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概要

本研究では、単性生殖する種の集団において、実数値をもつ量的表現型の形
質値 (以下、省略して形質値)の進化を記述する適応ダイナミクスと呼ばれる
数理モデルの数学的な基礎づけを目的とする。
大多数の個体が同一の形質値をもつ一つの種の集団において、集団で支配

的な個体群 (residents)からmutationによって新たな形質値をもつ微小個体
群 (mutants)が発生したとすると、residentsとmutantsの間で生存競争が発
生する。mutationによって発生した生存競争において、一方の個体群が勝利
して新たに集団の大多数を占めることにより集団の形質値が置換される。し
たがって “mutationから selectionまでの 1サイクル”を、集団が持つ形質値
の進化の 1ステップとみなすことができる。適応ダイナミクスの大まかな枠
組みは、この進化の 1ステップを繰り返すことで集団の形質値が step-by-step
に変動していく様子を調べることである。
しかしこのままではmutationが発生するたびに、二つの個体群の間の競

争を記述する力学系（競争モデル）を調べることになり、長期間に渡る進化の
様子を解析する上では不便である。そこで、adapteive dyanmics の理論では、
競争モデルにおいて “どちらの個体群が最終的に集団の大多数を占めるか”と
いう情報を反映した “侵入指数”と呼ばれる量が抽出できるということを仮定
する。そしてその侵入指数を用いた “pairwise invasilibity plots method” (省
略して PIP法)と呼ばれる手法で、進化の過程を解析するのである。このよ
うな “侵入指数”の抽出や、PIP 法の数学的な妥当性を検証することが、本論
文の大きな目的である。
第 1章第 1節では侵入指数の定義と PIP法のアルゴリズムを述べ、それ

らを用いてどのように進化の振る舞いを調べることができるかについて概説
する。第 1章第 2節では、競争モデルから侵入指数の候補となる量を抽出す
る具体的な方法を述べる。また、抽出された “侵入指数の候補”が実際に侵入
指数として正当化されている具体的なモデルのうち、本研究において重要な
ものを紹介する。
さて、適応ダイナミクス研究の大きな課題の一つは「与えられた個体群

動態モデルから抽出された “侵入指数の候補”が侵入指数としての要件を満
たす」という仮説が一般には未解決であったことである。この仮説に対して、
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“invasion implies substitution principle” (省略して IIS principle) と呼ばれ
る原理の成否の研究が、適応度の母関数と呼ばれる関数が存在するという仮
定の下で行われてきた。IIS principleは、突然変異で出現した個体群の出現時
点における初期の局所的な振る舞いが、その個体群が大多数を占めるという
状態の大域的な安定性を決定するというものである。それは数学的に言えば、
力学系の固定点の局所的な安定性が力学系の大域的な振る舞いを決定すると
いうことになる。適応度の母関数が存在するという仮定の下で IIS principle
が成立することは、Geritz、Dercole、Rinaldi らの先行研究によって明らか
になっていた。
本研究ではまず、適応度の母関数の存在条件に対して簡単に検証可能な必

要十分条件を与えた。さらに、この結果を用いて、異なる戦略をもつ 2つの個
体群の競争を記述するモデルの範疇においても、適応度の母関数の存在は、系
の微小な摂動により崩壊することを示した。これは、すなわち「IIS principle
の系の微小な摂動に関する安定性については、先行研究の結果からは得られ
ない」ことを意味する。この問題に対して、本研究では、従来 IIS principle
の研究で用いられていた invasion fitness の拡張として、raw invasion fitness
という概念を導入することで、適応度の母関数が存在しない場合も含めた IIS
principle が成立するための十分条件を示した。この結果によって、異なる戦
略を持つ 2つの個体群の種内競争を表すモデルの範疇において IIS principle
の微小な摂動に対する安定性を示した。
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Introduction

Darwin’s theory of evolution is one of the most stimulating fields of natural
science to investigate the origin and the history of biological species. Results
and methods in theoretical study of evolution have been contributing to in-
vestigation in biology as well as in other fields such as social science studying
the mechanism how the human society has obtained indirect reciprocity.

In Darwinism, the process of biological evolution can be separated into
three basic components: replication, mutation and selection. For simplicity
we will consider asexual species. When a living organism reproduce, genetic
information of the progenitor, called genotype, determined by base sequences
of DNA or RNA, is usually inherited to its offspring. At each genetic replica-
tion, however, errors can occur in the process of copying the base sequences,
and, as a result, a new organism having different genotype could emerges.
Mutation in genotype causes diversity in genetic information, and moreover
phenotypic traits (such as physical features and behaviors that can be inher-
ited from generation to generation) could also be altered in association with
the change of genotype. An individual that has different phenotype from
its progenitor due to mutation is called mutant, and an individual that has
one of the dominant strategies in the population is called resident. Because
of the difference of phenotypic traits, mutants may have superiority or in-
feriority in struggle for existence to the progenitors in the population, that
is often measured by the quality of absolute fitness, that is, the expected
number of next generation born from a living organism. The difference of
fitnesses among phenotypic trait values will finally result in selection. The
three components, reproduction, mutation and selection, construct the basic
mechanism of evolution.

Generally the correspondence between genotypes and phenotypes is nei-
ther of right nor of left univalent. Although numerous theoretical approaches
to understand evolutionary phenomena have been proposed, it is difficult to
describe the process of evolution of genotypic traits because of the lack of
one-to-one correspondence. Whereas, a theoretical study of the correspon-
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dence of phenotypic trait values and their fitnesses, called evolutionary game
theory, was introduced by Maynard Smith and Price in [25].

Consider a population, whose members play the role of players of a given
matrix game, and each of them takes his/her own strategy. Maynard Smith
and Price considered that the expected benefit of a strategy induced from
a given matrix game equals to the fitness of the strategy. Their philosophy
was mathematically formalized by Taylor and Jonker in [26] as a dynamical
system of ODEs, called replicator dynamics, that describes selection in the
population. See the definition of (1.2.2) in Section 1.2. Maynard Smith
and Price introduced such notion of evolutionarily stable strategy, ESS for
short, that, if all members of a population take an ESS, then no mutation
is successful, that is, the group having newly emerged strategy by mutation
will soon end up with extinction by selection. In other words, a population
at an ESS is “stable” in regard to mutation, and ESSs work as fixed points
of the process of evolution.

By the works by Eshel [11] and Nowak [21], however, it is found that
ESSs are not always play the role of attracting points of the process of
evolution and analyses of the course of evolution have become an intriguing
topic in theoretical study of adaptive evolution. Simply speaking, adaptive
evolution is a process of gradual change of dominant strategy in a population
induced by the iteration of (MUT) and (COM):

(MUT) In a population having a dominant strategy (resident), mutation causes
emergence of new strategy (mutant).

(COM) Selection makes one strategy go extinct and the other one become new
dominant strategy of the population.

Geritz et al. [15] introduced a graphical method called pairwise invasibility
plots, PIP for short, which helps to investigate step-by-step evolutionary
processes, called trait substitution sequence, TSS for short. Consider a pop-
ulation that has two strategies x and y. Let us assume the existence of a
real-valued function θ(x, y) whose structure determines which strategy will
become a new dominant strategy in the population. Such function θ(x, y)
is called invasion exponent and generally determined by either of absolute
fitness or relative fitness. The PIP method determines the behavior of the
process of evolution from the invasion exponent θ(x, y). To justify the PIP
method, there are two processes:

1. To establish a model of evolution and extract the quantity θ(x, y) of
“invasion exponent” from the model.
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2. To show that the behavior of the evolution described by the model is
determined by the “invasion exponent”.

Nowak [21] called such framework to analyze the process of evolution asso-
ciated with a game adaptive dynamics, and Metz et al. [18] extended the
scope of the theory to evolutionary processes associated with general popula-
tion dynamics under density-dependent selection, adopting initial per-capita
growth rate of mutant at the moment of mutation, called invasion fitness,
as an invasion exponent of mutant strategy.

Let us assume that mutation event is rare enough, that is, mutation
events never occur unless the competition due to the previous mutation
is relaxed. Then one can completely separate the two timescales of the
stochastic process (MUT) and the dynamical system (COM). The idea of
adaptive dynamics is that, assuming mutational step to be small enough,
one can justify PIP method associated with the invasion exponent obtained
from the population dynamics of interest.

Following this philosophy, TSS can be constructed as a Markov jump
process by iterating small and rare mutation and density-dependent selec-
tion. Taking a limit of TSS w.r.t. small mutational step size, one can derive
a dynamical system of ODEs, called canonical equation of adaptive dynam-
ics, CEAD for short, that is one of the main subjects of the field. The notion
of CEAD was first proposed by Dieckmann and Law [9] and mathematically
justified with the notion of TSS by Champagnat et al. [5]. In recent years,
active research to deal with (MUT) and (COM) in one model has been car-
ried out by describing reproduction, mutation and selection as a stochastic
process, called individual based model, IBM for short. The study is moti-
vated to derive TSS and CEAD from the same IBM, taking two limits w.r.t.
large population size and small mutational step size at the same time. See
Baar et al. [1] for example.

In this paper our main interest is the deterministic dynamical system of
ODEs in (COM). More precisely, we are going to investigate how the out-
come of the competition is determined, in other words, the global behavior
of the dynamical system (COM). A typical scenario is that out of two equi-
libriums dominated by residents and mutants respectively, one of them is
globally stable and the other is unstable.

Geritz et al. [14] have dealt with a discrete time model of a monomor-
phic1 population having multiple attractors. In this model, there exists a

1A population is said to be k-morphic, if there exists a set A of k-different strategies
such that, for all x ∈ A, the population density of strategy x is positive. Especially,
a population is respectively said to be monomorphic, dimorphic and trimorphic when k
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pair of a resident dominant state and a mutant dominant state corresponding
to each attractor of the monomorphic population. Making use of their own
“tube theorem”, which corresponds to a discrete version of Lemma A.1.2 in
this paper, they have shown that if a shift between a resident dominant state
and a mutant dominant state occurs, then those states constitute one of the
pairs mentioned above corresponding to a single attractor of the monomor-
phic population. As for continuous time models, i.e. ODE models, Geritz
[12] have gotten an analogue of the tube theorem for a special class of model,
where he have shown the counterpart of the ”invasion implies substitution”
principle for his class. In fact, there exists a generating function for Geritz’s
model and hence the global stability can be determined by the invasion
fitness.

In this direction, a remarkable achievements is the establishment of the
invasion-imply-substitution principle, IIS principle for short, by Dercole and
Rinaldi [8] under the assumption of the existence of generating function[4,
27], which includes Geritz’s framework in [12]. The IIS principle is essentially
equivalent to the claim that the “invasion fitness = invasion exponent” (de-
noted by sx(y) in [13, 10, 2]) ultimately determines which group survives,
residents or mutants. See (2.1.6) for the definition. Mathematically, the
invasion fitness is an index of the local stability of the resident-dominant
equilibrium. Therefore, the IIS principle means that the local stability de-
termines the global stability. In general, such an immediate coincidence of
the local and the global stabilities is not at all obvious. There must be spe-
cial feature in the system, which is the existence of generating function in
the case of [8]. A natural question is what happens without such a strong
constraint. One of our goals is to obtain a criterion of the global stability
beyond IIS principle for a wider class which is still reasonable as a model
of competition of residents and mutants. For this purpose, we are going
to introduce the notion of raw invasion fitness Θ as a natural extension of
invasion fitness and show the results including:

• Theorem 2.2.3: Uniform positivity (and negativity as well) of the local
gradients of raw invasion fitness on the diagonal implies the shift of
global stability between resident dominant state and mutant dominant
state.

• Theorem 2.2.10: There exists a generating function associated with
a dimorphic system if and only if the local gradients of raw invasion
fitness on the diagonal only depends on the total population.

equals to one, two and three. Find the precise definition in Section 1.1
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Another reason to seek a theory beyond the existing IIS principle is the
question on the stability of global behavior under perturbations of an original
system. For example, let us consider the following system:

dn1
dt

= n1
(
1− (n1 + n2) + (x2 − x1)n2(c− an1 − bn2)

)
dn2
dt

= n2
(
1− (n1 + n2) + (x1 − x2)n1(c− an2 − bn1)

)
,

(0.0.1)

where n1 and n2 are population densities of the groups having strategies x1
and x2 respectively. Note that if a = b = 0, then it has been known that
IIS principle can be applied. If a and b are small, the above system can be
thought of as a small perturbation of such a special case. On the other hand,
Theorem 2.2.10 implies that there exists an associated generating function
(and hence the existing IIS principle can be applied) if and only if a = b.
Since a small perturbation to the system can easily destroy the equality a =
b, we need a theory beyond the paradigm of invasion fitness in order to study
the stability of the global behavior under small perturbations. Indeed, by
our results, we do see that the global behavior of (0.0.1) is stable under small
perturbations of the parameters a, b and c as long as (b− c)(a+ b− 2c) ̸= 0.
See Subsection 2.2.3 for details.

In the first chapter, we will introduce the basic notions of adaptive dy-
namics such as PIP method and invasion exponent. The derivation and
justification of invasion exponents under two different types of selection will
be also explained. The interest of this study is to justify the invasion ex-
ponent under density-dependent selection. We will describe our results in
detail in the second chapter.
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Chapter 1

The adaptive dynamics
theory focusing on PIP
method

As we have seen in Introduction, the gradual evolution of strategies i.e.
phenotypic trait values is described as step-by-step alterations of dominant
strategy induced by the iteration of stochastic model of mutation (MUT)
and dynamical model of competition (COM). In the framework of adaptive
dynamics, it has been assumed that one may extract, from the dynamical
model (COM), a quantity called “invasion exponent” that is an indicator to
know which group will win; residents or mutants. Thus the framework of
adaptive dynamics is composed of the following four procedures.

1. To establish a dynamical model of competition between two groups;
residents and mutants.

2. To extract a quantity, which is a candidate for invasion exponent, from
the dynamical model of competition.

3. Based on the invasion exponent, to develop the theory to describe the
process of evolution called pairwise invasibility plots, PIP for short.

Of course, one have to justify mathematically the legitimacy of the invasion
exponent and the PIP method, which is actually one of the main purpose
of this paper and discussed in the next chapter. For the time being in this
chapter, we survey the existing theory of adaptive dynamics, i.e. several
dynamical models of competition of residents and mutants, the extraction
of invasion exponents from the dynamical models, and how the PIP method

10



using the invasion exponent works. To empathize the role of invasion expo-
nent, we are going to do our survey in the reversed order. Namely the first
section of this chapter is devoted to explain what the invasion exponent is,
what conditions an invasion exponent should satisfy (Principle of invasion
exponents) and how to use an invasion exponent to predict the course of
adaptive evolution (the PIP method). In the second section, we will ac-
tually extract invasion exponents from the two specific models and discuss
about whether or not Principle of invasion exponents holds for them.

1.1 Pairwise invasivility plots: a graphical method
for the analysis of evolutionary processes

In place of constructing a stochastic model of evolution, the graphical method
called pairwise invasibility plots, PIP for short, has been widely used to in-
vestigate how the process of evolution behaves. For the use of the PIP
method, we must not only extract a candidate for an invasion exponent
from a given dynamical model of competition but also check whether the
candidate satisfies the requirements for invasion exponent. First of all, we
are going to introduce “Principle of invasion exponents” that provides the
requirements for invasion exponent.

1.1.1 Principle of invasion exponensts

Consider a population of a biological species whose members reproduce their
offsprings asexually. Let X ⊆ R be the collection of strategies i.e. pheno-
typic trait values. Let n(t, x) be the population density of the group of
individuals having the strategy x and let N(t) be the total density of the
population at time t ≥ 0. We call a population k-morphic if

N(t) =
k∑

i=1

n(t, xi),

for k-different strategies x1, . . . , xk ∈ X. In particular population is said
to be monomorphic and dimorphic when k = 1 and k = 2, respectively.
For a finite subset A ⊂ X, we assume that the combination of population
densities (n(t, x))x∈A is driven by a given dynamical model (COM). We call
a population A-dominant, if

lim inf
t→∞

n(t, x) > 0
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for any x ∈ A. In particular {x}-dominant population is simply said to be
x-dominant.

Consider an x-dominant population whose dynamics (n(t, x))t≥0 driven
by a dynamical system has already been relaxed to a stable equilibrium n̂x,
i.e.,

lim
t→∞

n(t, x) = n̂x.

