	Short infraslow activity in acute anoxic encephalopathy Togo et al. ¹
1	Short "infraslow" activity (SISA) with burst suppression in acute anoxic
2	encephalopathy: a rare, specific ominous sign with acute post-hypoxic myoclonus or
3	acute symptomatic seizures
4	

Masaya Togo MD¹, Takefumi Hitomi MD PhD^{1, 2}, Tomohiko Murai MD¹, Hajime Yoshimura MD PhD³, Masao Matsuhashi MD PhD⁴, Riki Matsumoto MD PhD1, Michi Kawamoto MD3, Nobuo Kohara MD PhD3, Ryosuke Takahashi MD PhD¹, Akio Ikeda MD PhD⁵ 1 Department of Neurology, Kyoto University Graduate School of Medicine, Japan 2 Department of Clinical Laboratory Medicines, Kyoto University Graduate School of Medicine, Japan 3 Department of Neurology, Kobe City Medical Center General Hospital, Japan 4 Human Brain Research Center, Kyoto University Graduate School of

	т С	
	ム つ	
	כ ∧	
	4 5	
	5	
	0	
	/	
	0	
1	9 0	
1	1	
1	т Л	
1	2 2	
1	3 1	
1	4	
1	5 6	
1	07	
1	/	
1	ð	
1	9	
2	U 1	
2	Ţ	
2	2	
2	3	
2	4	
2	5	
2	0	
2	/	
2	8	
2	9	
3	0	
3	T	
3	2	
3	3	
3	4	
3	5	
3	6	
3	7	
3	8	
3	9	
4	0	
4	1	
4	2	
4	3	
4	4	
4	5	
4	6	
4	7	
4	8	
4	9	
5	0	
5	1	
5	2	
5	3	
5	4	
5	5	
5	6	
5	7	
5	8	
5	9	
~	~	
6	0	
6 6	0 1	
6 6 6	0 1 2	
6 6 6 6	0 1 2 3	
00000	0 1 2 3 4	

17 Medicine, Japan

18 5 Department of Epilepsy, Movement Disorders and Physiology, Kyoto

- 19 University Graduate School of Medicine, Japan

20

21

22

23 Akio Ikeda MD, PhD

Corresponding author:

- 24 Department of Epilepsy, Movement Disorders and Physiology, Kyoto
- 25 University Graduate University School of Medicine
- 26 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan
- 27 E-mail: akio@kuhp.kyoto-u.ac.jp

- 29
 - 30 Co-corresponding author:
 - 31 Takefumi Hitomi MD, PhD
 - 32 Department of Clinical Laboratory Medicine, Kyoto University Graduate

Togo et al. Short infraslow activity in acute anoxic encephalopathy University School of Medicine, Japan 54 Shogoin-Kawaharacho, Sakyo-ku, Kyoto 606-8507, Japan Email: hitomi46@kuhp.kyoto-u.ac.jp **Conflicts of Interest and Source of Funding** The Department of Epilepsy, Movement Disorders and Physiology is an endowment department, supported with a grant from GlaxoSmithKline K.K., Nihon Kohden Corporation, Otsuka Pharmaceutical Co., and UCB Japan Co., Ltd. TH reports grants from the Japan Ministry of Education, Culture, Sports, Science and Technology (MEXT), KAKENHI 17K09798 and the Kyoto University Research Fund for Senior Scientists during the conduct of the study; and personal fees from Nihon Kohden Corporation, other funding from UCB Japan Co., Ltd., other funding from Eisei Co., Ltd., outside the submitted work. RM reports grants from MEXT, KAKENHI 26282218, 15H01664, and 15H05874 during the conduct of the study. AI reports grants from MEXT, KAKENHI 15H05874 and Japan Society for the

б

Promotion of Science (JSPS) KAKENHI 26293209, 26462223, 25350691, 23500484 during the conduct of the study; and personal fees from UCB Japan, personal fees from GlaxoSmithKline K.K., personal fees from Otsuka Pharmaceutical Co., Ltd., personal fees from Daiichi Sankyo Company, Ltd, personal fees from Novartis Pharma K.K., personal fees from Eisai Co., Ltd., grants from Kyowa Hakko Kirin Co., Ltd., personal fees from Kyowa Hakko Kirin Co., Ltd., personal fees from Kowa Pharmaceutical Co. Ltd., other from GlaxoSmithKline K.K., other from Nihon Kohden Corporation, other from Otsuka Pharmaceutical Co., and other from UCB Japan Co., Ltd., outside the submitted work. Meetings in which the paper has been presented The 57th Annual meetings of the Japanese Society of Neurology The 50th Congress of the Japan Epilepsy Society Running title Infraslow activity in acute anoxic encephalopathy

6566 Words count

67 Abstract = 250 words, Paper = 3286 words

68 ABSTRACT

69	Objective: Slow wave with frequency <0.5 Hz are recorded in various situations such as
70	normal sleep, epileptic seizures. However, its clinical significance has not been fully
71	clarified. Although infraslow activity was recently defined as activity between 0.01 and
72	0.1Hz, we focus on the activity recorded with time constant of 2 s for practical usage. We
73	defined short "infraslow" activity (SISA) less than 0.5 Hz recorded with time constant of
74	2 s and investigated the occurrence and clinical significance of SISA in acute anoxic
75	encephalopathy.
76	Methods: This study evaluated findings of electroencephalography (EEG) in consecutive
77	98 comatose patients with acute anoxic encephalopathy after cardiac arrest. We first
78	classified EEG findings conventionally, then investigated SISA by time constant of 2 s
79	and a high-cut filter of 120 Hz, to clarify the relationship between SISA and clinical
80	profiles especially of clinical outcomes and occurrence of acute post-hypoxic myoclonus
81	or acute symptomatic seizures.

