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MRO-PUF: Physically Unclonable Function with Enhanced 
Resistance against Machine Learning Attacks Utilizing 
Instantaneous Output of Ring Oscillator 

Masayuki HIROMOTota), Member, Motoki YOSHINAGA th), Nonmember, and Takashi SATotc), Member 

SUMMARY This paper proposes MRO-PUF, a new architecture for 
ring-oscillator-based physically unclonable functions (PUFs) with enhanced 
resistance against machine learning attacks. In the proposed PUF, an in­
stantaneous output value of a ring oscillator is used as a response, whereas 
the most existing PUFs directly use propagation delays to determine the 
response. Since the response of the MRO-PUF is non-linear and discon­
tinuous as the delay of the ring oscillator increases, the prediction of the 
response by machine learning attacks is difficult. Through the performance 
evaluation of the MRO-PUF with simulations, it achieves 15 times stronger 
resistance against machine learning attacks using a support vector machine 
compared to the existing ones such as an arbiter PUF and a bistable ring 
PUF. The MRO-PUF also achieves a sufficient level of the basic perfor­
mance of PUFs in terms of uniqueness and robustness. 
key words: physically unclonable function (PUF), chip identification, 
machine learning attacks, ring oscillator 

1. Introduction 

Increasing number of counterfeit chips are getting circulated 
in the silicon device market. One of the countermeasures for 
such counterfeited chips is to construct an authentication sys­
tem using physically unclonable functions (PUFs) [1] , which 
examines whether the chips are registered products or not. A 
PUF is a circuit that is embedded in a product chip and serves 
as a function r = fa ( c), where c is an input of the function 
called "challenge" and r is an output of the function called 
"response." The set of the challenge response pairs (CRPs), 
(c, r), depends on physical variation of the chips, a, mak­
ing it possible for PUFs to generate chip-intrinsic responses. 
Figure 1 shows an example of a PUF-based chip authen­
tication system. The manufacturer prepares a database of 
CRPs in advance. The chip authentication is realized by 
checking whether the response of the product matches the 
true response stored in the database or not. As long as the 
CRP space is large enough and the CRPs are not reused, this 
authentication system is safe against attackers who intercept 
CRPs in past transactions. 

Recently, PUFs must counter a new type of attacks, 
namely, the machine learning attacks [2]- [4] , where the at-
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Fig.1 An example chip authentication system using a PUF. First, a 
user requests an authentication process (1 ), then a manufacturer sends a 
challenge vector c; to the PUF in the product (2) to get its responser;' (3) 
and checks if the response r ;' matches the true response r; stored in the 
database (4), and finally sends the result back to the user (5). 

tackers try to pass through the authentication process by in­
ferring a whole CRP space of a PUF from a small subset of 
CRPs by using machine learning techniques. Unfortunately, 
most existing PUFs can be easily modeled using simple ma­
chine learning algorithms such as linear classifiers [2] , [3] . 
This weakness owes to their circuit constructions; the re­
sponse is determined by simple operations such as sum of 
the propagation delays. For example, an arbiter PUF [5] , 
which consists of cascaded multiplexers to provide multiple 
paths with different delays depending on the challenges, de­
termines the response just by comparing delays of the two 
paths. Since the propagation delay can be modeled as a 
simple sum of the gate delays, the responses of these PUFs 
that directly use delays to generate responses can be easily 
predicted by simple linear classifiers. A practical PUF must 
utilize more complex mechanism for the response determi­
nation so that its CRP space cannot be linearly separated. 

Our objective is to propose a new PUF architecture 
that contributes to better resistance against machine learning 
attacks. We propose a modulo ring oscillator PUF (MRO­
PUF), whose response is determined by an instantaneous 
output of a ring oscillator (RO) instead of the path delay 
itself. "Instantaneous" means that the output of the RO is 
latched at a predefined timing to generate a response of the 
PUF. The output of the proposed PUF takes O and 1 alter­
natively, as the delay of the RO increases. This nonlinearity 
and discontinuity of the response makes the CRP space in­
separable by a simple linear function, making its CRPs hard 
to model and predict by machine learning techniques. 

The key contribution of this work is summarized as 
follows: 

• A new PUF architecture whose response is determined 
by an instantaneous output of a RO is proposed. 

• An analytical proof of the better resistance against ma-
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chine learning attacks of the MRO-PUF than that of the 
existing PUFs is presented. 

• The performance of the MRO-PUF is evaluated through 
intensive circuit simulations. Over the existing PUFs, 
the MRO-PUF achieves 15 times stronger resistance 
against machine learning attacks, in addition to the basic 
performance improvement in terms of uniqueness and 
robustness. 

The remainder of the paper is organized as follows: 
First, the existing PUFs and the machine learning attacks to 
such PUFs are reviewed in Sect. 2. Second, the proposed 
MRO-PUF is described and its resistance against machine 
learning attacks is discussed in Sect. 3. Then the perfor­
mance evaluation of the PUFs is described in Sect. 4. Fi­
nally, related works are summarized in Sect. 5 and the paper 
is concluded in Sect. 6. 