Now let a small mutation generate a new strategy y ∈ X into the popu-
lation, then the population dynamics (n(t, x), n(t, y))t≥0 will be driven by
another dynamical system (COM) with an initial state (n(0, x), n(0, y)) close
to (n̂x, 0). What we need is an indicator that determines the result of this
competition.

We assume the existence of a function θ : X × X → R whose sign
determines the course of the competition of two strategies in the following
way;

Principle of invasion exponent

(A) If θ(x, y) < 0, mutants will disappear eventually and the population
stays x-dominant, i.e. n(t, y) → 0.

(B) If θ(x, y) > 0, the mutants will successfully invade the population cur-
rently occupied by the residents and the population will finally becomes
y-dominant, i.e. n(t, x) converges to zero while n(t, y) does not con-
verge to zero.

Note θ(w,w) = 0 for any w ∈ X. The legitimacy of the PIP method depends
ultimately on whether there exists a function serving as an invasion exponent
for a given dynamical model (COM). More precisely, there are two steps in
the construction of invasion exponent.

• To extract a function θ(x, y) from a given mathematical model of evo-
lution.

• To check whether the function θ(x, y) satisfies requirements for an
invasion exponent in accordance with the original mathematical model.

Generally a model of evolution depends on the type of selection. In the
latter sections 1.2 and 1.3, we will introduce models of frequency-dependent
selection and density-dependent selection and extract the associated invasion
exponents.
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1.1.2 The way to use invasion exponent to predict the course
of evolution

Under the principle of invasion exponent given in the last subsection, we
are going to introduce several important notions associated with an inva-
sion exponent. First in view of the principle of invasion exponent, we have
the following definition of “unbeatable” strategy called evolutionarily stable
strategy.

Definition 1.1.1 (Evolutionarily stable strategy in [6]). A strategy x∗ ∈
X is called an evolutionary stable strategy, ESS for short, if and only if
θ(x, y) < 0 for any y ̸= x.

The notion of ESS was originally introduced by Maynard Smith and
Price in the framework of evolutionary game theory in [25, 24]. The current
definition using the invasion exponent was given by Christiansen [6].

For simplicity, we assume that θ is suitably smooth and θ(x, y) = 0 if
and only if y = x and y = η(x), where η is a smooth function. Then there
exists a smooth function ξ(x, y) such that

θ(x, y) = (y − x)(y − η(x))ξ(x, y), (1.1.1)

where ξ(x, y) > 0 for any x, y ∈ X or ξ(x, y) < 0 for any x, y ∈ X. Although
curves θ(x, y) = 0 may include implicit curves as a composition, by virtue
of the implicit function theorem and the assumption of small mutation, one
can resolve function θ into factors as (1.1.1) without loss of generality.

Definition 1.1.2 (Evolutionarily singular strategy). A strategy x∗ is called

evolutionarily singular if
∂θ

∂y
(x∗, x∗) = 0.

Note that if x∗ is ESS, then it is evolutionarily singular. Since we have

∂θ

∂x
(x∗, x∗) = −∂θ

∂y
(x∗, x∗) = −(x∗ − η(x∗))ξ(x∗, x∗)

by (1.1.1), x∗ is evolutionary singular if and only if x∗ = η(x∗).

Except an evolutionarily singular strategy, it is easy to analyze the course
of evolution. Namely, let a strategy x∗, which is not evolutionarily singular,
dominate the population. The scenario is that a mutation occurs and a new
strategy y∗ emerges in the proximity of x∗. Precisely we have the following
two cases:
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Case I:
∂θ

∂y
(x∗, x∗) > 0

In this case, θ(x, y) ≈ (y − x) ∂θ∂y (x∗, x∗) around (x∗, x∗). Therefore,

x∗-is dominant if y∗ < x∗,

y∗-is dominant if x∗ < y∗.

Hence the evolution proceeds to the direction where the value of the strategy
gets larger.

Case II:
∂θ

∂y
(x∗, x∗) < 0

Similar discussion as above shows that the evolution proceeds to the direc-
tion where the value of the strategy gets smaller. Figure 1.1.2 describes
that, using above two results, one can know the direction of the course of
evolution graphically.

resident

m
u
ta
n
t

x1 x2 x3 x4 y1y2y3y4 resident

m
u
ta
n
t

x4 x3 x2 x1 y4y3y2y1

Figure 1.1.1: Trait substitution sequences far from evolutionarily singu-
lar strategies. The red and blue areas respectively correspond to the sets
{θ(x, y) > 0} and {θ(x, y) < 0}. Invasion of a mutant strategy that emerges
in the direction of the red area results in substitution of dominant strategy,
whereas other mutations result in extinction of the mutants.

The initial study of adaptive dynamics in Section 1.2 dealt with frequency-
dependent selection, whereas the currently most popular framework intro-
duced in Section 1.3 deals with density-dependent selection.

Let us briefly explain about the justification of these two invasion expo-
nents. In case that an invasion exponent under frequency-dependent selec-
tion is derived from an evolutionary matrix game, it is relatively straight
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forward to justify the extracted invasion exponent. See Section 1.2. For
models based on density-dependent selections, there have been extensive
literatures on the extraction of invasion exponent and its justification. See
Dercole and Geritz [7] for example. In fact, we are going to extend their
work in Chapter 2. We extended one of their results in [22].

We have seen above that ∂θ
∂y (x∗, x∗) plays a key role in determining the

course of the evolution.

Definition 1.1.3 (Selection gradient). Define

λ(x) =
∂θ

∂y
(x, x),

which is called “selection gradient” at x.

An immediate observation from the above two cases is that if

λ(x) < 0 if x∗ < x,

λ(x) > 0 if x∗ > x,
(1.1.2)

for an evolutionarily singular strategy x∗, then no matter where the evolu-
tion started, a strategy will converge to x∗ as the evolution proceeds. See
Figure 1.1.2. Taylor and Jonker [26] introduced the notion of “continuously
stable strategy”, which is currently called “convergence stable strategy”.
The current definition using the invasion exponent was given by Christiansen
[6].

Definition 1.1.4 (Convergence stable strategy in [6]). A evolutionarily sin-
gular strategy x∗ is called a convergence stable strategy, CSS for short, if and
only if (1.1.2) holds.

Be aware that an evolutionarily singular strategy x∗ can be ESS but
not CSS or CSS but not ESS. This means that even if x∗ is unbeatable, it
may not be the goal of the evolution or even if x∗ is the ultimate goal of the
evolution, it can be replaced by mutants. In the next subsection we are going
to classify evolutionary singularity in eight categories by putting attention on
the local properties of invasion exponent around an evolutionarily singular
strategy.

1.1.3 Classification of the evolution process under PIP method

In this subsection, we introduce a classification of evolutionarily singular
strategies as a natural consequence of the principle of invasion exponent.

15



For this purpose, however, we must introduce the fundamental hypothesis
of the PIP method, in which the sign of invasion exponent corresponds only
to the success or the failure of invasion by a newly emerged strategy and
not to substitution of dominant strategy.

Fundamental hypothesis of the PIP method

(A’) If θ(x, y) < 0, mutants will disappear eventually and the population
stays x-dominant, i.e. n(t, y) → 0.

(B’) If θ(x, y) > 0, mutants will successfully invade the population currently
occupied by residents, i.e. n(t, y) does not converge to zero.

(C’) If θ(x, y) > 0 and θ(y, x) < 0, the mutation is not only successful but
also results in the substitution of dominant strategy from x to y, i.e.
n(t, y) remains positive while n(t, x) → 0.

(D’) If θ(x, y) > 0 and θ(y, x) > 0, the mutation is successful but does
not results in the substitution of dominant strategy from x to y. The
residents and the mutants will coexist with each other, i.e. n(t, x) and
n(t, y) remain positive.

Note that, unless strategy x is close to an evolutionarily singular strategy,
the condition θ(x, y) > 0 induces θ(y, x) < 0 by virtue of the assumption of
small mutational step, and hence substitution of dominant strategy from x
to y.

Although the evolutionary singularity has been classified in the history
of adaptive dynamics theory, there are still important remained problems
to justify the classification corresponding to the process of evolution around
x∗. However the justification requires additional model of the occurrence
of mutations and analysis of ODE models which are out of the scope of
this paper. Thus we are going just to give a piece of introduction for the
classification in the following part of this subsection and this thesis deals
with the principle of invasion exponent.

The situation may become clearer by considering local and generic ver-
sions of ESS and CSS, where the word “generic” means non-degeneracy of
differentials. The notion of local ESS was initially introduced and mathe-
matically formulated by Pohley and Thomas [23]. The current definitions of
local ESS and local CSS using the invasion exponent are due to Christiansen
[6].

Definition 1.1.5 (Local ESS and local CSS in [6]). Let x∗ be an evolution-
arily singular strategy.
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(1) The strategy x∗ is said to be local ESS if and only if
∂2θ

∂y2
(x∗, x∗) < 0.

(2) The strategy x∗ is said to be local CSS if and only if λ′(x∗) < 0, where

λ′(x) =
dλ

dx
(x).

At an evolutionarily singular strategy x∗, it follows that

∂2θ

∂x2
(x∗, x∗) = 2η′(x∗)ξ(x∗, x∗)

∂2θ

∂y2
(x∗, x∗) = 2ξ(x∗, x∗)

∂2θ

∂x∂y
(x∗, x∗) = −(1 + η′(x∗))ξ(x∗, x∗)

and hence

λ′(x∗) = (1− η′(x∗))ξ(x∗, x∗).

Immediately we have the following proposition.

Proposition 1.1.6. Let x∗ be an evolutionarily singular strategy.
(1) x∗ is local ESS if and only if ξ(x∗, x∗) < 0.
(2) x∗ is local CSS if and only if (1− η′(x∗))ξ(x∗, x∗) < 0.

Recall that the first argument is the strategy of residents and the sec-
ond argument is that of mutants. Due to this non-symmetric nature of
an invasion exponent, even if a strategy x∗ is local ESS and local CSS as
the strategy of residents, x∗ itself may not be successful as the strategy of
mutants. Moreover it can occur that θ(x, y) > 0 and θ(y, x) > 0 simultane-
ously. In these respects, notice first that if θ(y, x∗) > 0 for any y ∈ X, then
strategy x∗ can always play the role of a strategy of successful mutant. A
local version of this is the condition ∂2θ

∂x2 (x∗, x∗) < 0, since θ(x∗, x∗) = 0 and
∂θ
∂x(x∗, x∗) = 0. Notice again that if θ(x, y) > 0 and θ(y, x) > 0 for some
x, y ∈ X close to x∗ is positive, then both of mutant strategy y of residents
x and mutant strategy x of residents y are successful. A local version of this
is that the second derivative of θ at (x∗, x∗) along the secondary diagonal
y − x∗ = −(x− x∗) is positive, i.e.

d2

dx2
θ(x,−x+ 2x∗)

∣∣∣∣
x=x∗

> 0.
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In view of the above criteria, since we have

d2

dx2
θ(x,−x+ 2x∗)

∣∣∣∣
x=x∗

=
∂2θ

∂x2
(x∗, x∗)− 2

∂2θ

∂x∂y
(x∗, x∗) +

∂2θ

∂y2
(x∗, x∗)

= 4(1 + η′(x∗))ξ(x∗, x∗),

(1.1.3)

evolutionarily singular strategies can be classified into four classes according
as the value of η′(x∗). Namely η′(x) < −1, −1 < η′(x) < 0, 0 < η′(x) < 1
and 1 < η′(x). Moreover, there are the dichotomies determined by the sign
of ξ(x∗, x∗). Considering these two criteria, we can classify an evolutionarily
singular strategy into eight categories as follows.

(a) x∗ is not local ESS nor local CSS, and thus it is so-called evolutionary
repeller. However x∗ itself can invade as a mutant into a population
whose strategy is close to x∗. There exists a pair of two similar strate-
gies x and y close to x∗ such that they coexist in a same population.

(b) x∗ is not local ESS but local CSS, and thus it is so-called evolutionary
branching point. x∗ itself can invade as a mutant into a population
whose strategy is close to x∗. There exists a pair of two similar strate-
gies x and y close to x∗ such that they coexist in a same population.

(c) x∗ is local ESS and local CSS, and thus it is so-called evolutionary
attractor. x∗ itself can also invade as a mutant into a population whose
strategy is close to x∗. There exists a pair of two similar strategies x
and y close to x∗ such that they coexist in a same population.

(d) x∗ is local ESS and local CSS, and thus it is so-called evolutionary
attractor. x∗ itself can also invade as a mutant into a population
whose strategy is close to x∗. However coexistence never occur around
x∗, that is, one of two groups ends up with extinction and the other
occupies the population.

(e) x∗ is local ESS and local CSS, and thus it is so-called evolutionary
attractor. However x∗ itself can not invade as a mutant into a popula-
tion whose strategy is close to x∗, and coexistence never occur around
x∗, that is, one of two groups ends up with extinction and the other
occupies the population.

(f) x∗ is local ESS but not local CSS, and thus it is so-called the garden
of Eden. Moreover x∗ can not invade into other populations and never
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coexist with another strategies, that is, the group having strategy x∗
always ends up with extinction.

(g) x∗ is not local ESS nor local CSS, and thus it is so-called evolutionary
repeller. Moreover x∗ itself can not invade as a mutant into other
population and coexistence never occur around x∗, that is, the group
having strategy x∗ always ends up with extinction.

(h) x∗ is not local ESS nor local CSS, and thus it is so-called evolutionary
repeller. Moreover x∗ itself can not invade as a mutant into other
population. However coexistence can occur around x∗. However there
exists a pair of two similar strategies x and y close to x∗ such that
they coexist in a same population..

This classification was originally due to Geritz et al. in [13] into the following
eight types (a) – (h) as shown in Table and Figure 1.1.3.

η′(x∗) < −1 −1 < η′(x∗) < 0 0 < η′(x∗) < 1 1 < η′(x∗)

ξ(x∗, x∗) > 0 (g) (h) (a) (b)

ξ(x∗, x∗) < 0 (c) (d) (e) (f)

Table 1.1: Classification of evolutionary singularity w.r.t. the values of
η′(x∗) and ξ(x∗, x∗). See also Figure 1.1.3 to know the structures of θ(x, y)
around x∗.

In particular, if an evolutionarily singular strategy x∗ is CSS and ESS, x∗

is called evolutionary attractor, which should stand for an attracting point
of the course of evolution. In case (c), however, the intersection of the sets
{θ(x, y) > 0} and {θ(y, x) > 0} is not empty and hence, by the hypothesis
of the PIP method, there exists a pair (x, y) around (x∗, x∗) such that the
two strategies coexist. Thus we need to construct a model of evolution in
a dimorphic population to check whether or not the case (c) implies that
x∗ is an attracting point of evolution even in the dimorphic population. In
this thesis, however, we do not deal with this kind of problems so that we
concentrate on the justification that we mentioned in the last subsection.

In the following sections of this chapter, we will review how the invasion
exponents are derived under frequency-dependent selection in Section 1.2
and under density-dependent selection in Section 1.3.

19



(1) ∂2

∂x2 θ(x, y)
∣∣∣
x=y=x∗

(3) ∂2

∂y2 θ(x, y)
∣∣∣
x=y=x∗

(4)
(

∂2

∂x2 + ∂2

∂y2

)
θ(x, y)

∣∣∣
x=y=x∗

(2)
(

∂2

∂x2 − ∂2

∂y2

)
θ(x, y)

∣∣∣
x=y=x∗

(a)

(b)

(c)

(d)(e)

(f)

(g)

(h)

Figure 1.1.2: Evolutionarily singular strategies are classified in terms of the
four criteria. The blue areas stand for the sets {θ(x, y) < 0} where the red
areas for {θ(x, y) > 0}.
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1.2 Invasion exponent under a frequency-dependent
selection model

In this section we will introduce the invasion exponent under a frequency-
dependent selection model in the context of matrix game theory. The notion
of adaptive dynamics was proposed by Nowak in [21], which was discussed
in the context of evolutionary game theory. Thus, for the purpose of this
section, we should start at introduction of standard game theory and evolu-
tionary game theory.

1.2.1 Evolutionary game theory and invasion exponent

Evolutionary game theory was developed by Maynard Smith and Price[25]
to investigate which distribution on strategy set is stable in the framework
of the game theory. In this subsection we construct an invasion exponent in
the framework of game theory. Let us start by introduction of the standard
game theory by Neumann and Morgenstern [20].