Results: SISA was found in 6 patients (6.2%), superimposed on the burst phase of the
burst-suppression pattern. All 6 patients showed acute post-hypoxic myoclonus or acute

84	symptomatic seizures (generalized tonic-clonic seizures) and its prognosis was poor. This
85	100% occurrence of acute post-hypoxic myoclonus or acute symptomatic seizures was
86	significantly higher than that in patients without SISA (39.1%; $P < 0.05$).
87	Conclusions: SISA in acute anoxic encephalopathy could be associated with acute post-
88	hypoxic myoclonus and acute symptomatic seizures. SISA could be a practically feasible
89	biomarker for myoclonus or seizures and poor prognosis in acute anoxic encephalopathy,
90	if it occurs with burst suppression.
91	
92	Keywords: short infraslow activity; anoxic encephalopathy; burst-suppression; acute
93	symptomatic seizure
94	Abbreviations
95	CPC: Cerebral Performance Category, EEG: electroencephalograms, FFT: fast Fourier
96	transform, SISA: short infraslow activity
97	
98	
99	

100	
101	1. INTRODUCTION
102	The outcomes of acute anoxic encephalopathy after cardiac arrest are generally
103	very poor, with only 15-20% achieving good prognosis, ¹ and about 50% never regaining
104	consciousness after resuscitation. ^{2,3} Precise prediction of neurological disabilities or acute
105	symptomatic seizures in these patients is important, since these factors are crucial for the
106	prognosis and decisions of therapeutic intervention. Electroencephalography (EEG) is
107	still one of the most useful examinations in patients with acute anoxic encephalopathy.
108	Background suppression, burst suppression, epileptiform discharges and generalized
109	periodic discharges have been reported as poor prognostic factors. ^{4,5,6} Clinical
110	manifestations of myoclonic status epilepticus, absence of pupillary light responses,
111	corneal reflexes and motor responses to pain have also been associated with poor
112	outcomes. ^{4,5} However, the relationships between other patterns on EEG and prognosis or
113	acute symptomatic seizure have not yet been fully clarified.
114	Very slow EEG activity with frequency <0.5 Hz has been reported in previous
115	studies. The exact generators of this activity remain unknown, but have been presumed

3 4 5	116	to involve the function of astrocytes, ⁷ with spontaneous slow oscillating activity of
6 7 8 9	117	astrocytes seen in an in-vitro study, ⁸ and voltage differences produced by the function of
10 11 12	118	the blood-brain barrier identified in another study. ⁹ Some researchers have recorded very
13 14 15 16	119	slow EEG activity from electrocorticography ¹⁰⁻¹² and even from scalp-recorded EEG in
17 18 19	120	epilepsy, brain ischemia and normal sleep. ^{13,14}
20 21 22 23	121	In terms of clinical significance, previous studies have shown that ictal
24 25 26	122	infraslow activity could contribute to delineation of the core epileptogenic area in human
27 28 29 30	123	intractable epilepsy. ^{10,11} Another study showed infraslow activity (0.015-0.06 Hz) present
31 32 33	124	in acute anoxic encephalopathy, with larger-amplitude activity only observed in patients
34 35 36 37	125	with poor outcomes. ¹⁵ However, whether such activity emerges in other clinical situations
38 39 40	126	is unclear, and the clinical significance of infraslow activity has not been clarified. In
±⊥ 42 43 44	127	addition, filter settings have varied among studies ranging from 0.01 to 0.1 Hz, ¹⁵ and the
45 46 47	128	degree of infraslow activity in other frequency bands remains unknown.
48 49 50 51	129	The definition of infraslow activity has also been variable. Aladjalova first
52 53 54	130	recorded rhythms with frequencies of 0.01-0.1Hz from the neocortex of rabbits in 1957. ¹⁶
55 56 57 58	131	Vanhatalo et al. defined a frequency range between 0.0 Hz and 0.2 Hz as infraslow
<u> </u>		

132	oscillations (ISOs). ^{14,17} Thordstein et al. ¹⁸ showed 0.05- to 70-Hz activity in post-
133	asphyctic full-term neonates, and termed 0- to 1-Hz activity as very low-frequency
134	activity (VLFA). ¹⁸ Rodin et al. and other researchers have used 0.01-0.1 Hz and 0.01-0.5
135	Hz, ¹⁹⁻²² but reported 0.1- to 0.9-Hz activities as cerebral electromagnetic activity in the
136	subdelta range. ²³ The definition of 0.01-0.1 Hz has seen frequent use in recent years. ^{15,24-}
137	²⁶ However, some studies have used other definitions, such as 0.07-100 Hz. ²⁷ In short,
138	infraslow activity was defined recently as rhythms with frequencies of 0.01-0.1 Hz. The
139	present study focused on rhythms with frequencies >0.08 Hz (time constant, 2 s), since
140	such activity is easily confirmed in clinical situations. However, the frequency band of
141	the activity is larger than the recently reported values for infraslow activity ^{15,24-26} We
142	therefore use the term "short infraslow activity (SISA)" for activity between 0.08 and 0.5
143	Hz in this article, to distinguish such activity from "infraslow activity".
144	The aim of the present work was to investigate whether SISA was observed in
145	acute anoxic encephalopathy. If present, we aimed to investigate the relationship between
146	this activity and clinical profiles such as prognosis and acute symptomatic seizures.
147	

2. METHODS

2.1. Patients

150	Patient characteristics are presented in Table 1. We retrospectively analyzed
151 record	ds of EEG for 98 consecutive acute comatose patients (71 males, 27 females; mean
152 (± sta	ndard deviation) age, 65.7 ± 15.4 years) from acute anoxic encephalopathy. All
153 EEGs	s were recorded in an intensive care unit after successful resuscitation from cardiac
154 arrest	. Two patients (one <18 years old, one with acute stroke) were excluded. Among
155 the 98	8 records of EEG, 40 were recorded at Kyoto University Hospital between April
156 2008	and September 2015, and 58 were recorded at Kobe City Medical Center General
157 Hospi	ital between January 2012 and September 2015.
158	Thirty-six patients (36.7%) experienced in-hospital cardiac arrest. Acute post-
159 hypox	xic myoclonus ²⁸ and acute symptomatic seizures occurred in 42 patients (42.8%).
160 Amor	ng 42 patients with acute post-hypoxic myoclonus or acute symptomatic seizures,
161 37 pa	tients showed acute post-hypoxic myoclonus alone, 2 patients had generalized
162 tonic-	clonic seizures alone, and 3 patients had both. As for treatment, all patients were
163 treate	d according to the standard protocols for acute anoxic encephalopathy. In addition,