2. PUFs and Machine Learning Attacks 

2.1 PUFs for Chip Authentication 

There are two types of PUFs used for chip authentication 
systems: strong PUFs and weak PUFs [6]. With a strong 
PUF, the chip authentication system directly uses its CRPs 
as shown in Fig. 1. The security level of such authentica­
tion systems greatly depends on the complexity of the PUF' s 
function and how large the CRP space is, i.e., the PUF itself 
must be "strong." On the other hand, a weak PUF is used in 
combination with general encryption algorithms to generate 
encryption keys [6] , [7]. In such a system, the weak PUF 
does not need to be "strong" since the security level of the au­
thentication system is ensured by the encryption algorithms. 
However, it is known that the encryption circuit may also be 
threatened by so-called side-channel attacks [8] , [9]. 

In this work, we focus on enhancing the security perfor­
mance of the strong PUFs. The strong PUFs are required to 
provide us with a large number of CRPs through a sufficiently 
complex function. Among the existing PUFs [5], [10]- [12], 
an arbiter PUF [5] and a bistable ring PUF [12] have advan­
tages in the first requirement as they can take 0(2n) chal­
lenges when a circuit is composed of n unit-components. 

2.1.1 Arbiter PUF 

The arbiter PUF [5] is a PUF architecture that determines 
its response by comparing signal propagation delays of two 
different paths selected by challenge signals. An example 
structure of an n-bit arbiter PUF is shown in Fig. 2. The 
arbiter PUF consists of a series of 2-in-2-out switch compo­
nents and an arbiter circuit located at the final stage. At each 
switch component, the signals propagate straight or crossed 
depending on the corresponding challenge signal ci. The 
arbiter circuit compares the arrival times of two signals, and 
output a response value r = {O, 1} depending on the early 
arrival of upper or lower signals. 

The characteristic of the arbiter PUF is formulated by 

IEICE TRANS. FUNDAMENTALS, VOL.ElOl-A, NO.7 JULY 2018 

Input 

C1 C2 

' ' ' 

....... 

....... •···· c;= a 
---- c;= 1 

Fig. 2 A circuit structure of an arbiter PUF. 

using a delay time of each switch component [2] . Let the 
delay difference of the two paths be Lidi(ci) for the i-th 
switch component with a challenge signal c;. Each lid;(c;) 
takes a chip-intrinsic random value because it is determined 
by delay variation of the transistors that compose the switch. 
The delay difference of the two signals arriving at the input 
of the arbiter circuit is 

n 

11arb = I b;Lid;(c;), 
i=l 

(1) 

where b; indicates whether the outputs of the i-th switch 
component arrive at the arbiter circuit straight (b; = 1) or 
crossed (bi = -1), which can be written as 

n 

b; = n (1 - 2q). 
k=i 

The final response of the arbiter PUF is determined as 

where V ( ·) is a unit step function, 

U(x) = g (x ~ 0) 

(x < 0) 

2.1.2 Bistable Ring PUF 

(2) 

(3) 

(4) 

A bistable ring PUF (BR-PUF) [12] is another PUF architec­
ture that has multiple selectable paths. The BR-PUF consists 
of bistable rings (BRs), which are inverter rings with even 
number of stages having two stable states. Figure 3 shows 
an example four-stage BR, which can take one of two stable 
states, "0101" (Fig. 3(a)) or "1010" (Fig. 3(b)). If an unsta­
ble initial state, such as "0000" or "1111 ", is given, the state 
of the BR will converge to either "0101" or "1010" after a 
certain period of time. The final state is determined by delay 
variations of the inverters in the BRs, hence a logic state of 
a node in the circuit can be used as a response. 

The BR-PUF employs multiple route-selectable stages 
to attain an exponential number of challenge-response com­
binations. Figure 4 shows a circuit structure of an n-bit 
BR-PUF [12]. Each stage consists of two NOR gates in 
between a demultiplexer and a multiplexer, which operates 
synchronously to select one of the NOR gates by a given 
challenge signal c;. The NOR gates behave as inverters 
in Fig. 3 when the RESET signal is deasserted. The pro­
cedure to obtain a response of the BR-PUF is, first setting 
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(a) '0101" state (b) ' 1010" state 

Fig. 3 Two stable states of a four-stage bistable ring. 

Fig. 4 A circuit structure of a bistable ring PUP. 

RESET=l to initialize the ring state and assigning challenges 
c1, c2, · · · , en to select corresponding NOR gates, and then 
setting RESET=0 to start oscillation. After the ring state is 
converged, the ring state is read out as a response r. 