A symmetric game is a triplet (N,S,A) whereN is the number of players,
S is a finite collection of strategies, and A is a real-valued function on SN ,
called payoff matrix. Here “symmetric” means that all players share the
same strategy set. Each element of strategy set is called pure strategy.

Let S = {s1, . . . , sK}. Introducing a probabilistic point of view, we can
extend the collection of strategies S to K-dimensional simplex

SK =

x = (x1, . . . , xK) ∈ [0, 1]K

∣∣∣∣∣∣
K∑
j=1

xj = 1

 ,

where the strategy x ∈ SK means that a player takes the strategy sj in
probability xj for j = 1, . . . ,K. Each element of SK is called a mixed
strategy, and the real-valued function f on SN

K defined as follows is called a
payoff function of strategy x(1) against x(2), . . . ,x(N):

f(x(1), . . . ,x(N)) =

N∑
j=1

K∑
i(j)=1

A(si(1) , . . . , si(N))x
(1)

i(1)
· · ·x(N)

i(N) , (1.2.1)

where x(j) = (x
(j)
1 , . . . , x

(j)
K ) for j = 1, . . . , N .

The study of game theory is, simply speaking, to investigate the dis-
tribution of strategies of players when the payoff function of each player is
maximized.
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Definition 1.2.1 (Nash equilibrium strategy). A mixed strategy x is said
to be Nash equilibrium strategy, NES for short, if inequality

f(x,x, . . . ,x) ≥ f(y,x, . . . ,x)

holds for all y ∈ SK . Moreover x is said to be strong NES, if the above
equality holds only for y = x.

Although a game may not have a strong NES, it was proved that all
games have an NES by Nash [19].

Theorem 1.2.2 ([19]). For any N -player game (N,S,A), there is an NES.

We shall assume that the population of interest has two strategy x and
y, and that, when an individual meets another individual, the benefits of the
two players are determined by the mixed-strategy 2-player game. Precisely,
we assume that the payoff function f(x,y) defined as (1.2.1) for N = 2, i.e.

f(x,y) = x ·Ay,

determines the benefits of a player who takes strategy x and meets a player
taking strategy y.

To consider the process of evolution, it is required to consider mutation
events. The following assumptions are common in the context of evolution-
ary game theory.

Assumption 1.2.3. Let y be a mutant strategy of its progenitor x.

(A) The initial proportion of mutant is very small.

(B) The new strategy y emerging by mutation is very similar to its progen-
itor strategy x, i.e. |x− y| is small enough.

To construct an invasion exponent, we need a model of selection. Tay-
lor & Jonker [26] and Hofbauer & Sigmund [16] introduced a dynamical
system of ODEs, called replicator dynamics, that describes the course of
selection. Let a population have two mixed strategies x and y whose pro-
portions in the population are respectively 1 − p ∈ [0, 1] and p. We denote
such situation by Q(p) = ((x, 1− p), (y, p)). Let the payoff function f(x,y)
determine the benefits of a player who takes strategy x and meets a player
taking strategy y. Then the expected benefits W (x, Q(p)) and W (y, Q(p))
of strategies x and y are given by

W (x, Q(p)) = f(x,x)(1− p) + f(x,y)p,

W (y, Q(p)) = f(y,x)(1− p) + f(y,y)p.
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Letting W (Q(p)) be the mean value of expected benefits, that is,

W (Q(p)) = (1− p)W (x, Q(p)) + pW (y, Q(p)),

the authors of [26, 16] assumed that the time-evolution of proportion p is
determined by the difference of the expected benefit of strategy y and the
mean value of expected benefits as follows:

dp

dt
= p

(
W (y, Q(p))−W (Q(p))

)
= p(1− p) (W (y, Q(p))−W (x, Q(p))) .

(1.2.2)
This ODE is called replicator dynamics. For (1.2.2), the following theorem
is straight forward.

Proposition 1.2.4. If W (x, Q(p)) < W (y, Q(p)) holds for any p ∈ (0, 1),
then the equilibrium p = 0 is unstable and p = 1 is global attractor, i.e.

lim
t→∞

p(t) = 1,

for any solutions p(t) of (1.2.2) starting at any points in (0, 1).

This proposition means that the group having the strategy x will even-
tually disappear and the population becomes y-dominant.

In this framework where the process of evolution is described by the repli-
cator dynamics (1.2.2), one can extract an invasion exponent in the following
way. For simplicity, we consider one-dimensional real-valued strategies here-
after.

Definition 1.2.5. The value of function θ(x, y) defined as follows is called
invasion exponent of strategy y in x-dominant population,

θ(x, y) = (W (y,Q(p))−W (x,Q(p)))|p=0 = f(y, x)− f(x, x).

Note that evolutionary stability is stronger than NES but weaker than
strong NES. Thus a game could have no ESS.

Let us introduce an example, called hawk-dove game. It gives a model
of fight between two opponents over a mate, food or territory. In natural
environment, it is often the case that such a fight would stop without giving
fatal injury even though one of the fighting party has absolute superiority
against the opponent. Such a fighting is called conventional fighting in the
context of ethology.

Let us consider that there are just two following strategies (H) and (D).

(H) To continue attacking until a player injures its opponent.

23



(D) To choose the conventional fighting.

We assume that players compete with each other for a benefit G and could
obtain a negative benefit −C if both of them take hawk strategy. Precisely,
the payoff matrix of this game is assumed to be determined as follows.
Evolutionary game theory gives one answer to the ethological question. For

(H) (D)

(H) (G− C)/2 G
(D) 0 G/2

the hawk-dove game, the following theorem holds.

Theorem 1.2.6. If C < G, then the strategy (H) is a strong NES. If G ≥ C,
the game does not have any strong NESs but the strategy G/C that is ESS
and CSS.

Proof. Let strategy x ∈ [0, 1] mean that a player takes the strategy (H) in
probability x and the strategy (D) in probability 1−x. Then, for x, y ∈ [0, 1],
we have by definition

θ(x, y) = (y − x)

(
G− C

2
(x+ y)

)
.

Thus the strategy G/C is ESS and CSS.

The above theorem says that, the more powerful weapon the players
have, the smaller the value of strategy G/C is and hence the more often the
players choose dove-strategy.

1.2.2 Justification of the invasion exponent

The replicator dynamics is constructed by giving the function of expected
benefit as a quadratic form of population frequencies. In this section, we are
going to explain how the invasion exponent associated with the replicator
dynamics is justified.

The standard theory of evolutionary game scopes the replicator dynamics
extracted from a matrix game. Hofbauer and Sigmund [16] showed that the
replicator dynamics is conjugate, under certain change of coordinates, to
Lotka-Volterra competition model

ṅ1 = n1(a− bn1 − cn2),

ṅ2 = n2(d− en1 − fn2),
(1.2.3)
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where a, b, c, d, e, f ∈ R are determined by the payoff function f(x, y) for the
associated mixed strategy game.

Let us consider the replicator dynamics (1.2.2) associated with a given
pure strategy game. Then the following proposition is straight forward as a
corollary of Theorem 7.5.1 in [16].

Theorem 1.2.7. There exists a differentiable, invertible map from [0, 1]
onto R2

+ mapping the orbits of the replicator equation (1.2.2) onto the orbits
of a Lotka-Volterra equation (1.2.3) for some a, b, c, d, e, f ∈ R.

The following theorem is well-known in the field of mathematical ecology,
called competitive exclusion. See Section 3.3 of [17], for example.

Theorem 1.2.8. There are three types of qualitative behaviors for solutions
of (1.2.3).

• Solutions starting in R2
+ converge to an inner attracting equilibrium,

whenever
b

e
>
a

d
>
c

f
.

• Solutions starting in R2
+ converge to an inner attracting equilibrium,

whenever
b

e
>
a

d
>
c

f
.

• There is an inner saddle point and solutions starting in R2
+ converge

to either of equilibria on the two axes

b

e
<
a

d
<
c

f
.

(1.2.3) has two equilibria P1 and P2 on the n1 and n2 axes respectively.
Theorem 1.2.8 states that (1.2.3) has four types of global behaviors: P1 is
a global attractor and P2 is a saddle point; P1 is a saddle point and P2 is
a global attractor; P1 and P2 are saddle points and there is an attractor in
the interior of the population state space; P1 and P2 is Lyapunov stable and
there is a repeller in the interior of the population state space.

Because of this classification, if a mutant y of its progenitor x satisfies
θ(x, y) > 0, the mutation results in substitution of dominant strategy of the
population x → y. Thus the PIP method associated with an evolutionary
game is justified and it can be used to describe the process of evolution in
monomorphic populations.
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Other types of frequency-dependent selection than the replicator dy-
namics are embedded into a more general class of population dynamics with
density-dependent selection than Lotka-Volterra type. Thus our main result
i.e. Theorem 2.2.3 is applicable to justify the PIP method associated with
such models.

1.3 Invasion exponent under density-dependent se-
lection

In this section we will introduce another mathematical model of the evo-
lution and the associated invasion exponent. Six years after Nowak’s work
[21], Metz et al. [18] proposed a mathematical framework to analyze grad-
ual and adaptive evolution driven by not only frequency-dependent selection
but also density-dependent selection. This model soon became the main in-
terest in the study of adaptive dynamics. Indeed in the next Chapter, we
are going to study questions associated with this particular model.

1.3.1 Dynamical model under density dependent selection
and the extraction of invasion fitness

Consider a k-morphic population where the set of traits, i.e. strategies are
x1, . . . , xk and let ni(t) be the population density of the group having the
trait xk. Let the dynamics of population densities ni(t) of strategies xi for
i = 1, . . . , k be driven by a dynamical system of differential equations.

d

dt

 n1
...
nk

 =

 n1f
(k)
1 (n1, . . . , nk, x1, . . . , xk)

...

nkf
(k)
k (n1, . . . , nk, x1, . . . , xk)

 ,

where functions f
(k)
1 , . . . , f

(k)
k satisfy some biologically natural conditions.

In fact, one can consider not only differential but also difference equation
model. However, we confine ourselves to ODE model in this paper for sim-
plicity. Moreover, again for simplicity, we present the case k = 1 in this
section. Consequently, letting nr = n1, we consider

d

dt
nr = nrf

(1)(nr, x). (1.3.1)
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Assume that there exists N̂x > 0 such that

f(N̂x, x) = 0,

N̂x
∂f (1)

∂nr
(N̂x, x) < 0,

lim
t→∞

nr(t) = N̂x,

for any initial values.

Suppose now that mutants with a strategy y have emerged from the
residents, and that the new group having strategy y has negligible popula-
tion density. Let nm denote the population density of mutants. Then the
competition among strategies x, y is governed by the following system of
ODEs:

d

dt

(
nr
nm

)
=

(
nrfr(nr, nm, x, y),
nmfm(nr, nm, x, y)

)
, (1.3.2)

where there exists a function f (2)(nr, nm, x, y) such that the following con-
ditions hold;

f (2)(nr, nm, x, y) = fr(nr, nm, x, y) = fm(nm, nr, y, x), (1.3.3)

f (2)(nr, 0, x, y) = f (1)(nr, x), (1.3.4)

f (2)(nr, nm, x, x) = f (1)(nr + nm, x), (1.3.5)

for any nr, nm ∈ R≥0 and x, y ∈ X. These conditions come from the consis-
tency for a biological model.

In this model, a suitable notion of the invasion fitness is defined as

θ(x, y) = fm(N̂x, 0, x, y). (1.3.6)

Note that θ(x, y) = fm(N̂x, 0, x, y) is one of the eigenvalue of the Jacobian.

J(x, y) =

(
N̂x

∂fr
∂nr

(N̂x, 0, x, y) N̂x
∂fr
∂nm

(N̂x, 0, x, y)

0 fm(N̂x, 0, x, y)

)

Since N̂x
∂fr
∂nr

(N̂x, 0, x, y) < 0, the invasion fitness θ(x, y) determines the local

stability of the equilibrium (N̂x, 0).
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1.3.2 Justification of the invasion exponent

In view of the observation in the last subsection, the principle of invasion
exponent is now equivalent to the statement that (N̂x, 0) is locally unstable if
and only if (nr(t), nm(t)) → (0, N̂y) for any initial values that are sufficiently

close to (N̂x, 0). Such a statement is not obvious at all, since it means that
a local stability determines a global stability. Dercole, Rinldi and Geritz
called the statement invasion-imply-substitution principle, IIS principle for
short, or invasion-imply-fixation principle in [12, 8]. See subsection 2.2.2
for further discussion on IIS principle. In this subsection we are going to
introduce previous results on IIS principle for various classes of dimorphic
population dynamics (1.3.2).

First of all, let us introduce one of the simplest, but most useful type of
competition, the Lotka-Volterra competition. For example Bränström et al.
[3] dealt with a food-web model that has the effects of Lotka-Volterra com-
petitions, where predation rates and competition kernels are determined by
the body sizes of players. Recall Theorem 1.2.8, which says that IIS principle
holds for models under the Lotka-Volterra competition.

Secondly we shall introduce an extension of Lotka-Volterra model. Geritz
[12] extends the scope of IIS principle from the class of Lotka-Volterra com-
petition to so-called a class of linear environmental feedback-loop. Letting
I(t) be the environment factor described as

∑2
k=1G(xi)ni(t), he says that

I(t) gives the total impact of the entire population on the abundance of the
various resources, that is, the system of ODEs (1.3.2) describing the com-
petition between residents and mutants is assumed to be written as follows;

d

dt

(
n1
n2

)
=

(
n1L(x1, I)
n2L(x2, I)

)
, (1.3.7)

where functions G and L are assumed to satisfy the following conditions.

(H1) ∂L
∂x (x, I),

∂L
∂I (x, I) and dG

dx (x) exist for all x ∈ X and I ∈ R+, and
∂L
∂I (x, I) is a continuous function of I.

(H2) X ⊂ Rn is open and such that for every x ∈ X there exists a strictly
positive hyperbolic attracting steady state n̂x of the monomorphic
system, that is, ∂L

∂I (x,G(x)n̂x)G(x) ̸= 0 and n̂x is a differentiable
function of x.

Let us introduce a set Tε(n̂) for n̂ > 0 as follows:

Tε(n̂) =
{
(n1, n2) ∈ R2

+

∣∣ |n1 + n2 − n̂| ≤ ε
}
.

Then the following theorem holds as a corollary of Proposition 1 in [12].
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Theorem 1.3.1. For every x ∈ X far from any evolutionarily singular
strategy, there exist an ε > 0 and a δ > 0 such that every orbit of (1.3.7)
starting in the interior of Tε(n̂x) converges to (0, n̂y) as t → ∞ whenever
θ(x, y) > 0 and |y − x| < δ.

Finally let us introduce the most general class for the system of ODEs
(1.3.2) in the previous studies. To investigate how much the class of de-
mographic models for the study of evolution can be extended, Brown and
Vincent [4, 27] introduced the concept of generating fitness function, G-
function for short, that is a set of per-capita growth rates of subgroups
that have their own strategies. Under the assumption of the existence of
G-function, Dercole and Rinaldi [8] state that the IIS theorem holds. See
Theorem 2.2.9 for more detail. We are going to discuss about this class of
models in the next chapter and to show that the IIS theorem can be also
proved as a corollary of our main results.
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Chapter 2

Why does invasion imply
substitution? – beyond the
paradigm of invasion fitness –

In this chapter, we are going to present our results, which has been obtained
in [22], on the justification of the invasion exponent associated with the
density-dependent selection model introduced in Section 1.3. Recall that
the justification is equivalent to “invasion implies substitution principle” in
this framework.

2.1 Frameworks and rough description of results

To illuminate our aims and to fix ideas, let us clarify our terminologies
and frameworks. The monomorphic system, MMS for short, is the follow-
ing ordinary differential equation, ODE for short, which describes the time
evolution of a population consisting of individuals with a single trait value
x,

dn

dt
= nf1(n,N, x), (MMS1)

where n is the population size and N ∈ R is an external environmental
factor, which is governed by the ODE

dN

dt
= q1(n,N, x) (MMS2)

More precisely the monomorphic system (MMS) is the system of ODEs
(MMS1) and (MMS2) where x ∈ R is a parameter.
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The dimorphic system, (DMS) for short, is the system of ODEs describ-
ing the time evolution of a population consisting of individuals with two
trait values under an external environmental factor N . In this case the
population is divided into two groups depending on trait values and those
groups compete with each other. Let (n1, x1) and (n2, x2) be the pairs of
the population size and the trait value of two competing groups. In this
paper we assume that the growth rate of the population size of the group
having trait value x1 is given by

F (n1, x1 | n2, x2, N)

and hence

dn1
dt

= n1F (n1, x1 | n2, x2, N)

dn2
dt

= n2F (n2, x2 | n1, x1, N)

(2.1.1)

For simplicity, set

f2(n1, n2, N, x1, x2) = F (n1, x1 | n2, x2, N).

