
IEICE TRANS. FUNDAMENTALS, VOL.ElOl-A, NO.7 JULY 2018
1092

PAPER

Efficient Mini-Batch Training on Memristor Neural Network
Integrating Gradient Calculation and Weight Update

Satoshi YAMAMOR1ta), Student Member, Masayuki HIROMOTOt, and Takashi SATOt, Members

SUMMARY We propose an efficient training method for memristor
neural networks. The proposed method is suitable for the mini-batch-based
training, which is a common technique for various neural networks. By
integrating the two processes of gradient calculation in the backpropagation
algorithm and weight update in the write operation to the memristors, the
proposed method accelerates the training process and also eliminates the
external computing resources required in the existing method, such as mul
tipliers and memories. Through numerical experiments, we demonstrated
that the proposed method achieves twice faster convergence of the train
ing process than the existing method, while retaining the same level of the
accuracy for the classification results.
key words: memoristor, neural network, mini-batch training, stochastic
gradient descent

1. Introduction

Resent progress in neural networks is remarkable. The per
formance of the neural networks have become comparable,
or have outperformed the human' s ability in various fields
such as image recognition, speech recognition, and auto
matic translation [1]- [4] . This progress owes greatly to the
progress of computer technologies along with the Moore's
law. However, recent processors, such as CPUs and GPU s,
are facing a serious obstacle - the computation in state-of
the-art neural network architectures demand large amount of
memory access for input data and network parameters.

A memristor neural network (MNN) [5] , [6] is one of
the emerging computing technologies to resolve the above
problem. A memristor [7]- [9] , which is also called as a
ReRAM, is a passive electric element whose resistance is
changed by the current passing through the device, and can
be used as a low-power non-volatile memory [6] , [10] . By
employing a crossbar array structure, the memristors are
also capable of performing multiply-and-accumulate (MAC)
operations [5] , [11]- [13]. This enables so-called in-memory
calculation, which has a possibility to overcome the Von
Neumann bottleneck of the modern processors. There are
various kinds of MNNs proposed [13]- [16] , most of which
are reported to realize much better energy efficiency than the
conventional digital processing.

The training of the MNN s is realized by applying high
voltages to the memristors to update conductance according

Manuscript received October 31, 2017.
Manuscript revised March 7, 2018.

tThe authors are with Department of Communications and
Computer Engineering, School of Informatics, Kyoto University,
Kyoto-shi, 606-8501 Japan.

a) E-mail: paper@easter.kuee.kyoto-u.ac.jp
DOI: 10.1587 /transfun.El0l.A.1092

to the parameters of the neural networks. There are two ap
proaches to train the MNN: ex-situ and in-situ methods [17] .
In the ex-situ method, the parameters, or weights, of the
neural networks are calculated separately from the MNN by
executing a training algorithm on ordinary digital computers.
This method is so simple that it is used in various existing
works [11] , [17]. However, it is difficult to accurately write
the weights to the memristors due to device variation. Since
the error in the weights may deteriorate the classification
performance of the neural networks, additional adjustment
of the memristor resistance has been necessary. On the
other hand, the in-situ method performs network training on
the MNN itself. Although this method requires additional
peripheral circuits dedicated for training, this method has ad
vantages in terms of robustness against the device variation
and capability to realize on-line training.

Kataeva et al. [18] proposed an in-situ training method
for the MNN, in which the backpropagation algorithm is ef
ficiently combined with the weight update process on the
MNN. This method realized a good training result on the
MNN having variations of the memristor devices, as re
ported by Prezioso et al. [13]. However, this method is
not suitable for applying to the algorithms that use a mini
batch technique. The mini-batch-based training is known
as fast and robust, and it is used in combination with var
ious optimization algorithms such as a stochastic gradient
decent (SGD) method [19] . The reason is that the Kataeva's
method requires not only a large number of update iterations
in proportion to the size of the MNN, and also additional
computation resources, such as multipliers and memories,
are required to calculate and store the intermediate data.

In this paper, we propose weight dividing update
(WDU) method, an efficient in-situ training method for
MNNs with mini-batch technique. The proposed method
divides the weight update into discrete processes for each
sample in a mini-batch. As a result, we can combine two
processes into one: gradient calculation in the backpropaga
tion algorithm, and weight update in the write operation of
the memristor. This integration can eliminate the external
multipliers and memories that have been indispensable for
the existing method, and also can shorten the training pro
cess by parallel execution of the weight update for all the
memristors on the crossbar array.

The contribution of this paper is summarized as follows.

• A weight dividing update (WDU) method for effi
cient mini-batch training on memristor neural networks

Copyright© 2018 The Institute of Electronics, Information and Communication Engineers

YAMAMORI et al.: EFFICIENT MINI-BATCH TRAINING ON MEMRISTOR NEURAL NETWORK INTEGRATING GRADIENT CALCULATION AND WEIGHT UPDATE
1093

Algorithm 1 Stochastic gradient decent (SGD)
1: Choose an initial weight matrix W
2: for i = 1, ... , Nepochs do
3: Randomly sample a mini-batch 13 from the training set
4: Calculate gradient ~ W on the mini batch 13
5: Update weight: W <--- W + ~W
6: endfor

(MNNs) is newly proposed.
• WDU eliminates the external multipliers and reduces

memory usage compared to the existing method [18] .
• WDU can accelerate the training process by parallel

weight update of the memristors.
• The training accuracy is evaluated through circuit sim

ulation. The result shows the proposed WDU achieves
M / K times faster convergence of the training compared
to the existing method [18] , while keeping the same
classification accuracy. Here, M and K are a network
size and a mini-batch size, respectively. The mini-batch
is a subset of the training dataset, from which the gra
dient is calculated for SGD to update weights of the
neural network. The mini-batch size K is the number
of the data elements in the mini-batch.