The BR-PUF is reported to yield a complex response 
to a challenge due to its time evolving behavior [12] . In 
a recent work, an approximation model for the BR-PUF to 
generate response has been proposed [13]. In this model, 
the difference of the "driving force" between the odd- and 
the even-stage transistors is considered. For example, in the 
case of Fig. 3, if the driving force of the nMOS transistors 
in the odd stages and the pMOS in the even is strong, the 
ring is more likely to be "0101" state than "1010." For 
the i-th NOR gate selected by a challenge c;, let us define 
f; + c;Af; as difference of the driving force of the pMOS 
against the nMOS. The total difference of the driving force 
of the BR-PUF becomes 

n 

ABR = l:<-li(f; + c;A/;), (5) 
i=l 

and the final response of the BR-PUF is determined as 

r = U(ABR), (6) 

2.2 Machine Learning Attacks 

The arbiter PUF and the BR-PUF are area-efficient and suit­
able for use as strong PUFs since they can generate 2n CRPs 
for n stages. However, they are reported to be vulnerable 
against the machine learning attacks [13] , [14] . 

A machine learning attack against a PUF that returns 
binary response is defined as the following problem: given 
a partial set of CRPs {(c1, r1), (c2, r2), ···,(cm, rm)} (m < 
2n) as a training set, classify an unknown challenge c; into 
either of the two classes; r; = 0 or r; = 1. The most common 
approach to solve such classification problems is to apply a 
linear support vector machine (SVM) [15] , which classifies 
an input vector x by 

y = sign(wT x), (7) 

where w is a support vector that defines a hyper-plain to 

separate the two classes. The linear SVM can be extended to 
non-linear problems by introducing a kernel function efJ(x). 

The arbiter PUF is known to be modeled by the SVM 
classifier [14] . Equation (3) can be rewritten as 

where the support vector w = (w1, w2, · · · , Wn+1)T is 

{

w1 = (Ad1(0) +Adi(l))/2 

w; = (Ad;-1 (0) - Ad;-1 (1) +Ad;(~)+ Ad;(l))/2 

(z=2,3,--·,n) 

Wn+l = (Adn(0) - dn(l))/2 

(8) 

(9) 

and b = (b1, b2, .. , bn, l)T is the vector of indicators deter­
mined from challenges c as in Eq. (2). Thus, by using a 
kernel function b = 1/J( c ), this indicates that the arbiter PUF 
can be modeled by an SVM classifier. 

The BR-PUF can also be attacked by a linear SVM 
classifier [13] . Equation (6) can be rewritten as 

r = U(ABR) = U(F + WT c), (10) 

wherew = (w1,w2,--· ,Wn+1)T, w; = (-l);Af;isasupport 
vector and F = .Z::7=1 (-1/ f; is a constant value. This shows 
that the BR-PUF can be modeled by a linear SVM without 
using a kernel function. 

3. Modulo Ring Oscillator PUF 

As described in the previous section, the existing PUFs have 
vulnerability for machine learning attacks, such as by SVM 
classifiers. In this paper, we propose a new PUF architecture 
that utilizes a modulo operation, "LxJ mod 2", instead of 
the unit step function U(x) to determine a response. This 
section describes our proposed PUF named "modulo ring 
oscillator PUF (MRO-PUF)," and discusses its resistance 
against machine learning attacks. 

3.1 Basic Concept 

We first explain the basic concept of the MRO-PUF using a 
simple RO circuit as shown in Fig. 5. In this figure, three RO 
instances #1-3 having slightly different oscillation periods 
of TRO#l < TR0#2 < TR0#3 are illustrated as an example. At 
an oscillation time of Tineas, due to the process variation, 
phase difference among the ROs is observed. This is used 
as a randomness to design our proposed PUF. The response 
generation in this PUF can be formulated using a modulo 
operation, 

l Tmeas J d 
r = TRo/2 mo 2. (11) 

Here, LTmeas/(TRo/2)J is a toggle count of the RO during 
the T meas period. When T meas is set as a constant, then 
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Fig. 5 Concept of the MRO-PUF. The responser alternately takes O or 
1 depending on the RO's oscillation period TRO· 

Fig. 6 A circuit structure of the proposed MRO-PUF (1-MRO-PUF). The 
PUF consists of a route-selectable RO, a counter, and a latch. Each buffer 
element in the RO contains two inverters, which are exclusively selected by 
a challenge signal c;. 

the response r is non-linear and discontinuous as a func­
tion of oscillation period, ho- Therefore, by employing a 
route-selectable structure as in the BR-PUF to vary ho with 
challenge inputs, we can realize a PUF that is more resistant 
against machine learning attacks than the existing ones. 

3 .2 Circuit Structure 

An example circuit realization of the proposed n-bit MRO­
PUF is shown in Fig. 6. The MRO-PUF consists of three 
major components: a route-selectable RO, a counter, and 
a latch. The inputs are challenge signals c1, c2, · · · , en, an 
enable signal EN, a reference number of oscillation counts 
Nmeas, and an external clock signal CLK. The outputs are a 
response r and a read-out signal RD. 

