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Chapter 1 
 

Introduction 
 

 

 Klystrons, originally invented by Hahn and Metcalf, and named by 

the Varian brothers in 1939 [1], are now widely in use in decades as radio 

frequency (RF) amplifiers in many applications, such as broadcasting, 

particle accelerator researches, plasma heating researches, and so on. The 

klystron amplifies RF power in the regime up to several GHz range by use of 

an electron beam, consisting of an electron gun to provide the beam, a 

drift-tube with several RF resonant cavities where the beam interacts with 

the cavity fields, and, at the end, a collector to dump the spent beam. 

 From the viewpoint of, in particular, the industrial application of the 

klystron, the efficiency is a very important key parameter. Especially, the 

efficiency enhancement is essential to reduce the operating costs in 

industrial accelerator applications, such as in free electron lasers, 

transmutation systems of radioactive fission wastes, and so on, since many 

number of high-power klystrons are or will be used as the CW RF sources.  

 It is also important for the future fusion application, since the CW 

klystron is a major and unique candidate for the RF source of the Lower 

Hybrid Current Drive (several GHz range), and the Fast Wave Current 

Drive (hundreds MHz), which are both required to make the steady-state 

operation of the tokamak reactor.  

 Maximizing the klystron efficiency has been and is still, therefore, a 
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continuing effort, while the currently designed klystrons based on the 

conventional technologies seem to have almost achieved theoretically 

maximum efficiencies, and a drastic breakthrough is called for. 

 

 Depressed collector technology is one of such that could overcome 

this problem with the least degradation in the klystron performance, by 

directly recovering the substantial energy from the spent electron beam 

through the decelerating electrostatic fields. The depressed collector is 

expected to enhance appreciably the klystron efficiency by replacing the 

existing water-cooled heat-removal collector. In addition, it can be made 

much smaller than the conventional collector because of greatly reduced 

heat flux onto the surfaces, in general. 

 So far, the depressed collector system has been successfully applied 

to specific klystrons, i.e. medium-power CW klystrons for broadcasting in 

the 60 kW and 700 MHz range, showing a remarkable efficiency 

enhancement from the basic efficiency of 50 % of the prototype up to a 70% 

overall efficiency [2,3].  

 However, for the currently available several MW klystrons with over 

60 % efficiencies without depressed collectors, it is recognized generally 

difficult to incorporate them successfully, because of much broader energy 

spreads, higher emittances of the spent electron beams due to higher beam 

currents, and much stronger interactions with the cavities. Further 

improvements, therefore, require highly accurate and reliable klystron 

simulations, and collector design as well. 

 

 There is another possibility to enhance the klystron efficiency, which 

is use of hollow beams instead of the solid beams now preferentially used in 

the existing klystrons. Since the cavity fields are generally stronger in the 

vicinity of the cavity gaps on the drift-tube wall rather than those near the 
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symmetry axis, the hollow beams are supposed to result in higher klystron 

efficiencies through efficient interactions with the cavities. In order to 

examine this possibility, 2-dimensional simulations are also essential. 

 

 

 To investigate the above two approaches for the enhancement of the 

klystron efficiency, a new set of 2-dimensional numerical codes have been 

developed in this study, and are presented in this thesis. They can simulate 

effectively the klystrons as well as other RF devices, for example the 

RF-guns [4-6]. 

 

 One of the developed codes is for calculating eignemodes of the 

klystron cavities. So far, many codes have been developed [7-14], and are in 

use as cavity design tools for many RF devices, such as klystrons, RF-guns, 

and particle accelerators. However, depending on the cavity geometry or the 

mode to be solved, they are sometimes not accurate enough, or in other 

words, take too much CPU time to achieve the required accuracy. For these 

design tools, both higher accuracy and less computational efforts are always 

important, and strongly required. 

 From this viewpoint, a new Finite Element (FE) formulation is 

proposed as will be described in chapter 3 [15], which aims at improved 

calculations of cylindrically symmetric modes applicable to the klystron 

simulations. This new formulation can avoid the singularity on the 

symmetry axis, and, consequently, it is found that the solutions have higher 

accuracy and smoother convergence compared with other existing 

formulations. It should be noted that this numerical technique is applicable 

not only to the present eigenmode calculations but also to calculations of 

other cylindrically symmetric solenoidal fields, such as magnetostatic field 

calculations, and time-domain calculations of electromagnetic fields. 
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 For calculations of magnetostatic fields, the finite methods, such as 

the Finite Element method (FEM), and the Finite Differential method 

(FDM), are commonly used, while they have the disadvantage that specific 

conditions are required on the boundary of the finite meshes. Unfortunately, 

it is the essential feature of the magnetostatic fields to extend to the infinite 

space, and accordingly no specific boundary condition is actually available 

for the finite methods. On the other hand, the integral equation methods, 

such as the Boundary Element method (BEM) and the Moment method 

(MM), can effectively deal with the unbounded problems, but they cannot 

treat nonlinear nor inhomogeneous media. 

