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Abstract

Natural language processing is an essential technology for systems that understand hu-

man languages and communicate with us. In natural language processing, computational

systems grasp the structures and meanings of the natural language texts with syntactic

and semantic analyses. These analyses are often called the fundamental analyses on the

texts and related to the natural language understanding problems. The performances of

the fundamental analysis directly affect the following models and applications. There-

fore, there is great demand for the high accuracy analyses of textual inputs from both the

academic and social requirements today. However, syntactic and semantic analyses of

texts are quite challenging problems because of the complexity and ambiguity of texts.

First, the structures of texts are complex and therefore several analyses are applied at the

same time. Analyses models often take inputs from other models, which often cause the

input biases and errors. Second, the meaning of the natural language texts are sometimes

ambiguous and the external knowledge is required to grasp the meaning of them. There-

fore, models for syntactic and semantic analyses often require the external knowledge

that is hardly extracted from the limited annotated corpora. Third, the existing models

of the fundamental analyses often rely on the arbitrary structures of the models that are

designed for specific domains of datasets. The model developers often employ detailed

feature engineering at the sacrifice of the generality and freedom of the model represen-

tations. This sometimes causes the overfitting of the models for limited domains.

Neural networks become common utilities in the last decade in many studies with

machine learning. This is because neural networks have strong abilities of representa-

tion learning thanks to a large number of their internal parameters. In natural language

processing, however, simple supervised neural network models suffer from the difficul-

ties of the fundamental analysis of natural language texts. They suffer from the input
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biases and errors from the preceding models. Tasks of the fundamental analyses often

require the external knowledge, which neural network models that are trained from lim-

ited annotated corpus cannot deal with. To solve these problems, we propose new neural

network-based approaches with three different approaches of the joint models, generative

models and reinforcement learning. Especially, we focus on the following three problems

of the syntactic and semantic analyses of natural language texts in this thesis.

The first problem is the joint syntactic analysis of Chinese sentences. Syntactic anal-

ysis of Chinese consists of word-segmentation, POS tagging and dependency parsing.

Since POS tags and word dependencies can be determined after word boundaries are de-

termined, models for these tasks are applied one by one and thus have a hierarchy. In a

naive approach, models are combined and used as a pipeline. However, this inevitably

causes the error-propagation from the preceding models. We explore neural network-

based joint models for these tasks to prevent the error-propagation problem. Joint mod-

els are variations of the multi-task models in which tasks have hierarchical combinations.

We also introduced the distributional representations of character strings in addition to the

existing word and character representations. Distributional representations of character

strings are strong ways to represent the meanings of incomplete words and therefore suit-

able for joint models. In our experiments, our models surpass existing models in Chinese

word segmentation and POS tagging, and achieve preferable accuracies in dependency

parsing. To avoid detailed feature-engineering, we also explore biLSTM models with

fewer features. This model is competitive with existing models in terms of accuracy.

Second, we focus on the tasks between syntactic and semantic analysis: Japanese

case analysis and zero anaphora resolution. These tasks are based on Japanese predicate-

argument structure (PAS) analysis. In these two tasks, zero anaphora resolution is known

as a difficult task because this task largely relies on the external knowledge. Such exter-

nal knowledge cannot be covered with a limited existing annotated corpus. We propose

a novel Japanese PAS analysis model based on adversarial training with an unannotated

corpus. This idea comes from the recently proposed generative models of the generative

adversarial network (GAN). Our proposed model enables to extract the external knowl-

edge with generative approaches. In our experiments, our model outperforms existing

state-of-the-art models in Japanese PAS analysis.

Finally, we conducted the semantic analysis of sentences in forms of the semantic
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dependency parsing (SDP). In Semantic Dependency Parsing (SDP), semantic relations

of words are expressed in directed acyclic graphs. We propose a new parsing algorithm

for extracting semantic dependency graphs with both supervised learning and reinforce-

ment learning. Using reinforcement learning, the model can choose the ways of creating

the resulting graphs during training. In our experiments, our model achieves a new state-

of-the-art performance on the semantic dependency parsing. In addition, we observe that

our model trained with reinforcement learning takes an easy-first strategy.

In Chapter 1, we briefly introduce the fundamental analysis tasks of natural language

processing. In Chapter 2, we introduce the joint syntactic analysis model with neural

networks. In Chapter 3, we explain the case analysis and zero anaphora resolution model.

This work is a combination of syntactic and semantic analysis. In Chapter 4, we introduce

the semantic dependency parsing model with reinforcement learning. In Chapter 5, we

present the conclusion and future work of our studies. We also present the future views

of neural network and semantic studies.
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Chapter 1

Introduction

Natural language processing (NLP) is a crucial technology that allow us to grasp the

structures and meanings of natural language text and handle it in computational systems.

NLP plays a crucial role in systems that communicate with humans (aka human-computer

interactions, HCI) because languages are natural communication tools for us. In NLP,

syntactic and semantic analyses for natural languages texts are essential technologies

for systems that resolve structures of texts and grasp the meanings for the following

applications. They are also closely correlated to natural language understanding (NLU)

problems. Syntactic and semantic analyses of natural language texts are tough and quite

challenging problems. Linguistic structures of texts often become complicated to be

extracted but they are so important that they have been frequently applied to application

systems. Their meaning is sometimes ambiguous and some knowledge of the external

world is required to grasp the meaning of texts, which is difficult to be extracted from

annotated corpora.

Recently, neural networks have been widely applied to many NLP models including

syntactic and semantic analyses. However, the syntactic and semantic analyses of natural

language texts are still difficult because of the complexity of texts we mentioned above.

Simple models of supervised neural networks face serious difficulties of natural language

texts in these tasks of NLP. In this thesis, we propose the new neural approaches for the

syntactic and semantic analyses of texts to resolve the complexity of the textual structures

and meanings.

1
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1.1 Introduction to NLP

The purpose of natural language processing (NLP) is to understand the meanings of nat-

ural language texts and provide some methods for computational systems to handle texts

in some application systems. The subjects of the NLP studies are so broad: from gram-

matical analyses of texts to natural language understanding and application systems such

as machine translation systems and chatbots.

In the early era of the NLP research history, many studies employed rule-based ap-

proaches. They relied on the hand-written rules that mainly come from linguistic view-

points and dictionaries for processing texts. Since linguistic phenomena are so complex,

many hand-written rules must be continuously updated with efforts. After that, many

studies have adapted the data-driven and learning-based approaches. They tend to use

some linguistic datasets or corpora with machine learning models. For the last decade,

neural networks become the common tool of the machine learning models in NLP. We

will introduce them in Sec. 1.3.

Recently there is a great demand for high-performance NLP models from academic

and business requirements. One reason for this is that more and more text data become

available thanks to many Internet services such as web blogs and social networking ser-

vices. The applications of the NLP technology would expand in our society in the next

several decades.

1.1.1 Fundamental Analyses and Application Studies of NLP

In NLP studies, syntactic and semantic analyses of texts are often called fundamental

analyses. The fundamental analyses includes the grammatical analyses of sentence such

as word segmentation, POS tagging, chunking and syntactic parsing. Grammatical anal-

yses hold a prominent position in the fundamental analyses and have a long history in

NLP studies. Semantic analysis such as semantic parsing is another large part of the

fundamental analyses and getting more and more important in natural language under-

standing. We note that these analyses often depends on each other. For example, the

word segmentation has critical effects on the following analyses because words are the

conventional units of the meaning representations and many later analyses assume that

input words are correctly segmented as a matter of course.
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In contrast to the fundamental analysis, studies for some applications systems such

as machine translation, question-answering, chatbots and searching systems are called

application studies. In many applications system, the fundamental analyses plays im-

portant roles for analyzing input texts and grasp their meanings. The performance of the

application systems greatly depends on those of the fundamental analysis models. This is

because the analyses of input texts (e.g. input texts of machine translations or user queries

for searching systems) are crucial for the following tasks in the application systems. We

also note that some recent application systems sometimes take end-to-end framework

that the systems take low-level inputs and directly outputs the final result without any

other tasks or analyses. However, much of end-to-end application models still rely on

other fundamental analyses models. Otherwise the whole application system often make

severe errors due to the misunderstanding of the input texts. Therefore the fundamental

analyses are necessary for many of application systems.

In this thesis, we focus on the fundamental analyses of natural language texts. As we

explained, many NLP models and application systems rely on the syntactic and seman-

tic analyses of texts. The performance of the following models and application systems

directly depends on the preceding fundamental analysis models. Thus we cannot overem-

phasize the importance of the fundamental analyses.

1.1.2 Flows of Fundamental Analyses

We briefly introduce the flow of the whole fundamental analyses. natural language texts

have structures: characters, words, phrases, sentences, paragraphs and documents as is

shown in Fig 1.1.

Characters Words Phrases Sentences Paragraphs

c, a, t cat the cat The cat sat on the mat. The cat sat on the mat. Her eyes

are closed, but her tail waves slowly...

Table 1.1: Structures of Languages.

Tasks in the fundamental analyses are based on these textual structures. Some of the

fundamental analyses tasks, such as word segmentation and chunking of texts, aim to
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マットの上に座る猫Input

Morphological Analysis

Dependency Parsing

Word Segmentation

POS Tagging

Dependency Parsing

那只猫坐在垫子上

POS Tagging

Dependency Parsing

The cat sat on the mat.

Word-level
Separation

Tagging

Syntactic
Analysis

Semantic
Analysis

Case / Zero AnalysisSemantic Parsing

Applications Mahcine Translation, Question Answering, ...

Tokenize & Lemmatize

Semantic Parsing

English Japanese Chinese

Figure 1.1: Difference of the applied fundamental analyses in English, Japanese and

Chinese. In Japanese and Chinese, the word segmentation is the essential problem for

many upper tasks and applications.

reveal structures of such texts and tokenize them. Other tasks such as POS tagging and

parsing aim to analyze functional and semantic roles of tokens.

For details, the applied fundamental analyses depend on the languages. Fig 1.1.2

shows the difference of the fundamental analyses applied for English, Japanese and Chi-

nese. The major difference lies in the basic analysis. For all listed languages, inputs

are character sequences. 1 Tokanization, Lemmatization and POS tagging is used in ba-

sic analyses of English texts, while word segmentation is needed for Chinese texts. In

Japanese, the corresponding task is the morphological analysis.

In the fundamental analysis, tasks have a hierarchical structure as is shown in Fig. .

We often call this sequence of processing as the pipeline model because they are often

1We also note that realistic application systems often need additional preprocessing of input texts such

as removing HTML tags, converting special characters such as emojis that are not used in analyses into

some other symbols and dividing texts into suitable lengths of sentences. Preprocessing of texts often plays

significant roles in real NLP applications although we do not discuss this further in this thesis.
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combined with the pipeline of the UNIX shell. In Sec 1.2, we review the problems of this

naive pipeline scheme.

We show the detailed flows of the fundamental analyses in Japanese, English and

Chinese in turn.

Fundamental Analyses in Japanese

Fig. 1.2 show the flow of fundamental analyses in Japanese with an example sentence

of “その男は引き返してデスク係に話しかけた。” (The man went back and

spoke to the desk clerk.) In Japanese, the input texts of character sequences are firstly

given to morphological analysis. The morphological analysis is a collection of tasks of

word segmentation, lemmatization2 and labeling of word roles for Japanese texts. The

accuracy of word segmentation in Japanese is beyond 99%. Examples of the Japanese

morphological analysis tools are juman and juman++ [6].

Dependency parsing is one of the most sophisticated analysis in the syntactic analysis

of the sentences. Dependency tree express grammatical relations of words in a form of

trees. In Semantic parsing, various semantic relations of words or phrases are analyzed.

In dependency parsing of Japanese, texts have an interesting rule that a word must depend

to another word that is placed in right of the original word. The example of dependency

parsing tool is KNP [7]. In semantic parsing of Japanese, case analysis and anaphora

resolution are often applied. We will discuss them in Sec. 1.1.3.

Fundamental Analyses in English

Fig. 1.3 shows the basic flow of the NLP analyses in English. For English, the input

texts are generally easy to be divided into words because they are written with word

separation. Tokenization is used for dividing some tokens such as “She’s saying” into

“She”, “’s” and “saying”. Lemmatization is used to obtain the basic form of word, e.g.

“she”, “be” and “say” in this example. Lemma is sometimes required in the following

tasks. POS tagging is a task to find syntactic role labels for words. We will explain this

in Sec. 1.1.3. POS tags are so crucial that the performance of the most of following NLP

2Lemmatization is a task to find base forms of words. It is sometimes applied for languages that have

conjugations of words.
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指示詞 名詞 助詞  動詞   動詞    名詞    名詞 助詞  動詞   接尾辞

その男は引き返してデスク係に話しかけた。

その  男  は  引き 返して  デスク  係  に  話し  かけた  。

Word
Segmentation

 話しかけた
男は

その
引き返して

デスク 
係に

男が     φ に   引き返した
男が    係に   話しかけた

ROOT

（返す）（引く） （話す）（かける）

Figure 1.2: Flow of the fundamental analyses in Japanese. The examples of analyses for

a Japanese sentence is presented in the right of the figure.

tasks are enhanced with this word role information. For the following analysis, syntactic

parsing and semantic parsing are applied as with the Japanese analyses.

Fundamental Analyses in Chinese

Fig. 1.4 shows the analyses in Chinese with an example Chinese sentence of “技术有了

新的进展。”(Technologies have made new progress.) In Chinese, word segmentation

is known as a quite difficult problem and its accuracy is still low, which cause the low

accuracy of dependency parsing results.

1.1.3 Fundamental Analysis: Tasks

We will briefly introduce some of the fundamental analysis tasks that are quite important

and frequently used in many NLP systems. We also briefly explain the existing methods

for these tasks.
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Input

POS Tagging
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Tagging
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Analysis
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Analysis

Semantic Parsing

Applications
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Tokenize & Lemmatize
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NOUN_ARG1

went
The  clerk

 back and spoke  to
the  desk 

man

ROOT

The man went back and spoke to the desk clerk.
DET   NN    VV     ADV   CONJ  VV   ADP DET  NN    NN

The man went back and spoke to the desk clerk.

Figure 1.3: Flow of the fundamental analyses in English. An examples of analyses for a

sentence “The man went back and spoke to the desk clerk.” are represented in the right

of the figure.

Word Segmentation

Word segmentation is a task to determine word boundaries for character sequences. From

a naive viewpoint, it is said that word segmentation is a character-wise classification task

of whether one character in sentences is the beginning of some words or not. Word seg-

mentation is an essential task in some languages such as Chinese and Arabic although

the performances of the word segmentation in those languages are not always enough.

In Japanese, the corresponding task is the morphological analysis that includes the at-

tachment of syntactic role tags and lemmatization. Many following NLP tasks rely on

the resulting words from this task. Therefore the value of the word segmentation tasks

cannot be overemphasized.

Sequence labelling for characters with in-and-out-of-word labels are often used for

the word segmentation. Such models often rely on the dictionary matching features.
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Figure 1.4: Flow of the fundamental analysis in Chinese. In Chinese, some of basic

analysis such as word segmentation is quite difficult. This is a one of the major reasons

that Chinese NLP is know as difficult.

POS Tagging

POS tagging is a classification task for the syntactic roles of words in sentences. Exam-

ples of POS tags are noun, verb, determiner, adjectives, adverbs and so on. The number

of POS tags that are used in one model differs depending on linguistic formalisms. In

POS tagging, some words are used only for limited syntactic roles (e.g. English words

“emphasis” and “emphasize” can be used for noun and verb respectively.) and they are

easily classified to the corresponding word-role categories. The conjugation of words is

also helpful for this task. Otherwise, the roles of words depend on the surrounding con-

texts. Chinese POS tagging is relatively difficult because of the lack of the conjugation

and many words can be used for several syntactic roles depending on their contexts.

Classically, sequence labelling models with inputs of n-gram words and previously-

predicted POS tags are often used for this task. Since POS tags are crucial in many NLP

applications, many languages have the corresponding tasks with the word-role labelling.
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Dependency Parsing

From a grammatical viewpoint, each word in a sentence has one syntactic dependency to

another word in the same sentence or a single root entity. 3 Dependency parsing is a task

to create syntactic dependency trees that are spanning among all words in the sentences.

The dependency trees demonstrate the global and local structures of the sentence.

There are two major ways of dependency parsing: graph-based and transition-based

parsing algorithm [8]. Graph-based parsers have a triangle table to store dependency

scores from some words to other words. The model firstly assigns all scores in the table

and then decode it into a tree with external algorithms such as Kruskal’s algorithm for

the maximum spanning tree [9]. The example of the graph-based parser is KNP [7] in

Japanese. Transition-based parsers, however, process the sentence from the first word

to the last word creating and updating partial trees. Transition-based parsers are fast but

sometimes suffer from serious error-propagation problems.

Dependency parsing is one of the most important tasks of syntactic analyses and its

annotated datasets have been created in many languages. However, the annotation costs

for the dependency parsing are relatively heavily in general. Therefore, the available

datasets for dependency parsing are less than those of word segmentation and POS tag-

ging.

Case Analysis and Zero Pronoun Resolution in Japanese

Words in sentences have complex relations with other words. Especially, semantic rela-

tions of predicates and their argument candidates, such as subject-verb, verb-object and

verb-dative relations are important analysis although they are not always presented in the

dependency parse trees. The analysis to find out predicate and their argument relations

are often referred to the predicate-argument structure (PAS) analysis. PAS analysis lies

between the syntactic and semantic analyses.