Then the complete expression of the dimorphic system is

dn1
dt

= n1f2(n1, n2, N, x1, x2)

dn2
dt

= n2f2(n2, n1, N, x2, x1)

dN

dt
= q2(n1, n2, N, x1, x2),

(DMS1)

where
q2(n1, n2, N, x1, x2) = q2(n2, n1, N, x2, x1). (DMSS)

should hold since the effect of (n1, x1) and (n2, x2) to the growth of N does
not depend on their order. We call the system of ODE’s (DMS1) satisfying
the symmetry (DMSS) as the dimorphic system, (DMS) for short.

As a model of the competition of two groups within a single species, it
is natural to impose two relations between (MMS) and (DMS) :
First, if n2 = 0 in (DMS1), then no competition is present and hence the
system is reduced to (MMS). Namely it is required that

f2(n1, 0, N, x1, x2) = F (n1, x1 | 0, x2, N) = f1(n1, N, x1)

q2(n1, 0, N, x1, x2) = q1(n1, N, x1).
(2.1.2)
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Secondly if the trait values x1 and x2 are equal in (DMS1), then it should
be reduced to (MMS) with n = n1 +n2. Mathematically, it is required that

f2(n1, n2, N, x, x) = F (n1, x | n2, x,N) = f1(n1 + n2, N, x)

q2(n1, n2, N, x, x) = q1(n1 + n2, N, x).
(2.1.3)

As a whole, our mathematical framework of this paper is the systems of
ODEs, (DMS1) and (MMS) with the properties of (2.1.2) and (2.1.3). Such
a pair of (MMS) and (DMS) is called a 2-hierarchical system, whose exact
definition is as follows.

Definition 2.1.1 (2-hierarchical system). A pair ((f1, q1), (f2, q2)) is called
a 2-hierarchical system, (2HS) for short, if and only if (f1, q1) is (MMS),
(f2, q2) is (DMS) and the consistency conditions (2.1.2) and (2.1.3) are sat-
isfied.

For the sake of simplicity, we are going to assume that for all param-
eter x, (MMS) has a unique equilibrium point (n̂x, N̂x) which is a global
attractor, i.e. limt→∞(n(t), N(t)) = (n̂x, N̂x) for every nonnegative solution
(n(t), N(t)) of (MMS). (See Assumption 2.2.1 for the precise statement.)

The course of events in this model is as follows: suppose that the popula-
tion is dominated by residents with a single trait value x∗, i.e. the monomor-
phic system (MMS) with the parameter x∗ stays at the stable equilibrium
(n̂x∗ , N̂x∗). At a certain point, a mutation occurs and a small group of mu-
tants with a new trait value x is introduced into the system. Accordingly,
the system of interest has been changed to the dimorphic system with pa-
rameter x∗ and x starting from near the equilibrium (n̂x∗ , 0, N̂x∗), which is
not necessarily stable as a dimorphic system. Our main interest is to an-
alyze the global behavior of this dimorphic system (DMS1). In particular,
plausible outcomes of our concern are the following three (A), (B) and (C):
(A) The equilibrium (n̂x∗ , 0, N̂x∗) is globally stable, i.e. mutants are going
to extinct eventually and the system will return to the monomorphic system
with the original trait value x∗.
(B) The new trait value x is superior to the original one x∗ and eventually
mutants will dominate the population. In our framework, this means that
the equilibrium (0, n̂x, N̂x) is globally stable and every solution of (DMS1)
starting near the original equilibrium (n̂x∗ , 0, N̂x∗) is going to converge to
(0, n̂x, N̂x).
(C) Two trait values x∗ and x are going to coexist in certain propor-
tion, i.e. there exists a stable equilibrium (ñx∗ , ñx, Ñ) of (DMS1) such
that ñx∗ , ñx > 0 and every solution starting near the original equilibrium
(n̂x∗ , 0, N̂x∗) is going to converge to (ñx∗ , ñx, Ñ).
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Our main results are the followings:
(I) First we have established a sufficient condition for the global shift be-
tween (A) and (B). To be exact, we introduce the notion of raw invasion
fitness Θ(n1, n2, N, x1, x2) as the difference between the fitnesses of mutants
and residents. i.e.

Θ(n1, n2, N, x1, x2) = f2(n2, n1, N, x2, x1)− f2(n1, n2, N, x1, x2) (2.1.4)

Note that Θ = 0 on the line segment L(x∗) defined by

L(x∗) =
{
(n1, n2, N̂x∗ , x∗, x∗)

∣∣∣ n1 + n2 = n̂x∗ , n1, n2 ≥ 0
}
. (2.1.5)

The “classical” invasion fitness θ(·, ·) turns out to be a special value of our
raw invasion fitness as follows:

θ(x1, x2) = f2(0, n̂x∗ , N̂x∗ , x2, x1) = Θ(n̂x∗ , 0, N̂x∗ , x1, x2). (2.1.6)

Our theorem, Theorem 2.2.3, shows that if

∂Θ

∂x2
is uniformly positive on L(x∗), (2.1.7)

then as x crosses x∗, (B) happens while x∗ < x and (A) happens while
x < x∗. Under our condition (2.1.7), Θ is uniformly positive (resp. negative)
around L(x∗) when x < x∗ (resp. x∗ < x). Thus our result matches the
intuition that whichever has the higher fitness wins the competition.
(II) Secondly, we are going to show that IIS principle by Dercole and Rinaldi
in [8] can be obtained as a corollary of our general result mentioned above.
More specifically, we introduce the notion of a trimorphic system, (TMS) for
short, which is a system of ODE’s describing the competition of tree groups
having different trait values. As is the case of 2-hierarchical system, we call
a consistent triple of (MMS), (DMS) and (TMS) a 3-hierarchical system,
(3HS) for short. Under these terminologies, a careful examination of the
discussions by Dercole and Rinaldi [8] yields that their result can be divided
into the following two steps:

• If a dimorphic system is a part of 3-hierarchical system, then there
exists a generating function associated with the dimorphic system.

• If there exists a generating function associated with a dimorphic sys-
tem, then IIS principle holds.
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The notion of generating function has been introduced by Brown and Vin-
cent in [4] and [27]. In fact, we are going to present a characterization of the
existence of generating function in terms of raw invasion fitness Θ. Namely,
in Theorem 2.2.10, the existence of associated generating function is shown
to be equivalent to the condition that ∂Θ

∂x2
(n1, n2, N, x1, x1) only depends on

the values of n1 + n2, N and x1. In view of (2.1.6), this characterization
will lead to IIS principle under the existence of generating function. See
Subsection 2.2.2 for details. Furthermore, we are going to present a class of
examples showing

{(DMS) as a part of 3-hierarchical system}
⊊ {(DMS) having associated generating function} (1)

= the scope of the method using the invasion fitness (2)

⊊ {(DMS) as a part of 2-hierarchical system} (3)

= the scope of the method using the raw invasion fitness. (4)

The inclusion/not equality (1) in the second line is derived from Theo-
rem 2.2.8 and Proposition 2.2.11.
The equality (2) in the third line is concluded by Theorem 2.2.3, 2.2.9 and
2.2.10.
The inclusion/not equality (3) in the fourth line is due to Proposition 2.2.7
and 2.2.13.
The equality (4) in the last line is due to Theorem 2.2.3.
(III) Thirdly, we have obtained a simple class of examples who have no asso-
ciated generating functions and where IIS principle may fail. Precisely our
example is the following 2-hierarchical system:

dn1
dt

= n1
(
1− (n1 + n2) + (x2 − x1)n2(c− an1 − bn2)

)
dn2
dt

= n2
(
1− (n1 + n2) + (x1 − x2)n1(c− an2 − bn1)

)
dN

dt
= N(1−N).

(2.1.8)

Although the third equation is noting to do with the first and second ones,
we put it here for the sake of formality to match (2.1.8) with (DMS1).
Immediately, one sees N̂ = 1. Furthermore since the associated (MMS) is

dn

dt
= n(1− n),
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it follows that n̂x = 1 for any x. In this class, an associated generating
function exists if and only if a = b. If

(b− c)(a+ b− 2c) > 0,

then we can apply our result in part (I) and show the shift of global stability
between the resident dominant and the mutant dominant equilibriums. On
the contrary, if

(b− c)(a+ b− 2c) < 0,

x2 < x1 and x2 is sufficiently close to x1, then (C) occurs, i.e. there exists
a stable equilibrium (ñx1 , ñx2 , 1) such that ñx1 , ñx2 > 0 and any solution
starting from near the resident dominant equilibrium (1, 0, 1) converges to
(ñx1 , ñx2 , 1). Consequently, IIS principle fails in this example. Note that
due to the above result (II), this won’t happen under the existence of a
generating function. See Subsection 2.2.3 for exact statements.

2.2 Main results

In this section, we are going to give exact statements of our results in three
subsections according as the rough description (I), (II) and (III) in the in-
troduction. In Subsection 2.2.1, first we provide the notion of shift of global
stability called SU-shift and US-shift, where the symbol “S” and “U” stand
for “stable” and “unstable” respectively, and give a sufficient condition for
shifts of stability as we outlined in (I). In Subsection 2.2.2, assuming the
existence of generating function, we obtain IIS principle originally proven
by Dercole and Rinaldi as a corollary of Theorem 2.2.3 in Subsection 2.2.1
by using certain characterization of the existence of generating function ob-
tained in Theorem 2.2.10. In the last subsection 2.2.3, we give a simple class
of examples where we observe all the variety of plausible outcomes (A), (B)
and (C) in the introduction.

Our domain for (MMS) is

U1 = {(n,N, x) | n ∈ R+, N ∈ R, x ∈ R} ,

where the variables n, N , and x represent a population size, an external
environmental factor and a trait value respectively. The external environ-
mental factor may represent amount of available nutrition, population size
of a predator species and so on. The functions f1 and q1 are assumed to be
smooth, to be exact, C∞ in a neighborhood of U1, i.e. they can be extended
to open neighborhoods of U1 and are C∞ in their extended domains.
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In the similar manner, the domain for (DMS) is

U2 = {(n1, n2, N, x1, x2) | n1, n2 ∈ R+, N, x1, x2 ∈ R} ,

where n1 (resp. n2) represents a population size of individuals with a trait
value x1 (resp. x2) and N represents an external environmental factor.
Note that the first trait value x1 belongs to residents and the second one
belongs to mutants in our model. The functions f2 and q2 are assumed to
be sufficiently smooth, to be exact, C∞ in a neighborhood of U2, i.e. they
can be extended open neighborhoods of U2 and are C∞ on their extended
domains.

Furthermore, for the sake of simplicity of statements, we assume the
following property.

Assumption 2.2.1. For any x ∈ R, there exists a global attractor (n̂x, N̂x)
such that any solution of (MMS), (n(t), N(t)) converges to (n̂x, N̂x) as t→
∞. Moreover, (n̂x, N̂x) is hyperbolic and the real parts of all the eigenvalues
of the linearization of (MMS) at (n̂x, N̂x) ,

n̂x
∂f1
∂n

(n̂x, N̂x, x) n̂x
∂f1
∂N

(n̂x, N̂x, x)

∂q1
∂n

(n̂x, N̂x, x)
∂q1
∂N

(n̂x, N̂x, x)

 (2.2.1)

are negative.

The second assumption about eigenvalues of the linearization ensures
the local stability of the equilibrium (n̂x, N̂x).

Even without the assumption that (n̂x∗ , N̂x∗) is a global attractor, if the
eigenvalues of (2.2.1) has negative real parts, then our theorems in this paper
still hold with some (rather complicated but non-essential) modifications in
the statements.

2.2.1 Shifts of stability

The shift of global stability in this paper means the global transition between
the resident dominant state and the mutant dominant state as the trait
value of mutants varies around the trait value of residents. Throughout this
subsection, we consider a 2-hierarchical system (f1, q1), (f2, q2) satisfying
Assumption 2.2.1. To present an explicit statement, we need the notion of
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a tubular neighborhood Sϵ(x∗) of L(x∗) defined as

Sϵ(x∗) =

 ∪
(n1,n2,N̂x∗ ,x∗,x∗)∈L(x∗)

B((n1, n2, N̂x∗), ϵ)

 ∩
(
[0,∞)2 × R

)
,

where B(x, ϵ) is a Euclidean ball given by {y | |x− y| < ϵ}.

Definition 2.2.2. Let x∗ ∈ R. We say that SU-shift (resp. US-shift) occurs
at x∗ if there exist ϵ, δ > 0 such that if {(n1(t), n2(t), N(t))}t≥0 is a solution
of (DMS) and (n1(0), n2(0), N(0)) ∈ Sϵ(x∗), then

lim
t→∞

(n1(t), n2(t), N(t)) = (n̂x∗ , 0, N̂x∗) (S)

whenever x1 = x∗ and x2 ∈ (x∗ − δ, x∗) (resp. x2 ∈ (x∗, x∗ + δ)) and

lim
t→∞

(n1(t), n2(t), N(t)) = (0, n̂x2 , N̂x2) (U)

whenever x1 = x∗ and x2 ∈ (x∗, x∗ + δ) (resp. x2 ∈ (x∗ − δ, x∗)).

Recall that the trait values x∗ and x2 belong to residents and mutants
respectively. The statement (S) (resp. (U)) means that any solution starting
from near L(x∗) converges to the resident (resp. mutant) dominant state
(n̂x∗ , 0, N̂x∗) (resp. (0, n̂x2 , N̂x2)) as t → ∞. Thus SU-shift and US-shift at
x∗ are global qualitative transitions between (S) and (U) with the critical
value x∗.

The following theorem gives a sufficient condition for shift of global sta-
bility.

Theorem 2.2.3. Let x∗ ∈ R. SU-shift (resp. US-shift) occurs at x∗ if the
following condition (2.2.2) (resp. (2.2.3)) holds;

inf
(n1,n2,N,x1,x2)∈L(x∗)

∂Θ

∂x2
(n1, n2, N, x1, x2) > 0, (2.2.2)

sup
(n1,n2,N,x1,x2)∈L(x∗)

∂Θ

∂x2
(n1, n2, N, x1, x2) < 0. (2.2.3)

We will prove this theorem in A.1. Here we give a rough idea why it is
true. Note that Θ = 0 if x2 = x∗. Hence

Θ ≈ (x2 − x∗)
∂Θ

∂x2
(2.2.4)
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if x2 is sufficiently close to x∗. Suppose that (2.2.2) is true. If x2 < x∗, then
Θ < 0 in a small neighborhood of L(x∗), i.e. Sϵ(x∗). Namely, the fitness of
residents is uniformly higher than that of mutants. Consequently, residents
will be dominant. If x2 > x∗, then everything becomes opposite and so we
have SU-shift.

2.2.2 IIS principle

In this subsection, we are going to show that IIS principle can be shown as a
corollary of our Theorem 2.2.3. As we have mentioned in the introduction,
the essential claim of IIS principle is that the local stability of the resident
dominant equilibrium determines the global stability of both the resident
dominant and the mutant dominant equilibriums. To begin with, let us
make an observation on the local stability of the resident dominant equilib-
rium (n̂x∗ , 0, N̂x∗) of (DMS) with parameters (x∗, x2). One can easily see
that the eigenvalues of the linearization of (DMS) at (n̂x∗ , 0, N̂x∗) are given
by the eigenvalues of (2.2.1) and the invasion fitness θ(x∗, x2). By Assump-
tion 2.2.1, the sign of θ(x∗, x2) determines the local stability of (n̂x∗ , 0, N̂x∗),
i.e. if θ(x∗, x2) > 0 (reps. θ(x∗, x2) < 0), then it is locally unstable (resp.
stable).

At this point, we are going to revisit the original proof of IIS principle by
Dercole and Rinaldi in [8, Appendix B]. They started with a 2-hierarchical
system and assumed the existence of a trimorphic system behind, which has
turned out to be the key to fill the gap between local and global stabilities.