Each buffer element in the RO (shaded triangles in 
Fig. 6) contains two parallel inverters. One of the two in­
verters is exclusively selected by a pair of pass transistors 
controlled by a challenge signal c;. With this structure, the 
RO's oscillation period TRo can be changed according to a 
set of challenge signals c = (c1, c2, · · ·, Cn)T. The TRo for a 
challenge vector c can be expressed as 

n 

TRo(c) = 2 L)d; + c;lid;), 
i=l 

(12) 

where d; and d; + lid; are the delays of the i-th buffer element 
when c; = 0 and c; = 1, respectively. The enable signal EN 
is used to start and stop oscillation of the RO. 

The counter measures the oscillation time T meas by 
counting up the number of the external clock (CLK) pulses. 
When the count reaches the predefined reference number 
Nmeas, i.e., at the time of Tmeas = NmeasTcLK, the read-out 
signal RD is asserted to latch the output of the RO. Figure 7 
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Fig. 7 A timing chart of response generation by MRO-PUF. First, the 
enable signal EN is asserted at a rising edge of the external clock CLK, and 
then, after counting up the number of clock pulses to Nmeas, RD is asserted 
to latch the RO's output VRo as a response r. 

shows a timing diagram of the operation of MRO-PUF. 
From Eqs. (11) and (12), the response of the MRO-PUF 

is formulated as 

-l Tmeas J d 2 r - n mo . 
Li=l (d; + c;lid;) 

(13) 

Since the parameters d; and lid; depend on the variability of 
the transistors that compose the buffer element, a unique set 
of CRPs is obtained for each chip. 

3 .3 Resistance for Machine Learning Attacks 

The CRP set of the MRO-PUF is difficult to linearly sepa­
rate. The response determination shown in Eq. (13) can be 
rewritten as 

r = l Tmeas J mod 2, 
D+wTc 

(14) 

where w = (lid 1, lid2, .. , lidnf, and D = L?=l d; is a con­
stant value. In general, in order for a CRP set of a PUF 
to be linearly separable, a response r can be expressed as a 
monotonic function of a linear combination of the challenges 
c. In Eq. ( 14 ), although the denominator of the fraction is 
a linear combination of the challenges, the response is de­
termined by a modulo operation, which can even become a 
non-monotonic function when Tmeas is sufficiently large as 
compared to the oscillation period variation. As a result, 
CRP of the MRO-PUF is inseparable with a linear function. 

In addition, the MRO-PUF has resistance against SVM 
attacks even when a kernel function ¢( ·) is used. Here we 
consider an approximation of the modulo operation" L • J mod 
2" by using a unit step function U ( · ), 

LxJ mod 2"" U(sin(1rx)). (15) 

Although the boundary values when x is integers are not 
strictly correct, this gives a close approximation of the mod­
ulo operation. With this, the response in Eq. (14) can be 
expressed using a unit step function U ( ·) as 

( . ( lfTmeas )) r = U(liprop) = U sm D + wT c . (16) 

The CRPs of the MRO-PUF are linearly separable via a 
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kernel function </J(·) if the !<.prop is represented by 

!<.prop= w'T </J(c), (17) 

where w' only depends on the delay parameters di, d2, · · ·, 
dn, !<.d1, !<.d2, · · ·, !<.dn, and a kernel function </J(c) only 
depends on the challenges c1, c2, · · · , en. However, in order 
to realize this representation, it is needed for the sine function 
to be decomposed into a polynomial function with a finite 
number of terms, which is very difficult if the values of 
,rTmeas/(D + wT c) take a sufficiently wider rage than the 
period of the sine function. This shows that the CRPs of our 
MRO-PUF are difficult to linearly separate even if a specific 
kernel function is used. 

3.4 MRO-PUF with Improved Robustness 

While the proposed MRO-PUF in Fig. 6 has a good resistance 
against machine learning attacks, the robustness metric may 
not be sufficient. As shown in Eq. (13), the response of the 
MRO-PUF is determined by the delay parameters d; and 
!id;, which are affected not only by static process variation 
but also by dynamic fluctuation of the temperature and/or 
the supply voltage. This means that the response r possibly 
takes an opposite binary value depending on the operating 
environment even if the same challenge bits are given. 

In order to improve robustness, we propose to use two 
ring oscillators as a pair as shown in Fig. 8. Hereafter, we call 
the MRO-PUF in Fig. 8 as "2-MRO-PUF," and the original 
one in Fig. 6 as "1-MRO-PUF." The 2-MRO-PUF employs 
an additional RO that generates the counter clock CLK, elim­
inating the external clock in 1-MRO-PUF. The use of the 
RO improves the robustness of the proposed PUF, as it was 
effective in the case of ring oscillator PUF (RO PUF) [11] , 
in which the response is determined by a difference of the 
oscillation frequencies of two ROs. Since temperature and 
the supply voltage are almost equal for the paired ROs that 
are closely placed, the RO PUF can successfully cancel the 
effect of the environmental change. Our 2-MRO-PUF thus 
utilizes two ROs so that the final timing to latch a response 
also reflects the environmental change. From Eq. (11) and 
the equation Tmeas = NmeasTcLK, the response generation is 
written as 

= l NmeasTCLK J d 2 r 12 mo . 
TRo 

(18) 

In the 2-MRO-PUF, TcLK changes in accordance with the 
change of TRo against the environmental change, which en­
hances the robustness of the MRO-PUF. 