1 -		
2 3 4 5	164	29 patients (29.6%) received mild therapeutic hypothermia in the first 24 h, reducing the
6 7 8	165	body temperature to 34°C with a cooling pad and then rewarming to normothermia.
9 0 1 2	166	Propofol and fentanyl were also used for sedation and to prevent shivering until body
3 4 5	167	temperature had reached normothermia. The primary outcome measure was
6 7 8 9	168	neurological outcome, expressed as the score for the Cerebral Performance Category
0 1 2	169	(CPC) ^{29,30} after 3 months. Good neurological outcome was defined as a CPC score of 1
3 4 5 6	170	or 2 (no or moderate disability, respectively), and poor neurological outcome was
7 8 9	171	defined as a score of 3, 4, or 5 (severely disabled, comatose, or deceased, respectively).
0 1 2 3	172	In the present study, only 6 patients (6.1%) achieved good outcomes (CPC score of 1 or
4 5 6	173	2) among the 98 patients (Table 1).
7 8 9 0	174	
1 2 3	175	2.2 Recordings from EEG
4 5 6 7	176	Scalp-recorded EEG was obtained in the conventional manner with a
8 9 0	177	multichannel EEG machine (Nihon Kohden, Tokyo, Japan) using 21 Ag-AgCl
1 2 3 4	178	electrodes with the International 10-20 system. EEGs were recorded for at least 20 min.
5 6 7	179	The sampling rate was set at 500 Hz and the time constant was 2 s. EEG was recorded
8 9 0 1		
- 2 3 4		
5		

180) from 4 h to 8 days (mean, 2.4 ± 1.6 days) after resuscitation, and was recorded during
182	mild therapeutic hypothermia in 14 cases. EEGs were recorded at 8 days in three
182	2 patients, and at 6 days in two patients after cardiopulmonary arrest. The remaining
183	patients (94.9%) underwent EEG recording within 5 days after cardiopulmonary arrest.
184	Artifacts were monitored and electromyographic artifacts were eliminated by
185	5 neuromuscular blockade in some patients.
180	5
187	7 2.3. EEG analysis
188	B For this study, each EEG was visually analyzed in the conventional manner by
189	two certified electroencephalographers blinded to clinical data. EEGs were analyzed
190) with a sensitivity of 2-10 μ V/mm. One record of EEG was excluded from analysis due
192	to abundant artifacts on EEG. We therefore employed 97 records of EEG from 98
192	2 patients.
193	First, we conventionally classified EEG patterns into 9 categories
194	4 (electrocerebral inactivity, background suppression, burst suppression, periodic
195	5 discharge, delta coma, alpha coma, diffuse slowing, spindle coma and normal).

1		
2 3 4 5	196	Electrocerebral inactivity, background suppression, burst suppression and periodic
6 7 8	197	discharge were supposed to be associated with poor prognosis according to previous
9 .0 .1 .2	198	studies. ^{2,31,32} In addition, burst-suppression pattern was divided into two subtypes
.3 .4 .5	199	depending on whether the identical bursts occurred. "Burst-suppression with identical
.6 .7 .8 .9	200	bursts" was considered present if the shapes of the bursts in the first 500 ms were
20 21 22	201	identical; ³³ otherwise, we considered the pattern as "Burst-suppression without identical
23 24 25 26	202	bursts".
27 28 29	203	Second, SISA was displayed and evaluated in a referential or average montage
80 81 82 83	204	using a time constant of 2 s and a high-cut filter of 120 Hz. SISA was defined as sustained
84 85 86	205	negative and/or positive potentials lasting >3 s, as in the previously described method
87 88 89 40	206	with the following modification for practical usage in clinical situations ^{10,12} : peak-to-peak
1 1 1 2 1 3	207	amplitude >10 μ V in a 1-min epoch as an operational definition in this study. We checked
4 5 6	208	the reproducibility of SISA with regard to location, waveform, duration, and amplitude
18 19 50	209	within each patient. We carefully distinguished artifacts of slower frequency such as
51 52 53	210	respiratory or body movements by visual analysis of simultaneous video, EEG and
55 56 57 58 59	211	electromyogram (EMG) recordings and time-frequency analysis of EEG. The fast Fourier
0		

L		
2 3 4 5	212	transform (FFT) module was applied for time-frequency analysis in order to evaluate
- 5 7 3	213	EMG artifacts, which suggest body movements.
9) 1 2	214	We also calculated mean and standard deviation of parameters of SISA: interval,
3 4 5	215	duration, frequency of burst phase coinciding with SISA and amplitude within each
5 7 3 9	216	patient. The definition of parameters of SISA (namely the onset, end, duration and
) 1 2	217	amplitude) were almost the same as in our previous work. ¹² The onset of SISA was
3 4 5 5	218	defined as the onset of the beginning of the earliest negative slow shift. The end of SISA
7 3 9	219	was defined as the inflection point at the end of the negative slow shift. The duration was
) 1 2 3	220	defined as the interval between the onset and end. The amplitude was defined as the
4 5 5	221	absolute maximum difference between onset and the next peak of the shift, usually with
/ 3 9 0	222	the largest excursion from onset. We measured the duration and amplitude of SISA using
1 2 3	223	software produced by Nihon Kohden.
4 5 5 7	224	The ethics committee of the two hospitals approved the entire protocol as a
3 9 0	225	retrospective study.
L 2 3 4	226	
5 5 7	227	2.4. Statistical analysis
3 9 0 1		
2 3		
+		

We analyzed: 1) the occurrence rate of acute post-hypoxic myoclonus or acute symptomatic seizures; and 2) the rate of good outcomes (CPC score 1 or 2) in both patients with SISA and patients without SISA. For statistical analysis, we used Fisher's extact test. Values of P < 0.05 were considered statistically significant. **3. RESULTS** 3.1. Findings from conventional EEG EEG findings are summarized in Table 2. All patients showed abnormalities on EEG. Findings suggestive of poor prognosis (electrocerebral inactivity, background suppression, burst suppression and periodic discharge) were identified in 48 patients (49.0%). **3.2. SISA** We found SISA in only 6 of 97 patients (6.2%). All these instances represented generalized activity and occurred during the burst period of burst-suppression. In this study, all patients with burst suppression displayed SISA. No patients with electrocerebral

