d)–(f) show LURF and LUR results, respectively. (a) and (d), (b) and (e),

and (c) and (f) show the spatial, temporal, and overall cross validation results, respectively.

The red and green colors indicate higher and lower point density, respectively. The triangles

indicate the results for the inside stations.
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Figure 4: Box plots of statistical indicators for spatiotemporal and spatial models. (a) and

(b) show R2 values and (c) and (d) show RMSE values. (a) and (c), and (b) and (d), present

LURF and LUR results, respectively.

3.2. Spatiotemporal LUR model354

The selected variables in the final model are the green area ratio, month, and355

highway road length. These predictors are ranked as important in the LURF356

model, but other important predictors such as OMI NO2 and point emission357

sources are discarded. The model adjusted R2 value is 0.77. Table S3 presents358

the details of the final spatiotemporal LUR model.359

Scatter plots of the predicted and observed values obtained via cross vali-360

dation are presented in panels (d)–(f) of Fig. 3. A R2 value of 0.73 is obtained361

for the spatial cross validation. The R2 and RMSE values are similar between362

the three cross validation results. A comparison of the results from the inside363

stations against all stations shows that the R2 values for the former are smaller364

than those for the latter, while the RMSE values are similar. The LUR model365
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constructed using all the potential variables gives a cross validated R2 value of366

0.76 and RMSE of 2.8 (ppb), which are similar to those obtained for the final367

LUR model using the selected variables.368

The R2 and RMSE values obtained for the 48 spatial LUR models are pre-369

sented as box plots in panels (b) and (d) of Fig. 4. The median R2 is 0.70, which370

is slightly lower than that of the spatiotemporal LUR model. The median RMSE371

is smaller.372

3.3. Comparison373

The spatial cross validated R2 value of 0.79 for the spatiotemporal LURF374

model is higher than that of the spatiotemporal LUR model. The paired t-test375

results show that the differences in ME between LURF and LUR are not statis-376

tically significant (p >0.01). The F -test result indicates that the differences in377

RMSE between the two models are statistically significant at the 1% level. In378

both the temporal and overall cross validation results, the differences in RMSE379

between the two models are significant at the 1% level, while the differences in380

ME are not significant (p >0.01). The temporal and overall cross validated R2
381

values for the LURF model are 0.84 and 0.92, respectively, which are higher382

than those for the LUR model, at 0.70 and 0.74, respectively. These results383

show that the LURF model outperforms the LUR model.384

We report higher cross validated R2 values and similar RMSE values for the385

spatiotemporal LURF model than for the spatial LURF models (Figs. 4(a) and386

(c)). Meanwhile, the R2 and RMSE values are marginally higher and larger for387

the spatiotemporal LUR model than for the spatial LUR models, respectively,388

as shown in Figs. 4(b) and (d). A comparison of the spatial LURF and LUR389

models shows that the median R2 of the LURF models is slightly higher and390

the median RMSE is slightly smaller than those of the LUR models, although391

the F -test result indicates that the differences in RMSE are not statistically392

significant at the 1% level (p=0.02).393
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3.4. Mapping394

Fig. 5 is a prediction map of the NO2 concentrations averaged over the study395

period. This map was produced by averaging the monthly estimations over396

the four-year study period, and disaggregated to 100-m resolution via bilinear397

interpolation for presentation purposes.398

0km 5km 10km

5 10 15 20
Predicted NO2 (ppb)

Figure 5: Prediction map of four-year mean concentrations of NO2, disaggregated to 100-m

resolution by bilinear interpolation for presentation purposes.

4. Discussion399

We developed the spatiotemporal LURF model of NO2 reported in this study400

to predict the monthly mean NO2 concentrations for the consecutive four-year401

study period. Our spatiotemporal LURF model is accurate, with a spatial cross402

validated R2 and RMSE value of 0.79 and 2.6 (ppb), respectively. No significant403

over or under estimation is apparent in the cross validation results, as shown404
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in Fig. 3. Thus, when applying of our LURF model to exposure assessments,405

the estimations at participant addresses can be expected to be accurate. The406

overall cross validation provides better R2 and smaller RMSE values than the407

temporal and spatial cross validation. This suggests that we have successfully408

combined the temporal and spatial components in our spatiotemporal LURF409

model. The overall cross validated R2 is almost identical to the model R2,410

while the spatial and temporal cross validated R2 are smaller. This indicates411

that our LURF model is not over-fitted overall, but is over-fitted especially412

in the spatial aspect. The LURF model constructed with all the potential413

variables shows almost identical cross validated R2 and RMSE values to those414

for the final LURF model, which indicates that the variable selection process415

worked properly and successfully removed irrelevant variables. This result also416

demonstrates that the random forests are robust to noise variables (Breiman,417

2001).418

Prenatal exposure assessment requires several NO2 estimates at a fine tem-419

poral scale over a certain time period. Estimation models developed for this420

purpose should, therefore, be extended from two-dimensional space to three421

dimensions by adding a temporal axis. This can readily be achieved by con-422

structing individual two-dimensional (i.e., spatial) models for each time step,423

with no interaction between models. However, this involves cumbersome repeti-424

tion of the model construction process, including variable selection. A probably425

more popular solution is the temporal scaling approach, where spatial estimates426

for a particular time step are temporally scaled according to the measurements427

obtained from fixed continuous monitors (e.g., Slama et al., 2007; Ghosh et al.,428