 To calculate the unbounded magnetostatic fields by the klystron 

focusing coils, a new FEM/MM-hybrid method is proposed in chapter 4, 

which retains the advantageous characteristics of both methods. It is to be 

noted that the present FEM/MM-hybrid method can be applied to other 

problems where Green’s functions are known, such as electromagnetic 

scattering problems, for example. 

 

 To model the interaction between the electron beam and the cavities, 

the equivalent circuit model was used in this study, which is known as the 

‘port-approximation’ originally proposed by Yu [16], and also by Carlsten 

and Tallerico [17], and effectively utilized in the existing codes [18-20]. 

 The simulation code in this study was developed based on the 

existing 2-dimensional code known as FCI (acronym for Field Charge 

Interaction) by Shintake [19, 21], and the following several improvements 

were made to achieve much higher accuracy sufficient enough to provide 

injection conditions for the depressed collector designing. 

 

 A new method based on the Newmark method is proposed to avoid 

numerical instabilities in calculating simultaneously the electromagnetic 
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fields, and the particle motions in time domain.  

 For a stable calculation, in general, the well-known 

Courant-Freidrichs condition should be fulfilled, i.e. the spatial meshes 

must be smaller than a specific size related to the time step. And further in 

some cases with high beam currents, both spatial smoothing, and artificial 

damping factors between the output cavity and the collector entrance are 

required in the field calculation [21]. Damping factors between the output 

cavity and the collector are suitable for calculating the klystron output 

power, but are found not suitable in order to calculate the spent beam for 

depressed collector designing. 

 The new method of the present study is rather straightforward, and 

does not require such a condition or treatments, by including damping 

factors in itself effectively to, eventually, damp the high-frequency fields 

induced by the numerical errors. 

 

 Also, in the port-approximation, since the equivalent circuit shows 

resonance with a high quality factor including a nonlinear term induced by 

the electron beam, the final periodically steady-state solution can hardly be 

obtained straightforwardly [21], and, therefore, some special treatments are 

required for fast convergence within reasonable computation time [18, 21]. 

Again a new approach is proposed in this study, and applied to achieve 

faster convergence in solving the equivalent circuit equations. 

 

 

 The discussions above are summarized as follows. 

 In this thesis, development of a set of numerical codes, and its 

application are presented, aiming at efficiency enhancement of klystrons.  

 In chapter 2, the numerical model for the klystron simulation is 

reviewed, and assumptions made for efficient computations are summarized. 
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Also discussed are basic equations for the numerical model, which are 

derived on the assumptions from Maxwell’s equations, and the relativistic 

equation of motion for electrons. 

 In chapter 3, a new formulation is proposed for accurate calculations 

of cylindrically symmetric eigenmodes. Comparisons with the existing 

formulations are made to show the advantageous features of the new 

formulation with respect to both accuracy and smooth convergence of the 

solutions. 

 In chapter 4, a new code for magnetostatic field calculations is 

presented, which is to be used for calculating the external focusing fields of 

klystrons. To deal with the unbounded magnetostatic field problem 

including nonlinear media, a new hybrid method combining the FEM and 

the MM is proposed. 

 In chapter 5, development of the overall klystron simulation code is 

presented. A new method based on the Newmark method is proposed to 

provide high numerical stability in solving ordinary differential equations 

for time-varying electromagnetic fields in particle-in-cell simulations. A new 

approach is also proposed to achieve fast convergence in solving resonant 

circuit equations with high quality factors including a nonlinear term 

induced by the electron beam. Application to some existing klystrons is also 

presented to show agreements with experiments in terms of RF output 

powers. 

 By use of the verified simulation codes developed, the two 

approaches for the enhancement of the klystron efficiency are investigated 

in chapter 6 [22, 23]. 

 The discussions in this thesis are summarized in chapter 7. 
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Chapter 2 
 

Basic Equations and Assumptions of 

Numerical Model 
 

 

 In this chapter, basic equations are summarized for the code 

development presented in the following chapters. They are derived from 

Maxwell’s equations, and the relativistic equation of motion for electrons, on 

some assumptions, mainly, for efficient computations. 

 

2.1. Assumptions and General Structure of Simulations 
 

 In this section, the assumptions made for efficient computations in 

the klystron simulations are summarized [19, 21].  

 

 As schematically shown in Fig. 2.1, a klystron consists of an electron 

gun to provide a electron beam, a drift-tube with input, idler and output 

cavities to modulate and bunch the electron beam, and a collector to dump 

the spent beam. Some external coils and pole-pieces are set to provide 

magnetostatic fields throughout to focus the beam. 

 In modeling a klystron numerically, some assumptions are made for 

efficient computations as follows. 
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Figure 2.1. Schematic cross section of a klystron. 

 

 

(i) The electromagnetic fields are assumed to be cylindrically symmetric 

(no variation in the θ -direction). This assumption is appropriate 

since the klystron has almost complete cylindrical symmetry. 