244	inactivity showed SISA. The duration of negative SISA (negative duration) ranged from
245	3 to 10 s (Figure 1A, B). Three patients showed a burst-suppression pattern with identical
246	burst (Table 3). The intervals of infraslow activities varied among patients, ranging from
247	5 s to 50 s (Table 4). Although the so-called "burst" period with SISA mainly involved
248	theta (4-7 Hz) and alpha (8-13 Hz) activity, delta-range activity (3-4 Hz) was also seen
249	(Table 4). Time-frequency analysis of EEG revealed that the frequency of fast activity on
250	SISA was <50 Hz and also revealed no electromyographic artifacts (Figure 1C).
251	All 6 patients with SISA showed acute post-hypoxic myoclonus or acute
252	symptomatic seizures (Table 3). Five patients showed acute post-hypoxic myoclonus of
253	the whole body, 1 patient experienced generalized tonic-clonic seizures and 1 patient had
254	both. Three patients died during hospitalization and no neurological improvements (CPC
255	score 4) were seen in the remaining 3 patients (Table 3). The occurrence rate of acute
256	post-hypoxic myoclonus and acute symptomatic seizures in patients with SISA (100%)
257	was significantly higher than in patients without SISA (39.1%) (Fisher's exact test, $P =$
258	0.0067, sensitivity = 13.6%, specificity = 100%) (Table 5), although the prognosis did not
259	differ significantly between patients with SISA and those without SISA (Fisher's exact

	Short infraslow activity in acute anoxic encephalopathy Togo et al. ¹⁸
260	test, $P = 0.68$, sensitivity = 6.5%, specificity = 100%) (Table 5).
261	
262	4. DISCUSSION
263	The present study found that SISA with a negative duration of 3-10 s occurred
264	infrequently during acute anoxic encephalopathy (6.2%). All SISA coincided with a burst
265	phase of burst-suppression. All patients with SISA also produced acute post-hypoxic
266	myoclonus and acute symptomatic seizures.
267	
268	4.1. Association with prognosis, acute post-hypoxic myoclonus and acute
268 269	4.1. Association with prognosis, acute post-hypoxic myoclonus and acute symptomatic seizure
268 269 270	4.1. Association with prognosis, acute post-hypoxic myoclonus and acute symptomatic seizure To the best of our knowledge, only two studies have reported infraslow activity
268 269 270 271	4.1. Association with prognosis, acute post-hypoxic myoclonus and acute symptomatic seizure To the best of our knowledge, only two studies have reported infraslow activity in acute coma patients, and one study examined infraslow activity in adult patients with
 268 269 270 271 272 	4.1. Association with prognosis, acute post-hypoxic myoclonus and acute symptomatic seizure To the best of our knowledge, only two studies have reported infraslow activity in acute coma patients, and one study examined infraslow activity in adult patients with acute anoxic encephalopathy. ^{15,18} One of those studies showed infraslow activity in all 41
 268 269 270 271 272 273 	4.1. Association with prognosis, acute post-hypoxic myoclonus and acute symptomatic seizure To the best of our knowledge, only two studies have reported infraslow activity in acute coma patients, and one study examined infraslow activity in adult patients with acute anoxic encephalopathy. ^{15,18} One of those studies showed infraslow activity in all 41 patients with acute anoxic encephalopathy, but the frequency of activity was 0.015-0.06
 268 269 270 271 272 273 274 	4.1. Association with prognosis, acute post-hypoxic myoclonus and acute symptomatic seizure To the best of our knowledge, only two studies have reported infraslow activity in acute coma patients, and one study examined infraslow activity in adult patients with acute anoxic encephalopathy. ^{15,18} One of those studies showed infraslow activity in all 41 patients with acute anoxic encephalopathy, but the frequency of activity was 0.015-0.06 Hz with the band-pass filter set at 0.01-0.1 Hz and continuous EEG recording for 2-3 days
 268 269 270 271 272 273 274 275 	4.1. Association with prognosis, acute post-hypoxic myoclonus and acute symptomatic seizure To the best of our knowledge, only two studies have reported infraslow activity in acute coma patients, and one study examined infraslow activity in adult patients with acute anoxic encephalopathy. ^{15,18} One of those studies showed infraslow activity in all 41 patients with acute anoxic encephalopathy, but the frequency of activity was 0.015-0.06 Hz with the band-pass filter set at 0.01-0.1 Hz and continuous EEG recording for 2-3 days after admission. ¹⁵ Frequency bands and occurrence rates thus differed from those in our
 268 269 270 271 272 273 274 275 	4.1. Association with prognosis, acute post-hypoxic myoclonus and acute symptomatic seizure To the best of our knowledge, only two studies have reported infraslow activity in acute coma patients, and one study examined infraslow activity in adult patients with acute anoxic encephalopathy. ^{15,18} One of those studies showed infraslow activity in all 41 patients with acute anoxic encephalopathy, but the frequency of activity was 0.015-0.06 Hz with the band-pass filter set at 0.01-0.1 Hz and continuous EEG recording for 2-3 days after admission. ¹⁵ Frequency bands and occurrence rates thus differed from those in our

study. Another study examined SISA in acute hypoxic and ischemic encephalopathy of neonates.¹⁸ In that study, the duration of negative SISA was around 4 s, resembling that of our study, but the polarity derivation was opposite in the anterior and posterior directions of the head. As for the prognosis of patients, those two previous studies reached opposing conclusions. In one study, overall outcomes were poor when the maximum amplitude of infraslow activity was >35 μ V.¹⁵ Conversely, high-amplitude SISA (>20 μ V) was associated with favorable outcomes in the other study.¹⁸ In the present study, patients with SISA showed poor outcomes, but the number of those patients was small, and prognosis was also poor in patients without SISA. This may suggest that the presence of SISA during burst phase is more specific for poor prognosis, and thus absence of SISA may suggest good prognosis. Nevertheless, we should remain rather cautious of prematurely reaching for conclusions regarding the association between SISA and prognosis. In our patients, the occurrence rate of acute post-hypoxic myoclonus and acute symptomatic seizures were significantly higher in patients with SISA than in patients without SISA. Although the exact pathophysiology that leads to acute post-hypoxic

myoclonus is unclear and the myoclonus could potentially arise from a subcortical structure such as the brainstem,^{28,34} the myoclonus can also be associated with seizures.^{35,36} We therefore evaluated acute post-hypoxic myoclonus in addition to acute symptomatic seizures such as generalized tonic-clonic seizures.