The remainder of the paper is organized as follows.
First, the fundamentals of conventional MNNs are briefly
reviewed in Sect. 2. Then the proposed WDU method is
described in Sect. 3, and the performance evaluation through
circuit simulation is conducted Sect. 4. Finally, the paper is
concluded in Sect. 5.

2. Memristor Neural Network

2.1 Neural Network

A neural network is one of the brain-inspired mathematical
models that have an ability to approximate functions through
learning on a large training data [19]. The neural network
has a hierarchical network structure that consists of simple
units called neurons. Figure 1 shows a neuron model and
an example of the multi-layer neural network. The output of
the neuron is given by

y = f(Wz), (1)

where z, W, and f(-) are an input vector, a weight matrix,
and an activation function, respectively.

In training the neural networks, stochastic gradient de
cent (SGD) [19] is widely used. Algorithm 1 shows a pseu
docode of the SGD, in which gradient calculation (Line 4)
and weight update (Line 5) are iteratively executed for each
epoch until the iteration reaches a predefined number of
epochs, Nepochs· The weight gradient!:,. W is obtained by the
backpropagation method as follows:

eL(k) = t(k) - y(k), (2)

e1(k) = ((w1+1f e1+1(k)) 0 f' (w1z1(k)), (3)

Neuron

toward propagation back propagation

Neural network

Fig.1 A neuron model and an example of a multi-layer neural network.
A neuron works as a scalar function that calculates an inner product of the
inputz and the weight wand outputs y through an activation functionf(·).
The neural network consists of multiple neurons connected to each other.
The red and blue arrows represent the directions of the forward and back
propagation, respectively.

A.i(k) = e1(k) (z1f (k), (4)

K

AW1 =172_ IA1(k).
K k=l

(5)

Here we assume an £-layer neural network, and z1, W1, and
e1 are the input, weights, and errors for the /-th layer, re
spectively. y is the output of the final layer, i.e., the result
of the forward propagation of the neural network. t is target
values of the output, and the error at the final layer eL is
calculated by Eq. (2). Note that the augment k for each vari
able indicates that those values correspond the k-th training
sample in a mini-batch B whose size is K. The errors at the
/-th layer can be obtained from the errors at the (l + 1)-th
layer as shown in Eq. (3). The operator symbols 0, T, and'
mean Hadamard product, matrix transpose, and derivative,
respectively. By repeating this process, errors for all the
layers are obtained sequentially from the last layer to the first
layer. This is why this method is called backpropagation.
After having all the errors e1, the gradient of the weights to
be updated is calculated by Eqs. (4) and (5), where 17 is a
constant variable called a learning rate.

2.2 Memristor Neural Network

2.2.1 Memristor Device

A memristor is a passive two-terminal component theoreti
cally predicted by Chua in 1970s [7] and found by Strukov et
al. in 2008 [9] . Figure 2(a) shows a typical structure of the
memristor, which consists of a metal oxide layer in between
two metal layers. The conductance of the memristor changes
depending on the current passing through the device. The
I-V characteristic of the memristor is shown in Fig. 2(b), in
which the hysteresis loop is found. The memristor works in
two operation modes: read and write. In the read mode, a

1094

Oxygen

j.,___ positive

negative ; ! current

current -----+--j

High Low
resistance resistance

(a) Physical model (b) 1-V characteristic

Fig. 2 The physical abstraction model and the 1-V characteristic of the
memristor device.

t t
out\ out"1 Vi -V1 -Vw/2 -Vw/2

(a) Foward propagation (b) Back propagation (c) Weight update

Fig. 3 Schematics of the memristor crossbar array operating in three
modes: (a) forward propagation, (b) back propagation, and (c) weight
update by V /2 scheme.

low read voltage ½ is applied to the memristor so that its
conductance does not change and the device behaves as a
constant conductance. The read current is given by

read: l = G½, (6)

where G is the conductance of the memristor. On the other
hand, in the write mode, the conductance of the memristor
is altered by applying a high write voltage Vw for a certain
period, AT. The relative change of the conductance is given
by

write:
AG G = 8a oc ATexp(aVw), (7)

where a is a device-dependent constant [20].

2.2.2 Crossbar Array

A crossbar array is a typical circuit structure to implement
neural networks using memristors [12] . Figure 3 shows an
example of the memristor crossbar array, in which the mem
ristors are connected at each intersection of the horizontal
input line and the vertical output line. A pair of the mem
ristors is used to represent the positive and negative weights
of the neural network. The crossbar array works in three
modes: forward propagation, back propagation, and weight
update.