A trimorphic system is a system of ODE’s representing competition of
three groups inside a single species having three (different) trait values. As
(DMS), let (ni, xi) for i = 1, 2, 3 be the pair of the population size and
the trait value of i-th group and let N be an external environmental factor.
Suppose {i, j, k} = {1, 2, 3}. Then it is natural to assume that the fitness of a
group i is effected only by the current state of itself, (ni, xi), the current state
of the opponent groups, {(nj , xj), (nk, xk)}, and the external environmental
factor N including possible effect of another living organism. As a result,
the fitness of the group having the trait value xi must be written as

F∗(ni, xi | {(nj , xj), (nk, xk)}, N). (2.2.5)

Consequently, the time evolution of the group i is governed by

dni
dt

= niF∗(ni, xi | {(nj , xj), (nk, xk)}, N).
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By the same line of reasoning, we assume that the growth rate of the external
environmental factor N is given by

H(N | {(ni, xi), (nj , xj), (nk, xk)}). (2.2.6)

Consequently the time evolution of N is governed by

dN

dt
= H(N | {(ni, xi), (nj , xj), (nk, xk)})

Hence if we introduce functions

f3 : (R+)
3 × R× R3 → R,

q3 : (R+)
3 × R× R3 → R,

as

f3(n1, n2, n3, N, x1, x2, x3) = F∗(n1, x1 | {(n2, x2), (n3, x3)}, N),

and

q3(n1, n2, n3, N, x1, x2, x3) = H(N | {(n1, x1), (n2, x2), (n3, x3)}),

then the full equation of the trimorphic system is

dn1
dt

= n1f3(n1, n2, n3, N, x1, x2, x3),

dn2
dt

= n2f3(n2, n3, n1, N, x2, x3, x1),

dn3
dt

= n3f3(n3, n1, n2, N, x3, x1, x2),

dN

dt
= q3(n1, n2, n3, N, x1, x2, x3).

(2.2.7)

Additionally, since the values of F∗ given by (2.2.5) and H given by (2.2.6)
are independent of the order of j and k and the order of i, j and k respec-
tively, it is natural to assume that

f3(ni, nj , nk, N, xi, xj , xk) = f3(ni, nk, nj , N, xi, xk, xj) (2.2.8)

and

q3(n1, n2, n3, N, x1, x2, x3) = q3(ni, nj , nk, N, xi, xj , xk), (2.2.9)

where (i, j, k) is an arbitrary permutation of (1, 2, 3).
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Definition 2.2.4 (Trimorphic system). Write U3 = (R+)
3 × R × R3. A

system of ODE’s (2.2.7) is called a trimorphic system, (TMS) for short, if
and only if f3 and q3 are C∞ function defined on a neighborhood of U3 and
satisfy (2.2.8) and (2.2.9) on U3 respectively.

There are natural consistency conditions (ET) and (CT) between (DMS)
and (TMS) as was the case between (MMS) and (DMS).
(ET) Extinction of a trait value: If n3 = 0, then the third group is no longer
existent and the system becomes dimorphic with the groups of trait values
x1 and x2. Mathematically, this requires

f3(n1, n2, 0, N, x1, x2, x3) = f2(n1, n2, N, x1, x2) (2.2.10)

and
q3(n1, n2, 0, N, x1, x2, x3) = q2(n1, n2, N, x1, x2). (2.2.11)

(CT) Coincidence of trait values: In case two trait values coincide, then
two groups sharing the same trait value behave as one. Hence the system
becomes dimorphic. Mathematically this requires

f3(n1, n2, n3, N, x1, x1, x3) = f2(n1 + n2, n3, N, x1, x3), (2.2.12)

f3(n1, n2, n3, N, x1, x2, x2) = f2(n1, n2 + n3, N, x1, x2) (2.2.13)

and

q3(n1, n2, n3, N, x1, x1, x2) = q2(n1 + n2, n3, N, x1, x3). (2.2.14)

There are other variations like the case n1 = 0 or x3 = x1 but the asso-
ciated mathematical relation are all deduced form the above requirements
in (CT) and (ET) due to the symmetries (2.2.8) and (2.2.9).

The conditions in (ET) and (CT) ensure the consistency between (DMS)
and (TMS).

Now, we fix terminologies without ambiguity.

Definition 2.2.5.
(1) A triple ((f1, q1), (f2, q2), (f3, q3)) is said to be a 3-hierarchical sys-
tem, (3HS) for short, if and only if ((f1, q1), (f2, q2)) is a (2HS), (f3, q3)
is a (TSM) and all the consistency conditions (2.2.10), (2.2.11), (2.2.12),
(2.2.13) and (2.2.14) are satisfied for any (n1, n2, n3, N, x1, x2, x3) ∈ U3.
(2) f ∈ C∞(U2) is said to be a part of (2HS) if and only if there exists a
(2HS), ((f1, q1), (f2, q2)), such that f = f2.
(3) f ∈ C∞(U2) is said to be a part of (3HS) if and only if there exists a
(3HS), ((f1, q1), (f2, q2), (f3, q3)), such that f = f2.
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There is one more notion playing a key role, which is the notion of
generating function introduced by Brown and Vincent in [4] and [27].

Definition 2.2.6 (Generating function). (1) A function G : U2 × R → R
which is C∞ in a neighborhood of U2 × R, is called a generating function if
and only if it satisfies the following conditions (G1),(G2) and (G3).
(G1) For any n1 > 0, x1, x2 ∈ R and N ∈ R,

G(n1, 0, N, x1, x2, x1) = G(n1, 0, N, x1, x1, x1) (2.2.15)

(G2) For any s > 0, r1, r2 ∈ [0, 1] and N, x, y ∈ R,

G((1− r1)s, r1s,N, x, x, y) = G((1− r2)s, r2s,N, x, x, y) (2.2.16)

(G3) For any (n1, n2, N, x1, x2, y) ∈ U2 × R,

G(n1, n2, N, x1, x2, y) = G(n2, n1, N, x2, x1, y). (2.2.17)

(2) f ∈ C∞(U2) is said to have an associated generating function if and
only if there exists a generating function G : U2 × R → R such that

f(n1, n2, N, x1, x2) = G(n1, n2, N, x1, x2, x1)

for any (n1, n2, N, x1, x2) ∈ U2. In this situation, G is called a generating
function associated with f .

As a model, the variables n1, n2, N, x1, x2 have the same roles as before.
The sixth variable y has been called virtual strategy in [4] and [27].

The conditions (G1), (G2) and (G3) correspond to the conditions (P1),
(P2) and (P3) in Dercole and Geritz [7], where their definition of a generating
function contains an additional condition (P4).

Let G be a generating function. If f1 and f2 are defined by

f2(n1, n2, N, x1, x2) = G(n1, n2, N, x1, x2, x1) (2.2.18)

and

f1(n1, x1) = G(n1, 0, N, x1, x1, x1), (2.2.19)

then, with appropriate choice of q1 and q2, q1 ≡ 0 and q2 ≡ 0 for example,
((f1, q1), (f2, q2)) is a (2HS). Thus we have the following fact.

Proposition 2.2.7. If f ∈ C∞(U2) has an associated generating function,
then f is a part of (2HS).
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In our terminologies, two steps of arguments by Dercole and Rinaldi in [8]
mentioned in the introduction can be stated as the following two theorems,
Theorems 2.2.8 and 2.2.9.

Theorem 2.2.8 (Dercole and Rinaldi[8]). If f ∈ C∞(U2) is a part of (3HS),
then f has an associated generating function.

The following proof of the above theorem is based on the idea of Dercole
and Rinaldi.

Proof. Let ((f1, q1), (f2, q2), (f3, q3)) be a (3HS) and f = f2. Set

G(n1, n2, N, x1, x2, y) = f3(0, n1, n2, N, y, x1, x2).

Then by (2.2.12),

G(n1, n2, N, x1, x2, x1) = f3(0, n1, n2, N, x1, x1, x2) = f2(n1, n2, N, x1, x2).

Therefore, by (2.1.2)

G(n1, 0, N, x1, x2, x1) = f2(n1, 0, N, x1, x2) = f1(n1, x1)

and hence we have (G1). By (2.2.13), it follows that

G(rs, (1− r)s,N, x1, x1, y) = f3(0, (1− r)s, rs,N, y, x1, x1)

= f2(0, s,N, y, x1).

This immediately implies (G2). Moreover, we have (G3) by (2.2.8). Thus
we have shown that G is a generating function associated with f .

Theorem 2.2.9 (Dercole and Rinaldi’s IIS principle). Let ((f1, q1), (f2, q2))
be a (2HS) and f2 have an associated generating function. If

∂θ

∂x2
(x∗, x∗) (2.2.20)

is positive (resp. negative), then SU-shift (resp. US-shift) occurs at x∗.

Let us clarify how this theorem is deduced from our main theorem, The-
orem 2.2.3. By (2.1.6), it follows that

∂θ

∂x2
(x∗, x∗) =

∂Θ

∂x2
(n̂x∗ , 0, N̂x∗ , x∗, x∗). (2.2.21)
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Since θ(x∗, x∗) = 0, we see that

θ(x∗, x2) ≈ (x2 − x∗)
∂θ

∂x2
(x∗, x∗) = (x2 − x∗)

∂Θ

∂x2
(n̂x∗ , 0, N̂x∗ , x∗, x∗).

(2.2.22)
So, in case ∂θ

∂x2
(x∗, x∗) > 0 for example, the locally stability of (n̂x∗ , 0, N̂x∗)

changes from being stable to being unstable as x2 crosses x∗ form below.
Comparing this with (2.2.4) and our theorem 2.2.3, one can clearly recognize
the gap between the local and the global stabilities. Namely, the shift of
global stability is determined by the sign of ∂Θ

∂x2
on the whole line segment

L(x∗) while the change of local stability is determined by that of the one
point (n̂x∗ , 0, N̂x∗ , x∗, x∗) in L(x∗).

So, how is it possible that the sign of a value at one point can determine
that of the whole points in L(x∗)? Our answer is simple: if f2 has an associ-
ated generating function, then the value of ∂Θ

∂x2
is constant on L(x∗) so that

the value at one point (n̂x∗ , 0, N̂x∗ , x∗, x∗) is the values of the whole points
in L(x∗). Actually such a property is the essence of generating function as
the next theorem says.

Theorem 2.2.10. Let ((f1, q1), (f2, q2)) be a (2HS). Then f2 has an asso-
ciated generating function if and only if ∂Θ

∂x2
(n1, n2, N, x1, x1) only depends

on the values of n1 + n2, N and x1.

This theorem will be proven in A.3.

Given this theorem, it is now clear that Dercole and Rinaldi’s IIS princi-
ple is an immediate corollary of our main theorem, Theorem 2.2.3 as follows.

Proof of Theorem 2.2.9. Assume that ((f1, q1), (f2, q2)) is a (2HS) and f2
has an associated generating function. Then by Theorem 2.2.10, it follows
that ∂Θ

∂x2
is constant on L(x∗). Hence it coincides with ∂θ

∂x2
(x∗, x∗). Now

Theorem 2.2.3 immediately yields the desired conclusions.

At this point, we have fulfilled our original aim of this section, which has
been to show that the original IIS principle of Dercole and Rinaldi can be
obtained as a corollary of our main theorem. There still remain, however,
intriguing questions concerning generating functions. One of them is the
converse of Theorem 2.2.8: if f has an associated generating function, then
is f a part of (3HS)? This turns out to be false since we have the following
counterexample.
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Proposition 2.2.11. Define

f(n1, n2, N, x1, x2)

= 1− (n1 + n2) + (x2 − x1)n2(α
(
n1)

2 + βn1n2 + γ(n2)
2
)
. (2.2.23)

Then f is a part of (2HS) for any α, β and γ. Furthermore,
(1) f has an associated generating function if and only if β + γ = 3α.
(2) f is a part of (3HS) if and only if α = γ and β = 2α.

So, if α = 1, β = 0 and γ = 3 for example, then f has an associated
generating function but it is not a part of (3HS). The key fact to show
Proposition 2.2.11 is the following proposition.

Theorem 2.2.12. A smooth function f : U2 → R is a part of (3HS) if and
only if there exist smooth functions ξ, f∗ : U1 → R and ρ : U2 → R satisfying

f(n1, n2, N, x1, x2) = f∗(n1 + n2, N, x1)

+ (x1 − x2)n2
(
ξ(n1 + n2, N, x1) + (x1 − x2)ρ(n1, n2, N, x1, x2)

)
(2.2.24)

for any (n1, n2, N, x1, x2) ∈ U2.

A generalized version of this theorem in the case of Uk will be proven in
Appendix A.2.

Proof of Proposition 2.2.11. Set

f1(n1, N, x1) = 1− (n1 + n2),

q1(n1, N, x1) = N(1−N),

q2(n1, n2, N, x1, x2) = N(1−N).

Then ((f1, q1), (f, q2)) is a (2HS).
(1) Set φ(n1, n2) = α(n1)

2 + βn1n2 + γ(n2)
2 and define

G(n1, n2, N, x1, x2, y) = 1− (n1 + n2) + (x2 − y)n2φ(n1, n2)

+ (x1 − y)n1φ(n2, n1).

Then G(n1, n2, N, x1, x2, x1) = f(n1, n2, N, x1, x2). Moreover (G1) and (G3)
hold. Furthermore, (G2) holds if and only if n2φ(n1, n2) + n1φ(n2, n1) only
depends on n1 + n2. A routine calculation shows that this is equivalent to
the condition that β + γ = 3α.
(2) Comparing (2.2.23) and (2.2.24), we see that f is a part of (3HS) if and
only if φ(n1, n2) depends only on n1 + n2. This turns out to be equivalent
to the condition that α = γ and β = 2α.

44



2.2.3 Example

In this subsection, we give a class of examples which is simple enough as the
fitness function f2 is a polynomial of degree 2 in n1 and n2 but is out of the
scope of the preceding framework by Dercole and Rinaldi. Indeed, we do
show in Proposition 2.2.13 that no generating function is associated with it
except the case where a = b in the following example. Still we can show the
occurrence of SU-shift and US-shift due to Theorem 2.2.3. As a reminder,
our example is (2.1.8) given by

dn1
dt

= n1
(
1− (n1 + n2) + (x2 − x1)n2(c− an1 − bn2)

)
dn2
dt

= n2
(
1− (n1 + n2) + (x1 − x2)n1(c− an2 − bn1)

)
dN

dt
= N(1−N),

where a, b and c are real-valued parameters. In this case, if

f2(n1, n2, N, x1, x2) = 1− (n1 + n2) + (x2 − x1)n2(c− an1 − bn2),

q2(n1, n2, N, x1, x2) = N(1−N),

f1(n1, N, x1) = 1− n1

q1(n1, N, x1) = N(1−N),

then (f1, q1), (f2, q2) is a (2HS) corresponding (2.1.8).

Proposition 2.2.13. f2 has an associated generating function if and only
if a = b

Proof. It follows that

∂Θ

∂x2
(n1, n2, N, x1, x2) = b(n1)

2 + 2an1n2 + b(n2)
2 − c(n1 + n2). (2.2.25)

By Theorem 2.2.10, the desired conclusion is immediate.

The following theorem gives us variety of asymptotic behaviors of solu-
tions of (2.1.8) according to the values of parameters a, b and c. In particular,
it tells us that invasion does not always imply substitution.

Theorem 2.2.14. Let x∗ ∈ R. Then
(1) If b− c > 0 and a+ b− 2c > 0, then SU-shift occurs at x∗.
(2) If b− c < 0 and a+ b− 2c < 0, then US-shift occurs at x∗.
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(3) Suppose that (b − c)(a + b − 2c) < 0. Then two distinct locally stable
equilibrium coexist if x2 ̸= x∗ and |x2 − x∗| is sufficiently small. More pre-
cisely, assume b > c (resp. b < c.) Then there exists δ > 0 and ϵ such that
the following two cases occur.
(3A) x2 ∈ (x∗, x∗+δ) (resp. (x∗−δ, x∗)): There exists a locally stable equilib-
rium point (ñx∗ , ñx2 , 1) such that any solution starting from B((1, 0, 1), ϵ)∩
(0,∞)3 converges to (ñx∗ , ñx2 , 1)as t → ∞. The mutant dominant equilib-
rium point (0, 1, 1) is also locally stable.
(3B) x2 ∈ (x∗ − δ, x∗) (resp. (x∗, x∗ + δ)): The resident dominant equilib-
rium (1, 0, 1) is locally stable. There exists a locally stable equilibrium point
(nx∗ , nx2 , 1) such that any solution starting from B((0, 1, 1), ϵ)∩(0,∞)3 con-
verges to (nx∗ , nx2 , 1)as t→ ∞.