Since SISA always occurred with burst-suppression in one-to-one correspondence in the present study, burst-suppression itself may be associated with or share the pathophysiology of acute symptomatic seizures, and less information may be contained in the findings of SISA. However, whether burst-suppression has an epileptic nature remains unclear, because volatile anesthetics induce burst-suppression after counteracting status epilepticus.³⁷ Taken together, at least the combination of burst-suppression and SISA is associated with acute post-hypoxic myoclonus or acute symptomatic seizures, particularly in critically ill patients with acute anoxic encephalopathy. Although the exact reason for SISA coinciding with burst-suppression was unclear from the present results, a previous study showed that infraslow activity (<0.1 Hz) modulates cortical excitability.¹⁵ We hypothesize that SISA may play a similar role.

307	In the present study, timing of EEG was different in each patient and thus
308	could have affected conventional EEG findings. EEGs from three patients were
309	recorded at 8 days and those of two patients were recorded at 6 days after
310	cardiopulmonary arrest. EEG findings in these patients were background suppression,
311	generalized periodic discharge and diffuse slowing in 3 patients, but none showed
312	SISA. The remaining patients (94.9%) underwent recording within 5 days from
313	cardiopulmonary arrest. As for findings of SISA, we concluded that the timing of EEG
314	record did not affect our results.
315	
316	4.2. Generator mechanism for SISA
317	Localized SISA recorded during epileptic seizures represented localized
318	activity of glial function, whereas activity in the present study was generalized. ^{10,12} Thus,
319	
	some differences in generator mechanisms exist between these types of activity. The
320	some differences in generator mechanisms exist between these types of activity. The generator mechanism of SISA in anoxic patients remains unclear, but the activity involves
320 321	some differences in generator mechanisms exist between these types of activity. The generator mechanism of SISA in anoxic patients remains unclear, but the activity involves inputs from the subcortical structures ¹⁴ in addition to non-neuronal sources such as glia. ³⁸
320321322	some differences in generator mechanisms exist between these types of activity. The generator mechanism of SISA in anoxic patients remains unclear, but the activity involves inputs from the subcortical structures ¹⁴ in addition to non-neuronal sources such as glia. ³⁸ In the thalamic relay nuclei, some cells have infraslow oscillations ³⁹ and may represent
320 321 322	some differences in generator mechanisms exist between these types of activity. The generator mechanism of SISA in anoxic patients remains unclear, but the activity involves inputs from the subcortical structures ¹⁴ in addition to non-neuronal sources such as glia. ³⁸ In the thalamic relay nuclei, some cells have infraslow oscillations ³⁹ and may represent

323 generator mechanisms of SISA, as seen in the present study.

The onset time of SISA was also important for considering the generator mechanism. As shown in Table 3, EEGs were recorded in 5 of 6 patients presenting with SISA within 1 day, while EEG in the remaining patient was recorded 3 days after cardiopulmonary arrest. If SISA was seen only early in the post-anoxia period, medication, duration of anoxia, use of hypothermia, and co-existence of other disorders could be contributing factors. SISA occurring in the late phase of the post-anoxia period may reflect glial participation, but medication, seizure control and so forth could also be contributing factors. 4.3. Clinical Utility Previous studies of infraslow activity or ictal slow shifts were recorded with a time constant of 10 s¹⁰⁻¹² or with a very low frequency setting for band-pass filtering.^{15,24-} ²⁶ However, the present study successfully recorded SISA with a time constant of 2 s as a clinically approved amplifier. If the duration or amplitude of infraslow activities is sufficiently high, activity can be recorded with a time constant of 2 s as a commonly used,

L		
2 3 4	339	clinically approved amplifier.
5 7 3	340	
9) L	341	4.4. Limitations
2 3 1 5	342	Several limitations must be considered in this study. First, the number of
5 7 3	343	patients with SISA was relatively small, impeding clarification of the relationship
) L 2	344	between SISA and prognosis. If patients without SISA during burst suppression had been
3 1 5	345	present, we could have evaluated the significance of SISA for defining prognosis.
7 3 9	346	However, the results may suggest that the presence of SISA during the burst phase shows
) L 2	347	high specificity (100%) for poor prognosis despite the small number of patients
1 5 5	348	presenting SISA. The absence of SISA during burst suppression may also suggest good
7 3 9	349	prognosis. The present study was retrospective and this fact also limits the ability to reach
L 2 3	350	conclusions regarding the clinical significance of SISA. Prospective studies are needed
1 5 5 7	351	as a step toward confirming the clinical meanings of SISA.
, 3 9 0	352	Second, our recordings from EEG were not continuous and the interval between
L 2 3 1	353	EEG and cardiac arrest varied over the time course. We may have experienced sampling
5 5 7	354	errors for SISA that would occur during continuous EEG recordings, because SISA was
3 9) 1		
2		

355	often periodic. ¹⁵ That may be one reason explaining our low occurrence rate.
356	Third, effects of treatments (propofol, midazolam and mild therapeutic
357	hypothermia) may need to be considered. Although propofol could modulate EEG,
358	propofol-induced EEG changes include increased amplitude of background activity,
359	anteriorization of the alpha rhythm, 40 and induction of burst-suppression. Burst-
360	suppression induced by propofol is morphologically heterogeneous. ⁴¹ In the present
361	study, among patients with burst-suppression, the only patient receiving propofol
362	(Patient 2) showed identical burst-suppression. In addition, in a previous study,
363	propofol-induced burst-suppression needed high-dose infusion (14-30 mg/kg/h), ⁴¹
364	whereas the dose of propofol used for Patient 2 was relatively low (1 mg/kg/h).
365	Midazolam also induces burst-suppression and is often used for the treatment of
366	refractory status epilepticus, but also needs high-dose infusion (0.19-0.22 mg/kg/h) for
367	these effects. ^{42,43} Our Patients 1 and 6 received relatively smaller doses of midazolam
368	(0.03-0.04 mg/kg/h). Two of our six patients (Patients 5 and 6) with SISA were
369	receiving mild therapeutic hypothermia. The target temperature in the present study was
370	34 °C, and achieving hypothermia to a level of 33-34 °C produces only marginal