As shown in Fig. 8, the same challenge c is given to the 
clock generating RO as well as the response generating RO. 
The oscillation period of the clock RO can be written in a 
similar way as Eq. (12), 

n 

TcLK(C) = 2 Icd; + c;!<.d;), (19) 
i=l 

where d; and Ad; are the chip-dependent delay parameters. 

Clock RO RO part ! Control part 

C; EN 

Response RO 

Fig. 8 A circuit structure of the 2-MRO-PUF. A clock RO is employed 
to generate CLK instead of using the external clock. The two ROs are both 
controlled by the same input challenges c; . 

The response of the 2-MRO-PUF becomes 

- l2Nmeas L7=l (d; + c;Ad;) j 
r - n mod 2. 

Lj=l (dj + Cjt1dj) 
(20) 

Compared to the 1-MRO-PUF, this equation has twice the 
number of the delay parameters. This indicates that the 
2-MRO-PUF can be more resistant against machine learn­
ing attacks than 1-MRO-PUF, in addition to enhancing the 
robustness. 

The difficulty of the linear separation of the CRPs given 
by 2-MRO-PUF can be discussed in a similar way to the 1-
MRO-PUF by replacing Tmeas in Eq. (16) with 

n 

Tmeas = 2Nmeas Icd; + c;!<.d;). 
i=l 

(21) 

Since the difficulty to decompose the sine function still holds 
in this case, the 2-MRO-PUF is also resistant against machine 
learning attacks, such as SVMs. 

4. Evaluation 

The performance of the proposed MRO-PUF is evaluated 
through five criteria: randomness, diffuseness, uniqueness, 
robustness, and resistance against machine learning attacks. 
Comparisons to the existing PUFs such as the arbiter PUF 
and the BR-PUF are also presented. 

4.1 Setups 

We evaluate the performance of the PUFs by simulation. 
When the pulse counts for the measurement, Nmeas, is set 
large, long simulation time is required to obtain a response 
from MRO-PUF. We hence construct a simulation platform 
that uses both circuit-level and behavior-level simulators to 
accelerate the simulation speed. Figure 9 shows a simulation 
flow in the platform, which mainly consists of two steps: RO 
simulation and response generation. 

In the RO simulation step, the oscillation period ho ( c j) 
is measured by a SPICE simulation. In our simulation, a 
commercial SPICE simulator and a commercial 65 nm pro­
cess library are used. A set of PUF instances are generated 
by assuming a Gaussian distribution for threshold voltages 
¥th- For a PUF instance #i, the oscillation period ho#i(cj) 
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Fig. 9 A simulation flow for the MRO-PUF. 

_,, 
_,, 

is measured and stored for all the possible challenges c J, in 
order to use in the succeeding software simulation. These 
measurements are repeated with different conditions such as 
temperature and supply voltage. 

In the response generation step, the behavior of the 
controller circuit of the MRO-PUF, i.e., the counter and the 
response latch, is emulated by a software simulation. For 
a PUF instance #i, the software simulator calculates the 
responser; by using ho#i(c1) in the dataset and a given 
parameter Tmeas· In the case of the 2-MRO-PUF, the clock 
period TcLK#i(c1) must also be stored in the dataset to cal­
culate T meas for the challenge c J. 

The arbiter PUF and the BR-PUF are fully evaluated by 
SPICE simulations only because its simulation time is short. 
Similarly to the evaluation of MRO-PUF, their responses are 
observed under the variations of Vth. 

4.2 Randomness, Diffuseness, and Uniqueness 

First we evaluate PUF's performance with the following three 
metrics: randomness (H), diffuseness (D), and uniqueness 
(U) [16] . The randomness represents how equal the frequen­
cies of responses O and 1 that a PUF returns are, the diffuse­
ness represents whether a PUF returns different responses for 
different challenges, and the uniqueness represents whether 
different PUFs return different responses for a same chal­
lenge. Each metric takes a value between O and 1, where O is 
the worst and 1 is the best. We generated 10 PUF instances 
and gave a same set of 128 challenges to collect 1280 CRPs 
for 16-bit and 32-bit MRO-PUFs. Each test to collect a CRP 
is performed once, since the circuit simulation returns al­
ways the same results. The periods of the external clocks 
for 16-bit and 32-bit 1-MRO-PUFs are set to TcLK=2.62ns 
and TcLK=5.16ns respectively, which are the averages of the 
oscillation periods of the response generation ROs. 