Case analysis is one form of Japanese PAS analysis. The case analysis is a task to

resolve the semantic relation of some predicates and their arguments when they have

3The root entry is a conventional symbol that is out of the sentence and used for the root node of the

grammatical tree. Each of syntactic dependency parse trees includes only one edge from the root node to

some word in the sentence in general.
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direct dependencies but their semantic roles are not obvious. Therefore the case analysis

largely depends on the preceding syntactic analysis.

Zero pronoun resolution is a task to find out the omitted arguments of the predi-

cates. Japanese texts have many omitted arguments in each predicate such as the writer

or speaker expressions. They are omitted because the writer of the sentence considered

that they are obvious or redundant in this context. Such omitted arguments are called zero

pronouns and some application system such as machine translation often suffer from the

zero pronouns in Japanese. In zero pronoun resolution, the argument candidates do not

have direct dependencies to the predicate. The model finds out the correct zero pronouns

for case roles of predicates from candidates of zero-pronouns from the in and out of sen-

tences and exophora in some cases. Therefore, zero pronoun resolution is independent of

the syntactic analyses to some extent and a quite difficult problem.

Semantic Dependency Parsing

Semantic Dependency Parsing (SDP) is a task to create a graph of the word semantic

relations. Unlike dependency trees, the SDP forms direct acyclic graphs, not trees and

therefore SDP expresses the complex relations of semantic predicates and their argu-

ments. SDP is a relatively new task, introduce in SemEval2014 [10], derived from previ-

ous several semantic dependency formalisms including the predicate-argument structure

(PAS).

Since graphs of SDP express complex word relations, the parsing algorithms for syn-

tactic dependency structures often cannot deal with them or become inefficient. The

graph-based parsers require an external threshold to determine whether the two words

have an edge given the dependency scores. Transition-based parsers need complex and

arbitrary transitions for SDP.

1.2 Challenges in NLP Tasks

Many of the fundamental analyses in NLP have several difficulties. Such problems char-

acterize the machine learning models used in NLP. Many of problems come from the

limited training data for the fundamental analysis. The training data for the fundamental

analysis of natural language texts are extracted from the annotated corpora that are cre-
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ated by human annotators. Especially for the dependency parsing and semantic analysis

in the fundamental analyses, models require detailed annotations and hence the cost for

creating annotated corpora become huge. The amount of sentences in current datasets

used in the fundamental analyses is typically tens of thousands or less. They are too

small to extract the useful knowledge of the external world from these corpora. It is also

relatively small if you train the deep learning models with them.

Another reason for the difficulties is that NLP models are often used with other mod-

els as so call pipelines. Since most NLP models are frequently used with other models,

they take inputs that contains inevitable biases and errors from other models. This is one

of the most important characteristics of NLP models. We will explain those differences

between NLP models and machine learning models with an example of the POS tagging

models and the hand-digit recognition models. Both of them are classification tasks. The

models of hand-digit recognition are trained and evaluated with the specific domain of the

dataset, such as MNIST [11], which consists of hand-writing digits images. The outputs

of such models are uncommonly combined with other machine learning-based models.

In POS tagging for words, however, the model inputs often come from another word

segmentation model. The POS tags are often used as inputs of the following models. In

this sense, the classification problems in NLP studies are not a simple machine learning

classification problem.

Parsers of sentences have also unique problems. Transition-based parsers internally

use some classifiers that are similar to those used in simple classification tasks. However,

the transition-based parsing of sentences is not a simple classification task at all. Rather

it is similar to a sequence of the decision making problems that are sometimes too dif-

ficult to be trained with the supervised learning because of the unseen states during the

test phase. The transition-based parsers frequently face the unseen states during the test

phrase because of the errors of the previous decisions or unfamiliar inputs. Graph-based

parser have their own problem that the machine learning models of the parser just deter-

mine scores for all edges and rely on some external algorithms to decode such scores into

trees.

In this thesis, we employ the neural network-based approaches for those difficulties.

In experiments, we apply them for several tasks in the fundamental analyses of NLP.

However, the much of difficulties are widely shared among NLP tasks and our approaches
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can be applied for many tasks. Therefore we assume that our proposed approaches can be

applied for many other fundamental analyses systems. We summarize the major problems

of the fundamental analyses in NLP below.

1.2.1 Limited Knowledge of The External World

The tasks of NLP often depends on the external knowledge. External knowledge is the

information that are not specified in the limited annotated corpus, but used in some tasks

implicitly. For example, Japanese verb “焼く” is used for baking or burning something.

However, in a phrase of “CDにデータを焼く (burning data to a CD)”, “焼く” is used

for writing out data on a CD. In another phrase of “人に手を焼く (being troubled with

some persons)” is an idiom that is used for cumbersome persons or children. In the

case of “焼く”, its meanings are altered by surrounding words. Such knowledge is not

directly specified in the training corpus in general. Therefore the models need to learn

these expressions from other knowledge resources.

1.2.2 Error Propagation

Since fundamental analyses in NLP have a hierarchical structure, some inputs of models

come from the outputs of the preceding models. Therefore, the minor errors of the pre-

ceding models can spread to following models and spoil the entire performance of the

system. This is known as the error-propagation problem. To avoid the error-propagation

problem, the joint model is often used in traditional NLP tasks. The joint model is a kind

of the multi-task model that jointly processes the stacked tasks. When the stacked tasks

have strong correlations, joint models become strong tools for analyses.

1.2.3 Arbitrary Model Structure

Natural languages have specific internal structures. In existing models, model developers

determine what kind of models should be applied for the analyses considering the NLP

task structures with empirical ways. Such models are typically easy to be trained because

of the pre-implemented strong prior for the task. However, such models often lose the

generalities and are extensively tuned for specific domains. We summarize the pros and

cons of empirically-tuned models in Table 1.2.
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Pros Easy to train because they have less degrees of freedom.

Model size is relatively small because of less trainable parameters.

Cons Less performance in generative models because the strong prior prevent from

the learning from the dataset.

Easy to overfit to some specific domains.

Table 1.2: Pros and cons of the empirically-tuned model.

In pre deep learning era, many researchers relies on extensive feature engineering of

machine-learning models. They tend to use Support-Vector Machine, or SVM [12] and

averaged perceptron, a variant of single layer perceptron that is often used as well as

SVM in NLP for classifiers [13]. The feature engineering is a tuning of input features for

some specific tasks, which often cause severe preset bias and over-fitting for the some

limited domains of datasets. Neural network contributes to reduce the extensive feature

engineering because some of feature combinations are represented in the hidden layers.

Hence, model developers in modern era do not need to tune input features extensively.

In this thesis, we propose the neural network-based NLP model that can reduce the

overused feature-engineering. We also explorer the procedure that the model itself is able

to determine the way to analysis input sentences.

1.3 Neural Networks in NLP

Before we explain the proposed models in the next section, we briefly review the his-

tory of neural network studies and the recent advancement of deep learning in natural

language processing in this section. Neural networks have been widely used in these

years in many data-driven science fields including computer-vision, audio recognition,

robotics, material science and NLP. However, from the early history of neural network

studies, semantic analysis of natural language texts are under great interest.
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1.3.1 Neural Networks and Distributional Representations

From a viewpoint of symbolics, anything that are recognizable and thinkable for human

beings such as objects, persons, physical states, abstract ideas, images, sounds and words

are represented with symbolic methods such as binary or sparse vector representations.

In late 80’s, J. E. Hinton and others proposed the novel distibutional representation

[14]. Their idea was that any entities leaned by models are represented with distributional

units and their connections. These network of units and their connections are known as

neural networks. They visualized the wights of their neural network connections with

Hinton diagram, which consists of white and black rectangles that corresponds to the

strength of excitatory and inhibitory connections of neurons. They showed the distri-

butional representations of persons learned from family tree datasets and some features

are shared among persons in their semantic net. D. E. Rumelhart also coined the term

back-propagation. Back-propagation is the gradient decent that is applied to multi-layer

neural networks using the chain-rule of gradients [15].

From a philosophical viewpoint, they are often called as Connectionist in contrast to

symbolic approaches. 4 We also thanks to the very early work of S. Amari for the work of

the differentiable neurons [16] derived from neurophysiological and mathematical stud-

ies.

Two large streams of the structures of neural network had been proposed: recurrent

neural network (RNN) and convolutional neural network (CNN). RNNs exist from the

early studies of neural networks [15, 17]. In RNNs, the computation graph has loops

that allows the outputs of some layers can become the inputs of the same layers in later

time steps. The RNNs can store information in these loops. The back-propagation for

RNNs can be applied thought the time sequence. In this sense, neural network with

simple loops is very deep in terms of the time sequence. Simple RNNs had a problem of

forgetting old inputs because old inputs are easily overwritten by new inputs. Long-short

term memory (LSTM) [18] was proposed by adding several gates to input, memory and

output layers to reject unnecessary input or histories and sustain critical information. Y.

Lecun proposed the LeNet that exploits the neural convolution layer and sub-sampling

[19]. They used their network on the hand-writing character recognition task. We also

4The people who believe in bayesian statistics are often called Bayesian, which is in contract to those of

classical statistics as Frequentist.
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thanks to neocognitron of K. Fukushima as an original form of CNN [20].

1.3.2 Neural Approaches in NLP

Although the early work of neural networks focused on the representations of semantics,

the early studies of text processing relied on symbolic and rule based approaches mainly

because of the processing speed and amount of the available datasets. They mainly re-

lied on linguistic or statistical approaches. However, there were also well-known NLP

models driven by neural networks. R. Collobert and J. Weston proposed a CNN-based

fundamental analysis models of NLP [1]. They applied a single convolution layer and

max-pooling through time. They used a lookup table for transforming word indices to

hidden representations of words, or the embedding of words. They also applied the multi-

task learning of many tasks: semantic role labeling (SRL), part-of-speech (POS) tagging,

chunking, named entity recognition, synonymous and language modeling. In their multi-

task neural network, one of lookup tables was shared and none of hidden layers were

shared. We note that in many recent models make use of pre-trained word embeddings

instead of multi-task learning of embeddings as of Collobert and Weston [1]. As we ex-

plain in Sec. 1.4.1, modern multi-task neural networks exploits the structured networks

for different tasks.

1.3.3 Mikolov’s word2vec

In 2013, Mikolov et al. [21] proposed the well-known word2vec, which is an unsuper-

vised learning tool to obtain distributional representations of words from unannotated

corpora. They proposed the continuous bag-of-words (CBOW) and skip-gram learnings.

CBOW or continuous bag-of-words predicts a single word from contexts of neighboring

words. CBOW uses the previous and following words to predict a single word. Therefore

CBOW is not a pure language model.5 Skip-gram is vice versa: predicting neighboring

words from a single word. CBOW seems an easier task than the skip-gram is because

CBOW is a model of predicting only one word. They reported that skip-gram was better

than CBOW in terms of semantic representation of words, while CBOW was better in

5A language model is a model for repeatedly predicting a following word given the preceding words as

contexts to generate some sentences.
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syntactic representations. They also claimed that their model had the basic understand-

ings of the external world. For example, a king is male while a queen is female. Tokyo is

the capital of Japan while Paris is the capital of France. Therefore their learned vectors

had the relations of:

v(queen) ' v(king)− v(man) + v(woman)

v(Tokyo) ' v(Paris)− v(France) + v(Japan)

, where v(·) represents the learned vectors of words. This is called the word analogy

task. After their work was published, several word embedding models have been pro-

posed such as Glove [22]. Glove implicitly exploits matrix factorization, claiming better

accuracies in the word analogy task than word2vec.

1.3.4 RNN, CNN and Attention-based Neural Networks

Word embeddings are sophisticated representations of words. Using word2vec, systems

can obtain some pre-trained word representations. However, such representations for

words are independent to their contexts when they are used in some sentences. There-

fore, another important question occurs: what are the best representations for words,

phrases or sentences when we encode texts? Representations for words in sentences

should be changed depending on their surrounding contexts. Representations for phrases

and sentences should contain enough information for the following tasks and therefore

they would be larger than those for words. Neural networks to obtain sentence represen-

tations are often called the sentence encoder. After the encoder calculate representations

of words, phrases or sentences, such representations are used in the following parts of the

entire neural network.

R. Socher proposed recursive neural network, which is a recurrent neural network

constructed through dependency graphs of sentences that are extracted from pre-processes

[23]. Their neural network is a syntax-based encoder. K. Yoon proposed a CNN-based

model for sentiment analysis of sentences such as movie reviews [24]. The problem of

their model is that their model ignores the positions of the words in the sentence. In

sentiment analysis of short sentences, the positions of words are not always critical fea-

tures and the resulting representations for sentences are suitable for this task. However,

positions of words are often quite important in the fundamental analyses of NLP.
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In 2014, Bahdanau et al. [25] proposed the fully neural network-based end-to-end

machine translation model. The model consists of the RNN encoder and the decoder of

the RNN-based language model as the sequential word prediction. This model is called

the neural machine translation (NMT) compared with the previous statistical machine

translation (SMT) or the example-based machine translation [26]. NMT models rapidly

expel the previous models while they often suffer from the ambiguity of the input sen-

tences.

RNNs and their variations are frequently used for the sentence encoders now. How-

ever, RNNs have problems in the training speeds. The combination of CNN and RNN

is also attempted to improve the analysis in terms of the speed and accuracy [27]. The

LSTMs, GRUs6 and their stacked and bi-directional variations are frequently applied for

RNN-based sentence encoding. Another recently proposed encoder is the attention-based

neural network encoder aka Transformer of Google [29].

1.3.5 The Limitation of Supervised Learning

Most of the neural network-based models succeeded in specific tasks with limited datasets

using single-task supervised learning. In many studies, researchers propose a new form

of neural networks that perform well in some limited dataset domains with task-specific

supervised learning. This sometimes suggests that the model overfits to the domains of

datasets that the experiments are performed.

Supervised learning often cause the overfit to specific domains. It could also hap-

pen that researchers select arbitrary models that works in specific domains. Multi-task

learning of neural network prevent models from overfitting specific task domains. Semi-

supervised learning exploit unlabeled datasets that contains the external data structures or

knowledge that can not be covered in the limited training datasets in supervised learning.

Reinforcement learning allows models to search some hidden structures in the external

environment through the exploration. We explain the details of these learning methods

for NLP problems in the next section.

6Gated recurrent unit was firstly proposed in the conference of EMNLP2014 by Cho et al. [28].
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1.4 Proposed Models

In the end of the introduction chapter, we explain the background of our proposed models

and introduce the models and corresponding tasks we discuss in this thesis and why they

are so challenging in NLP.

1.4.1 New Approaches in Neural Networks

We adapt several neural network models that have a high profile in recent deep learning

and NLP studies. We briefly explain them.

Joint Neural Network

The idea of multi-task learning is old in NLP as is seen in Ronan Collobert and Jason

Weston (2008). However, the modern form of hierarchical multi-task learning neural

network was introduced in Søgaard and Goldberg [30]. They proposed a deep neural

network with hidden layers for different tasks. They used the hidden representations

from a lower layer for POS tagging and those from an upper layer for chunking. This

corresponds to the fact that the chunking is an upper task compared with POS tagging in

English NLP. Fig. 1.5 briefly presents the differences of these two models.

The multi-task neural network is superior to the single-task neural network in terms

of the generalities of the learned representations. However, the information from other

tasks become strong regularization to parameter tuning for a single task. If tasks have

strong correlations such as joint models of NLP, the multi-task neural network become a

great solution.

Generative Models

Generative adversarial networks (GAN) is firstly introduced in Goodfellow et al. [31] for

the image generation task. This is a combined neural network of the generator neural net-

work and its adversarial counterpart as the discriminator neural network. The generator

outputs images that is similar to real images while the discriminator attempts to discrim-

inate the generated images from real images. This is a mini-max game of two parts of

the neural network. We note that the mini-max game based GAN training is sometimes

unstable and combined with supervised learning.
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Word Embeddings
(Lookup Table)

Hidden rep. 1

Hidden rep. 2
POS Tagging

Chunking

b)

Word Embeddings
(Lookup Table)

Hidden Rep. 1a

Hidden Rep. 2a

Hidden Rep. 1b

Hidden Rep. 2b

POS Tagging Chunking
a)

Figure 1.5: The difference of models in (a) Collobert and Weston [1] and (b) Andor et al.

[2]. Note that each of models employs the state-of-the-art architecture for their tasks at

that time. Collobert and Weston [1] uses CNNs and multi-layer perceptron (MLP), while

Andor et al. [2] employs stacked-LSTMs.

Many researchers have attempted to apply GANs for the sentence generation task

in NLP, but they still face difficulties. This is because the sentence generation is a task

for the temporal sequence generation for words. The generated words are symbolic.

Therefore, one the model generate some words, they stop the gradient computation of the

neural network computation graph when they are used in the following word predictions.

Although there are some possible solutions, for example, Wasserstein GAN [32], the

sentence generation through GAN approaches is still difficult.

Another possible application of GANs is that employing GAN-like training on unla-

beled corpora to extract the external knowledge from them. We will discuss this approach

on this thesis.