Although the output cavity has a non-symmetric connection to the 

output wave-guide, the fields within the drift-tube can be assumed 

to be symmetric. 

(ii) Accordingly, the electron beam is also assumed to be cylindrically 

symmetric, consisting of ring particles (see Fig. 2.2) specified by 

their positions ( )νν rz , , and velocities ( )θννν ,,, ,, uuu rz  in the cylindrical 

coordinates ( )θ,, rz , where ν  denotes the particle number. 
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(iii) The fields in the electron gun are assumed to be static, without 

backward electromagnetic waves from the downstream drift-tube.  

(iv) It is assumed that, as shown in Fig. 2.3, the fields in the drift-tube 

can be separated into the resonant cavity fields, and the 

beam-induced fields. The latter are approximately calculated by 

solving Maxwell’s equations without influence of the cavity 

configuration. 

(v) It is assumed that only one resonant mode is excited in each cavity, 

whose resonance frequency is closest to the klystron operating 

frequency. 

(vi) The cavities have almost no coupling with each other through the 

drift-tube, and accordingly the cavity fields can be calculated 

separately as schematically shown in Fig. 2.3. 

(vii) The cavity fields have the same frequency as the RF input, i.e. the 

operating frequency of the klystron. 

 

r

z

u

u

uz

r

θ

 
Figure 2.2. A ring particle in 2-dimensional particle simulations. It 
is specified by its position ( )νν rz , , and its velocity ( )θννν ,,, ,, uuu rz . 
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Figure 2.3. The equivalent circuit model. The beam-induced fields 
and the cavity fields are calculated separately. 
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 On the assumptions above, the following set of codes have been 

developed in this study (see Fig. 2.4), 

 

(1) KUSOS (Kyoto University SOlenoidal field Solver), 

(2) KUEMS (Kyoto University EigenMode Solver),  

(3) KUAD2 (Kyoto University Advanced Dart II), 

(4) KUBLAI (Kyoto University Beam Loading AnalysIs). 

 

 

cavity geometry

focusing field

KUSOS

coils and pole-pieces
geometry

initial and injection
conditions
KUAD2

drift-tube geometry
cold cavity parameters

gun and drift-tube
geometry
cathode voltage
beam current

code

input

cavity eigen modes 

KUEMS

beam-cavity
interaction

KUBLAI

 
 

Figure 2.4. The set of codes developed for klystron simulations. 
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 On the assumption (iii), the electron trajectories in the gun are 

simulated in the electro-magnetostatic fields by the KUAD2, which have 

been developed by modifying the recently developed KUAD code [24]. Then 

the results are used as the initial and beam-injection conditions for the 

beam-cavity interaction simulation in the drift-tube by the KUBLAI. 

 In the KUBLAI, on the assumption (iv), the fields E  and B  are 

expressed separately by the components as,  

 

 ( ) ( ) ( )trztrztrz ,,,,,, cb EEE += , (2.1.a) 

 ( ) ( ) ( ) ( )rztrztrztrz ,,,,,,, fcb BBBB ++=  

 ( ) ( )rztrz ,,, fcb BB += + , (2.1.b) 

 

where bE  and bB  denote the electromagnetic fields induced by the beam, 

cE  and cB  the cavity fields, and fB  the external focusing fields calculated 

by the KUSOS. 

 The beam-induced fields bE  and bB  are calculated in time domain 

by solving Maxwell’s equations in the drift-tube without the cavities. On the 

other hand, on the assumptions (v) and (vi), the cavity fields cE  and cB  

are expressed by, 

 

 ( ) ( ) ( )rztetrz i

i

i ,,, )()(
00c EE ∑= , (2.2.a) 

 ( ) ( ) ( )∑=
i

ii rzthtrz ,,, )()(
000c HB µ , (2.2.b) 

 

where 0µ  denotes the permeability in vacuum, and )(i
0E  and )(i

0H  denote 

the dominant eigenmode pattern in the i -th cavity, which are calculated by 

the KUEMS. The time-dependent variables )(ie0  and )(ih0  (see Eqs. (2.20)) 
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are calculated through the beam-cavity interaction simulations based on the 

equivalent circuit model shown in Fig. 2.3. 

 

2.2. Basic Equations 
 

2.2.1. Interactions between Beams and Cavities 
 

 In this subsection, the equivalent circuit model (see Fig. 2.3) is 

derived from Maxwell’s equations on the preceding assumptions. 

 

 The electromagnetic fields E  and cb+H  ( 0cb µ+= B ) in the klystron 

are described by Maxwell’s equations in vacuum, 

 

 
t∂

∂
−=×∇ +cb

0
HE µ , (2.3.a) 

 b0cb JEH +
∂
∂

=×∇ + t
ε , (2.3.b) 

 
0

b

ε
ρ

=⋅∇ E , (2.3.c) 

 0cb =⋅∇ +H , (2.3.d) 

 

where bJ  and bρ  denote, respectively, the current density and the charge 

density of the electron beam, and 0ε  the permittivity in vacuum. Note that, 

as described in Eq. (2.1.b), the total magnetic filed B  is sum of cb+B  and 

the focusing field fB  induced by the focusing coil current density fJ . The 

magnetic field cb+H  will be expressed simply as H  hereafter for 

convenience in the following derivation. 
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 As is well known, any vector function can be divided into two kinds 

of functions, namely solenoidal and irrotational eigenfunctions [25]. To 

expand Maxwell’s equations, two sets of eigenfunctions { }aE  and { }aH  are 

defined with different boundary conditions as follows. 