The top two graphs in Fig. 10 show the simulation re­
sults for the uniqueness of the 16-bit 1-MRO-PUF and 2-
MRO-PUF. The same metrics for the arbiter PUF and the 
BR-PUF are compared. It is shown that all the three metrics 
of the MRO-PUF are improved as Nmeas increases. With 
Nmeas = 50, for example, the proposed PUFs are comparable 
or superior to the existing PUFs. The bottom two graphs in 
Fig. 10 shows the results for the 32-bit PUFs. The 2-MRO­
PUF also achieves the comparable performance of those of 
the 16-bit and the existing ones. 

4.3 Robustness 

The robustness is a characteristic that a same PUF instance 
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Fig. 11 Robustness of the proposed PUF under temperature variation. 

always returns a same response if a same challenge is given. 
In this work, we evaluate the robustness with a reproduc­
tion error when the temperature and the supply voltage are 
changed from typical values. We generated 10 PUF in­
stances and gave a same set of 1024 challenges to collect 
10240 CRPs for 16-bit and 32-bit MRO-PUFs. The temper­
ature is set to 30°C, 40°C, and 50°C, and the supply voltage 
is decreased by -1 %, -5%, and -10% from the rated volt­
age of 0.8 V. The reproduction error is calculated against 
the typical setting with 25°C and 0.8 V. 

Figure 11 shows the robustness of the MRO-PUFs at 
different operating temperatures. The reproduction error 
rates are plotted as a function of Nmeas. The error rate of the 
1-MRO-PUF at 30°C becomes significantly larger as Nmeas 
increases. At the higher temperatures, the error rate goes 
up and down, which is caused by the periodic nature of 
the MRO-PUF. Since the error rate higher than 0.5 means 
that the PUF does not work correctly, the 1-MRO-PUF is 
unreliable under the temperature fluctuation. On the other 
hand, the 2-MRO-PUF achieves remarkably smaller error 
rate below 0.1. This shows that the utilization of the RO pair 
is effective to improve the robustness of the MRO-PUF. 
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Fig.12 Robustness of the proposed PUF under supply voltage variation. 

Figure 12 shows the robustness of the MRO-PUFs at 
different supply voltages, in which the reproduction error 
rates are plotted as a function of Nmeas• As in the case of the 
temperature fluctuation, the error rate of the 1-MRO-PUF is 
extremely large. The 2-MRO-PUF, however, achieves low 
error rates against the voltage fluctuation similarly to the 
case of temperature change. In case the error rate of the 
2-MRO-PUF with -100/o voltage is unacceptable, the supply 
voltage for the proposed PUF should be controlled within 
a few percent of the typical value, which is not difficult to 
achieve when the circuits other than PUF are made idle. 

In summary, while the 1-MRO-PUF is strongly affected 
by the fluctuation of the temperature and the supply voltage, 
the improved 2-MRO-PUF realizes sufficient robustness for 
such environmental fluctuations. 

4.4 Resistance against Machine Learning Attacks 

We evaluate the resistance against machine learning attacks 
of the 2-MRO-PUF by using an SVM classifier. We ran­
domly sampled ntrain CRPs for training and 1000 CRPs for 
testing without overlaps. The 2-MRO-PUFs and the BR-PUF 
are attacked by a linear SVM without kernel functions, while 
the arbiter PUF is attacked using a kernel function that maps 
c --t b as shown in Eq. (2) assuming the worst case. Since 
the modulo function in the proposed PUF is difficult to be 
modeled, we evaluate the performance of model-less attacks 
in this experiment. The SVM classifier is implemented by 
using Python scikit-learn library [17] . 

As a preliminary experiment, we examine a relationship 
between the robustness and the resistance against machine 
learning attacks of 16-bit PUFs. We have seen that the 
robustness of the MRO-PUF becomes worse as the parameter 
Nmeas increases as shown in Sect. 4.3, while the resistance 
against machine learning attacks will be improved with the 
larger Nmeas as discussed in Sect. 3.3. Hence, we must choose 
an appropriate Nmeas value considering the trade-off between 
the above two metrics. In Fig. 13, the prediction accuracy of 
the trained SVM classifier is plotted against the reproduction 
rate by changing Nmeas to be 10, 20, 30, 40, 50, 60, 80, and 
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u u u 
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Fig.13 Relationship between the robustness and the resistance against 
machine learning attacks . 

100. The results of the arbiter PUF and the BR-PUF are also 
depicted. The accuracy of 0.5 means the highest resistance, 
while O or 1.0 means that the PUF response is completely 
predictable. The number of CRPs used for training is ntrain = 
500. The result shows that the 2-MRO-PUF achieves good 
resistance while retaining the robustness in a sufficient level. 
At Nmeas = 50, marked using squares in Fig. 13, the best 
resistance of 0.5 accuracy is achieved. The 2-MRO-PUF is 
comparable to the arbiter PUF and better than the BR-PUF. 