First, the forward propagation mode is explained using
Fig. 3(a). Let the conductances of the positive and negative
memristors at the intersection of the i-th column and the }-th

IEICE TRANS. FUNDAMENTALS, VOL.ElOl-A, N0.7 JULY 2018

row be Gt and Gij (i = 1, · · · , M, j = 1, · · · , N), respec
tively. When voltages ½ are applied to the input terminals
inj, the currents flowing through the output terminals out7
and out1 become

N

17 = I Gt½,
j

N

l;- = IGij½•
j

(8)

In matrix representation, this operation can be written as

frwd = GVfwd, (9)

where lrwd is a vector of differential output currents l; =
17 - r;, and Yrwct is a vector of the input voltages ½. Each
element in the conductance matrix G represents the differ
ence of the pairwise conductances, Gij = G~-~ Gij. When
we associate G and Vfwd with the weights W and the in
puts z of neurons in Eq. (1) respectively, the crossbar array
realizes the dot product operations to obtain the output y
as the output currents lrow• As such, in the crossbar array,
the forward propagation of the neural network is conducted
by only using the passive components without using costly
digital multipliers.

Next, the backpropagation is also realized as shown in
Fig. 3(b). Compared to the forward propagation mode, the
inputs and the outputs of the crossbar array are swapped. By
applying voltages Vbwd to the bottom terminals (which were
the output terminals in the forward mode) of the corssbar
array, the currents flown through the left terminals (input
terminals in the forward mode) become

(10)

which can realize the dot product operations of W1~ 1 e1+1 (k)
in Eq. (3), by associating G and Vbwd with W1+1 and ez+1 (k),
respectively.

Finally, the weight update mode is explained. In this pa
per, "V /2 scheme" [6] , [13] is used to update the conductance
of the memristor in the corssbar array. This method enables
to change the conductance of only the selected memristor
while retaining those of the other memristors. Figure 3(c)
shows an example of the voltage application to update the
conductance Gt0 and G00 only. The terminals connected to
the target memristors are set to Vw /2 and -Vw /2, while the
other terminals are set to OV. Here, Vw is a write voltage
that is determined to satisfy

(11)

where Vth is a threshold voltage under which the conductance
of the memristor is almost unchanged. When the voltages
are applied, the conductances of Gt0 and G00 are changed
since the applied voltage Vw is higher than the threshold ½h,
whereas the conductances of the other memristors remain
same since the applied voltage does not reach the threshold
voltage. In this way, by controlling the voltage to apply to the
crossbar array, only the desired memristors can be updated.
The determination of the write voltage Vw and the efficient

YAMAMORI et al.: EFFICIENT MINI-BATCH TRAINING ON MEMRISTOR NEURAL NETWORK INTEGRATING GRADIENT CALCULATION AND WEIGHT UPDATE
1095

weight update method on the crossbar array are detailed in
the next section.

2.2.3 Variable-Amplitude Scheme

In this section, we describe the "variable-amplitude" scheme
proposed by Kataeva et al. [18] for in-situ training of the neu
ral networks on the memristor crossbar array. From Eq. (7),
the conductance change AG is determined by the period
AT and the amplitude Vw of the voltage application. In the
variable-amplitude scheme, the write voltage Vw is changed
to control the conductance, while the period AT is kept con
stant. The advantage of this method is that it can substitute
multiplication of two variables with subtraction of two volt
ages applied to the memristor. For example, assume that we
want to update the conductance by AG oc XY, where X and
Y are two variables whose product is proportional to AG and
satisfying IXI, IYI > 1. Let the two voltages Vx and Vy be

Vx = Sign(XY) ln IXI,

Vy = - Sign(XY) ln IYI-

(12)

(13)

When these two voltages are applied to the two terminals of
the memristor, its conductance changes by

AG oc exp(Vw)

= exp(Vx - Vy)

= exp(Sign(XY) ln IXYI)

=XY.

(14)

(15)

(16)

(17)

This means that the multiplication of X and Y can be realized
just by applying corresponding voltages Vx and Vy.

This property of the variable-amplitude scheme enables
effective in-situ training on the memristor crossbar array
when not using a mini-batch, i.e., K = 1. In this case, the
conductance of the memristor at the intersection of the i
th row and the j-th column should be updated by AG;j oc
AW;i = rJe;Zj according to Eq. (5). This update is realized
in a fully parallel manner on the crossbar array by applying
voltages½ oc ln lzil to the j-th row and V; oc ln le;I to the
i-th column respectively as shown in Fig. 4. Note that V; and
½ must be chosen to satisfy the V/2 scheme condition in
Eq. (11). Since the signs of the two values Zj and e; have
four combinations of (+, +), (+, -), (-, -), and (-, +), the
update process must be separately executed in four phases
corresponding to such sign combinations, which is detailed
in [18] . Thus the number of the voltage application for
each weight update becomes Nva = 4. The advantage of this
method is that it does not require external circuits to calculate
the multiplication of Zj x e;, but requires N + M memories
to store Zj and e; during the backpropagation process.