 

 0=× aEn   on 1Γ , (2.4.a) 

 0=⋅ aEn   on 2Γ , (2.4.b) 

 aaa WdV 2=⋅∫Ω EE , (2.4.c) 

 0=⋅∫Ω dVba EE , (2.4.d) 

 

 0=⋅ aHn   on 1Γ , (2.4.e) 

 0=× aHn   on 2Γ , (2.4.f) 

 aaa WdV 2=⋅∫Ω HH , (2.4.g) 

 0=⋅∫Ω dVba HH , (2.4.h) 

 

where a  and b  denote mode numbers, 1Γ  the inner surface of the cavity 

and the drift-tube wall, 2Γ  the cross-sectional area of the input coupler and 

the output wave guide, Ω  the domain surrounded by 21 Γ∪Γ  (see Fig. 2.5), 

and dV  denotes a volume element in Ω . The value aW  in Eqs. (2.4.c) and 

(2.4.g) gives the normalization condition for the mode a . The set { }aE  and 

{ }aH  each consists of solenoidal and irrotational eigenfunctions. 

 On one hand, the solenoidal eigefunction can be described by, 

 

 aaa k HE =×∇ , (2.5.a) 

 aaa k EH =×∇ , (2.5.b) 
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 0=⋅∇ aE , (2.5.c) 

 0=⋅∇ aH , (2.5.d) 

 

which represent a resonant eigenmode, with a resonance frequency π2ack , 

electromagnetic fields ( ) ( ) 0εtckrz aa cos,E , ( ) ( ) 0µtckrz aa sin,H , and stored 

energy aW , where c  is the speed of light, and ak  the wave number. 

 On the other hand, the irrotational functions satisfy 0=×∇ aE  and 

0=×∇ aH , which can be assumed as modes with eigenfrequencies 

02 =πack , and hence do not contribute to resonant fields. 

 

 

Γ2

n

1Γ
iL LR

C

iex

bi

iL

external
circuit

Cv
Cv

 
 

Figure 2.5. The equivalent circuit of the output cavity. 
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 On the assumption (iv) in section 2.1, the eigenfunctions { }aE  and 

{ }aH  are divided into cavity-related solenoidal eigenmodes, and the others, 

i.e. solenoidal eigenmodes of the drift-tube and all the irrotational 

eigenfunctions. 

 Among the former cavity modes, on the assumption (v), only the 

dominant cavity modes { })(i
0E  and { })(i

0H  are taken into account in the 

KUBLAI simulations, where i  denotes the cavity number, and the 

subscript ‘0’ means the dominant mode. 

 Since the beam-induced fields bE  and bB  consist of the latter 

eigenfunctions, and are approximately calculated by solving Maxwell’s 

equations in time domain without the cavities, the fields can be written by, 

 

 ( ) ( ) ( ) ( )∑+=
i

ii rztetrztrz ,,,,, )()(
00b EEE , (2.6.a) 

 ( ) ( ) ( ) ( )∑+=
i

ii rzthtrztrz ,,,,, )()(
00b

0

1
HBH

µ
, (2.6.b) 

 

where, from Eqs. (2.4.c), (2.4.d), (2.4.g) and (2.4.h),  

 

 ( ) ( ) ( )∫Ω ⋅= dVrztrz
W

te i
i

i ,,, )(
)(

)(
0

0
0 2

1 EE , (2.7.a) 

 ( ) ( ) ( )∫Ω ⋅= dVrztrz
W

th i
i

i ,,, )(
)(

)(
0

0
0 2

1 HH . (2.7.b) 

 

 As will be shown below, the equivalent circuit equations for the 

time-dependent variables )(ie0  and )(ih0  can be derived from Maxwell’s 

equations of Eqs. (2.3.a) and (2.3.b). 
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 By multiplying )(i
0H  and integrating in the domain Ω , Eq. (2.3.a) 

becomes, 

 ( )
dt

dhWdV
i

ii
)(

0
0

)(
0

)(
0 2 µ−=×∇⋅∫Ω EH . (2.8) 

 

With Eq. (2.5.b), the integrand of Eq. (2.8) is reduced to, 

 

 ( ) ( ) ( ))(
0

)(
0

)(
0

iii HEHEEH ×∇⋅+×⋅∇=×∇⋅  

 ( ) )(
0

)(
0

)(
0

iii k EEHE ⋅+×⋅∇= . (2.9) 

 

Then Eq. (2.8) becomes, with Gauss’ divergence theorem and Eq. (2.4.f),  

 

 ( )
∫Γ ⋅⎟

⎠
⎞

⎜
⎝
⎛

×=⎟
⎠
⎞

⎜
⎝
⎛

−−
1 0

)(
0

)(
00)(

00
)(

0
)(

02 dS
dt

hdeW
ii

iii nHE
µ

µ
εω , (2.10.a) 

 

where )()( ii ck00 =ω , and n  denotes the outward unit vector normal to 21 Γ∪Γ , 

and dS  denotes a surface element on 21 Γ∪Γ . From Eq. (2.3.b), in the same 

way with Eqs. (2.4.a) and (2.5.a), the following equation is also obtained. 