The reason why Nmeas ~ 50 realizes good resistance 
is considered as follows. From the simulation results, the 
mean and the standard deviation of TcLK of 16-bit 2-MRO­
PUF are µ=2.62 ns and cr=0.025 ns, respectively, and those 
of TcLKf (TRo/2), which appears in the model equation 
of Eq. (18), are µ=2.00 and cr=0.029, respectively. This 
means that, when Nmeas = 50, the standard deviation of 
NmeasTcLK! (TRo/2) becomes 1 .45 and the effect of the mod­
ulo operation in Eq. (18) begins to appear. As Nmeas in­
creases, the above value takes the wider variation and the 
modulo operation works more effectively. For the 32-bit 
2-MRO-PUF, we found that Nmeas ~ 80 realizes good resis­
tance based on the similar observation. 

On the basis of the above results, the configuration of 
Nmeas = 50 for 16-bit PUFs and Nmeas = 80 for 32-bit PUFs 
is evaluated in detail. Figure 14 shows the result of the SVM 
attacks for 16-bit and 32-bit PUFs. The prediction accuracy 
by the trained SVM is plotted as a function of the number of 
the training CRPs, ntrain. Since there is a variation of the PUF 
characteristics, the average and the best cases are plotted for 
the 2-MRO-PUF among the 10 instances. As shown in the 
results, the 2-MRO-PUF achieves lower prediction accuracy 
less than 0.6 whereas those of the arbiter PUF and the BR­
PUF are higher than 0.9 even if a very few CRPs are used 
for the training. When ntrain = 104, the prediction error 
for the 16-bit MRO-PUF is 450/o at most whereas those of 
the existing PUFs are less than 30/o. This means that the 
proposed MRO-PUF is 15 times stronger than the arbiter 
PUF and the BR-PUF for the SVM attacks. We can conclude 
that the utilization of the modulo operation as a non-linear 
and discontinuous function effectively works to enhance the 
resistance against the machine learning attacks. 

Figure 14 also shows the simulation results of model­
less attacks for XOR arbiter PUFs [11] , which are the PUFs 
whose responses are determined by XOR-ing the outputs of 
M arbiter PUF instances. As shown in the figure, when 
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Fig.14 Resistance against machine learning attacks by SVM classifier. 
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Fig.15 Resistance against machine learning attack by evolutional strat­
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M = 8 (8-XOR), the XOR arbiter PUF achieves almost 
perfect prediction accuracy of around 0.5 and outperforms 
the proposed MOR-PUF. However, it is known that the XOR 
arbiter PUF can be predicted with 99% accuracy by modeling 
attacks [18] . Since there is currently no known model for 
the modulo function used in the MRO-PUF, the MRO-PUF 
still has an advantage to the XOR arbiter PUFs. 

In addition to the linear classifier, we also evaluated the 
resistance against more advanced non-linear machine learn­
ing techniques, which are known to be effective for model­
less attacks against PUFs. Figures 15-17 show the results of 
attacks by an evolution strategy (ES) [19] , a random forest 
(RF) [20] , and a boosting [21], respectively. The above clas­
sifiers are implemented by Python with Py Brain [22] for ES, 
and scikit-learn [17] for RF and boosting. For the ensemble 
learning methods such as the RF and the boosting, the 16-bit 
MRO-PUF can be modeled when a large number of training 
samples are used. However, the 32-bit MRO-PUF achieves 
good resistance less than 0.55 prediction accuracy. These 
results show that the proposed MRO-PUF with longer chal­
lenge bits has strong resistance against various non-linear 
machine learning attacks. 

The required time for machine learning attacks are sum­
marized in Table 1. The experiments are run on a Linux PC 
with Intel Xeon E5-2630 v2 2.60 GHz CPU. The number of 
CRPs used for training is 104 . 

4.5 Response Generation Time 

The required time to generate a response of the proposed 
MRO-PUF is Tmeas, which is equal to NmeasTcLK for 2-MRO­
PUF. For the 16-bit 2-MRO-PUF with Nmeas = 50, it is 
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Table 1 Time required for machine learning attacks [ s]. 

16bit 32bit 
SVM ES RF Bst. SVM ES RF Bst. 

Arbiter 0.06 25.3 0.69 2.04 0.23 39.2 1.16 0.05 
BR 0.03 12.7 0.62 1.87 0.15 17.3 0.76 0.03 
2-XOR 0.27 23.6 0.69 2.02 0.60 38.6 1.15 0.05 
8-XOR 0.26 24.2 0.69 2.02 0.63 41.7 1.16 0.05 
MRO 0.28 14.8 0.69 2.02 0.62 19.5 1.15 0.05 

about Tmeas = 50 X 2.62 ns = 131 ns. This is longer than that 
of the arbiter PUF having the same challenge bits, which is 
about 1.2 ns, and comparable to that of the BR-PUF, which is 
about 100 ns. Although relative throughput of the proposed 
PUF is inferior to those of arbiter-based PUFs, it can still 
be considered sufficiently fast and acceptable in most of the 
practical applications. 