Short infraslow activity in acute anoxic encephalopathy Togo et al. 25

371	alterations in EEG without changes in amplitude. ⁴⁴ Deep hypothermia for surgery
372	requiring total circulatory arrest aims at achieving a rectal temperature <20 °C. ⁴⁵ It was
373	reported that only theta and beta activity increased and alpha activity decreased, ⁴⁴ but
374	no reports appear to have described intermittent activity similar to SISA during mild
375	hypothermia. As for slow waves during infusion of propofol and midazolam, delta
376	oscillations <4 Hz sometimes occur with alpha or beta oscillations, ^{46,47} but no obvious
377	intermittent activity similar to SISA has been described. Although high-dose infusion of
378	propofol and midazolam could induce burst-suppression, less than one-quarter of a high
379	dose was actually administered to our patients. In addition to these lines of evidence,
380	two patients in the present study showed SISA while receiving neither anesthesia nor
381	mild hypothermia. Taken together, propofol, midazolam and mild therapeutic
382	hypothermia thus seem less likely to have modified burst-suppression or SISA, although
383	other conventional EEG findings could have been affected. However, we cannot
384	completely assert that SISA has no association with drug effects, since SISA was not
385	reported in other situations.
386	
3))	
-	

5. Conclusions

388	In conclusion, SISA was identified in acute anoxic encephalopathy, although
389	the occurrence rate was low. Activity in the present study probably differs at least slightly
390	from the infraslow activity reported in previous studies in terms of frequency and
391	occurrence rate of activity. The differences in frequency and occurrence rate of activity
392	in the present study may be attributed to differences in methods of recording, particularly
393	filter settings.
394	
395	
396	ACKNOWLEDGMENTS
397	
398	This work was partly supported by Grants-in-Aid for Scientific Research on Innovative
399	Areas 17H05907, 15H05874, 17K09798 from the Japan Ministry of Education, Culture,
400	Sports, Science and Technology (MEXT)
401	
402	Author contributions

1	_
2	2
2	3
5	5
6	5
7	7
8	3
10))
11	
12	2
13	3
14	ł :
16	5
17	7
18	3
19)
20)
22	2
23	3
24	ł
25	5
20	5 7
28	3
29)
30)
31	-
33	3
34	ł
35	5
36	7
38	3
39)
40)
41	_
42	2 2
44	ł
45	5
46	5
4 /	2
49	,)
50)
51	<u>_</u>
52	2
52	1
55	5
56	5
57	7
50	5)
60)
61	_
62	2
64	5 1
<u> </u>	-

403	MT contributed to initiation and planning of the project, aided in the chart
404	review and data collection, wrote the first draft of the manuscript, edited subsequent drafts
405	and created tables and figures. TH aided in the analysis of data from EEG and edited
406	manuscripts. TM aided in data analysis. MM contributed to the production of scripts for
407	analyzing data from EEG. RM contributed to conception, design, analysis and
408	interpretation. HY, MK, NK provided additional patient information and aided in data
409	collection. RT contributed to conception and design. AI contributed to the initiation and
410	conceptualization of the project, performed analysis of data from EEG, and edited the
411	manuscript.
412	
413	

References 1. Feingold P, Mina MJ, Burke RM, et al. Long-term survival following in-hospital cardiac arrest: A matched cohort study. Resuscitation 2016;99:72-78. 2. Zandbergen EG, de Haan RJ, Stoutenbeek CP, Koelman JH, Hijdra A. Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet 1998;352:1808-1812. 3. Bernard SA, Gray TW, Buist MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002;346:557-563. 4. Wijdicks EF, Hijdra A, Young GB, Bassetti CL, Wiebe S; Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter: Prediction of outcome in comatose survivors after cardiopulmonary resuscitation (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology 2006; 67:203-210. 5. Westhall E, Rossetti AO, van Rootselaar AF, et al. Standardized EEG interpretation accurately predicts prognosis after cardiac arrest. Neurology 2016;86:1482-1490. 6. Hofmeijer J, Beernink T, Bosch FH, et al. Early EEG contributes to multimodal

ь4

outcome prediction of postanoxic coma. Neurology 2015,85:137-143. 7. Bordey A, Lyons SA, Hablitz JJ, Sontheimer H. Electrophysiological characteristics of reactive astrocytes in experimental cortical dysplasia. J. Neurophysiol. 2001;85:1719-31. 8. Tian GF, Azmi H, Takano T, et al. An astrocytic basis of epilepsy. Nat. Med. 2005;11:973-981. 9. Voipio J, Tallgren P, Heinonen E, Vanhatalo S, Kaila K. Millivolt-scale DC shifts in the human scalp EEG: evidence for a nonneuronal generator. J. Neurophysiol. 2003;89:2208-14. 10. Ikeda A, Taki W, Kunieda T, et al. Focal ictal direct current shifts in human epilepsy as studied by subdural and scalp recording. Brain 1999;122:827-838. 11. Imamura H, Matsumoto R, Inouchi M, Ictal wideband ECoG: Direct comparison between ictal slow shifts and high frequency oscillations. Clin. Neurophysiol 2011;1122:1500-1504. 12. Kanazawa K, Matsumoto R, Imamura H, et al. Intracranially recorded ictal direct current shifts may precede high frequency oscillations in human epilepsy. Clin.