In the case of the mini-batch training with K > 1,
however, the above method does not work efficiently. From
Eq. (5), the conductance update of the memristor should
be AGii oc AW;i = TJtc I,f=1 e;(k)zj(k), which cannot be
decomposed into a simple multiplication of two variables,
such as e;(k) and Zj(k). Therefore, we must calculate AW;j

Memristor Wire

[EI]
ln(z1(1)) '° Vi -

/ t t
Vi CX: V2 CX: VM CX:

[EI] -ln(e1 (1)) -ln(e2 (1)) •·· -ln(eM(l))

Fig. 4 Weight update by existing method with K = l.

Algorithm 2 Weight update by existing method with K > 1
K <- mini batch size
M <- row sizes
k <- l
whilek s K do

Do forward propagation
Store the input data z k for each layer l
Do back propagation
Store the update value AW f for each layer Z
k<-k+l

end while
m <- 1
whilem s M do

Update weights in them-th column by AWf
m<-m+l

end while

off the crossbar, and apply voltages ½ oc ln I A W;i I Cl to the
j-th row and V; oc ln(C) to the i-th column, respectively.
Note that C > 0 is a constant such that V; and ½ satisfy the
V/2 scheme condition in Eq. (11). Because the values of½
are different for each i-th column, the update process requires
M iterations as shown in Alg. 2 and Fig. 5. Each iteration is
executed in two phases since C is a positive constant and only
the sign of A Wij must be considered. Thus, the total number
of the voltage application becomes Nva = 2M. This means
that the time required for the weight update proportionally
increases as the size of the crossbar becomes larger. In
addition, unlike the case of K = 1, this method requires
KM N multiplications and MN memories for the external
circuit to calculate and store A Wij, which may deteriorate
overall efficiency of the system that is based on the MNN.

3. Weight Dividing Update

In this section, we propose a novel weight update method
called "weight dividing update (WDU)," which realizes effi
cient mini-batch training on the memristor crossbar array. As
described in the previous section, the existing method [18]
does not work efficiently for the mini-batch training since
the multiplication and the summation for the K samples in
Eqs. (4) and (5) must be calculated in the external system.
In contrast, our proposed method performs this calculation

1096

Memristor

ln(LlWMi/C) · · · ln(LlW2i/C) ln(LlW11 /C) -x; V,

ln(LlWM2 /C) · · · 1n(LlW22 /C) ln(LlW12/C) X; V,

t t t
Memoryusage: O(NM)

The number of times voltage application: O(M)

Vi ex Y2 cx

j m~l j -ln(C) 0

j m~2 j O -ln(C)

-ln(C)

Fig. 5 Weight update by the conventional method when K > l. One
column in each iteration is selected to apply column voltage, and the mem
ristors in the selected column are simultaneously updated.

Algorithm 3 Weight dividing update method
K <--- mini batch size
k <--- l
whilek s K do

Do forward propagation
Store the input data z i for each layer I
Do back propagation
Store the errors e i for each layer I
k <--- k + 1

end while
k <--- 1
whilek s K do

Update weights using the input data z i and the errors e i
k <--- k + 1

end while

inside the crossbar array in addition to the weight update.
Algorithm 3 shows the procedure of the weight update

by the proposed method. First, the input data z(k) and the
corresponding errors e(k) are calculated through forward
and backward propagation for each training sample k in the
mini-batch. Then the weight update is executed for each k,
without calculating the summation of K samples in Eq. (5).
In other words, the weight ~ W is divided into K values of
zj(k) • ei(k) and they are sequentially updated through K
iterations. This method brings another great advantage that
the multiplications of z1(k) and e;(k) can be realized on the
crossbar array in a fully parallel manner, as in the case of
the existing method [18] with K = 1. Figure 6 illustrates
the update flow of the proposed method, in which, for each
iteration, all the memristors are updated in parallel. Note that
each update is identical to that of the existing method [18]
with K = 1, and it requires four phases due to the sign
combination of the values. Thus the total number of the
voltage application is Nva = 4K for the proposed WDU.

Table 1 summarizes the comparison of the existing
methods [18] and the proposed method. The number of
the voltage application of WDU is Nva = 4K whereas that
of the existing method with K > l is Nva = 2M. This

IEICE TRANS. FUNDAMENTALS, VOL.ElOl-A, NO.7 JULY 2018

Memristor Wire

ln(z1(2))

ln(z2(K)) ln(z2(2)) ln(z2(1)) X; V,

ln(zMK)) ln(zM2)) ln(zMI)) -x; VN -

Memory usage: O(K(N + M))

The number of times voltage application: O(K) Vi (X

~ -ln(e1 (1))

j k~2 j -ln(e1 (2))

-ln(e2 (1)) .. • -ln(eM(l))

-ln(e,(2)) ... -ln(eM(2))

j k~K j -In(e,(K)) -ln(e2 (K)) ... -ln(eM(K))

Fig. 6 Weight update by the proposed method. The memristors within a
colored rectangle are updated in parallel for each iteration.

Table 1 Comparison of the existing methods and proposed method
WDU.