Proof. For (1) and (2), making use of (2.2.23), we verify (2.2.2) and (2.2.3)
in Theorem 2.2.3 respectively. The proof of (3) is in A.4

As we have already mentioned in the introduction, the case (3) of the
above theorem reveals a phenomenon beyond IIS principle. There exist
two locally stable equilibria. In the case of (3A), if the initial population
of mutants is relatively small, then residents and mutants will coexist in
a certain proportion. If the initial population of mutants is large enough
mutants will dominate the entire population eventually, although this may
not sound realistic in the real world. In summary, the final outcome of
the competition really depends on the initial configuration right after a
mutation.
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Appendix A

Proofs

A.1 Proof of Theorem 2.2.3

In this appendix, we are going to prove Theorem 2.2.3. As a reminder, our
system is a (2HS), i.e. (DMS) and (MMS) satisfying Assumption 2.2.1 and
the consistency conditions (2.1.2) and (2.1.3). We fix x∗ ∈ R throughout
this section. If no confusion may occur, an element of R2 is thought of as

either a row vector (a1, a2) or a column vector

(
a1
a2

)
from place to place for

convenience hereafter in this paper. For simplicity, we define vector fields
V1 on U1 and V2 on U2 as follows:

V1(n1, N, x∗) :=

(
n1f1(n1, N, x∗)
q1(n1, N, x∗)

)

V2(n1, n2, N, x∗, x2) :=

 n1f2(n1, n2, N, x∗, x2)
n2f2(n2, n1, N, x2, x∗)
q2(n1, n2, N, x∗, x2)


Lemma A.1.1. Set v∗ = (n̂∗, N̂∗). There exist a positive definite quadratic
form p : R2 → R+, ϵ0 > 0 and a > 0 such that, if v ∈ Bϵ0(v∗), then

⟨∇p(v − v∗), V1(n1, N, x∗)⟩ ≤ −a ∥v − v∗∥2 (1.1.1)

where

∇f =

 ∂f

∂s1
∂f

∂s2


for a smooth function f(s1, s2) and ∥·∥ is the standard Euclidean norm of
R2.
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Proof. Without loss of generality, we may assume that v∗ = (0, 0). Let J1
be the Jacobi matrix of vector field V1 at v∗. Let P be a 2× 2 real regular
matrix transforming J1 into the real Jordan normal form, i.e. PJ1P

−1 is
the real Jordan normal form of J1. According to the Jordan normal form of
J1, we have three cases. Namely, PJ1P

−1 = A1 or A2 or A3, where

A1 =

(
t1 0
0 t2

)
, A2 =

(
α 1
0 α

)
and A3 =

(
α −β
β α

)
with t1, t2, α < 0 and β ∈ R. For convenience of notation, we write A =
PJ1P

−1.
Set p̃c(s1, s2) := s1

2 + cs2
2, where the constant c > 0 will be determined

eventually in accordance with our purpose.
Claim 1: There exist c > 0 and a′ > 0 such that

⟨∇p̃c(u), Au⟩ ≤ −a′ ∥u∥2 , (1.1.2)

for any u ∈ R2.
Proof of Claim 1: Suppose A = A2. Then

(∇p̃c(u), A2u) = 2(αu1
2 + u1u2 + cαu22)

for any u = (u1, u2) ∈ R2. Since α < 0, it follows that the right-hand of the
above equality is negative definite if c > 1/4α2. Therefore, we have verified
Claim 1 in this case. Similar argument works for the rest of the cases as
well.

Since P is an invertible matrix, there exists a′′ > 0 such that

−a′ ∥Pu∥2 ≤ −a′′ ∥u∥2

for any u ∈ R2. Set pc(u) = p̃c(Pu). Then

∇pc(u) = tP∇p̃c(Pu),

where tP is the transpose of P . Now, since

V1(v, x∗) = J1v +O(∥v∥2)

as ∥v∥ → 0, we verify that

(∇pc(v), V1(v, x∗)) = (∇p̃c(Pv), APv) +O(∥v∥3) (1.1.3)

as ∥v∥ → 0. At the same time, by Claim 1, it follows that

(∇p̃c(Pv), APv) ≤ −a′ ∥Pv∥2 ≤ −a′′ ∥v∥2 (1.1.4)
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for any v ∈ R2. Combining (1.1.3) and (1.1.4), we see that there exist ϵ0 > 0
and a > 0 such that

(∇pc(v), V1(v, x∗)) ≤ −a ∥v∥2

for any v ∈ Bϵ0(v∗).

Let p be the positive definite quadratic form obtained in Lemma A.1.1.
For r > 0, we define a r-Tube Tr by

Tr =
{
(n1, n2, N) ∈ (R+)

2 × R
∣∣∣ p(n1 + n2 − n̂x∗ , N − N̂x∗) ≤ r2

}
.

Note that Tr is a tubular neighborhood of

{(n1, n2, N) | (n1, n2, N, x∗, x∗) ∈ L(x∗)} .

We call a domain U ⊆ U2 is invariant if every solution (n1(t), n2(t), N(t))
of (DMS1) starting from U stays in U for any t > 0.

Lemma A.1.2. There exists ϵ1 > 0 such that, for any ϵ < ϵ1, one may
choose δ > 0 so that Tϵ is invariant if |x∗ − x2| < δ.

Remark A.1.1. This lemma corresponds to the tube theorem in [14].

Proof. Let ϵ0 be the constant obtained in Lemma A.1.1. Then, there exists
ϵ1 > 0 such that

Tϵ1 ⊆ {(n1, n2, N) | (n1 + n2, N) ∈ Bϵ0(v∗)} .

Let (n1, n2, N) ∈ Tϵ1 and let v(t) = (n1(t), n2(t), N(t)) be the solution of
(DMS1) satisfying (n1(0), n2(0), N(0)) = (n1, n2, N). Then

d

dt
p(v(t)− v∗)|t=0 = 2(∇p(v − v∗), Ṽ ), (1.1.5)

where

Ṽ =

(
n1f2(n1, n2, N, x∗, x2) + n2f2(n2, n1, N, x2, x∗)

q2(n1, n2, N, x∗, x2)

)
In case x2 = x∗, since Ṽ = V1(n1 + n2, N, x∗), Lemma A.1.1 yields

d

dt
p(v(t)− v∗)|t=0 = 2(∇p(v − v∗), V1(n1 + n2, N, x∗))

≤ −2a ∥v − v∗∥2 , (1.1.6)
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where v = (n1 + n2, N). Set

∂1Tϵ =
{
(n1, n2, N)

∣∣ p(v − v∗) = ϵ2, n1, n2 ≥ 0
}
.

Since ∂1Tϵ is compact, by (1.1.6), there exists M > 0 such that

d

dt
p(n1(t) + n2(t), N(t))|t=0 = (∇p(v − v∗), V1(n1 + n2, N, x1))

≤ −M

for any (n1, n2, N) ∈ ∂1Tϵ. As Ṽ is continuous on the compact set

∂1Tϵ × {x∗} × [x∗ − δ, x∗ + δ],

if δ > 0 is sufficiently small, then

d

dt
p(v(t)− v∗)|t=0 = 2(∇p(v − v∗), Ṽ ) ≤ −M

2
(1.1.7)

for any (n1, n2, N, x∗, x2) ∈ ∂1Tϵ × {x∗} × [x∗ − δ, x∗ + δ]. This means that
the solution v(t) can not escape Tϵ through ∂1Tϵ.

The rest of the boundary ∂Tϵ of Tϵ as a subset of R3 is included in two
planes

{(n1, n2, N) | n1, n2 ≥ 0, n1 = 0 or n2 = 0} .

Hence one easily see that the solution v(t) can not escape Tϵ through this
part as well. Thus Tϵ is invariant if |x∗ − x2| ≤ δ.

Now, let us complete the proof of Theorem 2.2.3.

Proof of Theorem 2.2.3. Let p and Tr be the same as before. Assume that
there exists c > 0 such that

∂Θ

∂x2
(n1, n2, N, x1, x2) > c

for any (n1, n2, N, x1, x2) ∈ L(x∗). Since ∂Θ
∂x2

is continuous on the compact
set Tϵ × {x∗} × [x∗ − ϵ, x∗ + ϵ], if ϵ > 0 is sufficiently small, then

∂Θ

∂x2
(n1, n2, N, x1, x2) > c/2

for any (n1, n2, N, x1, x2) ∈ Tϵ × {x∗} × [x∗ − ϵ, x∗ + ϵ]. In addition, we let
0 < ϵ < ϵ1, where ϵ1 is the constant appearing in Lemma A.1.2. Furthermore
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choose δ0 > 0 so that δ0 ≤ min{ϵ, δ}, where δ is the constant appearing in
Lemma A.1.2. Consequently, what we have shown so far is
(1) Tϵ is invariant if |x∗ − x2| ≤ δ0.
(2) For any (n1, n2, N, x1, x2) ∈ Tϵ × {x∗} × [x∗ − δ0, x∗ + δ0],

∂Θ

∂x2
(n1, n2, N, x1, x2) > c/2.

We assume that |x∗ − x2| ≤ δ0 hereafter in this proof. By elementary
calculation, if R(t) = n1(t)/(n1(t) + n2(t)) for a solution (n1(t), n2(t), N(t))
of (DMS1) starting from an interior point of Tϵ, then

dR

dt
= −R(1−R)Θ(n1, n2, N, x∗, x2)

= −R(1−R)(x2 − x∗)

∫ 1

0

∂Θ

∂x2
(n1, n2, N, x∗, (1− s)x∗ + sx2)ds. (1.1.8)

Assume x2 ∈ (x∗, x∗+ δ0). As Tϵ is invariant, (n1(t), n2(t), N(t)) stays in Tϵ
for any t > 0. Moreover by (2), it follows that

dR

dt
≤ − c

2
(x2 − x∗)R(1−R).

for any t > 0. Thus R(t) → 0 as t→ ∞ and hence n1(t) → 0 as t→ ∞.
Set U21 = {(n1, n2, N)|(n1, n2, N) ∈ U2, n1 = 0} and D2 = Tϵ ∩ U21

Claim 1: The fixed point (0, n̂x2 , N̂x2) belongs to D2.
Proof of Claim 1: As both Tϵ and U21 are invariant, we see that D2 is in-
variant. Moreover, the system (DMS1) is (MMS) with the parameter x2 on
U21 and this system restricted on U21 has the unique attractive fixed point
(0, n̂x2 , N̂x2). Considering that D2 is invariant, we conclude that the fixed
point (0, n̂x2 , N̂x2) belongs to D2.
Claim 2: The fixed point (0, n̂x2 , N̂x2) is attractive.
Proof of Claim 2: Direct calculation shows that the linearization of (DMS)
at (0, n̂x2 , N̂x2) is given byf2(0, n̂x2 , N̂x2 , x∗, x2) 0 0

a21 a22 a23
a31 a32 a33

 ,

where

(
a22 a23
a32 a33

)
equals (2.2.1) with x = x2 whose eigenvalues have nega-

tive real parts by Assumption 2.2.1. The remaining eigenvalue is

f2(0, n̂x2 , N̂x2 , x∗, x2) = −Θ(0, n̂x2 , N̂x2 , x∗, x2).
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Since (0, n̂x2 , N̂x2 , x∗, x2) ∈ Tϵ, the same argument as in (1.1.8) implies that
Θ(0, n̂x2 , N̂x2 , x∗, x2) > 0.

Now since n1(t) → 0 as t → ∞, if u∗ ∈ U2 is an ω-limit set of the orbit
(n1(t), n2(t), N(t)), then ω ∈ D2. In other words, there exists a sequence
{tm}m≥1 such that 0 < t1 < t2 < . . . and (n1(tm), n2(tm), N(tm)) → u∗ ∈ D2

asm→ ∞. Now let u(t) be the solution of (DMS1) staring from u∗ ∈ D2. As
D2 is invariant and (0, n̂x2 , N̂x2) is an attractor onD2, u(t) → (0, n̂x2 , N̂x2) as
t→ ∞. Note that (n1(tm+s), n2(tm+s), N(tm+s)) → u(s) asm→ ∞. This
implies that (n1(t), n2(t), N(t)) will eventually enter the basin of attraction
of (0, n̂x2 , N̂x2). Therefore, we conclude that any solution (n1(t), n2(t), N(t))
of (DMS1) starting from the interior of Tϵ is convergent to (0, n̂x2 , N̂x2) as
t→ ∞.

Through similar discussion, it is shown that if x2 ∈ [x∗ − δ0, x∗), then
any solution (n1(t), n2(t), N(t)) of (DMS1) starting from the interior of Tϵ
is convergent to (0, n̂x∗ , N̂x∗) as t → ∞. Since Sϵ′(x∗) ⊆ Tϵ for sufficiently
small ϵ′ > 0, we have shown that SU-shift occurs in this case.

Analogous arguments yield the occurrence of US-shift if there exists c > 0
such that

∂Θ

∂x2
(n1, n2, N, x1, x2) < −c

for any (n1, n2, N, x1, x2) ∈ L(x∗).

A.2 Proof of Proposition 2.2.12

In this section, we are going to prove Proposition 2.2.12. Let

Uk = (R+)
k × R× Rk

and define C∞(Uk) as the collection of functions on Uk which are C∞ on
neighborhoods of Uk; more precisely,

C∞(Uk) =

{
u : Uk → R

∣∣∣∣∣ there exist an open set U ⊇ Uk and a C∞-

function ũ : U → R such that ũ|Uk
= u.

}
To define the explicit notion of symmetry, we introduce the k-dimensional
permutation group Sk as

Sk = {σ : {1, . . . , k} → {1, . . . , k} | σ is bijective.}

For σ ∈ Sk, we define ισ : Uk → Uk by

ισ(n,N, x) = (nσ−1(1), . . . , nσ−1(k), N, xσ−1(1), . . . , xσ−1(k)),
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where n = (n1, . . . , nk) and x = (x1, . . . , xk).
Let i ∈ {1, . . . , k}. Define dki : Uk → Uk−1 by

dki (n,N, x) = (n1, . . . , ni−1, ni+1, . . . , nk, N, x1, . . . , xi−1, xi+1, . . . , xk).

Let 1 ≤ i < j ≤ k. Define dki,j : Uk → Uk−1 by

dki,j(n,N, x) = dkj (n1, . . . , ni−1, ni + nj , ni+1, . . . , nj−1, nj+1, . . . , nk, N, x)

for any n = (n1, . . . , nk), N and x = (x1, . . . , xk)

Definition A.2.1. A function f : Uk → R is said to have Sk−1-symmetry
if and only if

f(n,N, x) = f(ισ(n,N, x))

for any n = (n1, . . . , nk), N ∈ R and x = (x1, . . . , xk) whenever σ ∈ Sk and
σ(1) = 1.

The above condition of having Sk−1-symmetry is the generalization of
the symmetry condition (2.2.8) to arbitrary number of strategies.

Next we give definitions corresponding to the properties (ET) and (CT)
in the definition of trimorphic systems in Definition 2.2.5.

Definition A.2.2. Let j ∈ N.
(1) Let 2 ≤ i ≤ j. A pair (fj , fj−1) ∈ C∞(Uj)×C∞(Uj−1) is said to satisfy

the property (ET)ji if and only if

fj(n,N, x) = fj−1(d
j
i (n,N, x)),

where n = (n1, . . . , nj), N ∈ R and x = (x1, . . . , xj), provided ni = 0.
(2) Let 1 ≤ i < j ≤ n and xi = xj. A pair (fj , fj−1) ∈ C∞(Uj)×C∞(Uj−1)

is said to satisfy the property (CT)ji,m if and only if

fj(n,N, x) = fj−1(d
j
i,m(n,N, x)),

where n = (n1, . . . , nj), N ∈ R and x = (x1, . . . , xj), provided xi = xm.