Reinforcement Learning

Reinforcement learning is a training that an internal model, or often referred as an agent,

repeatedly interacts with the surrounding environments via some actions and gets rewards

from the environment. The agent attempts to maximize the rewards that the agent is going
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to obtain in the near future.

There are several classifications of reinforcement leaning. The model that searches

the transition space off-policy and on-policy. In on-policy learning, the agent explorers

states depending on its internal policy while in off-policy learning the model samples

states without its policy. An example of off-policy model is q-learning [33] and an ex-

ample of on-policy learning is SARSA [34]. In deep reinforcement learning, the deep

q-learning (DQN) is off-policy learning [35]. Policy gradient [36] is used for on-policy

learning, although it is possible to use it in an off-policy learning manner. The model-

based and mode-free reinforcement learning is used whether the decisions of the agent

are based on the information of the environments. The model-based approaches use the

information of their action, rewards and the observation of the environment, while the

model-free approaches do not use the observation of the environment. In this thesis, we

focus on the model-based and on-policy reinforcement learning.

In some NLP subtasks, the model processes sentences by repeatedly deciding the in-

ternal structures of the sentences. Here, reinforcement learning is the promising solution

for these tasks. This is because the model can find out the optimal decisions to solve the

tasks by themselves. In this thesis, we apply the reinforcement learning for parsers to

allow them to choose the optimal parsing ways through the exploration.

1.4.2 Joint Syntactic Analysis with Neural Network

In the fundamental analysis, some tasks are closely correlated. Especially the word seg-

mentation and POS tagging are closely correlated because the roles of words are limited

and some POS tags become obvious when the word boundaries are determined. POS tag-

ging and word dependencies are also closely correlated because words has dependency

destinations that are limited depending on their syntactic roles. We discuss this joint

syntactic analyses model on Chapter 2.

1.4.3 Neural Case Analysis and Zero-pronoun Resolution with Generative
Approaches

The difficulty of the case analysis and zero-pronoun resolutions tasks is that they re-

lies on the knowledge of the frequent combinations of predicates and arguments. This
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knowledge is often referred as selectional preferences for predicates and their arguments.

Selectional preferences is an subset of the external knowledge and are difficult to be ex-

tracted from annotated corpora because the selectional preferences are numerous while

annotated corpora are limited. We explorer the models to extract selectional preferences

from largely available unannotated corpora with the recent proposed generative adver-

sarial networks (GAN) for this. We proposed the validator network instead of the dis-

criminator network of GAN. The validator network validates the results of the extracted

predicate-argument combinations from unannotated corpora. We discuss this model on

Chapter 3.

1.4.4 Semantic Dependency Parsing with Reinforcement Learning

We study the reinforcement learning-based semantic dependency parsing model. Se-

mantic dependency parsing (SDP) is a newly proposed semantic parsing in which the

resulting semantic graphs compose directed acyclic graphs instead of trees. We propose

the reinforcement learning based model in which the model itself is able to decide how

to parse sentences through explorations. We discuss this model on Chapter 4.



Chapter 2

Neural Network-based Joint
Syntactic Analysis

We present neural network-based joint models for Chinese word segmentation, POS tag-

ging and dependency parsing. Our models are the first neural approaches for fully joint

Chinese analysis that is known to prevent the error propagation problem of pipeline mod-

els. Although word embeddings play a key role in improving the performance of depen-

dency parsing, they cannot be applied directly to the joint task in the previous work.

To address this problem, we introduce distributed representations of character strings,

in addition to words that are turned out to be effective for the joint task. Experiments

show that our models outperform existing systems in Chinese word segmentation and

POS tagging, and perform preferable accuracies in dependency parsing. We also explore

bi-LSTM models with fewer features, that performs competitively with these existing

models.

2.1 Introduction

Dependency parsers have been enhanced by the use of neural networks and embedding

vectors [37, 38, 39, 40, 2, 41]. These dependency parsers are word-based. Therefore,

when these dependency parsers process sentences in English and other languages that

use symbols for word separations, they can be very accurate. However, for languages

such as Chinese or Japanese that do not contain word separation symbols, dependency

22
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parsers are used in pipeline processes with word segmentation and POS tagging models,

and encounter serious problems because of error propagations from the previous models.

Even for these languages, the previous dependency parser also work accurately when

the given input sentences are well-segmented by words. However, this is not realistic

in real usages. In particular, Chinese word segmentation is notoriously difficult because

sentences are written without word dividers and Chinese words are not clearly defined.

Hence, the pipeline of word segmentation, POS tagging and dependency parsing always

suffers from word segmentation errors. Once words have been wrongly-segmented, word

embeddings and traditional one-hot word features, used in dependency parsers, will mis-

take the precise meanings of the original sentences. As a result, pipeline models achieve

dependency scores of around 80% for Chinese.

A traditional solution to this error propagation problem is to use joint models. Many

Chinese words play multiple grammatical roles with only one grammatical form. There-

fore, determining the word boundaries and the subsequent tagging and dependency pars-

ing are closely correlated. Transition-based joint models for Chinese word segmentation,

POS tagging and dependency parsing are proposed by Hatori et al. [3] and Zhang et al.

[4]. Hatori et al. [3] state that dependency information improves the performances of

word segmentation and POS tagging, and develop the first transition-based joint word

segmentation, POS tagging and dependency parsing model. Zhang et al. [4] expand this

and find that both the inter-word dependencies and intra-word dependencies are helpful

in word segmentation and POS tagging.

Although the models of Hatori et al. [3] and Zhang et al. [4] perform better than

pipeline models, they rely on the one-hot representation of characters and words, and do

not assume the similarities among characters and words. In addition, not only words and

characters but also many incomplete tokens appear in the transition-based joint parsing

process. Such incomplete or unknown words (UNK) could become important cues for

parsing, but they are not listed in dictionaries or pre-trained word embeddings. Some

recent studies show that character-based embeddings are effective in neural parsing [42,

43], but their models could not be directly applied to joint models because they use

given word segmentations. To solve these problems, we propose neural network-based

joint models for word segmentation, POS tagging and dependency parsing. We use both

character and word embeddings for known tokens and apply character string embeddings
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for unknown tokens.

Another problem in the models of Hatori et al. [3] and Zhang et al. [4] is that they rely

on detailed feature engineering. Recently, bidirectional LSTM (bi-LSTM) based neural

network models with very few feature extraction are proposed [44, 45]. In their models,

bi-LSTMs are used to represent the tokens including their context, along with few basic

features in the middle of the neural network graph. Indeed, such neural networks can

observe whole sentences through bi-LSTMs, whereas the feature-based neural networks

cannot. This bi-LSTMs is used to obtain the sentence representation that is similar to

neural machine translation models [25]. As a result, Kiperwasser and Goldberg [44]

achieve competitive scores with the previous state-of-the-art models. We also develop

joint models with n-gram character string bi-LSTM.

We develop the parsing model with neural structured learning based on Andor et al.

[2] in addition to the greedy models which run extremely fast. In the experiments, we ob-

tain state-of-the-art Chinese word segmentation and POS tagging scores, and the pipeline

of the dependency model achieves the better dependency scores than the previous joint

models. To the best of our knowledge, this is the first model to use embeddings and

neural networks for Chinese full joint parsing.

Our contributions are summarized as follows: (1) we propose the first embedding-

based fully joint parsing model, (2) we use character string embeddings for UNK and

incomplete tokens. (3) we also explore bi-LSTM models to avoid the detailed feature

engineering in previous approaches. (4) in experiments using a Chinese language corpus,

we achieve state-of-the-art scores in word segmentation, POS tagging and dependency

parsing.

2.2 Model

All full joint parsing models we present in this paper use the transition-based algorithm

in Section 2.2.1 and the embeddings of character strings in Section 2.2.2. We present two

neural networks: the feature-input models in Section 2.2.3 and the biLSTM models in

Section 2.2.4.
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2.2.1 Transition-based Algorithm for Joint Segmentation, POS Tagging,
and Dependency Parsing

Based on Hatori et al. [3], we use a modified arc-standard algorithm for character transi-

tions. Fig. 2.1 shows the joint parsing for a Chinese sentence “技术有了新的进展。”,

where the first four characters “技术有了” have been processed and a partial tree is

made. The model consists of one buffer and one stack. The buffer contains characters in

the input sentence, and the stack contains words shifted from the buffer. The stack words

may have their child nodes. The words in the stack are formed by the following transition

operations.

• SH(t) (shift): Shift the first character of the buffer to the top of the stack as a new

word.

• AP (append): Append the first character of the buffer to the end of the top word of

the stack.

• RR (reduce-right): Reduce the right word of the top two words of the stack, and

make the right child node of the left word.

• RL (reduce-left): Reduce the left word of the top two words of the stack, and make

the left child node of the right word.

The RR and RL operations are the same as those of the arc-standard algorithm [46]. SH

makes a new word whereas AP makes the current word longer by adding one character.

The POS tags are attached with the SH(t) transition.

In this paper, we explore both greedy models and beam decoding models. This pars-

ing algorithm works in both types. We also develop a joint model of word segmentation

and POS tagging, along with a dependency parsing model. The joint model of word

segmentation and POS tagging does not have RR and RL transitions.

2.2.2 Embeddings of Character Strings

First, we explain the embeddings used in the neural networks. Later, we explain details

of the neural networks in Section 2.2.3 and 2.2.4.
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技术有了新的进展。

新的进展。

Stack (word-based) Buffer (character-based)

SH RL SH

技术

RR

了

AP SH

Technology have made new progress.

Left children
(word-based)

Right children
(word-based)

Transitions History:

有

Figure 2.1: Transition-based Chinese joint model for word segmentation, POS tagging

and dependency parsing. The buffer contains characters of the input sentences while the

stack contains the partial trees.

Both meaningful words and incomplete tokens appear during transition-based joint

parsing. Only character sequences that compose some words can be use for word repre-

sentations as the inputs of models, while other incomplete tokens can not be represented

in models regardless to whether the representations used in models are one-hot or dis-

tributional representations. If models can handle representations of incomplete tokens,

they could become useful features during parsing. For example, “南京东路” (Nanjing

East Road, the famous shopping street of Shanghai) is treated as a single Chinese word

in the Penn Chinese Treebank (CTB) corpus. There are other named entities of this form

in CTB, e.g, “北京西路” (Beijing West Road) and “湘西路” (Hunan West Road). In

these cases, “南京” (Nanjing) and “北京” (Beijing) are location words, while “东路”

(East Road) and “西路” (West Road) are sub-words. “东路” and “西路” are similar in

terms of their character composition and usage, which is not sufficiently considered in

the previous work.

“物理学” is often divided into two words “物理” and “学”(learning, subject) in

other corpus. In such cases, if word segmentator make a wrong segmentation between
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“物理” and “学”, the meaning of the whole sentence might not alter. Therefore, the

parser could make a parse tree which is close to the gold tree if they know which words

or characters have similar meanings. Moreover, representations of incomplete tokens are

helpful for compensating the segmentation ambiguity. Suppose that the parser makes

over-segmentation errors and segments “南京东路” to “南京” and “东路”. In this case,

“东路” becomes UNK. However, the models could infer that “东路” is also a location,

from its character composition and neighboring words. This could give models robust-

ness of segmentation errors. In our models, we prepare the word and character embed-

dings in the pre-training. We also use the embeddings of character strings for sub-words

and UNK which are not in the pre-trained embeddings.

Using character representations are not enough and character string representations

are required. To allow models to use the representations of the complete word before

its word boundary is determined, the models have to access the tokens across the buffer

and the stack. However, such character string features could also produce numerous

unknown tokens. In another example, when models have made segmentation errors in

the previous transitions, the models have to treat wrongly-segmented tokens for features.

Such wrongly-segmented tokens often become UNK. From these reasons, the neural

network model we propose here requires not only the word or character embeddings but

also the embeddings of arbitrary character strings.

The characters and words are embedded in the same vector space during pre-training.

We prepare the same training corpus with the segmented word files and the segmented

character files. Both files are concatenated and learned by word2vec [21]. We use the

embeddings of 1M frequent words and characters. Words and characters that are in the

training set and do not have pre-trained embeddings are given randomly initialized em-

beddings. The development set and the test set have out-of-vocabulary (OOV) tokens for

these embeddings.

The embeddings of the unknown character strings are generated in the neural com-

putation graph when they are required during the model training and parsing. Consider

a character string c1c2 · · · cn consisting of characters ci. When this character string is

not in the pre-trained embeddings, the model obtains the embeddings v(c1c2 · · · cn) by

means of each character embeddings
∑n

i=1 v(ci). The word embeddings and the means

of the character embeddings have the same dimension. Embeddings of words, characters
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and character strings have the same dimension and are chosen in the neural computation

graph. We avoid using the “UNK” vector as far as possible, because this degenerates

the information about unknown tokens. However, models use the “UNK” vector if the

parser encounters characters that are not in the pre-trained embeddings, though this is

quite uncommon.

2.2.3 Feedforward Neural Network with Feature Inputs

Neural Network

We present a neural network with feature inputs model in Figure 2.2. The neural network

for greedy training is based on the neural networks of Chen and Manning [37] and Weiss

et al. [38]. We add the dynamic generation of the embeddings of character strings for

unknown tokens, as described in Section 2.2.2. These embeddings can be swapped to

other word embeddings, character embeddings and combinations of them in the neural

computation graph. This neural network has two hidden layers with 8,000 dimensions.

This is larger than Chen and Manning [37] (200 dimensions) or Weiss et al. [38] (1,024

or 2,048 dimensions). We use the ReLU for the activation function of the hidden layers

[47] and the softmax function for the output layer of the greedy neural network. There

are three randomly initialized weight matrices between the embedding layers and the

softmax function. The loss function L(θ) for the greedy training is

L(θ) = −
∑
s,t

log pgreedys,t +
λ

2
||θ||2,

pgreedys,t (β) ∝ exp

∑
j

wtjβj + bt

 ,

where t denotes one transition among the transition set T ( t ∈ T ). s denotes one

element of the single mini-batch. β denotes the output of the previous layer. w and

b denote the weight matrix and the bias term. θ contains all parameters. We use the

L2 penalty term and the Dropout. The backprop is performed including the word and

character embeddings. We use Adagrad [48] to optimize learning rate. We also consider

Adam [49] and SGD, but find that Adagrad performs better in this model. The other

learning parameters are summarized in Table 3.1.
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Figure 2.2: The neural network with feature inputs model. The greedy output is obtained

at the second top layer, while the beam decoding output is obtained at the top layer.

The input character strings are translated into word embeddings if the embeddings of the

character strings are available. Otherwise, the embeddings of the character strings are

used. We also apply a small size of embeddings for the representations of the length of

words.
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Type Value

Size of h1,h2 8,000

Initial learning rate 0.01

Initial learning rate of beam decoding 0.001

Embedding vocabulary size 1M

Embedding vector size 200

Small embedding vector size 20

Minibatch size 200

Table 2.1: Parameters for the neural network structure and its training.

In our model implementation, we divide all sentences into training batches. Sentences

in the same training batches are simultaneously processed by the neural mini-batches.

By doing so, the model can parse all sentences of the training batch in the number of

transitions required to parse the longest sentence in the batch. This allows the model to

parse more sentences at once, as long as the neural mini-batch can be allocated to the

GPU memory. This can be applied to beam decoding.

Features

The features of this neural network are listed in Table 2.2. We use three kinds of features:

(1) features obtained from Hatori et al. [3] by removing combinations of features, (2)

features obtained from Chen and Manning [37], (3) original features related to character

strings. In particular, the original features include sub-words, character strings across

the buffer and the stack, and character strings in the buffer. Character strings across the

buffer and stack could capture the currently-segmented word. To avoid using character

strings that are too long, we restrict the length of character string to a maximum of four

characters. This model also uses embeddings with small dimensions as a feature of the

parsing states. Unlike Hatori et al. [3], we use sequential characters of sentences for

features, and avoid hand-engineered combinations among one-hot features, because such

combinations could be automatically generated in the neural hidden layers.

In the later section, we evaluate a joint model for word segmentation and POS tag-
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ging. This model does not use the children and children-of-children of stack words as

features.

Note that Hatori et al. [3] use complex features including combinations of two or three

features of one-hot representations. Such features are learned by averaged perceptron,

without hidden layers. In this paper, we do not employ such combinations of the one-hot

representation features. All features are given by the embeddings of characters, character

strings and words, or the embeddings of parsing states. Therefor, such combinations of

several no directly correlated features are represented as distributed representations [14].

Beam Search

Structured learning plays an important role in previous joint parsing models for Chinese.1

In this paper, we use the structured learning model proposed by Weiss et al. [38] and

Andor et al. [2].

In Figure 2.2, the output layer for the beam decoding is at the top of the network.

There are a perceptron layer which has inputs from the two hidden layers and the greedy

output layer: [h1,h2,p
greedy(y)]. This layer is learned by the following cost function

[2]:

L(d∗1:j ; θ) = −
j∑
i=1

ρ(d∗1:i−1, d
∗
i ; θ)

+ ln
∑

d′1:j∈B1:j

exp

j∑
i=1

ρ(d′1:i−1, d
′
i; θ),

where d1:j denotes the transition path and d∗1:j denotes the gold transition path. B1:j is

the set of transition paths from 1 to j step in beam. ρ is the value of the top layer in

Figure 2.2. This training can be applied throughout the network. However, we separately

train the last beam layer and the previous greedy network in practice, as in Andor et al.