2012). This approach assumes the spatial distribution pattern of air pollutants429

is constant over a certain period. Air pollutant concentrations are affected by430

meteorological parameters and/or emissions. Consequently, their spatial dis-431

tribution pattern changes over time according to the temporal changes in the432

spatial pattern of the influential factors. For instance, wind direction and wind433

speed change in time and space, as do emissions from different types of sources434

such as automobile and power plants, resulting in variation in the spatial pat-435
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tern of emissions over time. These spatial variations in the influential factors436

may be averaged out when mean concentrations over relatively longer timescales437

are considered. Thus, the scaling approach may be applicable to estimation of438

annual means, where the spatial pattern of the factors, and consequently the439

concentrations, are constant between years. However, it would be difficult to440

apply it to finer temporal scales when the spatial variation in the influential441

factors may not be averaged out and, accordingly, the spatial pattern of pollu-442

tant concentrations may temporally change. Our spatiotemporal model, on the443

other hand, is a three-dimensional model that implements a temporal compo-444

nent and integrates individual two-dimensional models into a three-dimensional445

model. This enables model construction and estimation without iteration for446

each time step. Further, this allows for temporal variation in the spatial dis-447

tribution pattern. Hence, our spatiotemporal modeling is advantageous in its448

simplicity and flexibility. Clearly, estimation accuracy is of principal impor-449

tance, and our spatiotemporal LURF model gives accurate predictions, which450

are better than those of spatial models. Therefore, our spatiotemporal LURF451

model has advantages over spatial models for estimating monthly mean NO2452

concentrations.453

The estimation accuracy for inside stations is satisfactory, and the statistical454

indicators of the LURF model are similar to those for all stations, as shown in455

Fig. 3. This result indicates that our spatiotemporal LURF model has sufficient456

predictive power for future exposure assessment in smaller areas, despite having457

been developed based on larger areas.458

With respect to the spatiotemporal LUR model, the statistical indicators459

obtained for the overall cross validation are comparable with those for the tem-460

poral and spatial validation, in contrast to the LURF model. This may be461

because random forests are powerful classifiers and can handle the temporal462

component, implemented as categorical variables in this study, more effectively463

than a linear regression. Hence, accurate predictions are provided by the spa-464

tiotemporal LURF model, which outperforms the spatiotemporal LUR model465

considered in this study. We note, however, that the implementation of the466
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temporal component as categorical variables may not be optimal for the LUR467

model and that better modeling of the temporal component could improve the468

performance of the spatiotemporal LUR. Our spatiotemporal LURF model con-469

sistently gives higher R2 and significantly smaller RMSE values than the LUR470

model for spatial, temporal, and overall cross validation. This may be due to471

the ability of random forests to handle non-linear relationships between the pre-472

dictors and outcome. On the other hand, the advantage of random forests is not473

as clearly demonstrated for the spatial models compared to the spatiotemporal474

models. One possible explanation is that we did not conduct a variable selection475

process for each monthly model, which would be required for a fair comparison476

of spatial models, for both LURF and LUR.477

Although the prediction accuracy of the spatiotemporal LUR model is infe-478

rior to the spatiotemporal LURF models, the performance of the LUR model is479

still satisfactory, with an R2 value of 0.73. The difference in the model and cross480

validated R2 values is small, meaning that the spatiotemporal LUR model is not481

significantly over-fitted. The marginal difference in the cross validated R2 and482

RMSE values between the final LUR model and the LUR model constructed483

using all the potential variables indicates that the variable selection process484

worked properly to discard unimportant predictors. The predictors prepared485

using the focal-sum with distance decay effect may contribute to the perfor-486

mance, although evaluation of the focal-sum approach is outside the scope of487

this study (a simple comparison of LURF and LUR models with and without488

the distance decay effect shows improvement in the model performance espe-489

cially for LUR, as given in Table S4 and Fig.S3). We note, however, that the490

optimal weighting factor may be specific to each predictor depending on emis-491

sion source characteristics, because the pollutants emitted from a high stack492

diffuse differently from those emitted from ground level sources like traffic. We493

require further investigation of the optimal selection of the weighting factor,494

other than the inverse distance squared approach, to improve the estimation495

accuracy, as well as a detailed evaluation of the approach. Nonetheless, in this496

study, we efficiently constructed land use models, reducing the effort required497
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for the variable selection process through this method.498