The expressions (ET) and (CT) in the above definition represent “Ex-
tinction of a Trait value” and “Coincidence of Trait values” respectively.
For example, the properties (ET)33, (CT)

3
1,2, (CT)

3
2,3 correspond to (2.2.10),

(2.2.12) and (2.2.13) respectively. Moreover, the properties (ET)22 and (CT)21,2
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correspond to (2.1.2) and (2.1.3) respectively. In fact, if we study systems
of ODE’s representing general multi-morphic system

dn1
dt

= n1fk(n1, n2, . . . , nk, N, x1, x2, . . . , xk)

...

dnk
dt

= n1fk(nk, n1, . . . , nk−1, N, xm, x1, . . . , xk−1)

dN

dt
= qk(n1, . . . , nk, N, x1, . . . , xk)

for k = 1, . . . ,m, the natural condition for the consistency of the systems
with different values of k is that, for any k = 2, . . . ,m, fk has Sk−1-
symmetry and (fk, fk−1) satisfy (ET)ki for i = 2, . . . , k and (CT)ki,j for any
1 ≤ i < j ≤ k. In such a case, the sequence ((fi, qi))i=1,...,k should be called a
k-hierarchical system, (kHS) for short, as a natural extension of the notions
of (2HS) and (3HS).

Under a weaker set of properties, the functions f1, . . . , fm are shown to
have special forms in the next lemma.

Lemma A.2.3. Let m ≥ 1. For (f1, . . . , fm) ∈ C∞(U1) × . . . × C∞(Um),
the following conditions (a) and (b) are equivalent:
(a) For each k ∈ {2, . . . ,m}, fk has Sk−1-symmetry and the pair (fk, fk−1)
satisfies (ET)ki and (CT)k1,i for any i = 2, 3, . . . , k.
(b) There exists a sequence {hk}k=1,...,m such that for any k = 1, . . . ,m,
hk ∈ C∞(Uk) and for any k = 2, . . . ,m, hk has Sk−1-symmetry and

fk(n,N, x) =

k−1∑
j=0

∑
2≤i1<...<ij≤k

(
j∏

l=1

nil(x1−xil)

)
h
(i1,...,ij)
j+1,k (n,N, x) (1.2.1)

for any (n,N, x) ∈ Uk, where n = (n1, . . . , nk), x = (x1, . . . , xk) and

h
(i1,...,ij)
j+1,k (n,N, x) = hj+1

( k∑
i=1

ni −
j∑

l=1

nil , ni1 , . . . , nij , N, x1, xi1 , . . . , xij

)
.

Note that in the above lemma, the property (CT)ki,j is assumed only if
i = 1.

For k = 2, 3, (1.2.1) can be written as

f2(n1, n2, N, x1, x2) = f1(n1 + n2, N, x1) + n2(x1 − x2)h2(n1, n2, N, x1, x2)
(1.2.2)
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and

f3(n1, n2, n3, N, x1, x2, x3) = f1(n1 + n2 + n3, N, x1)+

n2(x1−x2)h2(n1+n3, n2, N, x1, x2)+n3(x1−x3)h2(n1+n2, n3, N, x1, x3)+
n2n3(x1 − x2)(x1 − x3)h3(n1, n2, n3, N, x1, x2, x3). (1.2.3)

Proof. For the sake of simplicity of the expression, we omit to write the
variable N explicitly in this proof.

We use an induction on m. If m = 1, it is obvious.

Let m ≥ 2. Assume that the statement holds for 1, . . . ,m − 1. Define
ψm : Um → R by

ψm(n, x) =
m−2∑
j=0

∑
2≤i1<...<ij≤m

(
j∏

l=1

nil(x1 − xil)

)
h
(i1,...,ij)
j+1,m (n, x),

where n = (n1, . . . , nm) and x = (x1, . . . , xm).

Assume ni = 0 for some i ≥ 2. Set (ñ, x̃) = dmi (n, x). Then by (ET)mi ,
we have

fm(n, x) = fm−1(ñ, x̃),

On the other hand, since ni = 0, we see that

ψm(n, x) =
m−2∑
j=0

∑
2≤i1<...<ij≤m−1

(
j∏

l=1

ñil(x̃1 − x̃il)

)
h
(i1,...,ij)
j+1,m−1(ñ, x̃).

Note that (1.2.1) holds for k = m−1 by the induction hypothesis. Hence the
right-hand side of the above equality coincides with fm−1(ñ, x̃). Therefore
it follows that

fm(n, x)− ψm(n, x) = 0

if ni = 0 for some i ≥ 2.

Next assume that xi = x1 for some i ≥ 2. Let (n̂, x̂) = dm1,i(n, x). Then
by (CT)m1,i,

fm(n, x) = fm−1(n̂, x̂).

At the same time, since x1 − xi = 0, we see that

ψm(n, x) =

m−2∑
j=0

∑
2≤i1<...<ij≤m−1

(
j∏

l=1

n̂il(x̂1 − x̂il)

)
h
(i1,...,ij)
j+1,m−1(n̂, x̂).
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Note that (1.2.1) holds for k = m − 1 by the induction hypothesis. Hence
the right-hand side of the above equality coincides with fm−1(n̂, x̂). Thus
we have shown that

ψm(n, x) = fm−1(n̂, x̂).

Hence if x1 − xi = 0 for some i ≥ 2, then

fm(n, x)− ψm(n, x) = 0

Thus it follows that fm(n, x)−ψm(n, x) can be divided by
∏m

i=2 ni(x1−xi).
Therefore, there exists hm : Um → R such that hm has Sm−1-symmetry and

fm(n, x)− ψm(n, x) =
m∏
i=2

ni(x1 − xi)hm(n, x).

Thus the desired statement is true for m.

As a corollary of Lemma A.2.3, we have the following lemma.

Lemma A.2.4. f ∈ C∞(U2) is a part of (2HS) if and only if there exist
f∗ ∈ C∞(U1) and φ ∈ C∞(U2) such that

f(n1, n2, N, x1, x2) = f∗(n1+n2, x1)+n2(x2−x1)φ(n1, n2, N, x1, x2) (1.2.4)

for any (n1, n2, N, x1, x2) ∈ U2.

Proof. Assume that f is a part of (2HS). Let ((f1, q1), (f2, q2)) be a (2HS)
satisfying f = f2. Then the condition (a) in Lemma A.2.3 holds for (f2, f1).
Hence we obtain (1.2.4) from (1.2.2). Conversely suppose that (1.2.4) holds.
Define f2 = f, f1 = f∗, q1 ≡ 0 and q2 ≡ 0. Then ((f1, q1), (f2, q2) is a (2HS)
and f is a part of (2HS).

Assuming the full properties of (ET)ki and (CT)ki,j for k = 2, 3, we obtain
the following theorem, which includes the restatement of Proposition 2.2.12.
In fact, (1.2.5) is exactly (2.2.24).

Theorem A.2.5. Let (f1, f2, f3) ∈ C∞(U1)× C∞(U2)× C∞(U3). The fol-
lowing conditions (c) and (d) are equivalent.
(c) For k = 2, 3, fk is Sk−1-symmetric and the pair (fk, fk−1) satisfies
(ED)ki for any 2 ≤ i ≤ k and (CT)ki,j for any 1 ≤ i < j ≤ k.
(d) There exist ξ ∈ C∞(U1), ρ ∈ C∞(U2) and F ∈ C∞(U3) such that, for
any (n1, n2, n3, N, x1, x2, x3) ∈ U3,

F (n1, n2, n3, N, x1, x2, x3) = −F (n1, n3, n2, N, x1, x3, x2),
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f2(n1, n2, N, x1, x2) = f1(n1 + n2, N, x1)+

n2(x1 − x2)
(
ξ(n1 + n2, N, x1) + (x1 − x2)ρ(n1, n2, N, x1, x2)

)
(1.2.5)

and

f3(n,N, x) = f1(n1 + n2 + n3, N, x1)+(
n2(x1 − x2) + n3(x1 − x3))ξ(n1 + n2 + n3, N, x1)

)
+

n2(x1 − x2)(x3 − x2)ρ(n1 + n3, n2, N, x1, x2)+

n3(x1 − x3)(x2 − x3)ρ(n1 + n2, n3, N, x1, x3)+

(x1−x2)(x1−x3)
(
n2ρ(n1, n2+n3, N, x1, x2)+n3ρ(n1, n2+n3, N, x1, x3)

)
+

n2n3(x1 − x2)(x1 − x3)(x2 − x3)F (n,N, x),

where n = (n1, n2, n3) and x = (x1, x2, x3).

Proof. As we have done in the proof of Lemma A.2.3, we omit to write N
explicitly in the followings.
(c) ⇒ (d): By Lemma A.2.3, we have (1.2.2) and (1.2.3). Let x2 = x3 in
(1.2.3). By (CT)32,3, we have

n2h2(n1 + n3, n2, x1, x2) + n3h2(n1 + n2, n3, x1, x2)

+ n2n3(x1 − x2)h3(n, x) = (n2 + n3)h2(n1, n2 + n3, x1, x2). (1.2.6)

Define H(X,Y, x1) = Y h2(X − Y, Y, x1, x1). Then by (1.2.6), we obtain

H(n1 + n2 + n3, n2, x1) +H(n1 + n2 + n3, n3, x1)

= H(n1 + n2 + n3, n2 + n3, x1).

This implies

H(t, s1, x1) +H(t, s2, x1) = H(t, s1 + s2, x1)

for any t, s1, s2 ≥ 0 with s1+s2 ≤ t. Since H is C∞, there exists ξ ∈ C∞(U1)
such that H(t, s, x1) = ξ(t, x1)s if 0 ≤ s ≤ t. Recalling the definition of H,
we have

h2(n1, n2, x1, x1) = ξ(n1 + n2, x1).

Since h2(n1, n2, x1, x2) − h2(n1, n2, x1, x1) ≡ 0 if x1 = x2, there exists ρ ∈
C∞(U2) such that

h2(n1, n2, x1, x2) = n2ξ(n1 + n2, x1) + (x1 − x2)ρ(n1, n2, x1, x2). (1.2.7)
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This immediately yields (1.2.5). Next, define

η(n, x) = f1(n1 + n2 + n3, x1)+(
n2(x1 − x2) + n3(x1 − x3)

)
ξ(n1 + n2 + n3, x1)+

n2(x1 − x2)(x3 − x2)ρ(n1 + n3, n2, x1, x2)+

n3(x1 − x3)(x2 − x3)ρ(n1 + n2, n3.x1, x3)+

(x1 − x2)(x1 − x3)
(
n2ρ(n1, n2 + n3, x1, x2) + n3ρ(n1, n2 + n3, x1, x3)

)
.

Then, by (1.2.5),

η(n1, 0, n3, x1, x2, x3) =

f1(n1 + n3, x1) + n3(x1 − x3)(ξ(n1 + n3, x1) + (x1 − x3)ρ(n1, n3, x1, x3))

= f2(n1, n3, x1, x3).

By (ET)32, it follows that η(n1, 0, n3, x) = f3(n1, 0, n3, x). Similar arguments
show that η(n1, n2, 0, x) = f3(n1, n2, 0, x). Moreover, by (1.2.5),

η(n1, n2, n3, x1, x1, x3) = f1(n1 + n2 + n3, x1)+

n3(x1 − x3)(ξ(n1 + n2 + n3, x1) + (x1 − x3)ρ(n1 + n2, n3.x1, x3))

= f2(n1 + n2, n3, x1, x3).

By (CT)31,2, it follows that

η(n, x1, x1, x3) = f3(n, x1, x1, x3).

In the same manner, using (CT)31,3 and (CT)32,3, we see that

η(n, x1, x2, x1) = f3(n, x1, x2, x3),

η(n, x1, x2, x2) = f3(n, x1, x2, x2).

Thus, there exists F ∈ C∞(U3) such that

f3(n, x)− η(n, x) = n2n3(x1 − x2)(x1 − x3)(x2 − x3)F (n, x).

Since f3 has S2-symmetry, it follows that

F (n1, n2, n3, x1, x2, x3) = −F (n1, n3, n2, x1, x3, x2).

(d) ⇒ (c): This is straightforward.
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A.3 Proof of Theorem 2.2.10

Throughout A.3, ((f1, q1), (f2, q2)) is assumed to be a (2HS). There exists
φ ∈ C∞(U2), by Lemma A.2.4, such that

f2(n1, n2, N, x1, x2) = f1(n1 + n2, x1) + n2(x2 − x1)φ(n1, n2, N, x1, x2)
(1.3.1)

for any (n1, n2, N, x1, x2) ∈ U2. Then we have the following assertion which
includes the claim of Theorem 2.2.10.

Theorem A.3.1. The following conditions are equivalent:
(1) f2 has an associated generating function.
(2) ∂Θ

∂x2
(n1, n2, N, x1, x1) depends only on the values n1 + n2, N and x1.

(3) Set

H(n1, n2, N, x1) = n2φ(n1, n2, N, x1, x1) + n1φ(n2, n1, N, x1, x1).

Then H depends only on the values n1 + n2, N and x1.
(4) Define

G∗(n1, n2, N, x1, x2, y) = f1(n1 + n2, N, y)

+ n2(x2 − y)φ(n1, n2, N, x1, x2) + n1(x1 − y)φ(n2, n1, N, x2, x1). (1.3.2)

Then G∗ is a generating function associated with f2.

The function G∗ defined in (1.3.2) may be thought of as the canonical
generating function associated with f2. Note that there exists infinitely
many generating functions associated with f2 because

G∗(n1, n2, N, x1, x2, y) + c(x2 − x1)
2(y − x1)(y − x2)

is also a generating function associated with f2 for any c ∈ R if G∗ is so.

Proof of Theorem A.3.1. (1) ⇒ (2) Let G be a generating function associ-
ated with f2. Then by (G3),

−Θ(n1, n2, N, x1, x2) = G(n1, n2, N, x1, x2, x1)−G(n2, n1, N, x2, x1, x2)

= G(n1, n2, N, x1, x2, x1)−G(n1, n2, N, x1, x2, x2).

Hence we have

− ∂Θ

∂x2
(n1, n2, N, x1, x1) =

∂G

∂y
(n1, n2, N, x1, x1, x1).
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On the other hand, by (G2), G(n1, n2, N, x1, x1, y) only depends on the val-
ues n1+n2, N, x1 and y and hence so does ∂G

∂y (n1, n2, N, x1, x1, y). Therefore,
we have (2).
(2) ⇒ (3) By (1.3.1),

− ∂Θ

∂x2
(n1, n2, N, x1, x1) = −∂f1

∂x1
(n1 + n2, x1) +H(n1, n2, N, x1, x1).

Hence by (2), one sees that H(n1, n2, N, x1, x2) only depends on the values
n1 + n2, N and x1.
(3) ⇒ (4) It is easy to see that G∗ satisfies (G3). Since

G∗(n1, 0, N, x1, x2, x1) = f1(n1, N, y),

we have (G1). The fact that

G∗(n1, n2, N, x1, x1, y) = f1(n1 + n2, N, y) + (x1 − y)H(n1, n2, N, x1)

immediately implies that (G2) holds if (3) is satisfied. Moreover,

G∗(n1, n2, N, x1, x2, x1) = f1(n1 + n2, N, x1)

+ n2(x2 − x1)φ(n1, n2, N, x1, x2) = f2(n1, n2, N, x1, x2).

Thus we have shown that G∗ is a generating function associated with f2.
(4) ⇒ (1) This is obvious.

A.4 Proof of Theorem 2.2.14

In this subsection, we prove Theorem 2.2.14. The equation in question is
(2.1.8). Note that Lemma A.1.2 is still true in this example. Let I be the
2× 2 identity matrix. Using the same notations as A.1, we see that

v∗ = (1, 1),

L(x∗) = {(n1, n2, 1, x∗, x∗) | n1 ≥ 0, n2 ≥ 0, n1 + n2 = 1} ,
J1 = I,

P = I,

where J1 and P have appeared in the proof of Lemma A.1.1. Consequently
one see that

Tϵ =
{
(n1, n2, N)

∣∣∣ √(n1 + n2 − 1)2 + (N − 1)2 ≤ ϵ
}
∩ U2.
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Since the variable N dose not appear in the equations of n1 and n2, we only
consider the first two equations on n1 and n2 in this section. Furthermore,
for ease of notations, we write x = n1, y = n2 and α = x2 − x1. As a result,
our equation is

dx

dt
= x

(
1− (x+ y) + αy(c− ax− by)

)
dy

dt
= y
(
1− (x+ y)− αx(c− ay − bx)

)
.

(1.4.1)

If T̂ϵ and L̂(x∗) are the projections of Tϵ and L(x∗) to (x, y)-plane respec-
tively, then L̂(x∗) = {(x, y)|x ≥ 0, y ≥ 0, x+ y = 1} and

T̂ϵ = {(x, y) | x ≥ 0, y ≥ 0, 1− ϵ ≤ x+ y ≤ 1 + ϵ} .