446	Neurophysiol. 2015;126:47-59.
447	13. Drenckhahn C, Winkler MK, Major S, et al. Correlates of spreading depolarization in
448	human scalp electroencephalography. Brain 2012;135:853-868.
449	14. Vanhatalo S, Palva JM, Holmes MD, Miller JW, Voipio J, Kaila K. Infraslow
450	oscillations modulate excitability and interictal epileptic activity in the human cortex
451	during sleep. Proc. Natl. Acad. Sci. USA 2004;101:5053-5057.
452	15. van Putten MJ, Tjepkema-Cloostermans MC, Hofmeijer J. Infraslow EEG activity
453	modulates cortical excitability in postanoxic encephalopathy. J. Neurophysiol.
454	2015;113:3256-3267.
455	16. Aladjalova N, Infra-slow rhythmic oscillations of the steady potential of the cerebral
456	cortex. Nature. 1957; 179: 957-959.
457	17. Vanhatalo S, Voipio J, Kaila K. Full-band EEG (FbEEG): an emerging standard in
458	electroencephalography. Ckin Neurophysiol. 2005;116:1-8.
459	18. Thordstein M, Löfgren N, Flisberg A, Bågenholm R, Lindecrantz K, Kjellmer I.
460	Infraslow EEG activity in burst periods from post asphyctic full term neonates. Clin.
461	Neurophysiol. 2005;116:1501-1506.

1		
2 3 4 5	462	
6 7 8	463	
9 10 11 12	464	
13 14 15	465	
16 17 18	466	
20 21 22	467	
23 24 25	468	
26 27 28 29	469	
30 31 32	470	
33 34 35 36	471	
37 38 39	472	
40 41 42 43	473	
44 45 46	474	
47 48 49 50	475	
51 52 53	476	
54 55 56 57	477	
58 59 60		
61 62 63 64		
65		

19. Rodin E, Constantino T, van Orman C, et al. Optimal evaluation of digital electroencephalograms. *Clin EEG Neurosci* 2006;37:178–189.

64 20. Rodin E, Constantino T, van Orman C, House P. EEG infraslow activity in absence

and partial seizures. *Clin EEG Neurosci* 2008;39:12–19.

466 21. Rodin E, Modur P. Ictal intracranial infraslow EEG activity. *Clin Neurophysiol*467 2008;119:2188–2200.

22. Rampp S, Stefan H. Ictal onset baseline shifts and infraslow activity. J. Clin.

469 Neurophysiol. 2012;29:291-297.

23. Rodin E, Funke M. Cerebral Electromagnetic activity in the subdelta range. J. *Clin.*

471 *Neurophysiol.* 2006;23:238-244.

472 24. Constantino T, Rodin E. Peri-ictal and interictal, intracranial infraslow activity. J.

473 *Clin. Neurophysiol.* 2012;29:298-308.

474 25. Rodin E, Constantino T, Bigelow J. Inteictal infraslow activity in patients with

475 epilepsy. *Clin Neurophysiol* 2014;125:919–929.

476 26. Thompson SA, Krishnan B, Gonzalez-Martinez J, et al. Ictal infraslow activity in

477 stereoelectroencephalography: Beyond the "DC shift". Clin Neurophysiol.

478	2016;127:117-128.
479	27. Wennberg R, Steriade C, Chen R, Andrade D. Frontal SISA marks the motor spasms
480	of anti-LGI1 encephalitis. Clin Neurophysiol. 2018;129:59-68.
481	28. Gupta H, Caviness J. Post-hypoxic myoclonus: Current concepts, Neurophysiology,
482	and Treatment. Tremor Other Hyperkinet Mov. 2016;6:409.
483	29. Jennett B, Bond M. Assessment of outcome after severe brain damage. Lancet
484	1975;1:480-484.
485	30. Cummins R, Chamberlain DA, Abramson NS, et al. Recommended guidelines for
486	uniform reporting of data from out-of-hospital cardiac arrest: the Utstein Style A
487	statement for health professionals from a task force of the American Heart Association,
488	the European Resuscitation Council, the Heart and Stroke Foundation of Canada, and the
489	Australian Resuscitation Council. Circulation. 1991;84:960-975.
490	31. Cloostermans MC, van Meulen FB, Eertman CJ, Hom HW, van Putten MJ.
491	Continuous electroencephalography monitoring for early prediction of neurological
492	outcome in postanoxic patients after cardiac arrest: a prospective cohort study. Crit.
493	Care Med. 2012;40:2867-2875.

32. Hirsch LJ, LaRoche SM, Gaspard N, et al. American Clinical Neurophysiology Society's Standardized Critical Care EEG Terminology: 2012 version. J. Clin. Neurophysiol. 2013;30:1-27. 33. Hofmeijer J, Tjepkema-Cloostermans MC, van Putten MJ. Burst-suppression with identical bursts: A distinct EEG pattern with poor outcome in postanoxic coma. Clin. Neurophysiol. 2014;125:947-954. 34. Kakisaka Y, Haginova K, Togashi N, et al. Neonatal-onset brainstem reticular reflex myoclonuss following a prenatal brain insult: generalized myoclonic jerk and a brainstem lesion. Tohoku J. Exp. Med 2007;211:303-308. 35. Hallet M. Physiology of human posthypoxic myoclonus. Mov Disord 2000:15 (suppl.1) 36. Wijdicks EF, Parisi JE, Sharbrough FW. Prognostic value of myoclonuss status in comatose survivors of cardiac arrest. Ann Neurol 1994;35:239-243. 37. Amzica F. Basic physiology of burst-suppression. *Epilepsia* 2009;50:38-39. 38. Amzica F, Steriade M. Neuronal and glial membrane potentials during sleep and paroxysmal oscillations in the neocortex. J. Neurosci. 2000;20:6648-6665.

39. Hughes SW. Lorincz ML, Parri HR, Crunelli V. Infra-slow (<0.1 Hz) oscillations in thalamic relay nuclei: basic mechanisms and significance to health and disease states. Brain 2011;193:145-162. 40. Hindriks R. van Putten MJ. Meanfield modeling of propofol-induced changes in spontaneous EEG rhythms. *Neuroimage* 2012;60:2323–2334. 41. Reddy RV, Moorthy SS, Mattice T, Dierdorf SF, Deitch RD Jr. An electroencephalographic comparison of effects of propofol and methohexital. Electroencephalogr. Clin. Neurophysiol. 1992;83:162-168. 42. Claassen, J, Hirsch, LJ, Emerson, RG, Bates JE, Thompson TB, Mayer SA. Continuous EEG monitoring and midazolam infusion for refractory nonconvulsive status epilepticus. Neurology 2001; 57:1036-1042. 43. Parent JM, Lowenstein DH. Treatment of refractory generalized status epilepticus with continuous infusion of midazolam. Neurology 1994;44:1837–1840. 44. Fitzgibbon T, Hayward JS, Walker D. EEG and visual evoked potentials of conscious man during moderate hypothermia. *Electroencephalogr Clin Neurophysiol*. 1984; 58:48-54.