[2]. First, we train the last perceptron layer using the beam cost function freezing the

previous greedy-trained layers. After the last layer has been well trained, backprop is

performed including the previous layers. We notice that training the embedding layer at

this stage could make the results worse, and thus we exclude it. Note that this whole

network backprop requires considerable GPU memory. Hence, we exclude particularly
1Hatori et al. [3] report that structured learning with a beam size of 64 is optimal.
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Type Features

Stack word and tags s0w, s1w, s2w

s0p, s1p, s2p

Stack 1 children and tags s0l0w, s0r0w, s0l1w, s0r1w

s0l0p, s0r0p, s0l1p, s0r1p

Stack 2 children s1l0w, s1r0w, s1l1w, s1r1w

Children of children s0l0lw, s0r0rw, s1l0lw, s1r0rw

Buffer characters b0c, b1c, b2c, b3c

Previously shifted words q0w, q1w

Previously shifted tags q0p, q1p

Character of q0 q0e

Parts of q0 word q0f1, q0f2, q0f3

Strings across q0 and buf. q0f1b1, q0f1b2, q0f1b3

Strings of buffer characters b0-2, b0-3, b0-4

b1-3, b1-4, b1-5

b2-4, b2-5, b2-6

b3-5, b3-6

b4-6

Length of q0 lenq0

Table 2.2: Features for the joint model. “q0” denotes the last shifted word and “q1”

denotes the word shifted before “q0”. In “part of q0 word”, f1, f2 and f3 denote sub-

words of q0, which are 1, 2 and 3 sequential characters including the last character of

q0 respectively. In “strings across q0 and buf.”, q0f1bX denotes X sequential characters

beginning from q0f1, including the buffer characters. In “strings of buffer characters”,

bX-Y denotes sequential characters from the X-th to Y -th character of the buffer. The

suffix “e” denotes the end character of the word. The dimension of the embedding of

“length of q0” is 20.
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large batches from the training, because they cannot be on GPU memory. We use multiple

beam sizes for training because models can be trained faster with small beam sizes. After

the small beam size training, we use larger beam sizes. The test of this fully joint model

takes place with a beam size of 16.

Hatori et al. [3] use special alignment steps in beam decoding. The AP transition

has size-2 steps, whereas the other transitions have a size-1 step. Using this alignment,

the total number of steps for an N -character sentence is guaranteed to be 2N − 1 (ex-

cluding the root arc) for any transition path. This can be interpreted as the AP transition

doing two things: appending characters and resolving intra-word dependencies. This

alignment stepping assumes that the intra-word dependencies of characters to the right

of the characters exist in each Chinese word. [3] Fig. 2.3 shows the example of intra-

新华社

新

华

社

Figure 2.3: Example of the intra-word dependencies.

word dependencies of the Chinese word “新华社”. Zhang et al. [4] extend this idea and

propose a joint parser resolving both intra-word and inter-word dependencies. Note that

their parser requires two stacks for characters and words, along with two beams.

2.2.4 BiLSTM-based Model

In Section 2.2.3, we describe a neural network model with feature extraction. Unfortu-

nately, although this model is fast and very accurate, it has two problems: (1) the neural

network cannot see the whole sentence information. (2) it relies on feature engineering.

To solve these problems, Kiperwasser and Goldberg [44] propose a biLSTM neural net-

work parsing model. Surprisingly, their model uses very few features, and biLSTM is

applied to represent the context of the features. Their neural network consists of three

parts: biLSTM, a feature extraction function and a multilayer perceptron (MLP). First,

all tokens in the sentences are converted to embeddings. Second, the biLSTM reads all

embeddings of the sentence. Third, the feature function extracts the feature representa-
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tions of tokens from the biLSTM layer. Finally, an MLP with one hidden layer outputs

the transition scores of the transition-based parser.

In this paper, we propose a Chinese joint parsing model with simple and global fea-

tures using n-gram biLSTM and a simple feature extraction function. The model is de-

scribed in Figure 2.4. We consider that Chinese sentences consist of tokens, including

words, UNKs and incomplete tokens, which can have some meanings and are useful for

parsing. Such tokens appear in many parts of the sentence and have arbitrary lengths.

To capture them, we propose the n-gram biLSTM. The n-gram biLSTM read through

characters ci · · · ci+n−1 of the sentence (ci is the i-th character). For example, the 1-gram

biLSTM reads each character, and the 2-gram biLSTM reads two consecutive characters

cici+1. After the n-gram forward LSTM reads character string ci · · · ci+n−1, it next reads

ci+1 · · · ci+n. The backward LSTM reads from ci+1 · · · ci+n toward ci · · · ci+n−1. There-

fore, the biLSTM read the n-gram character strings starting from one character after the

previous character string. This allows models to capture any n-gram character strings

which start from arbitrary positions in the sentence in the input sentence.2 All n-gram

inputs to biLSTM are given by the embeddings of words and characters or the dynami-

cally generated embeddings of character strings, as described in Section 2.2.2. Although

these arbitrary n-gram tokens produce UNKs, character string embeddings can capture

similarities among them. Following the biLSTM layer, the feature function extracts the

corresponding outputs of the biLSTM layer. We summarize the features in Table 2.3. Fi-

nally, MLP and the softmax function outputs the transition probability. We use an MLP

with three hidden layers as for the model in Section 2.2.3. We train this neural network

with the loss function for the greedy training.

2.2.5 The Dependency Label Inference Model

We also propose an inference model of dependency labels that represents the types of

dependencies given dependency arcs between head and their modifiers. This model takes

inputs of the word and POS tag sequence and the unlabeled dependency tree of the input

sentence. The model consists of a single layer biLSTM and a feed forward neural network

for inferencing a label for each pair of the head and modifier words. Fig. 2.5 represents

2At the end of the sentence of length N , character strings ci · · · cN (N < i + n − 1), which are shorter

than n characters, are used.
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技                  术                  有                  了                新

了新的进展。

Stack (word-based) Buffer (character-based)

技术 有

技术               术有              有了               了新             新的

技术有           术有了            有了新           了新的          新的进

技术有了        术有了新        有了新的        了新的进     新的进展

LSTM LSTM LSTMLSTM

LSTM LSTM LSTMLSTM

LSTM

LSTM

LSTM LSTM LSTMLSTM

LSTM LSTM LSTMLSTM

LSTM

LSTM

LSTM LSTM LSTMLSTM

LSTM LSTM LSTMLSTM

LSTM

LSTM

LSTM LSTM LSTMLSTM

LSTM LSTM LSTMLSTM

LSTM

LSTM

1-
gr

am

MLP

s1 s0 b0

s2

s2_is_NULL

2-
gr

am
3-

gr
am

4-
gr

am
bi

-L
S

TM
bi

-L
S

TM
bi

-L
S

TM
bi

-L
S

TM

s1 s0 b0s2

softmax

concat concat concat

pgreedyt

Figure 2.4: The biLSTM model. Similar to the neural network with feature inputs, the

embeddings of the character strings are used when the n-gram character string is not

listed in the pre-trained word embeddings. The greedy output is obtained at the second

top layer. Input character strings are translated to word embeddings if the embeddings

of the character strings exist. Otherwise, the mean of character embeddings are inputted

instead of word embeddings and the small embeddings of the length of words.
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Model Features

4 features s0w, s1w, s2w, b0c

8 features s0w, s1w, s2w, b0c

s0r0w, s0l0w, s1r0w, s1l0w

Table 2.3: Features for the biLSTM models. All features are words and characters. We

experiment both four and eight features models.
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LSTM LSTM LSTMLSTM

LSTM
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MLP

softmax

p
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Figure 2.5: The labeling model of dependency labels given dependency trees. The model

predicts dependency labels for pairs of heads and their modifiers.

the entire neural network.

To avoid the UNK problems, this model uses the embeddings of words, characters

and character sequences and obtains the representations of the input word sequence as

the same with the models in previous sections. We then convert the sequence of POS

tags into embeddings, concatenate with representations of the input word sequence and

input them to the biLSTM. We extract the representations of head and modifier words,

input them to the two-layer feed forward neural network. Finally the softmax function at

the top of FNN outputs the predicted distributions of dependency labels.
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#snt #oov

CTB-5 Train 18k -

Dev. 350 553

Test 348 278

CTB-7 Train 31k -

Dev. 10k 13k

Test 10k 13k

Table 2.4: Summary of datasets.

2.3 Experiments

2.3.1 Experimental Settings

We use the Penn Chinese Treebank 5.1 (CTB-5) and 7 (CTB-7) datasets to evaluate

our models, following the splitting of Jiang et al. [50] for CTB-5 and Wang et al. [51]

for CTB-7. The statistics of datasets are presented in Table 2.4. We use the Chinese

Gigaword Corpus for embedding pre-training. Our model is developed for unlabeled

dependencies. The development set is used for parameter tuning. Following Hatori et al.

[3] and Zhang et al. [4], we use the standard word-level evaluation with F1-measure.

The POS tags and dependencies cannot be correct unless the corresponding words are

correctly segmented.

We trained three models: SegTag, SegTagDep and Dep. SegTag is the joint word

segmentation and POS tagging model. SegTagDep is the full joint segmentation, tagging

and dependency parsing model. Dep is the dependency parsing model which is similar to

Weiss et al. [38] and Andor et al. [2], but uses the embeddings of character strings. Dep

compensates for UNKs and segmentation errors caused by previous word segmentation

using embeddings of character strings. We will examine this effect later.

Most experiments are conducted on GPUs, but some of beam decoding processes

are performed on CPUs because of the large mini-batch size. The neural network is

implemented with Theano.
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Model Seg POS

Hatori+12 SegTag 97.66 93.61

Hatori+12 SegTag(d) 98.18 94.08

Hatori+12 SegTagDep 97.73 94.46

Hatori+12 SegTagDep(d) 98.26 94.64

M. Zhang+14 EAG 97.76 94.36

Y. Zhang+15 98.04 94.47

SegTag 98.41 94.84

Table 2.5: Joint segmentation and POS tagging scores. Both scores are in F-measure. In

Hatori et al. [3], (d) denotes the use of dictionaries. All scores for previous models are

taken from Hatori et al. [3], Zhang et al. [4] and Zhang et al. [5].

2.3.2 Results

Joint Segmentation and POS Tagging

First, we evaluate the joint segmentation and POS tagging model (SegTag). Table 2.5

compares the performance of segmentation and POS tagging using the CTB-5 dataset.

We compare our model to three previous approaches: Hatori et al. [3], Zhang et al. [4] and

Zhang et al. [5]. Our SegTag joint model is superior to these existing models, including

Hatori et al. [3]’s model with rich dictionary information, in terms of both segmentation

and POS tagging accuracy.

Joint Segmentation, POS Tagging and Dependency Parsing

Table 2.6 presents the results of our full joint model. We employ the greedy trained full

joint model SegTagDep(g) and the beam decoding model SegTagDep. All scores for the

existing models in this table are taken from Zhang et al. [4]. Though our model surpasses

the previous best end-to-end joint models in terms of segmentation and POS tagging, the

dependency score is slightly lower than the previous models. The scores are improved

when the global beam search of [2] is applied. The greedy model SegTagDep(g) achieves

slightly lower scores than beam models, although this model works considerably fast
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Model Seg POS Dep

Hatori+12 97.75 94.33 81.56

M. Zhang+14 EAG 97.76 94.36 81.70

SegTagDep(g) 98.24 94.49 80.15

SegTagDep 98.37 94.83 81.42

Table 2.6: Joint Segmentation, POS Tagging and Dependency Parsing. Hatori et al. [3]’s

CTB-5 scores are reported in Zhang et al. [4]. EAG in Zhang et al. [4] denotes the arc-

eager model. (g) denotes greedy trained models.

because it does not use beam decoding.

Pipeline of Our Joint SegTag and Dep Model

We use our joint SegTag model for the pipeline input of the Dep model (SegTag+Dep).

For simplification, the SegTag model is trained greedily, whereas Dep is trained and

tested by the beam cost function with beams of size 4. Table 2.7 presents the results.

Our SegTag+Dep model performs best in terms of the dependency and other scores. The

SegTag+Dep model is better than the full joint model. This is because most segmenta-

tion errors of these models occur around named entities. Hatori et al. [3]’s alignment

step assumes the intra-word dependencies in words, while named entities do not always

have them. For example, SegTag+Dep model treats named entity “海赛克”, a company

name, as one word, while the SegTagDep model divides this to “海” (sea) and “赛克”,

where “赛克” could be used for foreigner’s name. For such words, SegTagDep prefers

SH because AP has size-2 step of the character appending and intra-word dependency res-

olution, which does not exist for named entities. This problem could be solved by adding

a special transition AP_named_entity which is similar to AP but with size-1 step and

used only for named entities. Additionally, Zhang et al. [4]’s STD (arc-standard) model

works slightly better than Hatori et al. [3]’s fully joint model in terms of the dependency

score. Zhang et al. [4]’s STD model is similar to our SegTag+Dep because they combine

a word segmentator and a dependency parser using “deque” of words.
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Model Seg POS Dep

Hatori+12 97.75 94.33 81.56

M. Zhang+14 STD 97.67 94.28 81.63

M. Zhang+14 EAG 97.76 94.36 81.70

Y. Zhang+15 98.04 94.47 82.01

SegTagDep 98.37 94.83 81.42

SegTag+Dep 98.41 94.84 82.36

Table 2.7: The SegTag+Dep model. Note that the model of Zhang et al. [5] requires other

base parsers.

Model Dep

Dep(g)-cs 80.51

Dep(g) 80.98

Table 2.8: SegTag+Dep(g) model with and without character strings (cs) representations.

Note that we compare these models with greedy training for simplicity’s sake.

Effect of Character String Embeddings

Finally, we compare the two pipeline models of SegTag+Dep to show the effectiveness

of using character string representations instead of “UNK” embeddings. We use two de-

pendency models with greedy training: Dep(g) for dependency model and Dep(g)-cs for

dependency model without the character string embeddings . In the Dep(g)-cs model, we

use the “UNK” embedding when the embeddings of the input features are unavailable,

whereas we use the character string embeddings in model Dep(g). The results are pre-

sented in Table 2.8. When the models encounter unknown tokens, using the embeddings

of character strings is better than using the “UNK” embedding.
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Model Seg POS Dep

Hatori+12 95.42 90.62 73.58

M. Zhang+14 STD 95.53 90.75 75.63

SegTagDep(g) 96.06 90.28 73.98

SegTagDep 95.86 90.91 74.04

SegTag+Dep(g) 96.18 90.90 74.74

SegTag+Dep 96.18 90.90 75.12

Table 2.9: Results from SegTag+Dep and SegTagDep applied to the CTB-7 corpus. (g)

denotes greedy trained models.

CTB-7 experiments

We also test the SegTagDep and SegTag+Dep models on CTB-7. In these experiments,

we notice that the MLP with four hidden layers performs better than the MLP with three

hidden layers, but we could not find definite differences in the experiments in CTB-5.

We speculate that this is caused by the difference in the training set size. We present the

final results with four hidden layers in Table 2.9.

Bi-LSTM Model

We experiment the n-gram bi-LSTMs models with four and eight features listed in Table

2.3. These features are much fewer than the previous models including Hatori et al. [3]

and Zhang et al. [4]. Although the features are fewer than previous models, the models

could capture tokens which are not included in these features through the bi-LSTMs

layer. We summarize the result in Table 2.10. The greedy bi-LSTM models perform

slightly worse than the previous models, but they do not rely on feature engineering.

This suggests that the bi-LSTMs with fewer features can extract representations that are

as good as those of feature-engineered models.
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Model Seg POS Dep

Hatori+12 97.75 94.33 81.56

M. Zhang+14 EAG 97.76 94.36 81.70

SegTagDep (g) 98.24 94.49 80.15

Bi-LSTM 4feat.(g) 97.72 93.12 79.03

Bi-LSTM 8feat.(g) 97.70 93.37 79.38

Table 2.10: Bi-LSTM feature extraction model. “4feat.” and “8feat.” denote the use of

four and eight features.

Model CTB-5 CTB-7

SegTag+Dep (UAS) 82.6 75.1

SegTag+Dep (LAS) 80.0 72.3

Table 2.11: Unlabeled attachment scores (UAS) and labeled attachment scores (LAS) in

experiments of CTB-5 and CTB-7. The results of LAS becomes correct if and only if

the word segmentation and word dependency of the head and modifier words are correct.

The punctuations are removed from the evaluations.

The Inference of the Dependency Labels

We finally present the result of the dependency labeling model for the dependency anal-

ysis with labels. We do our experiments of labeling with the results of our best model

SegTag+Dep in unlabeled dependencies. We obtain the labeled attachment scores from

character inputs without any syntactic and semantic information in CTB-5 and CTB-7.

We present the results on Table 2.11.

We also present the detailed analysis of accuracies per label types. We show the

percentages of accurate label attachments for the head and modifier words pairs that

the original unlabeled dependencies are correct in Table 2.12. In general, the modifiers
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PRD VC SUB OBJ VMOD DEP NMOD PMOD AMOD SBAR

CTB-5 87.4 91.7 94.3 95.7 94.6 94.5 98.5 97.5 95.9 90.7

CTB-7 93.6 84.8 90.6 94.2 97.0 97.0 98.1 97.6 99.1 96.2

Table 2.12: The percentages of accurate labels per correct unlabeled dependencies for

label types in CTB5 and CTB7 experiments. We remove the “P” labels to punctuations

and the “ROOT” labels to the ROOT entities because these labels are obvious from their

definition.