 

 ( )
∫∫ ΓΩ

⋅⎟
⎠
⎞

⎜
⎝
⎛

×−⋅−=⎟
⎠
⎞

⎜
⎝
⎛

+−
2 0

)(
0

0

)(
0

)(
00)(

00
)(

0
)(

02 dSdV
dt

edhW
iii

iii nHEEJ
εε

ε
µω . (2.10.b) 

 

With the following relations, 

 

 ( ) ( )teVtv iii
C

)()()(
000 ε= , (2.11.a) 

 ( ) ( )th
V

Wti i
i

ii
i

L
)(

)(

)()(
)(

00
0

002
µ

ω
−= , (2.11.b) 
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( )20

02
)(

)(
)(

i

i
i

V

W
C = , (2.11.c) 

 ( )
( )200

2
0

2 )()(

)(
)(

ii

i
i

W

V
L

ω
= , (2.11d) 

 ( ) ∫Γ ⋅⎟
⎠
⎞

⎜
⎝
⎛

×−=
1 0

)(
0

)(
0

)(
0

)(
0

2
dS

W
VtiR

i

ii

i
i

L
i nHE

µω
)()( , (2.11.e) 

 ( ) ∫Ω ⋅−= dV
V

ti
i

i
i

0

)(
0

b)(
0

b
1

ε
E

J)( , (2.11.f) 

 ∫Γ ⋅⎟
⎠
⎞

⎜
⎝
⎛

×−=
2 0

)(
0

)(
0

ext
1 dS

V
i

i

i
i nHE

ε
)( , (2.11.g) 

 

where )(iV0  is given by, 

 

 dz
E

V
r

i
zi ∫ =

−=
0

0

0
0 ε

)(
,)( , (2.12) 

 

Eqs. (2.10.a) and (2.10.b) are, respectively, expressed as, 

 

 )()(
)(

)()( i
L

i
i

Lii
C iR

dt
di

Lv += , (2.13.a) 

 )()()(
)(

)( iii
L

i
Ci iii

dt
dv

C extb +=+ , (2.13.b) 

 

which describe the equivalent circuit shown in Fig. 2.5. 

 The major circuit parameters, such as the voltage )(i
Cv  provided to 

the capacitance )(iC , the power loss at the resistance )(iR , the power 

provided by )(iib  (called beam-loading current), and the power by )(iiext  which 

appears only in the input and output cavities, are, respectively, expressed 
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from Eqs. (2.11) and (2.12) by, 

 

 dzEev
r

i
z

ii
C ∫ =

−=
0 00

)(
,

)()( , (2.14.a) 

 ( ) ( ){ }∫Γ ⋅×=
1

)(
0

)(
0

2 dShiR iii
L

i nHE)()( , (2.14.b) 

 ( )∫Ω ⋅−= dVevi iii
C

i )(
0

)(
0bb EJ)()( , (2.14.c) 

 ( ){ }∫Γ ⋅×−=
2

)(
0

)(
0ext dSevi iii

C
i nHE)()( . (2.14.d) 

 

The parameters above are, thus, found to represent, respectively, the cavity 

voltage, the wall loss on 1Γ , the power provided by the electron beam, and 

the power through 2Γ . 

 For the input cavity ( 1=i ) and the output cavity ( Ni = ), { })(iiext  are 

given in terms of the RF input current gI , and the external load )(iG  as, 

 

 ( ) )()()( sin 11
g

1
ext CvGtIi −= ω , (2.15.a) 

 )()()( N
C

NN vGi −=ext , (2.15.b) 

 0ext =
)(ii  (i=2,L,N-1), (2.15.c) 

 

where f  ( πω 2= ) is the operating frequency of the klystron. 

 With the above, the equivalent circuits previously shown in Fig. 2.3 

are, thus, derived. 
 