5. Related Works 

The proposed MRO-PUF is based on two key ideas: modulo 
operation to enhance resistance against machine learning 
attacks and route-selectable RO structure for area efficiency. 
This section reviews existing PUFs utilizing the similar ideas, 
and compares them with the proposed MRO-PUF. 

First, for the modulo operation, an RG-DTM PUF [23] 
and a DC-ROPUF [24] are based on the similar concept. 

The RG-DTM PUF [23] is an extension of the arbiter 
PUF. It divides time-difference of two signal routes into 
multiple regions. By alternatively assigning O or 1 to the 
divided regions, the RG-DTM PUF generates responses that 
are difficult to predict. This region-dividing technique is 
very effective to improve resistance against machine learn­
ing attacks; the modulo operation in the MRO-PUF can be 
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considered fundamentally the same as the region division in 
the RG-DTM PUF, but it has a weakness in its robustness. 
Since the response of the RG-DTM PUF is determined by 
the "difference" of the delay time, it is easily affected by the 
fluctuation of the temperature and the supply voltage. On 
the contrary, the MRO-PUF determines its response by the 
"ratio" of the delay times of two ROs by Eq. (18), which 
can cancel the delay fluctuation that appears similarly in the 
two ROs. This means that the proposed MRO-PUF has an 
advantage to the RG-TDM PUF in terms of its robustness. 
In addition, the circuit structure of the RG-DTM PUF de­
pends on the number of the divided regions, which affect 
the performance of the resistance against machine learning 
attacks. On the other hand, the MRO-PUF can adjust such 
performance just by changing the value of Nmeas without 
modifying its circuit. This flexibility is another advantage of 
the proposed MRO-PUF. 

The DC-ROPUF [24] utilizes two ROs and its response 
is an instantaneous output value of one of the two ROs at 
a timing when the other RO counts up a certain value. Al­
though this idea is very similar to our 2-MRO-PUF, the DC­
ROPUF has a problem for its area efficiency. The basic struc­
ture of the DC-ROPUF is the conventional RO-PUF [11], 
which is known for its inefficiency of the circuit area since it 
requires ROs exponential to the number of challenge bits. For 
example, to realize a 16-bit PUF, the DC-ROPUF requires 
7 X 2 X 256 = 3584 inverters, whereas the 2-MRO-PUF only 
requires 17 x 2 X 2 = 68. In addition, the DC-ROPUF also 
requires large 16-bit multiplexers to select ROs according 
to the challenge bits. Therefore, our MRO-PUF is more 
area-efficient than the DC-ROPUF. 

Second, for the route-selectable structure, the afore­
mentioned DC-ROPUF [24] and a selective RO-PUF [25] 
are the ones that utilize route-selectable ROs to enhance area 
efficiency. However, as described above, the DC-ROPUF 
does not adopt fully route-selectable ROs but also has area­
consuming conventional RO-PUF structure where multiple 
ROs are arranged in parallel. As a result, the DC-ROPUF 
is less area-efficient than the proposed MRO-PUF. The DC­
ROPUF also has the problem for physical layout, which is 
originally the problem of the conventional RO-PUF; all the 
ROs should have identical layout with a regular placement. 
Since the proposed 2-MRO-PUF uses only two ROs, its lay­
out is easier than the PUFs based on the RO-PUF. The 
selective RO-PUF [25] resolves the above problems of area 
efficiency and layout difficulty by adopting a fully route­
selectable structure. However, the selective RO-PUF is vul­
nerabile to machine learning attacks since its response is 
determined by calibrated frequency difference of two ROs 
through linear calculations, which can be easily modeled by 
a linear classifier such as SVM. 

In summary, a part of the techniques used in the 
MRO-PUF has been already proposed in the existing works, 
our MRO-PUF is only the work that can enhance resis­
tance against machine learning attacks, robustness, and area­
efficiency simultaneously. 

6. Conclusion 

In this paper, we proposed a new MRO-PUF that utilizes an 
instantaneous output of a ring oscillator as a response. Un­
like the existing PUFs whose CRPs are linearly separable, 
a response of the MRO-PUF is determined by a non-linear 
and discontinuous modulo operation, which makes its CRPs 
difficult to be predicted by a linear classifier, such as SVM. 
We further improved the robustness of the MRO-PUF by 
introducing an additional ring oscillator to compensate for 
temperature and supply voltage fluctuations. Through the 
experiments by SPICE and software simulations, it is shown 
that the proposed MRO-PUF achieves 15 times stronger re­
sistance against machine learning attacks compared to the 
existing arbiter PUF and the BR-PUF, while keeping the suf­
ficient level of the basic performances, i.e., the uniqueness 
and robustness. 
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