Existing methods [18] WDU
(K = 1) (K > 1) (All K)

Voltage applications, Nva 4 2M 4K
Clocks per data, CPE/D 0(1) 0(M/K) 0(1)

External memory M+N MN K(M +N)
External multipliers 0 KMN 0

Voltage sources for Forward M M M
Voltage sources for Back N N N

Voltage sources for Update M+N N+l M+N

means that WDU outperforms the existing methods when
K < M /2, which is usually the case in recent practical deep
neural networks. Here, we define a metric called required
clocks per epoch (CPE), which measures efficiency of setting
weights:

CPE = Crwd X D + Cbwd X D + Cupd X D/K, (18)

where D is a total number of the training data, and K is a
mini-batch size. Crwd and Cbwd are the numbers of required
clocks to execute the forward and backward propagation for
a single training data, respectively. In general, they are con
stant values. Cupd is a number of required clocks for weight
update, i.e., the number of voltage application, Nva· From
this definition, the required clocks per data (CPE/D) can be
calculated as shown in Table 1. The order of the CPE/ D
for the proposed method is O (1), which is independent of
the size of the crossbar array. Another advantage of WDU
is smaller footprint of external memories than the existing
method, when the crossbar size M is sufficiently larger than
the batch size K. In addition, WDU requires no multipli
ers for all Mand K, while existing method requires KMN
multiplires when K > I.

Table 1 also shows the number of voltage sources that
are connected to the row/column terminals. In the weight
update mode, the proposed method requires M + N voltage
sources whereas the existing method for K > 1 requires only
N + 1. This means that the circuit area of the proposed

YAMAMORI et al.: EFFICIENT MINI-BATCH TRAINING ON MEMRISTOR NEURAL NETWORK INTEGRATING GRADIENT CALCULATION AND WEIGHT UPDATE
1097

method becomes larger than that of the existing method
since each voltage source is typically realized by a digital-to
analog converter (DAC). However, as the size of the crossbar
(Mand N) becomes larger, the area of the DACs becomes
relatively smaller than that of the crossbar array since the
former grows linearly to M and N, while the latter grows
in the order of O(MN). Therefore, the increase of the cir
cuit area is remedied when we assume to use a sufficiently
large crossbar array as in our research target. In addition,
the additional DACs required for the proposed method does
not deteriorate the operation frequency, since all the DACs
operate in parallel and thus their conversion time is equal to
the single DAC.

The training results of the MNNs by WDU and the ex
isting method are basically identical since both methods are
based on the same equation to detennine the update weight
as Eq. (5). However, this claim is true under the assump
tion that the conductance of the memristor G in Eq. (7) is
constant. In reality, the conductance G changes gradually
during the WDU process, which may cause difference be
tween the final results after training of the two methods. In
this work, however, we assume that the conductance change
is negligibly small and does not affect the training process.
This assumption is validated through the experiments in the
next section, which shows that the training results by the pro
posed method achieved almost equal accuracy to the existing
method.

4. Experiments

In this section, through circuit simulations using a memris
tor device model, we demonstrate that the proposed WDU
method can achieve equal accuracy with the conventional
method in training MNNs.

4.1 Memristor Model

In the following experiments, we use a memristor model
by Chen et al. [21] , which is a behavioral model written in
Verilog-A language and for analog circuit simulation using
SPICE. The model parameters in this model are used, which
are based on the measurements on a HfOx-based ReRAM.
The I-V characteristic of the memristor model follows Eq. (7)
in the region where 8c is small. The write voltage to change
the conductance of the memristor by 8c can be determined
as

Vw = Aln(K8c) + B, (19)

where A = 0.03864, B = 2.030, and K = 0.05 are the con
stants calculated from the model parameters for the voltage
application time of l::!..T = 3.5 ns. Note that the signs of Vw
and8c donotmatchif8c < exp(-B/A)/K < 2.1 x 10-22,

but this case rarely occurs in a practical use.
On the other hand, if 8c takes a large value, Eq. (7)

does not hold, and the variable-amplitude method is not
applicable to train the MNN. Therefore, we must use the
memristor device under the write voltage Vw such that 8c is

maintained small.
In order to determine an adequate Vw, we first conduct

a preliminary experiment for a single memristor by SPICE
simulation. Given a memristor having a certain initial con
ductance Gini, a write voltage Vw, which is determined by
Eq. (19) to increase the conductance by 8c, is applied, and
the errors = G- Gini (1 + 8c) is observed, where G is a new
conductance after the application of the write voltage. Fig
ure 7(a) shows conductance errors for various combinations
of Gini (x-axis) and 8c (y-axis). Note that 8c is presented as
a relative percentage against Gini· From the result, the error
is suppressed fewer than 10% if the conductance change 8c
is less than 10%, whereas the intolerable errors are found in
the region with large 8c. Thus the training parameters are
determined so that 8c becomes less than 10% of the initial
conductance.

4.2 Simulation Setups

For a benchmark to evaluate the memristor neural network, a
binary classification problem called "circle" [22] is utilized.
The classification task is to separate the two-dimension input
vectors (xi, x2) into two classes. An example input vectors
are shown in Fig. 7(b), in which the red and blue present
the members of the two classes. All the input vectors are
distributed in the rage of [-1.0, 1.0]. Among 200 samples
in the dataset, we utilize 150 samples for training and 50
samples for testing, respectively.