 The circuit parameters )(iL , )(iC , )(iR , and )(iG  are given from the 

following equations by experimentally measured cavity parameters; the 

dominant resonance frequency πω 200
)()( iif = , the loaded and unloaded 

quality factors )(iQl  and )(iQu , and the R/Q-parameter ( ) )(iQR , 
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)()(

)(

ii

i

CL
1

0 =ω , (2.16.a) 

 ( ) )()(
)(/ ii

i

C
QR

0

1
ω

= , (2.16.b) 

 )()()( iii QQQ extul

111
+= , (2.16.c) 

 )(

)()(
)(

i

ii
i

R
L

Q 0
u

ω
= , (2.16.d) 

 )(

)()(
)(

i

ii
i

G
C

Q 0
ext

ω
= , (2.16.e) 

 

where the R/Q-parameter ( ) )(iQR  is defined in terms of the unloaded 

quality factor )(iQu , and the shunt impedance )(iRs  by, 

 

 ( ) ( )
)()(

)(

)(

)(
)(/ ii

i

i

i
i

W
V

Q
RQR

00

2
0

u

s

2ω
== . (2.17) 

 

 Finally, on the assumption (vii), with the complex beam-loading 

current defined by, 
 

 ( ) ( )∫ −=
f ii dttjti

T
I

/ )()( exp
1

0 bb
2

ω , (2.18) 

 

the equivalent circuit equations of Eqs. (2.13) and (2.15) are solved for the 

operating frequency f in terms of the real part of the following complex 

values )(i
CV  and )(i

LI , 

 

 ( )[ ]tjVv i
C

i
C ωexpRe )()( = , (2.19.a) 

 ( )[ ]tjIi i
L

i
L ωexpRe )()( = . (2.19.b) 
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Then, from Eqs. (2.11.a), (2.11.b) and (2.17), )(ie0  and )(ih0  are consequently 

given by, 

 

 ( ) )]exp(Re[ )(
)(

)( tjV
V

te i
Ci

i ω
ε 00

0
11

= , (2.20.a) 

 ( ) ( )
)]exp(Re[ )(

)(

)(
)( tjI

V
QRth i

Li

i
i ωµ

0
00 −= . (2.20.b) 

 

Accordingly, the cavity fields cE  and cB  in Eqs. (2.2) are now given by, 

 

 ( ) ( )rztjV
V

trz i

i

i
Ci ,)]exp(Re[,, )()(

)( 0
00

c
11 EE ∑= ω

ε
, (2.21.a) 

 ( ) ( ) ( )rztjI
V

QRtrz i

i

i
Li

i

,)]exp(Re[,, )()(
)(

)(

0
0

0c HB ∑−= ωµ , (2.21.b) 

 

 

2.2.2. Focusing Magnetostatic Fields 
 

 The focusing field fB  can be described in terms of the vector 

potential fA  by, 

 

 ff
1 JA =⎟⎠

⎞
⎜⎝
⎛ ×∇×∇
µ

, (2.22.a) 

 ff AB ×∇= , (2.22.b) 

 

where fJ  is the current density in the focusing coils. As will be described in 

chapter 4, the KUSOS solves Eq. (2.22.a) in the infinite space without any 
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boundary condition, taking into account nonlinear permeability µ  as a 

function of fB  inside the pole-pieces. 

 

2.2.3. Beam-Induced Electromagnetic Fields 
 

 As was described in subsection 2.2.1, the beam-induced fields bE  

and bB  are described by Maxwell’s equations in vacuum without influence 

of the cavity configuration, 

 

 
t∂

∂
−=×∇ b

b
BE , (2.23.a) 

 b0
b

2b
1 JEB µ+

∂
∂

=×∇
tc

, (2.23.b) 

 
0

b
b ε

ρ
=⋅∇ E , (2.23.c) 

 0b =⋅∇ B . (2.23.d) 

 

On the assumption of cylindrical symmetry, the fields bE  and bB  can be 

written as follows without loss of generality, 

 

 
( ) ( )θθ

θθφ i
i

E b,
b,

bb G
t

A
×∇−

∂
∂

−−∇= , (2.24.a) 

 ( )θθθθ iiB b,b,b AB ×∇+= , (2.24.b) 

 

where θi  is the unit vector in the θ –direction. The potentials bφ  and θb,A  

are, respectively, the scalar and vector potential in Coulomb gauge. The 

variable θb,G  in Eq. (2.24.a) gives the other potentials zAb,  and rAb,  as,  
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( ) ( )θθ

θθ i
iA

b,
b,b G

t
A

×∇=
∂
−∂

. (2.25) 

 

It is to be note that ( ) 0b,b =−⋅∇ θθiA A  in Coulomb gauge. 

 Instead of the common choice of the potentials in Coulomb gauge, 

Lorentz gauge [19, 21], or electromagnetic fields themselves [20], this choice 

of the independent variables is exclusively due to the fact that scalar and 

θ -components of vector variables are much easier to handle on the 

boundary than the other z - and r -components, in the cylindrical 

coordinates. It is to be noted that z - and r -components do couple to each 

other on the drift-tube wall except for a straight drift-tube, while the 

variables in Eqs. (2.24) do not for any arbitrary boundary shapes. 