(MOD in tag names) have higher accuracies, while the subjects (SUB) and objects (OBJ),

which represents the global structures in the sentence have lower accuracies.

2.4 Related Work

Zhang and Clark [52] propose an incremental joint word segmentation and POS tagging

model driven by a single perceptron. Zhang and Clark [53] improve this model by us-

ing both character and word-based decoding. Hatori et al. [54] propose a transition-based

joint POS tagging and dependency parsing model. Zhang et al. [55] propose a joint model

using character structures of words for constituency parsing. Wang et al. [56] also pro-

pose a lattice-based joint model for constituency parsing. Zhang et al. [5] propose joint

segmentation, POS tagging and dependency re-ranking system. This system requires

base parsers. In neural joint models, Zheng et al. [57] propose a neural network-based

Chinese word segmentation model based on tag inferences. They extend their models for

joint segmentation and POS tagging. Zhu et al. [58] propose the re-ranking system of

parsing results with recursive convolutional neural network.

2.5 Conclusion

We propose the joint parsing models by the feature-based and bi-LSTM neural networks.

Both of them use the character string embeddings. The character string embeddings help
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to capture the similarities of incomplete tokens. We also explore the neural network with

few features using n-gram bi-LSTMs. Our SegTagDep joint model achieves better scores

of Chinese word segmentation and POS tagging than previous joint models, and our

SegTag and Dep pipeline model achieves state-of-the-art score of dependency parsing.

The bi-LSTM models reduce the cost of feature engineering.



Chapter 3

PAS Analysis with Neural
Generative Approaches

Japanese predicate-argument structure (PAS) analysis involves zero anaphora resolution,

which is notoriously difficult because they rely on the huge knowledge that is covered by

large corpora. To improve the performance of Japanese PAS analysis, it is straightforward

to increase the size of corpora annotated with PAS. However, since it is prohibitively ex-

pensive, it is promising to take advantage of a large amount of raw corpora. In this paper,

we propose a novel Japanese PAS analysis model based on semi-supervised adversarial

training with a raw corpus. In our experiments, our model outperforms existing state-of-

the-art models for Japanese PAS analysis.

3.1 Introduction

In pro-drop languages, such as Japanese and Chinese, pronouns are frequently omitted

when they are inferable from their contexts and background knowledge. The natural

language processing (NLP) task for detecting such omitted pronouns and searching for

their antecedents is called zero anaphora resolution. This task is essential for downstream

NLP tasks, such as information extraction and summarization.

Especially, pronouns representing speakers or listeners are dropped in natural sen-

tences. Such pronoun-dropping appears as null arguments of each predicates and pred-

icates themselves are rarely dropped in Japanese. Since dropped arguments are closely

45
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correlated to its predicates, many studies of Japanese anaphora resolution are based on

predicate argument structure (PAS) analysis. PAS analysis is a task of finding an omit-

ted argument for a predicate. PAS analysis is a task to find an argument for each case

of a predicate. For Japanese PAS analysis, the ga (nominative, NOM), wo (accusative,

ACC) and ni (dative, DAT) cases are generally handled. These cases are roughly cor-

respond to who, what and whom, respectively. To develop models for Japanese PAS

analysis, supervised learning methods using annotated corpora have been applied on the

basis of morpho-syntactic clues. However, omitted pronouns have few clues and thus

these models try to learn relations between a predicate and its (omitted) argument from

the annotated corpora. The annotated corpora consist of several tens of thousands sen-

tences, and it is difficult to learn predicate-argument relations or selectional preferences

from such small-scale corpora. The state-of-the-art models for Japanese PAS analysis

achieve an accuracy of around 50% for zero pronouns [59, 60, 61, 62, 63].

A promising way to solve this data scarcity problem is enhancing models with a

large amount of raw corpora. There are two major approaches to using raw corpora:

extracting knowledge from raw corpora beforehand [64, 60] and using raw corpora for

data augmentation [65].

In traditional studies on Japanese PAS analysis, selectional preferences are extracted

from raw corpora beforehand and are used in PAS analysis models. For example, Sasano

and Kurohashi [64] propose a supervised model for Japanese PAS analysis based on case

frames, which are automatically acquired from a raw corpus by clustering predicate-

argument structures. However, case frames are not based on distributed representations

of words and have a data sparseness problem even if a large raw corpus is employed.

Some recent approaches to Japanese PAS analysis combines neural network models with

knowledge extraction from raw corpora. Shibata et al. [60] extract selectional preferences

by an unsupervised method that is similar to negative sampling [21]. They then use the

pre-extracted selectional preferences as one of the features to their PAS analysis model.

The PAS analysis model is trained by a supervised method and the selectional preference

representations are fixed during training. Using pre-trained external knowledge in the

form of word embeddings has also been ubiquitous. However, such external knowledge

is overwritten in the task-specific training.

The other approach to using raw corpora for PAS analysis is data augmentation. Liu
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et al. [65] generate pseudo training data from a raw corpus and use them for their zero

pronoun resolution model. They generate the pseudo training data by dropping certain

words or pronouns in a raw corpus and assuming them as correct antecedents. After

generating the pseudo training data, they rely on ordinary supervised training based on

neural networks.

In this paper, we propose a neural semi-supervised model for Japanese PAS analysis.

We adopt neural adversarial training to directly exploit the advantage of using a raw cor-

pus. Our model consists of two neural network models: a generator model of Japanese

PAS analysis and a so-called “validator” model of the generator prediction. The genera-

tor neural network is a model that predicts probabilities of candidate arguments of each

predicate using RNN-based features and a head-selection model [66]. The validator neu-

ral network gets inputs from the generator and scores them. This validator can score the

generator prediction even when PAS gold labels are not available. We apply supervised

learning to the generator and unsupervised learning to the entire network using a raw

corpus.

Our contributions are summarized as follows: (1) a novel adversarial training model

for PAS analysis; (2) learning from a raw corpus as a source of external knowledge; and

(3) as a result, we achieve state-of-the-art performance on Japanese PAS analysis.

3.2 Task Description

Japanese PAS analysis determines essential case roles of words for each predicate: who

did what to whom. In many languages, such as English, case roles are mainly determined

by word order. However, in Japanese, word order is highly flexible. In Japanese, major

case roles are the nominative case (NOM), the accusative case (ACC) and the dative case

(DAT), which roughly correspond to Japanese surface case markers: が(ga), を(wo), and

に(ni). These case markers are often hidden by topic markers, and case arguments are

also often omitted.

We explain two detailed tasks of PAS analysis: case analysis and zero anaphora reso-

lution. In Table 3.1, we show four example Japanese sentences and their PAS labels. PAS

labels are attached to nominative, accusative and dative cases of each predicate. Sentence

(1) has surface case markers that correspond to argument cases.
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Sentence (2) is an example sentence for case analysis. Case analysis is a task to

find hidden case markers of arguments that have direct dependencies to their predicates.

Sentence (2) does not have the nominative case marker が(ga). It is hidden by the topic

case marker は(wa). Therefore, a case analysis model has to find the correct NOM case

argument列車(train).

Sentence (3) is an example sentence for zero anaphora resolution. Zero anaphora res-

olution is a task to find arguments that do not have direct dependencies to their predicates.

At the second predicate “巻き込まれた”(was involved), the correct nominative argument

is “タクシー”(taxi), while this does not have direct dependencies to the second predicate.

A zero anaphora resolution model has to find “タクシー”(taxi) from the sentence, and

assign it to the NOM case of the second predicate.

In the zero anaphora resolution task, some correct arguments are not specified in the

article. This is called as exophora. We consider “author” and “reader” arguments as

exophora [67]. They are frequently dropped from Japanese natural sentences. Sentence

(4) is an example of dropped nominative arguments. In this sentence, the nominative

argument is “あなた” (you), but “あなた” (you) does not appear in the sentence. This is

also included in zero anaphora resolution. Except these special arguments of exophora,

we focus on intra-sentential anaphora resolution in the same way as [60, 61, 62, 63]. We

also attach NULL labels to cases that predicates do not have.

3.3 Model

3.3.1 Generative Adversarial Networks

Generative adversarial networks are originally proposed in image generation tasks [31,

68, 69]. In the original model in Goodfellow et al. [31], they propose a generator G and

a discriminator D. The discriminator D is trained to divide the real data distribution

pdata(x) and images generated from the noise samples z(i) ∈ Dz from noise prior p(z).

The discriminator loss is

LD = −
(
Ex∼pdata(x)[logD(x)]

+Ez∼pz(z)[log(1−D(G(z)))]
)
, (3.1)



3.3. MODEL 49

and they train the discriminator by minimizing this loss while fixing the generator G.

Similarly, the generator G is trained through minimizing

LG =
1

|Dz|
∑
i

[
log
(
1−D(G(z(i)))

) ]
, (3.2)

while fixing the discriminatorD. By doing this, the discriminator tries to discriminate the

generated images from real images, while the generator tries to generate images that can

deceive the adversarial discriminator. This training scheme is applied for many genera-

tive tasks including sentence generation [70], machine translation [71], dialog generation

[72], and text classification [73].

3.3.2 Proposed Adversarial Training Using Raw Corpus

Japanese PAS analysis and many other syntactic analyses in NLP are not purely genera-

tive, and we can make use of a raw corpus instead of the numerical noise distribution p(z).

In this work, we use an adversarial training method using a raw corpus, combined with

ordinary supervised learning using an annotated corpus. Let xl ∈ Dl indicate labeled

data and p(xl) indicate their label distribution. We also use unlabeled data xul ∈ Dul
later. Our generator G can be trained by the cross entropy loss with labeled data:

LG/SL = −Exl,y∼p(xl)
[
logG(xl)

]
. (3.3)

Supervised training of the generator works by minimizing this loss. Note that we follow

the notations of Subramanian et al. [70] in this subsection.

In addition, we train a so-called validator against the generator errors. We use the

term “validator” instead of “discriminator” for our adversarial training. Unlike the dis-

criminator that is used for dividing generated images and real images, our validator is

used to score the generator results. Assume that yl is the true labels and G(xl) is the

predicted label distribution of data xl from the generator. We define the labels of the

generator errors as:

q(G(xl),yl) = δargmax[G(xl)], yl , (3.4)

where δi,j = 1 only if i = j, otherwise δi,j = 0. This means that q is equal to 1 if

the argument that the generator predicts is correct, otherwise 0. We use this generator
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error for training labels of the following validator. The inputs of the validator are both

the generator outputs G(x) and data x ∈ D. The validator can be written as V (G(x)).

The validator V is trained with labeled data xl by

LV/SL = −Exl,y∼q(G(xl),yl)

[
log V (G(xl))

]
, (3.5)

while fixing the generatorG. This equation means that the validator is trained with labels

of the generator error q(G(xl),yl).

Once the validator is trained, we train the generator with an unsupervised method.

The generator G is trained with unlabeled data xul ∈ Dul by minimizing the loss

LG/UL = − 1

|Dul|
∑
i

[
log V (G(x

(i)
ul ))

]
, (3.6)

while fixing the validator V . This generator training loss using the validator can be

explained as follows. The generator tries to increase the validator scores to 1, while

the validator is fixed. If the validator is well-trained, it returns scores close to 1 for

correct PAS labels that the generator outputs, and 0 for wrong labels. Therefore, in

Equation (3.6), the generator tries to predict correct labels in order to increase the scores

of fixed validator. Note that the validator has a sigmoid function for the output of scores.

Therefore output scores of the validator are in [0, 1].

We first conduct the supervised training of generator network with Equation (3.3).

After this, following Goodfellow et al. [31], we use k-steps of the validator training and

one-step of the generator training. We also alternately conduct l-steps of supervised

training of the generator. The entire loss function of this adversarial training is

L = LG/SL + LV/SL + LG/UL . (3.7)

Our contribution is that we propose the validator and train it against the generator er-

rors, instead of discriminating generated data from real data. Salimans et al. [68] explore

the semi-supervised learning using adversarial training forK-classes image classification

tasks. They add a new class of images that are generated by the generator and classify

them.

Miyato et al. [74] propose virtual adversarial training for semi-supervised learning.

They exploit unlabeled data for continuous smoothing of data distributions based on the
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adversarial perturbation of Goodfellow et al. [75]. These studies, however, do not use the

counterpart neural networks for learning structures of unlabeled data.

In our Japanese PAS analysis model, the generator corresponds to the head-selection-

based neural network for Japanese anaphora resolution. Figure 3.2 shows the entire

model. The labeled data correspond to the annotated corpora and the labels correspond

to the PAS argument labels. The unlabeled data correspond to raw corpora. We explain

the details of the generator and the validator neural networks in Sec.3.3.3 and Sec.3.3.4

in turn.

3.3.3 Generator of PAS Analysis

The generator predicts the probabilities of arguments for each of the NOM, ACC and

DAT cases of a predicate. As shown in Figure 3.3, the generator consists of a sentence

encoder and an argument selection model. In the sentence encoder, we use a three-layer

bidirectional-LSTM (bi-LSTM) to read the whole sentence and extract both global and

local features as distributed representations. The argument selection model consists of a

two-layer feedforward neural network (FNN) and a softmax function.

For the sentence encoder, inputs are given as a sequence of embeddings v(x), each

of which consist of word x, its inflection from, POS and detailed POS. They are concate-

nated and fed into the bi-LSTM layers. The bi-LSTM layers read these embeddings in

forward and backward order and outputs the distributed representations of a predicate and

a candidate argument: hpredj and hargi . Note that we also use the exophora entities, i.e.,

an author and a reader, as argument candidates. Therefore, we use specific embeddings

for them. These embeddings are not generated by the bi-LSTM layers but are directly

used in the argument selection model.

We also use path embeddings to capture a dependency relation between a predicate

and its candidate argument as used in Roth and Lapata [76]. Although Roth and Lapata

[76] use a one-way LSTM layer to represent the dependency path from a predicate to its

potential argument, we use a bi-LSTM layer for this purpose. We feed the embeddings

of words and POS tags to the bi-LSTM layer. In this way, the resulting path embedding

represents both predicate-to-argument and argument-to-predicate paths. We concatenate

the bidirectional path embeddings to generate hpathij , which represents the dependency

relation between the predicate j and its candidate argument i.
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For the argument selection model, we apply the argument selection model [66] to

evaluate the relation between a predicate and its potential argument for each argument

case. In the argument selection model, a single FNN is repeatedly used to calculate

scores for a child word and its head candidate word, and then a softmax function cal-

culates normalized probabilities of candidate heads. We use three different FNNs that

correspond to the NOM, ACC and DAT cases. These three FNNs have the same in-

puts of the distributed representations of j-th predicate hpredj , i-th candidate argument

hargi and path embedding hpathij between the predicate j and candidate argument i.

The FNNs for NOM, ACC and DAT compute the argument scores scasekargi,predj
, where

casek ∈ {NOM,ACC,DAT}. Finally, the softmax function computes the probability

p(argi|predj ,casek) of candidate argument i for case k of j-th predicate as:

p(argi|predj ,casek) =
exp

(
scasekargi,predj

)
∑
argi

exp
(
scasekargi,predj

) . (3.8)

Our argument selection model is similar to the neural network structure of Matsub-

ayashi and Inui [63]. However, Matsubayashi and Inui [63] does not use RNNs to read

the whole sentence. Their model is also designed to choose a case label for a pair of a

predicate and its argument candidate. In other words, their model can assign the same

case label to multiple arguments by itself, while our model does not. Since case argu-

ments are almost unique for each case of a predicate in Japanese, Matsubayashi and Inui

[63] select the argument that has the highest probability for each case, even though prob-

abilities of case arguments are not normalized over argument candidates. The model of

Ouchi et al. [62] has the same problem.

3.3.4 Validator

We exploit a validator to train the generator using a raw corpus. It consists of a two-layer

FNN to which embeddings of a predicate and its arguments are fed. For predicate j,

the input of the FNN is the representations of the predicate h′predj and three arguments{
h′ NOM
predj

, h′ ACC
predj

, h′ DAT
predj

}
that are inferred by the generator. The two-layer FNN outputs

three values, and then three sigmoid functions compute the scores of scalar values in a

range of [0, 1] for the NOM, ACC and DAT cases:
{
s′ NOM
predj

, s′ ACC
predj

, s′ DAT
predj

}
. These
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scores are the outputs of the validator D(x). We use dropout of 0.5 at the FNN input and

hidden layer.

The generator and validator networks are coupled by the attention mechanism, or the

weighted sum of the validator embeddings. As shown in Equation (3.8), we compute a

probability distribution of candidate arguments. We use the weighted sum of embeddings

v′(x) of candidate arguments to compute the input representations of the validator:

h′ casekpredj
= Ex∼p(argi)[v

′(x)]

=
∑
argi

p(argi|predj ,casek)v′(argi).

This summation is taken over candidate arguments in the sentence and the exophora en-

tities. Note that we use embeddings v′(x) for the validator that are different from the

embeddings v(x) for the generator, in order to separate the computation graphs of the

generator and the validator neural networks except the joint part. We use this weighted

sum by the softmax outputs instead of the argmax function. This allows the backpropa-

gation through this joint. We also feed the embedding of a predicate to the validator:

h′predj = v′(predj). (3.9)

Note that the validator is a simple neural network compared with the generator. The

validator has limited inputs of predicates and arguments and no inputs of other words in

sentences. This allows the generator to overwhelm the validator during the adversarial

training.