By Lemma A.1.2, for sufficiently small ϵ, there exists δ > 0 such that if
|α| ≤ δ, then T̂ϵ is invariant with respect to the system of ODE’s (1.4.1).

In case (b− c)(a+ b− 2c) > 0, using (2.2.23), we can easily verify either
(2.2.2) or (2.2.3) of Theorem 2.2.3. So, it is enough to consider the case
where (b− c)(a+ b− 2c) < 0. This case is subdivided into

(a+ b− 2c) > 0 and b− c < 0 ⇔ a >
a+ b

2
> c > b (Case 1)

and

(a+ b− 2c) < 0 and b− c > 0 ⇔ a <
a+ b

2
< c < b (Case 2)

Since both cases can be dealt with analogous methods, we are going to study
one of them. Namely, we fix a, b, c ∈ R satisfying (Case 2) from now on.

Definition A.4.1. Set U = {(x, y) | x+ y > 0}. Define τ : U → R2 by

τ(x, y) =
(
x+ y,

x− y

x+ y

)
By using the polar coordinate (x, y) = (r cos t, r sin t), where (r, t) ∈

(0,∞)× (−π
4 ,

3π
4 ), it follows that

τ(r cos t, r sin t) =
(
r cos

(
t− π

4

)
,− tan

(
t− π

4

))
.

Set Uλ = {(r cos t, r sin t) | r > 0, t ∈ (π4 − λ, π4 + λ)} for λ ∈ (0, π2 ]. Then
one can immediately verify the next lemma by direct calculation.
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Lemma A.4.2. For any λ ∈ (0, π2 ), τ is a diffeomorphism between Uλ and
(0,∞)× (− tanλ, tanλ).

Now if (X,Y ) = τ(x, y), then the system of ODE’s on (x, y), (1.4.1), is
transformed into

dX

dt
= F1(X,Y, α)

dY

dt
= F2(X,Y, α),

(1.4.2)

where

F1(X,Y, α) = X(1−X) +
1

4
α(b− a)(1− Y 2)X3Y

F2(X,Y, α) =
1

4
αX(1− Y 2)

(
2c− (a+ b)X + (a− b)XY 2

)
.

Define

G1(X,Y, α) = 1−X +
1

4
α(b− a)(1− Y 2)X2Y

G2(X,Y ) = 2c− (a+ b)X + (a− b)XY 2.

Then F1(X,α) = XG1(X,α) and F2(X,α) =
1
4αX(1− Y 2)G2(X,Y ).

From now on, we are going to study (1.4.2) on R× (0,∞). In particular,
the original domain [0,∞)× [0,∞) of (1.4.1) corresponds to [0,∞)× [−1, 1].
Furthermore, since

τ(T̂ϵ) = [1− ϵ, 1 + ϵ]× [−1, 1],

for sufficiently small ϵ, there exists δ such that if |α| ≤ δ, then [1− ϵ, 1+ ϵ]×
[−1, 1] is invariant with respect to the system of ODE’s (1.4.2). Hereafter in
this appendix, we choose ϵ and δ in this manner. In addition, we are going
to adopt values of ϵ and δ to the coming circumstances several times in the
course of our discussion.

Note that (1, 1) (resp. (1,−1)) corresponds to the resident dominant
(resp. the mutant dominant) equilibrium point. The Jacobian of the right-
hand side of (1.4.2) at (1,±1) is(

−1 1
2α(a− b)

0 ±α(b− c)

)
.

Hence if α > 0 (reps. α < 0), then (1, 1) is locally unstable (resp. stable)
and (1,−1) is locally stable (resp. unstable).

Set Iϵ = [1− ϵ, 1 + ϵ]× [−1, 1] and Ioϵ = (1− ϵ, 1 + ϵ)× (−1, 1). Next we
are going to search equilibrium points of (1.4.2) inside Iϵ.
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Lemma A.4.3.

Γ(Y, α) =
2

1 +
√

1− α(b− a)(1− Y 2)Y

and

Λ±(X) = ±
√

2c

b− a

1

X
− a+ b

b− a
.

Then, for sufficiently small ϵ > 0, there exists δ > 0 such that the following
statements (1), (2) and (3) hold.
(1) Λ± are well-defined as functions on [1− ϵ, 1 + ϵ] and, for (X,Y ) ∈ Ioϵ ,
F2(X,Y, α) = 0 if and only if Y = Λ±(X).
(2) Γ is well-defined as a function on [−1, 1] × (−δ, δ) and Γ([−1, 1] ×
(−δ, δ)) ⊆ [1 − ϵ, 1 + ϵ]. Moreover, for (X,Y ) ∈ Ioϵ , F1(X,Y, α) = 0 if and
only if X = Γ(Y, α).
(3) For any α ∈ (−δ, δ), there exist a unique Ψ+(α) ∈ (0, 1) such that

Ψ+(α) = Λ+(Γ(Ψ+(α), α))

and a unique Ψ−(α) ∈ (−1, 0) such that

Ψ−(α) = Λ−(Γ(Ψ−(α), α))

Moreover, define Φ±(α) = Γ(Ψ±(α)) and set p±(α) = (Φ±(α),Ψ±(α)).
Then
(3a) The function p± : (−δ, δ) → Ioϵ is C1-class.
(3b)

p±(0) =

(
1,±

√
a+ b− 2c

a− b

)
(3c) If α ̸= 0, then p+(α) and p−(α) are all the equilibrium points of (1.4.2)
in Ioϵ .
(3d) For any α ∈ (−δ, δ),

(Φ−(−α),Ψ−(−α)) = (Φ+(α),−Ψ+(α)).

(3e) dΦ+

dα (α) > 0 for any α ∈ (−δ, δ).

Proof. (1) Note that Λ± does not depend on α. Since

−1 < Λ−(1) < 0 < Λ+(1) < 1,
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choosing sufficiently small ϵ > 0, we see that Λ−([1− ϵ, 1+ ϵ]) ⊆ (−1, 0) and
Λ+([1 − ϵ, 1 + ϵ]) ⊆ (0, 1). Furthermore, for (X,Y ) ∈ Ioϵ , F2(X,Y, α) = 0 if
and only if G2(X,Y ) = 0. Since G2(X,Y ) = 0 if and only if Y = Λ±(X),
the desired conclusion is verified.
(2) Since Γ(Y, 0) = 1 for any Y , it follows that Γ([−1, 1] × (−δ, δ)) ⊆ [1 −
ϵ, 1 + ϵ] for sufficiently small δ > 0. For (X,Y ) ∈ Ioϵ , F1(X,Y, α) = 0 if and
only if G1(X,Y, α) = 0. Since G1(X,Y, α) = 0 if and only if X = Γ(Y, α),
we obtain the desired conclusion.
(3) Note that

∂Γ

∂Y
=

α(b− a)(1− 3Y 2)

(1 +
√
1− α(b− a)(1− Y 2)Y )2

√
1− α(b− a)(1− Y 2)Y

(1.4.3)

and
dΛ+

dX
= − c

(b− a)Λ+(X)X2
. (1.4.4)

Since
∂Λ+ ◦ Γ
∂Y

(Y, α) =
dΛ+

dX
(Γ(Y, α))

∂Γ

∂Y
(Y, α),

due to (1.4.3), we can choose δ > 0 so that

sup
Y ∈[−1,1],|α|≤δ

∣∣∣∣∂Λ+ ◦ Γ
∂Y

(Y, α)

∣∣∣∣ ≤ 1

2
. (1.4.5)

Fix α ∈ (−δ, δ). Then as a function of Y , Λ+◦Γ is contractive on [−1, 1].
Hence the contraction mapping theorem shows that Λ+ ◦ Γ has a unique
fixed point in [−1, 1]. Let denote the unique fixed point by Ψ+(α) and set
Φ+(α) = Γ(Ψ+(α), α). Then

Λ+◦Γ(Y, α)− Y = 0

for any α ∈ (−δ, δ). (1.4.5) yields

∂(Λ+◦Γ− Y )

∂Y
(Ψ+(α), α) ̸= 0.

Therefore, the implicit function theorem implies that Ψ+ and Φ+ are C1-
class functions. The statements (3b) and (3c) are straight forward. Again
using the implicit function theorem, we verify (3d). For Ψ−(α) and Φ−(α),
entirely the same discussion yields the desired statements. Since Λ− = −Λ+

and
(Γ(Y,−α)− 1) = −(Γ(Y, α)− 1),

we have (3d).
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Due to the duality between the case where α > 0 and the case where
α < 0, it is enough to study the case where α > 0. In this case, if Kϵ =
[1 − ϵ, 1 + ϵ] × [0, 1] and Ko

ϵ = (1 − ϵ, 1 + ϵ) × (0, 1), then both Kϵ and Ko
ϵ

are invariant with respect to (1.4.2).
The following theorem suffices a proof of Theorem 2.2.14.

Theorem A.4.4. Assume α > 0. For any (X0, Y0) ∈ Ko
ϵ , the solution of

(1.4.2) starting from (X0, Y0) converges to p+(α) as t→ ∞.

To prove the above theorem, we use the following lemma.

Lemma A.4.5. Assume α > 0. Then there exists no periodic solution of
(1.4.2) contained in Ko

ϵ .

Proof. Suppose there exists a periodic orbit contained in Ko
ϵ which is not

trivial, i.e. it is not a single point but homeomorphic to the circle. Let C
be the periodic orbit and let D be the bounded domain whose boundary is
C. Then the time-1 map ϕ1 given by ϕ1(X(t), Y (t)) = (X(t+ 1), Y (t+ 1))
is a continuous map from D to itself. Hence by the Brouwer fixed point
theorem, it has a fixed point inside D. Since p+(α) is the only equilibrium
point in Ko

ϵ , we conclude that p+(α) belongs to the interior of D.
Next we divide K1

ϵ into four regions K1, K2, K3 and K4 defined as

K1 = {(X,Y ) | Y ≥ Λ+(X), X ≥ Γ(Y, α)} ∩Kϵ

K2 = {(X,Y ) | Y ≥ Λ+(X), X ≤ Γ(Y, α)} ∩Kϵ

K3 = {(X,Y ) | Y ≤ Λ+(X), X ≤ Γ(Y, α)} ∩Kϵ

K4 = {(X,Y ) | Y ≤ Λ+(X), X ≥ Γ(Y, α)} ∩Kϵ

and define four curves C12, C23, C34 and C41 as

C12 = {(Γ(Y, α), Y ) | Y ∈ [Ψ+(α), 1]}
C23 = {(X,Λ+(X)) | X ∈ [1− ϵ,Φ+(α)]}
C34 = {(Γ(Y, α), Y ) | Y ∈ [0,Ψ+(α)]}
C41 = {(X,Λ+(X)) | X ∈ [Φ+(α), 1 + ϵ]} .

Then it follows that Cij = Ki∩Kj for any (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}.

Moreover, one can see the exact direction of the vector field

(
F1(X,Y )
F2(X,Y )

)
on

each Cij . Namely, it follows that(
F1

F2

)
=

(
0
−

)
on C12,

(
+
0

)
on C23,

(
0
+

)
on C34,

(
−
0

)
on C41.
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Furthermore, since p+(α) belongs to the interior of D, it follows that

C ∩
(
Ki\{p+(α)}

)
̸= ∅ (1.4.6)

for any i = 1, 2, 3, 4 and

C ∩
(
Cij\{p+(α)}

)
̸= ∅ (1.4.7)

for any (i, j) ∈ {(1, 2), (2, 3), (3, 4), (4, 1)}.
Now we have four cases according to the signs of c and Ψ+(0)− 1√

3
. Note

that by (1.4.3), Γ(Y ) is monotonically increasing in [0, 1√
3
] and monotoni-

cally decreasing in [ 1√
3
, 1].

Case I c ≥ 0 and Ψ+(0) >
1√
3
: By (1.4.4), Λ+ is monotonically decreasing

on [1 − ϵ, 1 + ϵ]. Since Ψ+(0) >
1√
3
, it follows that Ψ + (α) > 1√

3
as well

for sufficiently small α. Hence considering the dynamics on the boundaries
C12 and C23, we see that the domain K2 is invariant. By (1.4.6) for i = 2,
the periodic orbit C must be included in K2. This contradicts to (1.4.6)
for i = 4. Thus, there exists no periodic orbit contained in Ko

ϵ (See Fig-
ure 1.4.1).
Case II c ≥ 0 and Ψ+(0) ≤ 1√

3
: As in Case I, Λ+ is monotonically de-

creasing on [1 − ϵ, 1 + ϵ]. Since Ψ+(0) ≤ 1√
3
, we see that Ψ+(α) <

1√
3
for

sufficiently small α > 0. Set

C1
12 =

{
(Γ(Y ), Y )

∣∣∣∣ Y ∈ [Ψ+(α),
1√
3
]

}
.

Then if a solution of (1.4.2) exits K2, then it exits K2 from C1
12 and enters

K1. In particular, so does the periodic orbit C (See Figure 1.4.2). Now we
start chasing the periodic orbit. Let

Y1 = max
{
Y
∣∣ (X,Y ) ∈ C1

12 ∩ C
}
.

Considering the dynamics on K1, we obtain

C ∩K1 ⊆ {(X,Y ) | X ∈ [Φ+(α),Γ(Y1, α)]} ∩K1.

Set X1 = Γ(Y1, α) and define

C1
41 = {(X,Λ+(X)) | X ∈ [Φ+(α), X1]} .

Then the periodic orbit exits K1 from C1
41, enters K4 and stays in

K4 ∩ {(X,Y ) | Y ∈ [Λ+(X1),Ψ+(α)]} .
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Let us continue chasing the periodic orbit C. Set Y2 = Λ+(X1) and define

C1
34 = {(Γ(Y, α), Y ) | Y ∈ [Y2,Ψ+(α)]} .

Then the periodic orbit C exits K4 from C1
34, enters K3 and stays in

K3 ∩ {(X,Y ) | X ∈ [Γ(Y2, α),Φ+(α)]} .

Set X2 = Γ(Y2, α) and define

C1
23 = {(X,Λ+(X)) | X ∈ [X2,Φ+(α)]} .

Then the periodic orbit C exits K3 from C1
23, enters K2 and stays in

K2 ∩ {(X,Y ) | Y ∈ [Ψ+(α),Λ+(X2)]} .

Finally, by the definition of Y1, it follows that

Y1 ≤ Λ+(X2) = Λ+(Γ(Λ+(Γ(Y1)))) = (Λ+◦Γ)2(Y1)

Due to (1.4.5), however, we have

1

4
(Y1 −Ψ+(α)) ≥ (Λ+ ◦ Γ)2(Y1)−Ψ+(α).

Thus there exists no periodic orbit contained in Ko
ϵ .
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Figure 1.4.1: Case I
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Figure 1.4.2: Case II

Case III c < 0 and Ψ+(0) ≥ 1√
3
: In this case, since c < 0, (1.4.5) implies

that Λ+ is monotonically increasing on [1− ϵ, 1 + ϵ]. Since Ψ+(0) ≥ 1√
3
, we

have Ψ+(α) >
1√
3
. Define C2

34 =
{
(Λ(Y, α), Y )

∣∣∣ Y ∈ [ 1√
3
,Ψ+(α)]

}
. Then

if a solution of (1.4.2) exits K3, then it exits K3 from C2
34. The rest of the
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arguments are entirely similar to Case II.
Case IV c < 0 and Ψ+(0) <

1√
3
: As in Case III, Λ+ is monotonically

increasing on [1 − ϵ, 1 + ϵ]. Since Ψ+(0) <
1√
3
, we have Ψ+(α) <

1√
3
for

sufficiently small α > 0. In this case, K3 is invariant and the rest of the
arguments are entirely the same as Case I.

Proof of Theorem A.4.4. Let (X0, Y0) ∈ Ko
ϵ and let (X(t), Y (t)) be the

solution of (1.4.2) satisfying (X(0), Y (0)) = (X0, Y0). By the Poincaré-
Bendixson theorem, the ω-limit set of {(X(t), Y (t))}t>0 is a periodic orbit
or an equilibrium point. By Lemma A.4.5, it follows that the ω-limit set is
not a periodic orbit. Hence it is an equilibrium point. Now there are only
two equilibrium points in Ko

ϵ which are (1, 1) and (Φ+(α),Ψ+(α)). Since
(1, 1) is locally unstable and its stable manifold is Y = 1, the equilibrium
point (1, 1) can not be the ω-limit set. Therefore the ω-limit set must be
(Φ+(α),Ψ+(α)).
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