 The fields bE  and bB  given by Eqs. (2.24) satisfy both Eq. (2.23.d) 

and the θ -component of Eq. (2.23.a). From the other Eqs. (2.23), equations 

for bφ , θb,A , θb,B , and θb,G  are derived as follows, 

 

 
0

b
b

2

ε
ρ

φ −=∇ , (2.26.a) 

 ( ) ( )
θθ

θθ
θθ µ i

i
i b,0

b,
2b,

1 J
t

A
c

A =
∂

∂
+×∇×∇ , (2.26.b) 

 ( ) ( ) ( )θθ
θθ

θθ µ iJ
i

i b,b0
b,

2b,
1 J

t
B

c
B −×∇=

∂

∂
+×∇×∇ , (2.26.c) 

 ( ) ( )
t

B
G

∂

∂
=×∇×∇ θθ

θθ

i
i b,

b, . (2.26.d) 

 

In the KUBLAI, θb,A  and θb,B  are calculated by solving Eqs. (2.26.b) and 

(2.26.c) in time domain, while bφ  and θb,G  (Eqs. (2.26.a) and (2.26.d)) are 

also calculated at each time step, from bρ  and tB ∂∂ θb,  at that time. 
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 The boundary conditions for the beam-induced fields in the KUBLAI 

are summarized in Fig. 2.6(b).  

 On the injection boundary, the condition 0=∂∂ t  is applied with the 

initial potentials given by gun simulation results by the KUAD2, on the 

assumption (iii) in section 2.1. 

 

 

(i) 0b =φ  
(ii) bb V−=φ  

(iii) 0b =∇⋅ φn  

beam
(ii)

(iii) (i)

(ii)

(iii)

 
(a) Static fields (KUAD2). 

 
 

(i) 0b =φ , 0b =
∂
∂

t
A θ, , ( ) ( ){ } 0=−−×∇× θθθθ µ iJin b,b0b, JB , ( ){ } 0=×∇× θθ in b,G  

(ii) 0b =
∂
∂

t
φ , 0b =

∂
∂

t
A θ, , 0b =

∂
∂

t
B θ, , 0b =

∂
∂

t
G θ,  

(iii) 0b =
∂
∂

z
φ , 01 b,b, =

∂
∂

+
∂
∂

t
A

cz
A θθ , 01 b,b, =

∂
∂

+
∂
∂

t
B

cz
B θθ , 0b,

b, =+
∂

∂
θ

θ cB
z

G
 

beam

(i)

(ii) (iii)

 
(b) Time-dependent fields (KUBLAI). 

 
Figure 2.6. Boundary conditions for the beam-induced fields. 
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 On the drift-tube wall at the grounded potential, the following 

conditions, 

 

 0b =φ , (2.27.a) 

 0b, =
∂
∂

t
A θ , (2.27.b) 

 ( ){ } 0=×∇× θθ in b,G , (2.27.c) 

 ( ) ( ){ } 0=−−×∇× θθθθ µ iJin b,b0b, JB , (2.27.d) 

 

are applied, which give the conditions, 

 

 0=× bEn , (2.28.a) 

 0b =
∂
∂
⋅

t
Bn . (2.28.b) 

 

 On the beam-exit boundary, i.e. the entrance of the collector, 

although strictly no condition can be applied, the following conditions are 

approximately applied in the KUBLAI, 

 

 0b =
∂
∂

z
φ , (2.29.a) 

 01 b,b, =
∂

∂
+

∂
∂

t
A

cz
A θθ , (2.29.b) 

 01 b,b, =
∂

∂
+

∂
∂

t
B

cz
B θθ , (2.29.c) 

 0b,
b, =+

∂
∂

θ
θ cB

z
G

. (2.29.d) 

 

Equations (2.29.b), (2.29.c) and (2.29.d) mean that the TE and TM waves in 
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terms of θb,A , θb,B  and θb,G  propagate through the boundary with the light 

velocity without any variation. Also, Eq. (2.29.a) means that the irrotational 

electric field is perpendicular to the symmetry axis. 

 

 

 For the static field calculations in the KUAD2, the fields are given in 

terms of bφ , θb,A  and θb,B  as follows, 

 

 
0

b
b

2

ε
ρ

φ −=∇ , (2.30.a) 

 ( ) θθθθ µ ii b,0b, JA =×∇×∇ , (2.30.b) 

 ( ) ( )θθθθ µ iJi b,b0b, JB −=×∇ , (2.30.c) 

 

while 0b, ≡θG  because of 0≡∂∂ t  in Eq. (2.26.d). 

 Although, in general, for the low beam current, the z - and 

r -components of the magnetic field may be well negligible compared with 

the external focusing field, and therefore are not calculated in the existing 

code KUAD [24], the improved KUAD2 code, on the other hand, calculates 

them in terms of θb,A  in order to provide the initial condition for the 

KUBLAI simulation. 

 

 The boundary conditions in the KUAD2 are summarized in Fig. 