The configuration of the neural network to be imple
mented on the memristor crossbar array is a two-layer fully
connected network with a 2-M first layer and M-1 second
layer. The numbers of the input and output channels are one
and two, respectively. The total number of the memristors to
be used is ((2+ l)xM +(M + l)x l)x2 = 8M +2. Note that
"+ 1" is for the bias term, and "x2" is for the pair of memris
tors to represent positive and negative weights as described in
Sect. 2.2.2. The initial conductances of the memristors Gini
are determined by changing the model parameter g, a gap,
which is a length of high-impedance region in a memristor
device. For each memristor, g is sampled from a normal dis
tribution with the mean of 1.37 nm and the relative variance
of 0.01. For the activation functions, a hyperbolic tangent

30.0

'ij_ 10.0

~-10.0

-30.0 - - ----
0.81 0.94 1.08

G;n;[µS]
1.21

30
20
10 'ij_
0 ~
-10 "'
-20
-30

(a) Errors of a single mernristor.

. .
0.5 ... ;,, e

~
,

• ti!• •·
I '\4•1,

R 00 ' l\! ._, ~ ,._ ... ~•a· .. ,. r.!7' ...
-0.5 e e .• : ,: • • ,. •

-0.5 0.0 0.5
x,

(b) "circle."

Fig. 7 (a) Errors of conductance change of a single memristor. Gini is
an initial conductance and c5c is an increase rate of the target conductance.
s is a relative error of the simulation result against the ideal value from
Eq. (7). (b) An example binary classification problem "circle." The red
and blue points (x1, x2) are the samples belonging to two classes. They are
distributed within the range of [-1.0, 1.0].

1098

___. Forward Flow

___,. Back Flow

___. Update Flow

U: Update module

F: Forward module

B: Back module

Fig. 8 Simulation circuit for training of the two-layer memristor neural
network.

Table 2 Applied voltage for weight update.

Applied voltage Existing method [18] Proposed method
Vw = ½ow - Vcol Aln(AW) +B Aln(xi(k)ej(k)) + B
Rows: Vrow Aln(AW /C) + B Aln(xi(k)) + B/2
Columns: Veal -Aln(C) -Aln(ej(k)) - B/2

f(x) = tanh(,Bx) for the first layer, where ,B is a hyper
parameter to normalize the input, and a sigmoid function
f(x) = 1/(1 + exp(-,Bx)) for the output layer are used.

For circuit simulation, we implement the crossbar array
and the other peripheral circuits with Verilog-A language.
The memristor model described in Sect. 4.1 is used for the
crossbar array, and the peripheral circuits such as current
controlled voltage sources (CCVS), activation functions, and
a control circuit are implemented as ideal behavioral mod
els. In a practical use, the peripheral circuits are realized
by AID and DIA converters or mixed-signal circuits with
similar functions [13]- [16] . Figure 8 shows a diagram of
the simulation circuit and its behavior. The three modes
are operated on the same circuit: forward propagation (red
arrows), back propagation (blue arrows), and weight update
(green arrows). "Cl" and "C2" are the crossbar arrays for
the first and the second layers, respectively. "F," "B," and
"U" units are the modules to control the operations for the
forward propagation, back propagation, and weight update
modes. Each module includes CCVSs to provide the voltage
to the corresponding crossbar array and memories to store
the data such as z and e. In the forward and back propaga
tion modes, the applied voltage to the memristor is limited to
l½-1 < 0.1 V so that the conductance of the memristor does
not change. In the weight update mode, the applied voltages
by the existing method [18] and the proposed method are
summarized in Table 2.

The hyper parameters used for the training are experi
mentally determined by a grid search. We set the learning
rate to T/ = 0.01 and the normalization parameter for tanh
activation to ,B = 1 x 108 A-1.

4.3 Result

The classification accuracies of the existing method [18] and
the proposed method are compared with different sets of the
parameters K (mini-batch size) and M (crossbar array size).
Table 3 shows the classification errors on the test set by the

IEICE TRANS. FUNDAMENTALS, VOL.ElOl-A, N0.7 JULY 2018

Table 3 Classification errors by the existing method [18] / the proposed
method(%).

M
4

K

0.4
0) e o.3

t 0.2
0.1

0.5

0.4
0) e 0.3 ...
g 0.2
0)

0.1

0.0
0

4
8
16

20

20

8.0 / 10.0
8.0 / 8.0

22.0/ 8.0

40 60 80

epoch
K, M:[16, 16]

40 60 80

epoch

8

22.0 I 12.0
12.0 / 8.0

20.0 I 16.0

0.5

0.4 .,
e 0.3
i5 0.2 I:: .,

0.1

100

0.5

0.4 .,
e 0.3 ...
5 0.2

0.1

0.0
100 0

16 32

8.0 / 8.0
6.016.0
6.016.0

6.0 I 6.0
6.0 I 6.0
8.0 / 6.0

K,M:[8, 32]

20 40 60 80

epoch
K, M:[16, 32]

20 40 60 80

epoch

100

100

Fig.9 Learning curves by the existing method and the proposed method.
The classification error is shown as function of the number of elapsed
epochs.