3.3.5 Implementation Details

The neural networks are trained using backpropagation. The backpropagation has been

done to the word and POS tags. We use Adam [49] at the initial training of the generator

network for the gradient learning rule. In adversarial learning, Adagrad [48] is suitable

because of the stability of learning. We use pre-trained word embeddings from 100M

sentences from Japanese web corpus by word2vec [21]. Other embeddings and hidden

weights of neural networks are randomly initialized.

For adversarial training, we first train the generator for two epochs by the supervised

method, and train the validator while fixing the generator for another epoch. This is
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Type Value

Size of hidden layers of FNNs 1,000

Size of Bi-LSTMs 256

Dim. of word embedding 100

Dim. of POS, detailed POS, inflection form tags 10, 10, 9

Minibatch size for the generator and validator 16, 1

Table 3.1: Parameters for neural network structure and training.

because the validator training preceding the generator training makes the validator result

worse. After this, we alternately do the unsupervised training of the generator (LG/UL),

k-times of supervised training of the validator (LV/SL) and l-times of supervised training

of the generator (LG/SL).

We use the N(LG/UL)/N(LG/SL) = 1/4 and N(LV/SL)/N(LG/SL) = 1/4, where

N(·) indicates the number of sentences used for training. Also we use minibatch of 16

sentences for both supervised and unsupervised training of the generator, while we do

not use minibatch for validator training. Therefore, we use k = 16 and l = 4. Other

parameters are summarized in Table 3.1.

3.4 Experiments

3.4.1 Experimental Settings

Following Shibata et al. [60], we use the KWDLC (Kyoto University Web Document

Leads Corpus) corpus [77] for our experiments.1 This corpus contains various Web docu-

ments, such as news articles, personal blogs, and commerce sites. In KWDLC, lead three

sentences of each document are annotated with PAS structures including zero pronouns.

For a raw corpus, we use a Japanese web corpus created by Hangyo et al. [77], which has

no duplicated sentences with KWDLC. This raw corpus is automatically parsed by the

Japanese dependency parser KNP.

1The KWDLC corpus is available at http://nlp.ist.i.kyoto-u.ac.jp/EN/index.php?

KWDLC
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KWDLC # snt # of dep # of zero

Train 11,558 9,227 8,216

Dev. 1,585 1,253 821

Test 2,195 1,780 1,669

Table 3.2: KWDLC data statistics: the numbers of sentences, the predications of case

analysis and zero anaphora resolution in each corpus split. “of dep” represents the case

analysis and the arguments have direct dependencies to their predicates. “of zero” repre-

sents the zero anaphora resolution.

KWDLC NOM ACC DAT

# of dep 7,224 1,555 448

# of zero 6,453 515 1,248

Table 3.3: KWDLC training data statistics: the numbers of predictions for each case.

“of dep” represents the case analysis and the arguments have direct dependencies to their

predicates. “of zero” represents the zero anaphora resolution.

We focus on intra-sentential anaphora resolution, and so we apply a preprocess to

KWDLC. We regard the anaphors whose antecedents are in the preceding sentences as

NULL in the same way as Ouchi et al. [59], Shibata et al. [60]. Tables 3.2 and 3.3 list the

statistics of KWDLC.

We use the exophora entities, i.e., an author and a reader, following the annotations

in KWDLC. We also assign author/reader labels to the following expressions in the same

way as Hangyo et al. [67], Shibata et al. [60]:

author “私” (I), “僕” (I), “我々” (we), “弊社” (our company)

reader “あなた” (you), “君” (you), “客” (customer), “皆様” (you all)

Note that author and reader expressions are often omitted in natural Japanese sentences.

So it is reasonable to predict these exophora in our analysis. We also add a NULL for
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Case Zero

Ouchi+ 2015 76.5 42.1

Shibata+ 2016 89.3 53.4

Gen 91.5 56.2

Gen+Adv 92.0‡ 58.4‡

Table 3.4: The results of case analysis (Case) and zero anaphora resolution (Zero). We

use F-measure as an evaluation measure. ‡ denotes that the improvement is statistically

significant at p < 0.05, compared with Gen using paired t-test.

cases that predicates do not have. Precisely speaking, the NULL case of a predicate can

be divided into two types. The first type is that the predicate normally requires that case

but it does not appear in the sentence. The second type is that the predicate does not have

that case in ordinal uses. In the first type of predicates, the model need to find out that

the missing arguments are not in the current sentence. In the later case of predicates, the

model makes use of the general knowledge of the predicates. This is the case that the

extracted knowledge is effective.

Following Ouchi et al. [59] and Shibata et al. [60], we conduct two kinds of analysis:

(1) case analysis and (2) zero anaphora resolution. Case analysis is the task to determine

the correct case labels when predicates and their arguments have direct dependencies but

their case markers are hidden by surface markers, such as topic markers. Zero anaphora

resolution is a task to find certain case arguments that do not have direct dependencies to

their predicates in the sentence.

Following Shibata et al. [60], we exclude predicates that the same arguments are filled

in multiple cases of a predicate. This is relatively uncommon and 1.5 % of the whole

corpus are excluded. Predicates are marked in the gold dependency parses. Candidate

arguments are just other tokens than predicates. This setting is also the same as Shibata

et al. [60].

Folllwoing the previous studies, all performances are evaluated with micro-averaged

F-measure scores [60].
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Case analysis Zero anaphora resolution

Model NOM ACC DAT NOM ACC DAT

Ouchi+ 2015 87.4 40.2 27.6 48.8 0.0 10.7

Shibata+ 2016 94.1 75.6 30.0 57.7 17.3 37.8

Gen 95.3 83.6 39.7 60.7 30.4 41.2

Gen+Adv 95.3 85.4 51.5 62.3 31.1 44.6

Table 3.5: The detailed results of case analysis and zero anaphora resolution for the

NOM, ACC and DAT cases. Our models outperform the existing models in all cases. All

values are evaluated with F-measure.

Case Zero

Gen 91.5 56.2

Gen+Aug 91.2 57.0

Gen+Adv 92.0‡ 58.4‡

Table 3.6: The comparisons of Gen+Adv with Gen and the data augmentation model

(Gen+Aug) for case analysis (Case) and zero anaphora resolution (Zero). All values are

evaluated in F-measure following the previous experiments. ‡ denotes that the improve-

ment is statistically significant at p < 0.05, compared with Gen+Aug.

3.4.2 Experimental Results

We compare two models: the supervised generator model (Gen) and the proposed semi-

supervised model with adversarial training (Gen+Adv). We also compare our models

with two previous models: Ouchi et al. [59] and Shibata et al. [60], whose performance

on the KWDLC corpus is reported.

Table 3.4 lists the experimental results. Our models (Gen and Gen+Adv) outper-

formed the previous models. Furthermore, the proposed model with adversarial training

(Gen+Adv) was significantly better than the supervised model (Gen).
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3.4.3 Comparison with Data Augmentation Model

We also compare our GAN-based approach with data augmentation techniques. A data

augmentation approach is used in Liu et al. [65]. They automatically process raw cor-

pora and make drops of words following some rules. However, it is difficult to directly

apply their approach to Japanese PAS analysis because Japanese zero-pronoun depends

on syntactic trees. If we make some drops of arguments of predicates in sentences, this

can cause lacks of nodes in syntactic trees. If we prune some branches of dependency

trees of the sentence in this way, this causes the data bias problem.

Instead of the approach of Liu et al. [65], we use existing training corpora and word

embeddings for the data augmentation. Our augmentation idea is that swapping some

words in the training corpus with their related words from the pre-trained word embed-

dings. First we randomly choose an argument word w in the training corpus and then

swap it with another word w′ with the probability of p(w,w′). We choose top-20 near-

est words to the original word w in the pre-trained word embedding as candidates of

swapped words. The probability is defined as p(w,w′) ∝ [v(w)>v(w′)]r, where r = 10.

This probability is normalized by top-20 nearest words in the pre-trained word embed-

dings. We then merge this generated corpus and the original training corpus for training

the PAS model in the same way with the supervised Gen model. We conducted several

experiments and found that the model trained with the same amount of the generated

corpus as the training corpus achieved the best result.

Table 3.6 shows the results of the data augmentation model and the GAN-based

model. Our Gen+Adv model performs better than the data augmented model. Note

that our data augmentation model does not use raw corpora directly.

3.4.4 Discussion

Result Analysis

We report the detailed performance for each case in Table 3.5. Among the three cases,

zero anaphora resolution of the ACC and DAT cases is notoriously difficult. This is

attributed to the fact that these ACC and DAT cases are fewer than the NOM case in the

corpus as shown in Table 3.3. However, we can see that our proposed model, Gen+Adv,

performs much better than the previous models especially for the ACC and DAT cases.
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Although the number of training instances of ACC and DAT is much smaller than that of

NOM, our semi-supervised model can learn PAS for all three cases using a raw corpus.

This indicates that our model can work well in resource-poor cases.

We analyzed the results of Gen+Adv by comparing with Gen and the model of Shi-

bata et al. [60]. Here, we focus on the ACC and DAT cases because their improvements

are notable.

• “パックは 洗って、 分別して リサイクルに 出さなきゃいけないので 手間がか

かる。“

It is bothersome to wash, classify and recycle spent packs.

In this sentence, the predicates “洗って” (wash), “分別して” (classify), “(リサイクル

に)出す” (recycle) takes the same ACC argument, “パック” (pack). This is not so easy

for Japanese PAS analysis because the actual ACC case marker “を” (wo) of “パック”

(pack) is hidden by the topic marker “は” (wa). The Gen+Adv model can detect the

correct argument while the model of Shibata et al. [60] fails. In the Gen+Adv model,

each predicate gives a high probability to “パック” (pack) as an ACC argument and

finally chooses this. We found many examples similar to this and speculate that our

model captures a kind of selectional preferences.

The next example is an error of the DAT case by the Gen+Adv model.

• “各専門分野も お任せ下さい。”

please leave every professional field (to φ)

The gold label of this DAT case (to φ) is NULL because this argument is not written

in the sentence. However, the Gen+Adv model judged the DAT argument as “author”.

Although we cannot specify φ as “author” only from this sentence, “author” is a possible

argument depending on the context.

Validator Analysis

We also evaluate the performance of the validator during the adversarial training with raw

corpora. Figure 3.4 shows the validator performance and the generator performance of

Zero on the development set. Since our model is trained thought the adversarial learning,

or the mini-max game of the two neural networks, the validator performance can be
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evaluated with the outputs of the previous generator. In a simple viewpoint, when the

generator performs better, the validator performs worse because the validator is trained

against the errors of generator outputs.

We notice that the NOM case and the other two cases have different curves in both

graphs. In the validator scores, the curve of NOM decreases slightly, while ACC curves

increase for the first few epochs. The DAT curve follows the ACC curve thought it fluc-

tuates. In the generator scores, the curve of NOM increases much in the first few epochs,

and it slightly increases in later epochs. Other curves drop for the first few epochs and

increase much in the later epochs. This can be explained by the speciality of the NOM

case. The NOM case has much more author/reader expressions than the other cases. The

prediction of author/reader expressions depends not only on selectional preferences of

predicates and arguments but on the whole of sentences. Therefore the validator that

relies only on predicate and argument representations cannot predict author/reader ex-

pressions well.

In the ACC and DAT cases, the scores of the generator and validator increase in the

first epochs. This suggests that the validator learns the weakness of the generator and vice

versa. However, in later epochs, the scores of the generator increase with fluctuation,

while the scores of the validator saturates. This suggests that the generator gradually

becomes stronger than the validator.

3.5 Related Work

3.5.1 Japanese PAS Analysis

We did our experiments on the KWDLC corpus [77]. Hangyo et al. [77] introduced

the expressions of the reader and writer for the candidates of zero pronounces. Shibata

et al. [60] proposed a neural network-based PAS analysis model using local and global

features. Their model is based on the non-neural model of Ouchi et al. [59]. Shibata

et al. [60] achieved state-of-the-art performances at that time on the case analysis and

zero anaphora resolution in KWDLC corpus. They use external resources to extract

selectional preferences. Since our model uses external resources, we compare our model

with the models of Shibata et al. [60] and Ouchi et al. [59].
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Ouchi et al. [62] proposed a semantic role labeling-based PAS analysis model us-

ing Grid-RNNs. Matsubayashi and Inui [63] proposed a case label selection model with

feature-based neural networks. They conducted their experiments on NAIST Text Cor-

pus (NTC) [78, 61]. NTC consists of newspaper articles, and does not include the an-

notations of author/reader expressions that are common in Japanese natural sentences,

while KWDLC covers wide varieties of documents collected from the web. In addition,

there are several important differences between NTC and KWDLC. (1) The granularity

of words and tags are different. This causes several problems when someone tries to

train a model and export it to the other dataset. (2) NTC consists of newspaper articles,

while KWDLC covers wide varieties of documents collected from the web. Therefore,

KWDLC might be suitable for general purposes. (3) NTC does not include author/reader

expressions, while KWDLC includes the annotations of frequent drops of these. Actu-

ally the drops of author/reader expressions are ubiquitous in Japanese natural sentences.

NTC does not include these because sentences in newspaper articles tend to obey specific

formats.2 (4) NTC contains more annotation errors than the creators of the corpus ex-

pected as described in [61]. Therefore, the scores of NTC are not comparable with those

of KWDLC.

KWDLC includes the annotations of frequent drops of author/reader expressions that

are common in Japanese natural sentences. It is more likely that newswire sentences have

multiple arguments for a single case because of coordinate structures. This is a problem

of corpus domains. Therefore if you apply some analysis models for newspaper articles

or legal corpus, author/reader expressions are uncommonly omitted from the sentences

and the models trained with non-author/reader expressions succeed. Otherwise, the mod-

els with author/reader expressions succeed in webblogs or daily conversations corpus.

3.6 Conclusion

We proposed a novel Japanese PAS analysis model that exploits a semi-supervised ad-

versarial training. The generator neural network learns Japanese PAS and selectional

2In many cases, using many pronouns of authors and readers sound strange or even rude in Japanese.

However, in some domains including newspaper articles and legal documents, sentences are written with

specific forms and pronouns are rarely dropped.
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preferences, while the validator is trained against the generator errors. This validator

enables the generator to be trained from raw corpora and enhance it with external knowl-

edge. In the future, we will apply this semi-supervised training method to other NLP

tasks.
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Figure 3.1: Examples of Japanese sentences and their PAS analysis. In sentence (1), case

markers (ga, wo, ni) correspond to NOM, ACC, and DAT. In example (2), the correct

case marker is hidden by the topic marker (wa) In sentence (3), the NOM argument of

the second predicate (makikomareta) that is dropped. NULL indicates that the predicate

does not have the corresponding case argument or that the case argument is not written

in the sentence.
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Figure 3.2: The overall model of adversarial training with a raw corpus. The PAS gen-

erator G(x) and validator V (x). The validator takes inputs from the generator as a form

of the attention mechanism. The validator itself is a simple feed-forward network with

inputs of j-th predicate and its argument representations: {h′predj , h
′casek
predj

}. The validator

returns scores for three cases and they are used for both the supervised training of the

validator and the unsupervised training of the generator. The supervised training of the

generator is not included in this figure.
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Figure 3.3: The generator of PAS. The sentence encoder is a three-layer bi-LSTM to

compute the distributed representations of a predicate and its arguments: hpredi and hargi .

The argument selection model is two-layer feedforward neural networks to compute the

scores, scasekargi,predj
, of candidate arguments for each case of a predicate.
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Figure 3.4: Left: the development scores of the validator during adversarial training

epochs. Right: the development scores of the generator for the zero pronounce resolu-

tions during adversarial training epochs.



Chapter 4

Semantic Analysis with
Reinforcement Learning

In Semantic Dependency Parsing (SDP), semantic relations form directed acyclic graphs,

rather than trees. We propose a new iterative predicate selection (IPS) algorithm for SDP.

Our IPS algorithm combines the graph-based and transition-based parsing approaches in

order to handle multiple semantic head words. We train the IPS model using a combina-

tion of multi-task learning and task-specific policy gradient training. Trained this way,

IPS achieves a new state of the art on the SemEval 2015 Task 18 datasets. Furthermore,

we observe that policy gradient training learns an easy-first strategy.

Semantic dependency parsing (SPD) assigns directed acyclic graphs to words in sen-

tences, reflecting their semantic structure according to a linguistic formalism. Because

words may have multiple semantic heads, head-selection parsing algorithms from syntac-

tic dependency parsing cannot be directly applied. We propose a novel iterative predicate

selection (IPS) algorithm. We show that we can learn better IPS state representations

using multi-task learning, and that IPS error propagation can be reduced using policy

gradient training. By combining multi-task learning and reinforcement learning, our IPS

architecture achieves a new state of the art across three linguistic formalisms. In our anal-

ysis of our experiments, we make two important observations: (a) Our architecture learns

to adopt an easy-first strategy, and (b) in the context of multi-task learning and drop-out,

fine-tuning with reinforcement learning is surprisingly robust across hyper-parameters.