526	45. Stecker MM, Cheung AT, Pochettino A, et al. Deep hypothermic circulatory arrest:
527	I. Changes in electroencephalogram and evoked potentials during rewarming. Ann
528	Thorac Surg. 2001;71:22-28.
529	46. Purdon PL, Sampson A, Pavone KJ, Brown EN. Clinical electroencephalograpy for
530	Anestesiologists: Part I: Background and basic signatures. Anestesiology.
531	2015;123:937-960.
532	47. Feshchenko VA, Veselis RA, Reinsel RA. Comparison of the EEG effects of
533	midazolam, thiopental, and propofol: the role of underlying oscillatory systems.
534	Neuropsychobiology. 1997;35:211-220.
535	
536	Figure legends
537	Figure 1. Representative waveforms in referential montage and time-frequency analysis
538	of SISA in Patient 2.
539	A) Activity with time constant of 0.1 s. B) Activity with time constant of 2 s. C) Time-
540	frequency analysis and waveforms of SISA.
541	SISA is more clearly delineated with a time constant of 2 s (B, black line) than with a

time constant of 0.1 s. Time-frequency analysis (0-100Hz) showed increased power of low-frequency band and no electromyographic artifact. SISA was evaluated in a monopolar montage F3-A1 and F4-A2 with high-cut filter 1Hz and low-cut filter 0.08Hz.

Patients, n	98
Men, n	71 (72.4%)
Age, y	$65.7 ~\pm~ 15.4$
Initial cardiac rhythm	
Pulseless electrical activity	29 (29.6%)
Asystole	32 (32.6%)
VF	17 (17.3%)
Time difference from cardiac arrest	22.3 ± 18.3
to resuscitation, min	
Inhospital	36 (36.7%)
No abnormality in brain CT/MRI	42 (42.9%)
Acute symptomatic seizure	42 (42.9%)
Myoclonic	37 (37.8%)
Generalized tonic clonic	2 (2.0%)
Both	3 (3.1%)
Sedation	
Propofol	26 (26.5%)
Midazolam	16 (16.3%)
Fentanyl	15 (15.3%)
Hypothermia, n	29 (29.6%)
Neurological outcome	
Good (CPC 1-2)	6 (6.1%)
Poor (CPC 3-4)	38 (38.8%)
Death (CPC 5)	54 (55.1%)
EEG recording, day	$2.4 ~\pm~ 1.6$
	(from cardiac arrest)

Table 1. Patient characteristics

CPC: Cerebral Performance Category

1: no disability, 2: moderate disability, 3: severely disabled, 4: comatose,

5: deceased

Table 2.	EEG	findings
----------	-----	----------

EEG findings	Patient number (n = 98)	Prognosis (mild - severe - deceased)
Electrocerebral inactivity*	5	0 -1 - 4
Background suppression*	22	1 - 11 - 10
Burst-suppression*	6	0 - 3 - 3
Periodic discharge*	15	0 -8 - 7
Delta coma	12	1 - 3 - 8
Alpha coma	2	2 - 0 - 0
Diffuse slowing	34	1 -17 -16
Spindle coma	1	1 - 0 - 0
Inconclusive (due to artifact)	1	1

* EEG findings suggestive of poor prognosis

Patient No./ Sex/Age	CPA time (min)	Onset	Initial Rhythm	Sedation	Mild Hypothermia	Neuroimaging	EEG Recordings (day)	Acute post- Hypoxic Myoclonus/ Acute Symptomatic Seizure	Prognosis	Identical Burst
1/M/61	20	Out of hospital	Asystole	Midazolam (0.04mg /kg/hr)		Basal ganglia Obscure	1	Myoclonus	Death (day 12)	Not Identical
2/F/83	12	Inhospital	Asystole	Propofol (1mg /kg/hr)		Basal ganglia Obscure	0.4	Myoclonus + GTCS	CPC 5	Identical
3/M/85	20	Out of hospital	Asystole	None		Normal	1	Myoclonus	Death (day 8)	Not Identical
4/F/62	30	Inhospital	Asystole	None		Normal	1	Myoclonus	Death (day 2)	Identical
5/M/37	23	Out of hospital	Unknown	None	\checkmark	Diffuse Ischemia	1	GTCS	CPC 5	Not Identical
6/F/53	Unknown	Out of hospital	Unknown	Midazolam (0.03mg /kg/hr)	1	Normal	3	Myoclonus	CPC 5	Identical

Patient No./	Interval	Duration	Burst phase	Amplitude
Sex/Age	(s)	(s)	(Hz)	(μV)
1/M/61	44.1 ± 10.0	6.0 ± 1.3	4.8 ± 0.5	174.9 ± 49.0
2/M/85	8.7 ± 0.5	5.1 ± 1.9	5.1 ± 1.9	74.3 ± 20.9
3/F/83	17.7 ± 4.9	6.3 ± 0.4	7.1 ± 1.1	334.8 ± 150.0
4/F/62	19.3 ± 5.6	5.4 ± 0.2	5.3 ± 0.2	160.7 ± 8.5
5/M/37	16.6 ± 5.4	4.2 ± 1.3	5.5 ± 2.0	41.3 ± 6.7
6/F/53	7.7 ± 2.5	5.2 ± 1.4	8.7 ± 2.4	361.8 ± 37.1

Table 4. Characteristics of SISA (means \pm SD)

Table 5. Occurrence rate of acute post-hypoxic myoclonus or acute symptomatic seizure and rate of poor outcome

	Myoclous or	Myoclonus			Poor	Good
	Seizure +	or Seizure -			prognosis	prognosis
SISA+	6	0		SISA+	6	0
SISA -	38	54		SISA -	86	6
$\mathbf{D} = 0.0067$ (Figher exact test)					P > 0.05 (Fish	or exact test)

P = 0.0067 (Fisher exact test) Sensitivity = 13.6%, Specificity = 100%

	prognosis	prognosis		
SISA+	6	0		
SISA -	86	6		
	P > 0.05 (Fisher exact test)			

Sensitivity = 6.5%, Specificity = 100%