0.5
K,M:[8, 16]

0.5
K, M:[8, 32]

0.4 0.4
0) 0) e 0.3 e 0.3
5 0.2 5 0.2

0.1 0.1

0.0 0.0
0 50 100 150 200 0 50 100 150 200

time[µs] time[µs]

0.5
K, M:[16, 16]

0.5
K, M:[16, 32]

0.4 0.4

~ 0.3 ~ 0.3

g 0.2 g 0.2
0)

0.1
0)

0.1

0.0
0 50 100 150 200 50 100 150 200

time[µs] time[µs]

Fig.10 Learning curves by the existing method and the proposed method.
The classification error is shown as function of the elapsed time.

existing and the proposed methods. The result shows that the
proposed method achieves comparable or lower error rates
compared to the existing method. The minimum error is
6.0%, which is almost equal to the software classification
results. Thus the proposed method successfully performs
the sufficient level of the neural network training.

Figure 9 shows the learning curves for (K, M) =
(8, 16), (8, 32), (16, 16), (16, 32), which represent time
change of the classification error for the test set as a function
of training epochs. These results indicate that the proposed
method achieves the equivalent training of the neural net
works to the existing method. Figure 10 shows the same

YAMAMORI et al.: EFFICIENT MINI-BATCH TRAINING ON MEMRISTOR NEURAL NETWORK INTEGRATING GRADIENT CALCULATION AND WEIGHT UPDATE
1099

Table 4 Clocks per data (CPE/D) by the existing method [18] / the
proposed method.

8
16

4 8

4/6 6/6
3/6 4/6

2.5 I 6 3 / 6

16

10/ 6
6/6
4/6

32

18 / 6
10/ 6
6/6

learning curves in Fig. 9 but the x-axis is changed to the
elapsed time. The elapsed time is calculated by using CPE/ D
in Table 4 and the clock period. From Eq. (18), CPEID for
the existing and the proposed methods are (2 x M / K + 2)
and 6, respectively. Here, we designed Cfwd = Chwd = 1
for both methods and Cupd = 2M and 4 for the existing
and the proposed methods, respectively. In this experiment,
the same clock period of 3.5 ns are used for both methods
since their peripheral circuits are almost the same and the
maximum delay of both methods is equal. The result when
(K, M) = (8, 32), which satisfies the condition of K < M /2
described in Sect. 3, shows the twice faster convergence of
the proposed method than the existing method. For example,
the error rate of the proposed method becomes 0.1 at 50 µs,
while that of the existing method reaches the same error rate
after spending 100 µs.

5. Conclusion

This paper proposed an efficient mini-batch-based training
method for MNNs. In the proposed method, we integrate
the two essential processes for the training, i.e., the gradient
calculation and the weight update, into one process. As a
result, the required number of voltage applications to the
memristor crossbar array becomes proportional to the size
of the mini-batch, whereas that of the existing method is
proportional to the size of the crossbar array. The proposed
method is suitable when the large crossbar arrays are used.
In addition, the external multipliers and memories required
by the existing method are greatly reduced by the proposed
method. Through the experiments by circuit simulation,
it is shown that the proposed method achieves twice faster
training process than the existing method when relatively
large networks such as (K, M) = (8, 32) are used, while
retaining the same level of the accuracy for the classification
results.

For the future work, we will consider the design of the
peripheral circuits that are suitable for training of neural net
works considering the analog characteristics of memristors.
Acceleration of the circuit simulation is another future work
so that we can accurately evaluate much larger size of neural
networks.

Acknowledgments

This work was partially supported by JSPS KAKENHI Grant
No. 26730027 and 17H01713. This work was also supported
by VLSI Design and Education Center (VDEC), the Univer
sity of Tokyo in collaboration with Synopsys, Inc.

References

[1] A. Krizhevsky, I. Sutskever, and G.E. Hinton, "ImageNet classifica
tion with deep convolutional neural networks," Proc. Neural Infor
mation Processing Systems, pp.1097-1105, 2012.

[2] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for
image recognition," Proc. Computer Vision and Pattern Recognition,
pp.770---778, 2016.

[3] G. Hinton, L. Deng, D. Yu, G.E. Dahl, A.r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T.N. Sainath, and B. Kingsbury,
"Deep neural networks for acoustic modeling in speech recognition:
The shared views of four research groups," IEEE Signal Process.
Mag., vol.29, no.6, pp.82-97, 2012.

[4] Y. Wu, Mi. Schuster, Z. Chen, Q.V. Le, M. Norouzi, W. Macherey,
M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M.
Johnson, X. Liu, L. Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa,
K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith,
J. Riesa, A. Rudnick, 0. Vinyals, G. Corrado, M. Hughes, and J.
Dean, "Google's neural machine translation system: Bridging the
gap between human and machine translation," Computing Research
Repository, vol.abs/1609.08144, 2016.

[5] K.K. Likharev, "CrossNets: Neuromorphic hybrid CMOS/nanoelec
tronic network," Science of Advanced Materials, vol.3, no.3, pp.322-
331, June 2011.

[6] J.J. Yang, D.B. Strukov, and D.R. Stewart, "Memristive devices for
computing," Nature Nanotechnology, vol.8, pp.13-24, 2013.

[7] L.O. Chua, "Memristor- The missing circuit element," IEEE Trans.
Circuit Theory, vol.18, no.5, pp.507-519, Sept. 1971.

[8] L.O. Chua and S.M. Kang, "Memristive devices and systems," Proc.
IEEE, vol.64, no.2, pp.209-223, 1976.