67
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4.1 Introduction

Dependency parsers assign syntactic structures to sentences in the form of trees. Seman-

tic dependency parsing (SDP), first introduced in the SemEval 2014 shared task [10],

in contrast, is the task of assigning semantic structures in the form of directed acyclic

graphs to sentences. SDP graphs consist of binary semantic relations, connecting seman-

tic predicates and their arguments. A notable feature of SDP is that words can be the

semantic arguments of multiple predicates. For example, in the English sentence: “The

man went back and spoke to the desk clerk” – the word “man” is the subject of the two

predicates “went back” and “spoke”. SDP formalisms typically express this by two di-

rected arcs, from the two predicates to the argument. This yields a directed acyclic graph

that expresses various relations among words. However, the fact that SDP structures are

directed acyclic graphs means that we cannot apply standard dependency parsing algo-

rithms to SDP.

Standard dependency parsing algorithms are often said to come in two flavors: Transition-

based parsers score transitions between states, and gradually build up dependency graphs

on the side. Graph-based parsers, in contrast, score all candidate edges directly and ap-

ply decoders to the resulting weight matrices. The two types of parsing algorithms have

different advantages [8], with transition-based parsers often having more problems with

error propagation and, as a result, with long-distance dependencies. This paper presents

a compromise between transition-based and graph-based parsing, called iterative predi-

cate selection (IPS) – inspired by head selection algorithms for dependency parsing [66]

– and show that error propagation, for this algorithm, can be reduced by a combination

of multi-task and reinforcement learning.

Multi-task learning is motivated by the fact that there are several linguistic formalisms

for SDP. Fig. 4.1 shows the three formalisms used in the shared task. The DELPH-IN

MRS (DM) formalism derives from DeepBank [79] and minimal recursion semantics

[80]. Predicate-Argument Structure (PAS) is a formalism based on the Enju HPSG parser

[81] and is generally considered slightly more syntactic of nature than the other for-

malisms. Prague Semantic Dependencies (PSD) are extracted from the Czech-English

Dependency Treebank [82]. There are several overlaps between these linguistic for-

malisms, and we show below that parsers, using multi-task learning strategies, can take
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The man went back and spoke to the desk clerk.
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The man went back and spoke to the desk clerk.
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Figure 4.1: Semantic dependency parsing arcs of DM, PAS and PSD formalisms.

advantage of these overlaps or synergies during training. Specifically, we follow Peng

et al. (2017) in using multi-task learning to learn representations of parser states that gen-

eralize better, but we go beyond their work, using a new parsing algorithm and showing

that we can subsequently use reinforcement learning to prevent error propagation and

tailor these representations to specific linguistic formalisms.

Contributions In this paper, (i) we propose a new parsing algorithm for semantic de-

pendency parsing (SDP) that combines transition-based and graph-based approaches; (ii)

we show that multi-task learning of state representations for this parsing algorithm is su-

perior to single-task training; (iii) we improve this model by task-specific policy gradient

fine-tuning; (iv) we achieve a new state of the art result across three linguistic formalisms;

finally, (v) we show that policy gradient fine-tuning learns an easy-first strategy, which

reduces error propagation.

4.2 Related Work

There are generally two kinds of dependency parsing algorithms, namely transition-based

parsing algorithms and graph-based ones [8, 52]. In graph-based parsing, a model is
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trained to score all possible dependency arcs between words, and decoding algorithms

are subsequently applied to find the most likely dependency graph. The Eisner algorithm

[84] is often used for finding the most likely dependency trees, whereas the AD3 algo-

rithm [85] is used for finding SDP graphs in Peng et al. (2017). During training, the

loss is computed after decoding, leading the models to reflect a structured loss. The ad-

vantage of graph-based algorithms is that there is no real error propagation to the extent

the decoding algorithms are global inference algorithm, but this also means that rein-

forcement learning is not easily applicable to graph-based parsing. In transition-based

parsing, the model is typically taught to follow a gold transition path to obtain a perfect

dependency graph during training. This training paradigm has the obvious limitation that

the model only ever gets to see states that are on gold transition paths, and error prop-

agation is therefore likely to happen when the parser predicts wrong transitions leading

to unseen states [8, 86]. Wang et al. (2018) proposed a similar transition-based parsing

model for SDP; they modified some transitions of the Arc-Eager algorithm [88] to create

multi-head graphs. There has been several attempts to train transition-based parsers with

reinforcement learning approaches. Zhang and Chan (2009) applied SARSA [90] to an

Arc-Standard model, using the SARSA updates to fine-tune a model that was pre-trained

using a feed-forward neural network. Fried and Klein (2018), more recently, presented

experiments with applying policy gradient learning to several constituency parsers, in-

cluding the recent proposed RNNG transition-based parser [92]. In their experiments,

however, the models trained with the policy gradient method do not always perform bet-

ter than models trained with supervised learning. We hypothesize this is due to credit

assignment being difficult in transition-based parsing. Initial errors often make it im-

possible to recover correct parse trees. Our proposed model explores multiple transition

paths at once and avoids making risky decisions in the initial transitions; we also pre-train

our model with supervised learning techniques to avoid sampling from irrelevant states

at the early stages of training.
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4.3 Model

4.3.1 Iterative Predicate Selection

We propose a new semantic dependency parsing algorithm, based on the head-selection

algorithm for syntactic dependency parsing [66]. Head selection iterates over sentences,

fixing the head of a word w in each iteration, ignoring w in future iterations. This is

possible for dependency parsing because each word has a unique head-word, including

the root of the sentence, which is attached to an artificial root symbol. However, in

SDP, words may attach to multiple head-words or semantic predicates whereas other

words may not attach to any semantic predicates. Thus, we propose an iterative predicate

selection (IPS) parsing algorithm, as a generalization of head-selection in SDP.

The proposed algorithm is formalized as follows. First, we define transition opera-

tions for all words in a sentence. For the i-th word wi in a sentence, the model selects

one transition tτi from the set of possible transitions T τi for each transition time step τ .

Generally, the possible transitions Ti for the i-th word are expressed as follows:

{NULL,ARCi,ROOT,ARCi,1, · · · ,ARCi,n}

where ARCi,j is a transition to create an arc from the j-th word to the i-th word, encoding

that the semantic predicate wj takes wi as an semantic argument. NULL is a special

transition that does not create an arc. The set of possible transitions T τi for the i-th word

at time step τ is a subset of possible transitions Ti that satisfy two constraints: (i) no arcs

can be reflexive, i.e., wi cannot be an argument of itself, and (ii) the new arc must not be

a member of the set of arcs Aτ comprising the partial parse graph yτ constructed at time

step τ . Therefore, we obtain: T τi = Ti/(ARCi,i ∪Aτ ). The model then creates semantic

dependency arcs by iterating over the sentence as follows:

1 For word wi, select a head arc from T τi .

2 Update the semantic dependency parse graph.

3 If all words select NULL, the parser halts. Otherwise, it returns to 1.

Fig. 4.2 shows the transitions of IPS parsing algorithm during parsing a sentence

“The man went back and spoke to the desk clerk.” with DM. There are several paths
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from the initial state to the final parsing state, depending on the orders of creating the

arcs. This is a part of the non-deterministic oracle problem [86]. In IPS parsing, some

arcs are easy to predict; others are very hard to predict. Long-distance arcs are generally

difficult to predict, but they are very important for several down-stream applications,

including reordering for machine translation [93]. Since long-distance arcs are harder

to predict, and transition-based parsers are prone to error propagation, several easy-first

strategies have been introduced, both in supervised [94] and unsupervised dependency

parsing [95]. We take a more principled approach, learning this kind of strategy using

reinforcement learning. We observe, however, that the learned strategies exhibit a clear

easy-first preference.

4.3.2 Neural Model

Neural network consists of the encoder model of the input sentences, the encoder of

the dependency table and the predicate-selection model. Our neural network model is

designed to find transitions for all words in a sentence. Fig. 4.3 shows the overall neural

network. It consists of the encoder model of the input sentence and the partial SDP graph,

as well as a multi-layered perceptron (MLP) for the semantic head-selection of each

word. Firstly the encoder of the sentence the representations of all words in a sentence.

Secondly, the feed-forward neural network computes the scores of semantic dependency

relations between words and their predicate candidates. Finally, the softmax function

choose transitions for all words. We apply both the supervised and reinforcement learning

for this neural network.

Sentence Encoder We employ bidirectional long short-term memory (BiLSTM) layers

for encoding words in sentences. A BiLSTM consists of two LSTMs that reads the

sentence forward and backward, and concatenates their output before passing it on. For

a sequence of tokens [w1, · · · , wn], the inputs of tokens in a sentence are words, POS

tags and the lemmas.1 They are mapped to de-dimensional embedding vectors by an

embedding matrix, concatenated to form 3de-dimensional vectors and used as the input of

BiLSTMs. Finally, we obtain the hidden representations of all words [h(w1), · · · , h(wn)]
1In the analysis of our experiments, we include an ablation test, where we leave out lemma information

for a more direct comparison with one of our baselines.
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from the three-layer BiLSTMs. We use three-layer stacked BiLSTMs. We also use

special embeddings hNULL for the NULL transition and hROOT for the ROOT of the

sentence. These vectors have the same dimension d′ as the hidden representations hwi
from BiLSTMs. We use a sequence of vectors H = [hNULL, hROOT, hw1 , · · · , hwn ] for

predicate candidates. These representations of the input sentence are independent from

semantic dependency structures

Encoder of Semantic Dependencies The SDP graph is stored in a semantic depen-

dency matrixD ∈ {0, 1}n×(n+1) for a sentence of n words. In the initial state, all cells in

the semantic dependency matrix are 0. The rows of the semantic dependency matrix M

represent arguments and the columns represent head-candidates, including the ROOT of

the sentence, which is represented by the first column of the matrix. For each transition

for a word, the model fills in one cell in a row, if the transition is not NULL. A cell D[i, j]

is set to 1, when the model predicts that the i− 1th word is an argument of the jth word

or ROOT (if j = 0). The shape of the semantic dependency matrix is D ∈ {0, 1}n×(n+1)

for a sentence of n words. In the initial state, all cells in the semantic dependency matrix

are 0.

The parser updates the dependency table during parsing. This semantic dependency

matrix is used for both storing parsing results and the feature inputs of parsing states in

later transitions.

The model encode the semantic dependency matrix. While the representations of the

input sentence are independent from the transition histories, these inputs of dependencies

are affected by extracted semantic dependency structures. We also use the semantic de-

pendency matrix to inform the feedforward neural network whether pairs of words and

their predicate candidates have already connected by a semantic dependency arcs or not.

We use a single BiLSTM layer for encoding the semantic dependency matrix. Firstly,

we convert the semantic dependency matrixD into a rank three tensorD′ ∈ Rn×(n+1)×de .

Here e is the dimension of embedding vectors of words and n is the number of words in

a sentence. The model constructs D′ using the following method: For (i, j)-th cell dij
of the matrix D, the model creates the (i, j)-th element d′ij of tensor D′ with the embed-

ding vector of the semantic head-word if they have a directed semantic dependency arc.

Otherwise the model swaps the (i, j)-th cell with the special embedding vector wNONE
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representing NONE:

d′ij =

wj−1 (di,j = 1)

wNONE (di,j = 0)
(4.1)

and we assign w0 = wROOT. 2 In this D′ tensor, D′i contains the representations of the

existing predicates for i-th word. For the i-th word, the model obtains the sequence of

hidden representations hdi,j of existing head-words that depends on the position j of the

head-candidates by a single layer BiLSTM.

[hdi,1, · · · , hdi,n+1] = BiLSTM(Ti) (4.2)

. Note that the BiLSTM reads the semantic heads of the i-th word separately and therefore

the model make use of word-wise dependency information. Finally, we concatenate the

hidden representation of the NULL transition as follows.

Hd = [hdNULL, h
d
∗,1, · · · , hd∗,n+1] (4.3)

We also employ dependency flags that directly encode the semantic dependency ma-

trix and indicate whether the corresponding arcs are already created or not. Flag repre-

sentations F ′ are also three-rank tensors, consisting of two hidden representations: fARC

and fNOARC of df -dimensional vectors and expressed as follows.

f ′ij =

fARC (dij = 1)

fNOARC (dij = 0)
(4.4)

We concatenate the flag representation fNULL ∈ Rdf for the NULL transition at the first

axis.

F = [fNULL; f
′
∗,1, · · · , f∗,n+1] (4.5)

We do not use BiLSTMs for these flags. These flags reflect the current state of the

semantic dependency matrix.

2We define that di,0 corresponds to ROOT arcs in semantic dependency matrices. Therefore the model

swaps the (i, j)-th cell with wj−1 if they have an arc.
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Predicate Selection Model The semantic predicate selection model comprises an MLP

with inputs from the encoder of the sentence and the semantic dependency matrix: the

sentence representation H , the semantic dependency representation Hd, and the depen-

dency flag F . They are rank three tensors and concatenated at the third axis. Formally,

the score sij of the i-th word and the j-th transition is expressed as follows.

sij = MLP([hi, hj , h
d
ij , fij ]) (4.6)

The model computes the probability of the transition tj for each word i by applying a

softmax function.

pi(tj) = softmaxj(sij) (4.7)

This probability of transitions for word wi is normalized over transition scores si∗ with

softmax function. These transition probabilities are defined for each word in a sentence.

For the MLP, we use a concatenation of a three-layer MLP, a two-layer MLP and a matrix

multiplication as follows.

MLP(x) =W 3
3 a(W

3
2 a(W

3
1 x)) +W 2

2 a(W
2
1 x) +W 1

1 x (4.8)

W ∗∗′ are matrices or vectors used in this MLP. Here, we use this MLP for predicting a

scalar score sij ; therefore, W 3
3 ,W

2
2 ,W

1
1 are vectors. a(·) is an activation function that

consists of Dropout and ReLU.

For supervised learning, we use a cross entropy loss

Lτ (θ) = −
∑
i

∑
T

li log pi(T |yτ ) (4.9)

for the sentence x of the parse tree yτ of the time step τ . Here li is a label of transitions

for the i-th word and θ represents all trainable parameters. This label is drawn from gold

transitions and the possible gold transitions may be multiple. This is known as a part

of the non-deterministic oracle problem [86]. In supervised learning, we apply random

selections from gold transitions to create transition labels.

Labeling Model We also develop a semantic dependency labeling neural network. This

neural network consists of three-layer stacked BiLSTMs and a MLP for predicting a

semantic dependency label between words and their predicates. We use a MLP that is
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defined in Eq.4.8. Note that the output dimension of this MLP is the number of semantic

dependency labels. The input of this MLP is the hidden representations of a word i and

its predicates j: [hi, hj ] extracted from the stacked BiLSTMs. The score s′ij(l) of the

label l for the arc from predicate j to word i is predicted as follows.

s′ij(l) = MLP′([hi, hj ]) (4.10)

This is trained through the softmax cross entropy loss of supervised learning.

4.3.3 Reinforcement Learning

Policy Gradient Reinforcement learning is a method for learning to iteratively act ac-

cording to a dynamic environment in order to optimize future rewards. In our context,

the agent corresponds to the neural network model predicting the transition probabilities

p(tτi ) that are used in the parsing algorithm. The environment includes the current parse

graph yτ , and the rewards rτ are computed by comparing the predicted parse graph to

the gold parse graph yg.

We adapt a variation of the policy gradient method [36] for IPS parsing. The objective

function to maximize rewards is

J(θ) = Eπ [r
τ
i ] (4.11)

and transition policy for i-th word is given by the probability of transitions π ∼ pi(tτi |yτ ).
The gradient of Eq.4.11 is given as follows.

∇J(θ) = Eπ [r
τ
i∇ log pi(t

τ
i |yτ )] (4.12)

When we compute this gradient, given a policy π, we approximate the expectation Eπ
for any transition sequence with a single transition path t that is sampled from policy π:

∇J(θ) ≈
∑
tτi ∈t

[rτi∇ log pi(t
τ
i |yτ )] (4.13)

We summarize our policy gradient learning algorithm for SDP in Algorithm 1. For

the i-th word at time step τ , the model samples one transition tτi from the set of possible

transitions Ti, following the transition probability of π. After sampling tτi , the model
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updates the parse graph to yτ+1 and computes the reward rτi . For words in a sentence,

the model compute a pair of the transition and reward. 3 When NULL becomes the most

likely transition for all words, or the time step exceeds the maximum number of time steps

allowed, we return the current parse tree. We then update the parameters of our model

with the gradients computed from the sampled transitions and their rewards for each time

step. We update parameters for each time step to reduce memory requirements.

Note how the cross entropy loss and the policy gradient loss are similar, if we do not

sample from the policy π, and rewards are non-negative. However, these are the important

differences between supervised learning and reinforcement learning: (1) Reinforcement

learning uses sampling of transitions. This allows our model to explore transition paths

that supervised models would never follow. (2) In supervised learning, decisions are

independent of the current time step τ , while in reinforcement learning, decisions depend

on τ . This means that θ parameters should be updated after the parser finishes parsing the

input sentence. (3) Labels must be non-negative in supervised learning, while rewards

can be negative in reinforcement learning.

Overall, the cross entropy loss is able to optimize for choosing transitions given a

configuration, while the policy gradient objective function is able to optimize the entire

sequence of transitions drawn from sampling according to the policy. We demonstrate

the usefulness of reinforcement learning in our experiments below.