Some predictors such as OMI NO2 and point emission sources, which are499

ranked as important for the LURF model, are not retained in the final LUR500

model. While the LURF model selects variables based on the prediction error,501

the LUR model chooses predictors based on R2. In addition, random forests502

and linear regression are inherently different procedures. These differences may503

explain the different predictors of the LURF and LUR models. Although satel-504

lite NO2 has been the focus of many LUR studies (e.g., Knibbs et al., 2014;505

Bechle et al., 2015), OMI NO2 was discarded in our LUR model. This may be506

due to the coarse spatial resolution of the original data and/or our simple bilin-507

ear interpolation approach for downscaling. In addition, we calculated monthly508

means by simply averaging daily values and missing values are omitted from509

the calculation. Consequently, an averaged value at a pixel with many miss-510

ing daily values may not be an appropriate representation of a monthly value.511

Kim et al. (2016) noted that the spatial resolution of OMI NO2 is too coarse to512

capture the spatial distribution in urban areas, with possible underestimation513

at urban centers and overestimation outside. Satellite data at a finer resolution514

could provide improved estimation accuracy for both LURF and LUR. In addi-515

tion, Kuhlmann et al. (2014) developed a new gridding algorithm for OMI NO2,516

demonstrating that this method improves the accuracy of the obtained spatial517

distribution of regional NO2. Thus, a more accurate downscaling method is518

required to improve the accuracies of LURF and LUR.519

Brokamp et al. (2017) noted the difficulty in interpreting the results of ran-520

dom forests. Unlike the LUR model, the LURF model lacks coefficients repre-521

senting the directions and magnitudes of the effects of predictor variables on air522

pollutant concentrations (Brokamp et al., 2017). This may be a trade-off for the523

improved performance of random forests (Brokamp et al., 2017). However, LUR524

models are not constructed based on a cause-consequence relationship, but on525

correlation. When a variable equally contributes to concentrations in the area of526

interest, the variable is most likely to be excluded in the resulting LUR model.527

This is because it contributes to the concentrations, but not to the spatial dif-528
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ference in concentrations. Precipitation, for instance, is generally an influential529

parameter for NO2 concentrations, but is not retained in our final LUR model.530

Therefore, the LUR model is unfit for elucidation of the physical or chemical531

processes of air pollutants. LUR model results may be useful for obtaining532

a basic understanding of the factors influencing the spatial distribution of air533

pollutants, but this model is not suitable for achieving detailed comprehension534

or performing quantitative analysis. Therefore, the difficulty in interpreting535

random forests can be more than compensated for by their prediction ability.536

Although our spatiotemporal LURF model exhibits remarkable prediction537

accuracy, there are some limitations. Firstly, the high prediction accuracy may538

be specific to the monthly spatiotemporal LURF model. The high R2 value of539

the overall cross validation may arise because the spatial variation pattern is540

relatively similar between months, with only the concentration level changing.541

This may also explain the finding that the month serves as a key predictor in542

our spatiotemporal LURF model. The spatial variation pattern may have higher543

variance on a finer temporal scale, e.g., weekly or daily, for which the temporal544

indicator variable is less important. Further investigation of the application of545

the LURF model to a finer temporal scale, which is preferable for prenatal ex-546

posure assessments, is required because we hope to extend our LURF model to547

a finer temporal scale as well as to a larger area and to other pollutants based548

on the results of this study. In addition, higher-spatial-resolution satellite data549

could play a more important role in improving the prediction accuracy of the550

LURF model on such a temporal scale. Secondly, concentration estimates at551

intersections or busy roads and their adjacent areas are likely to be underes-552

timated. We constructed our spatiotemporal model without observations from553

automobile exhaust stations. These stations monitor potentially severe air pol-554

lution in limited areas (hot spots) at intersections or busy roads. Actually, the555

estimations at automobile exhaust stations via the spatiotemporal LURF model556

exhibit underestimations of 7.1 (ppb) on average (Supplementary material, pp-557

S7). The road structure in a metropolitan area is complicated, and primary or558

secondary roads are often located beneath elevated highways. The vertical and559
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horizontal positions of the monitors of the automobile exhaust stations at such560

locations may influence the observed pollution level. Monitors are sometimes561

installed in a building, and the measurements differ depending on the side of562

the building at which the monitor inlets are placed. This information is not563

available in the database used in this study. Moreover, it is difficult to model564

a three-dimensional structure using LURF or LUR. Although exclusion of au-565

tomobile exhaust stations is a reasonable decision, use of our LURF model to566

predict concentrations in such potential hot spots would require caution.567

Despite these limitations, in this study, we successfully developed a spa-568

tiotemporal LURF model for estimating accurate monthly mean NO2 concen-569

trations. We demonstrated the important advantages of using random forests to570

handle non-linearity and to capture temporal variation for the three-dimensional571

model. Our study also illustrates the potential for random forests to be incor-572

porated into the LUR framework for epidemiological studies.573
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