[9] D.B. Strukov, G.S. Snider, D.R. Stewart, and R.S. Williams, "The
missing memristor found," Nature, vol.453, no.7191, pp.80---83,
2008.

[10] H.S.P. Wong, H.Y. Lee, S. Yu, Y.S. Chen, Y. Wu, P.S. Chen, B. Lee,
F.T. Chen, andM.J. Tsai, "Metal-oxide RRAM," Proc. IEEE, vol.100,
no.6, pp.1951-1970, June 2012.

[11] F. Alibart, L. Gao, B.D. Hoskins, and D.B. Strukov, "High precision
tuning of state for memristive devices by adaptable variation-tolerant
algorithm," Nanotechnology, vol.23, no.7, p.075201, 2012.

[12] M. Hu, H. Li, Y. Chen, Q. Wu, G.S. Rose, and R.W. Linderman,
"Memristor crossbar-based neuromorphic computing system: A case
study," IEEE Trans. Neural Netw. Learning Syst., vol.25, no.IO,
pp.1864--1878, Oct. 2014.

[13] M. Prezioso, F. Merrikh-Bayat, B. Hoskins, G. Adam, K.K. Likharev,
and D.B. Strukov, "Training and operation of an integrated neuro
morphic network based on metal-oxide memristors," Nature, vol.521,
no.7550, pp.61-64, 2015.

[14] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J.P.
Strachan, M. Hu, R.S. Williams, and V. Srikumar, "ISAAC: A con
volutional neural network accelerator with in-situ analog arithmetic
in crossbars," ACM/IEEE 43rd ISCA, pp.14--26, June 2016.

[15] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie,
"PRIMES: A novel processing-in-memory architecture for neural
network computation in ReRAM-based main memory," ACM/IEEE
43rd ISCA, pp.27-39, June 2016.

[16] L. Song, X. Qian, H. Li, and Y. Chen, "Pipe layer: A pipelined reram
based accelerator for deep learning," IEEE International Symposium
on HPCA, pp.541-552, Feb. 2017.

[17] F. Alibart, E. Zamanidoost, and D.B. Strukov, "Pattern classification
by memristive crossbar circuits using ex situ and in situ training,"
Nature Communications, vol.4, p.2072, June 2013.

[18] I. Kataeva, F. Merrikh-Bayat, E. Zamanidoost, and D. Strukov, "Ef
ficient training algorithms for neural networks based on memristive
crossbar circuits," Proc. International Joint Conference on Neural
Networks, pp.1-8, July 2015.

[19] C.M. Bishop, Pattern Recognition and Machine Learning, Springer,

1100

2006.
[20] F.M. Bayat, B. Hoskins, and D.B. Strukov, "Phenomenological mod

eling ofmemristive devices," Appl. Phys. A, vol.118, pp.779-786,
March 2015.

[21] P.Y. Chen and S. Yu, "Compact modeling of RRAM devices and its
applications in lTlR and lSlR array design," IEEE Trans. Electron
Devices, vol.62, no.12, pp.4022-4028, Dec. 2015.

[22] F. Pedregosa, G. Varoquaux, A. Grarnfort, V. Michel, B. Thirion,
0. Grisel, M. Blonde!, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, "Scik:it-learn: Machine learning in Python," Journal
of Machine Learning Research, vol.12, pp.2825-2830, 2011.

Satoshi Yamamori recieved B.E. degree
in Electrical and Electronic Engineering from
Kyoto University in 2017. He is a master course
student at Department of Systems Science, Kyoto
University. He is a student member of the In
stitue of Electronics, Information and Comuni
cation Engineers (IEICE).

Masayuki Hiromoto received B.E. degree
in Electrical and Electronic Engineering and
M.Sc. and Ph.D. degrees in Communications
and Computer Engineering from Kyoto Univer
sity in 2006, 2007, and 2009 respectively. He
was a JSPS research fellow from 2009 to 2010,
and with Panasonic Corp. from 2010 to 2013.
In 2013, he joined the Graduate School of In
formatics, Kyoto University, where he is cur
rently a senior lecturer. His research interests
include VLSI design methodology, image pro

cessing, and pattern recognition. He is a member of IEEE, IEICE, and
IPSJ.

Takashi Sato received B.E. and M.E. de-
grees from Waseda University, Tokyo, Japan, and
a Ph.D. degree from Kyoto University, Kyoto,
Japan. He was with Hitachi, Ltd., Tokyo, Japan,
from 1991 to 2003, with Renesas Technology
Corp., Tokyo, Japan, from 2003 to 2006, and
with the Tokyo Institute of Technology, Yoko
hama, Japan. In 2009, he joined the Graduate
School of Informatics, Kyoto University, Kyoto,
Japan, where he is currently a professor. He was
a visiting industrial fellow at the University of

California, Berkeley, from 1998 to 1999. His research interests include
CAD for nanometer-scale LSI design, fabrication-aware design methodol
ogy, and performance optimization for variation tolerance. Dr. Sato is a
member of the IEEE, ACM, and IEICE. He received the Beatrice Winner
Award at ISSCC 2000 and the Best Paper Award at ISQED 2003.

IEICE TRANS. FUNDAMENTALS, VOL.ElOl-A, NO.7 JULY 2018