Rewards for SDP In reinforcement learning of games or robotics, rewards are often

game scores or points the players gain. However, rewards are not straightforwardly de-

fined when reinforcement learning technics are applied to natural language processing

tasks. We introduce intermediate rewards, given during parsing, at different time steps.

The reward rτi of the i-th word is determined as shown in Table 4.1. The model gets a

positive reward for creating a new correct arc to the i-th word, or if the model for the

first time chooses a NULL transition after all arcs to the i-th word are correctly created.

The model gets a negative reward when the model creates wrong arcs. When our model

chooses NULL transitions for the i-th word before all gold arcs are created, the reward rτi
becomes 0. However, the model does not necessarily take penalties or negative rewards

3For the i-th word that all gold arcs to it are already created and the argmax transition is NULL, the model

skip the i-th word because there are no further transitions.
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Reward Transitions

rτi = 1 (1) The model creates a new correct arc from

a semantic predicate to the i-th word.

(2) The first time the model chooses the NULL

transition after all gold arcs to the i-th word

have been created, and no wrong arcs to the i

words have not been created.

rτi = −1 (3) The model creates a wrong arc from a

semantic predicate candidate to the i-th word.

rτi = 0 (4) All other transitions.

Table 4.1: Rewards in SDP policy gradient.

for the i-th word in later transitions and the entire transitions do not necessarily finish

at this time. In later transitions, the model can get more rewards when the model create

correct arcs to the i-th word or the model choose NULL transition after all arcs to the i-th

word are correctly created. Intuitively, this contributes the stability of the reward-based

learning.

4.3.4 Implementation Details

We use 100-dimensional, pre-trained Glove [22] word vectors. Words or lemmas in

the training corpora that do not appear in pre-trained embeddings are associated with

randomly initialized vector representations. Embeddings of POS tags and other special

symbol are also randomly initialized. We apply Adam as our optimizer. Preliminary ex-

periments show that mini-batching led to a degradation in performance. When we apply

policy gradient, we pre-train our model using supervised learning. We then use policy

gradient to task-specific fine-tuning our model. We also find that updating parameters

of BiLSTM and word embeddings during policy gradient makes training quite unsta-

ble. Therefore we fix the BiLSTM parameters during policy gradient. In our multi-task

learning set-up, we apply multi-task learning of the shared stacked BiLSTMs [30, 96]

in supervised learning. We use task-specific MLPs for the three different linguistic for-

malisms: DM, PAS and PSD. Therefore, when we train our model with a multi-task and
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Name Value

Encoder BiLSTM hidden layer size 600

Dependency LSTM hidden layer size 200

The dimensions of embeddings de,df 100, 128

MLPs hidden layer size 4000

Dropout rate in MLPs 0.5

Maximum transitions of policy gradient 10

Table 4.2: Hyper-parameters in our experiments.

reinforcement learning condition, we train the shared BiLSTM using multi-task learn-

ing beforehand, and then we fine-tune the task-specific MLPs with policy gradient. We

summarize the rest of our hyper-parameters in Table 4.2.

4.4 Experiments

We use the SemEval 2015 Task18 [97] SDP dataset for evaluating our model. The train-

ing corpus contains 33,964 sentences from the WSJ corpus; the development and in-

domain test were taken from the same corpus and consist of 1,692 and 1,410 sentences,

respectively. The out-of-domain test set of 1,849 sentences is drawn from Brown corpus.

All sentences are annotated with three semantic formalisms: DM, PAS and PSD. We

use the standard splits of the datasets [98, 99]. Following standard evaluation practice

in semantic dependency parsing, all scores are micro-averaged F-measures [83, 87] with

labeled attachment scores (LAS).

The system we propose is the IPS parser trained with a multi-task objective and fine-

tuned using reinforcement learning. This is referred to as IPS+ML+RL in the results

tables. To highlight the contributions of the various components of our architecture, we

also report ablation scores for the IPS parser without multi-task training and reinforce-

ment learning (IPS), with only multi-task training (IPS+ML) and with only reinforce-

ment learning (IPS+RL). We compare our proposed system with three state-of-the-art

SDP parsers: Freda3 of Peng et al. (2017), the ensemble model in Wang et al. (2018) and

Peng et al. (2018). In Peng et al. (2018), they use syntactic dependency trees, while we

do not use them in our models.
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Model DM PAS PSD Avg.

Peng+ 17 Freda3 90.4 92.7 78.5 88.0

Wang+ 18 Ens. 90.3 91.7 78.6 86.9

Peng+ 18 91.6 - 78.9 -

IPS 91.1 92.4 78.6 88.2

IPS +ML 91.2 92.4 78.8 88.3

IPS +RL 91.6‡ 92.8‡ 79.2‡ 88.7‡

IPS +ML +RL 91.9‡ 92.8‡ 79.3‡ 88.8‡

Table 4.3: Labeled parsing performance on in-domain test data. Avg. is the weighted

score of three formalisms. ‡ of the +RL models represents that the scores are statistically

significant at p < 10−3 with their non-RL counterparts.

The results of our experiments in in-domain dataset are also shown in Table 4.3. We

observe that our basic IPS model achieve competitive scores in DM and PAS parsing.

We assume that this is because our parser exploits the softmax function for selecting arcs

rather to external graph-decoding algorithms, such as AD3. Multi-task learning of the

shared BiLSTM (IPS+ML) leads to small improvements across the board, which is con-

sistent with the results of multi-task learning results of Peng et al. (2017). The model

trained with reinforcement learning (IPS+RL) performs better than the model trained by

supervised learning (IPS). These differences are already significant. Most importantly,

the combination of multi-task learning and policy gradient-based reinforcement learning

(IPS+ML+RL) achieves the best results among all IPS models and the previous state of

the art models, by some margin. We also obtain similar results for the out-of-domain

datasets, as shown in Table 4.4. All improvements of reinforcement learning are statisti-

cally significant in paired t-test.

Evaluating Our Parser without Lemma Since our baseline [83] does not rely on

neither lemma or any syntactic information, we also make a comparison of IPS+ML

and IPS+ML+RL trained with word and POS embeddings, but without lemma embed-

dings. The results are given in Table 4.5. We see that our model is still better on average
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Model DM PAS PSD Avg.

Peng+ 17 Freda3 85.3 89.0 76.4 84.4

Peng+ 18 86.7 - 77.1 -

IPS +ML 86.0 88.2 77.2 84.6

IPS +ML +RL 87.2‡ 88.8‡ 77.7‡ 85.3‡

Table 4.4: Labeled parsing performance on out-of-domain test data. Avg. is the micro-

averaged score of three formalisms. ‡ of the +RL models represents that the scores are

statistically significant at p < 10−3 with their non-RL counterparts.

Model DM PAS PSD Avg.

Peng+ 17 Freda3 90.4 92.5 78.5 88.0

IPS +ML -Lemma 90.7 92.3 78.3 88.0

IPS +ML +RL -Lemma 91.2‡ 92.9‡ 78.8‡ 88.5‡

Table 4.5: The effect of using lemma embeddings on in-domain test datasets. ‡ of +RL

models represents that the scores are statistically significant at p < 10−3 with their non-

RL counterparts.

and achieves better performance on three formalisms. However, we also notice that the

lemma information do not improve the performance in the PAS formalism.

4.4.1 Effect of Reinforcement Learning

In this subsection, we analyze the sequential decision making strategies learned by our

policy gradient fine-tuning in the above experiments. Fig. 4.4 shows the distributions

of the length of the created arcs in the first, second, third and fourth transitions for all

words, in the various IPS models in the development corpus. These distributions show

the length of the arcs the models tend to create in the first and later transitions. Since

long arcs are harder to predict, an easy-first strategy would typically amount to creating

short arcs first.
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In supervised learning (IPS+ML), there is a slight tendency to create shorter arcs

first, but while the ordering is relatively consistent, the differences are very weak. It is

slightly more probable that short arcs between neighboring words are created in the first

transitions, but the differences with later-transitions are slight.

This is in sharp contrast with the distributions we see for our policy gradient parser

(IPS+ML+RL). Here, across the board, it is very likely that the first transition con-

nects neighboring words; and very unlikely that neighboring words are connected at

later stages. This suggests that reinforcement learning learns an easy-first strategy of

predicting short arcs first.

Note that unlike easy-first algorithms in syntactic parsing [86], we do not hardwire

an easy-first strategy into our parser; but rather, we learn it from the data, because it

optimizes our long-term rewards.

Finally, we give a few examples of the learned easy-first strategy. Fig. 4.5 shows a few

sentence excerpts from the development corpus, and the order in which arcs are created.

We again compare the model trained with supervised learning (IPS+ML) to the model

with reinforcement learning (IPS+ML+RL). In examples (a) and (b), the IPS+ML+RL

model creates arcs inside noun phrases first and then creates arcs to the verb. IPS+ML,

in contrast, creates arcs with inconsistent orders. There are lots of similar examples in

the development data. In clause (c), for example, it seems that IPS+ML+RL follows

a grammatical ordering, while IPS+ML does not. In the last clause (d), it seems that

IPS+ML+RL first resolves arcs from modifiers, in “chief financial officer”, then creates

an arc from the adjective phrase “, who will be hired”, and finally creates an arc from

the external phrase “the position of ”. Surprisingly, IPS+ML+RL completely follows

the syntactic dependency structure while we do not feed any syntactic structures during

supervised and reinforcement learning.

4.4.2 Effects of Semantic Dependency Matrix

We use the semantic dependency matrix for features of intermediate parsing state, which

enable the model to learn from creating arcs. This is a notable advantages of IPS algo-

rithm because the model can know the middle states and choose next transitions. We also

observed that if we do not use the representations of the semantic dependency matrix, the

performance of the IPS parser become drastically worse in both supervised learning and
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reinforcement learning.

4.5 Conclusion

We propose a novel iterative predicate selection (IPS) parsing model for semantic depen-

dency parsing. We apply multi-task learning to learn general representations of parser

configurations, and use reinforcement learning for task-specific fine-tuning. In our ex-

periments, our multi-task reinforcement IPS model achieves state-of-the-art results in

three SDP linguistic formalisms. We show that reinforcement learning, by exploration of

the transition space, enables our model to learn an effective easy-first strategy.
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Figure 4.2: Construction of semantic dependency arcs (DM) in the IPS parsing algorithm.

Parsing begins from the initial state and proceeds to the final state following one of several

paths. In the left path, the model resolves adjacent arcs first. In contrast, in the right path,

distant arcs that rely on the global structure are resolved first.
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Figure 4.3: Our network architecture: (a) The encoder of the sentence for the hidden

representation of hi and hj and the MLP for transition probabilities. (b) The encoder of

the semantic dependency matrix for the representation of hdij . The MLP also takes the

arc flag representation fij (see text for explanation).
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Algorithm 1 Policy gradient learning for IPS Algorithm

Input: Sentence x with an empty parsing tree y0.

Let a time step τ = 0 and finish flags f∗ = 0.

for 0 ≤ τ < the number of maximum iterations do
Compute πτ and argmax transitions t̂i = argmaxπτi .

if ∀i ; t̂τi = NULL then
break

end if
for i-th word in a sentence do

if check a finish flag fi = 1 then
continue

end if
if all arcs to word i are correctly created in yτ and t̂i = NULL then

Let a flag f = 1

continue
end if
Sample tτi from πτi .

Update the parsing tree yτ to yτ+1.

Compute a new reward rτi from yτ , yτ+1 and yg .

end for
Store a pair of the state, transitions and rewards for words {yτ , tτ∗ , rτ∗}.

end for
Shuffle pairs of {yτ , tτ∗ , rτ∗} for a time step τ .

for a pair {yτ ′
, tτ∗ , r

τ ′

∗ } of time step τ ′ do
Compute gradient and update parameters.

end for
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Figure 4.4: Distributions of the length of arcs: (a) Supervised learning (IPS+ML). (b)

Reinforcement learning (IPS+ML+RL). The four lines correspond to the first to fourth

transitions in the derivations.
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the position of chief financial officer , who will be hired from ... 

Within weeks the unfolding Iran-Contra scandal took away ... 

Morgan will help evaluate DFC’s position and help determine alternatives.

The U.S. Commerce Department reported a $ 10.77 billion deficit ...
123 4
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12 34

1 2 34
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c)

d)
213 4

Figure 4.5: Examples of clauses parsed with DM formalism. The underlined words

are the semantic predicates of the argument words in rectangles in the annotation. The

superscript numbers are the orders of creating arcs by IPS+ML and the subscript numbers

are the orders by IPS+ML+RL. In the clause (a), we show a partial SDP graph to visualize

the SDP arcs.



Chapter 5

Conclusion

5.1 Overview

In this thesis, I introduced three different models in the fundamental analysis of NLP

models. These models are from syntactic to semantic analyses: joint syntactic analysis,

case analysis and zero anaphora resolution and semantic dependency parsing.

In the first joint syntactic analysis, I applied the joint model of word segmentation,

POS tagging and dependency parsing. This achieves the state-of-the-art performance of

Chinese syntactic analysis and leads the multi-task learning models of the modern NLP

models.

After we investigate the joint syntactic model, we proceed to the syntactic and seman-

tic analysis: case analysis and zero pronounce resolution. This task largely depends on

selectional preference: the combinations of predicates and their arguments. We proposed

the generative adversarial neural network-based model for semi-supervised learning and

extraction of selectional preferences. In the experiments of KWDLC corpus, we achieve

state-of-the-art performance in Japanese case analysis and zero anaphora resolution.

We notice that many of the previous models rely on hand-engineered parsing struc-

tures for semantic analysis. We propose a new semantic dependency parsing model and

train it with reinforcement learning. Reinforcement learning allows the model to select

the optimal parsing way depending on the data structure.

In this decade, neural networks have turned to be the most sophisticated way to rep-

resent natural language entities. They have succeeded in many supervised tasks. Indeed

89
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if you train your model with only limited supervised datasets, your model would acquire

not the general knowledge or the common sense but task-specific representations. In

other words, if you develop models with supervised learning, your task was “solved”

when your datasets were created. Actually, it is possible that such task-specific models

solve NLP tasks without common sense. Multi-task learning contributes neural networks

to learn knowledge that is shared among several tasks, while it gives up task-specific

turning in many cases. If neural network obtains the common sense as human have, it

would become the most sophisticated model for general tasks. In this thesis, we explorer

the basis of those models.

5.2 The Relations of The Proposed models

Our proposed models are from syntactic to semantic analysis. We choose the suitable

neural network approaches for each of the analyses. We emphasize that these neural

approaches can be widely applied for the many fundamental analyses tasks. For example,

the multi-task and joint neural networks are used not only joint syntactic analysis but also

the later analyses. The PAS analysis model jointly resolves the Japanese case analysis

and zero anaphora resolutions. Our semantic dependency parsing model employs the

multi-task learning of the DM, PAS and PSD formalisms.

The generative adversarial neural network and the reinforcement learning approaches

are also closely correlated and the generative adversarial learning can be interpreted with

reinforcement learning viewpoints. The validator of the generative adversarial neural

network is used for extracting the reward signals of the reinforcement learning. In the

semantic dependency parsing model, rewards are given by specific rules, while the PAS

analyses model exploits the validator for predicting rewards.

These approaches are closely related and further studies should be done based on

these approaches.
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5.3 Future Work

5.3.1 The Joint Model of Fundamental Analysis and Application

In this thesis, we focus on the fundamental analysis of natural texts and propose a joint

model of them. However, such models are often combined with the systems in the NLP

applications. In machine translation studies, recent models often take end-to-end ap-

proaches while the fundamental analysis models are attempted to be used with. In other

application tasks such as chatbot studies, the entire system consists of small models such

as the fundamental analysis of input texts, searching models and text generation models.

In both studies, the fundamental analysis is indeed essential because the meaning of the

input texts determines the next actions of the system.

However, models are independently developed in current systems. This is because

the multi-task learning datasets that can be used for both the fundamental analysis and

applications do not exist in many cases. Although this is a really important research

issue, it is nearly prohibited to create such datasets because of the annotation costs. The

next studies of NLP would be how to fulfil the gap between the language understanding

models and application models? Reinforcement learning of models under surrounding

models as environments would be one possible answer.

5.3.2 Neural Network and Future

The idea of neural network originally comes from the network of neuron cells in the

cortex of the human brains. Such neurons are modeled as spiking neurons with ordinal

differential equations for their activation or often called as spikes for a kind of binary

outputs. Today, many researchers use neural networks that use different formalisms,

for example, ReLU function for their activation and continuous value outputs. Instead

of their simplicities, these neural networks outperform many existing models in many

machine learning tasks including those of natural language processing.

However, it seems that the current neural network has a critical difference from those

of biological neural networks, or especially human brains, rather to those model dif-

ferences. Neural network models lack the common sense of our world. From an NLP

viewpoint, the lack of common sense means the lack of external knowledge. In this the-

sis, we explorer the models to compensate for the lack of external knowledge with the
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generative approach. Reinforcement learning is another possible solution for models to

learn external knowledge through interaction with the external world.

In conclusion, we consider that how to teach neural networks common sense would

be the most important problem to be solved in the next decades. Natural language pro-

cessing must be a key to solve this, but this problem might be solved with the combina-

tions of artificial intelligence studies including natural language processing.
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