2.6(a). For bφ , the specific voltages are given, respectively, to the boundary 

conditions on the cathode at a negative potential and the drift-tube wall at 

the grounded potential. No boundary condition is required for θb,A  by use of 

the technique used in the KUSOS as will be described in chapter 4. And also 

for θb,B , no boundary condition is needed. 
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2.2.4. Electron Dynamics 
 

 Either the KUBLAI or the KUAD2 simulates the motions of the ring 

particles (see Fig. 2.2). From the positions ( )νν rz , , and velocities 

( )θννν ,,, ,, uuu rz  of the ring particles give, as follows, the charge density bρ , 

and the current density bJ  of the electron beam, 

 

 ( )νν
ν ν

ν δ
π

ρ rrzz
r

q
−−=∑ ,

2b , (2.31.a) 

 ( )ννν
ν ν

ν δ
π

rrzz
r

q
−−=∑ ,uJ

2b , (2.31.b) 

 

where ν  denotes the particle number, νq  the charge of the ν –th ring 

particle, and δ  is the 2-dimensional Dirac’s delta function. 

 In this subsection, the basic equations of the ring particle motion are 

presented. 

 

 The relativistic equation of motion for an electron with velocity 
( )θνννν ,,, ,, uuu rz=u  is described by, 

 

 ( ) ( ) ( ){ }trztrze
dt

md ,,,, ννννν
ννγ BuEu

×+−=0 , (2.32) 

 

where 0m  and e  denote, respectively, the electron rest mass and charge, 

and νγ  denotes the Lorentz factor defined by, 
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2

2

1
/−

⎟
⎠
⎞

⎜
⎝
⎛
−=

c
ν

νγ
u . (2.33) 
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With 

 

 ν
ννγ uE ⋅−== e

dt
dK

dt
dcm 2

0 , (2.34) 

 

where νK  is the kinetic energy, Eq. (2.32) is reduced to, 

 

 ⎟⎠
⎞⎜⎝

⎛ ⋅
−×+−= ν

ν
ν

ν

ν

γ
uuEBuEu

2
0 cm
e

dt
d , (2.35) 

 

or, in components, 

 

 ⎟⎠
⎞⎜⎝

⎛ ⋅
−−+−= zrrz

z u
c

BuBuE
m

e
dt

du
,,,

,
ν

ν
θνθν

ν

ν

γ 2
0

uE , (2.36.a) 
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u

u
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BuBuE
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2
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,
,,,

, +⎟⎠
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−−+−=

uE , (2.36.b) 

 
ν

νθν
θν

ν
ννθ

ν

θν

γ r
uu

u
c

BuBuE
m

e
dt

du r
zrrz

,,
,,,

, −⎟⎠
⎞⎜⎝

⎛ ⋅
−−+−= 2

0

uE . (2.36.c) 

 

 

 On the assumption of cylindrical symmetry, the canonical angular 

momentum θν ,P  is conserved as 

 

 ( )θθνννθν γ eAumrP −= ,, 0 , (2.37) 

 

where 

 

 θθθ f,b, AAA += , (2.38) 



29 

It is to be noted that Eq. (2.37) is equivalent to Eq. (2.36.c), where Eq. 

(2.36.c) is derived by differentiating Eq. (2.37) with respect to time t , and 

thus Eq.(2.37) is used in the KUBLAI instead. 

 

 In the static fields in the KUAD2, in addition to θν ,P , the sum νW  of 

the electron kinetic energy and the electric potential energy is also 

conserved, 

 

 ( ) b
2

0 1 φγ νν ecmW −−= , (2.39) 

 

which is found equivalent to the equation { zu ,ν ×(2.36.a)+ ru ,ν ×(2.36.b)}. 

 Since νγ  and θν ,u  can be calculated from Eqs. (2.37) and (2.39), the 

term ( )22
rz uu ,, νν +  is given by the potentials bφ  and θA  at the position 

( )νν rz , . When the velocity ( )rz uu ,, , νν  makes the angle να  with respect to the 

z -axis, velocity components are expressed by, 

 

 νννν αcos,,,
22

rzz uuu += , (2.40.a) 

 νννν αsin,,,
22

rzr uuu += , (2.40.b) 

 

and the following equation for the angle να  is derived from either Eq. 

(2.36.a) or (2.36.b). 
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where the term ( )222
rz uu ,, νννγ +  is given, as follows, by the conserved values 

θν ,P  and νW , and the potentials bφ  and θA  at the position ( )νν rz , . 
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Chapter 3 
 

Development of an Improved Finite Element 

Code for Cylindrically Symmetric 

Eigenmodes 
 

 

 Discussed in this chapter is development of an efficient eigenmode 

solver KUEMS (acronym for Kyoto University EigenMode Solver), suitable 

for calculating fundamental modes in cylindrically symmetric cavities for 

the application to the klystron simulations. 

 

3.1. Introduction 
 

 Cylindrically symmetric cavities are utilized in many RF devices, 

such as klystrons, RF-guns and various accelerating structures in particle 

accelerators. Many computer codes [7-14] have been developed so far, and 

are in use for RF cavity designing in decades. They can evaluate reasonably 

well electromagnetic fields, and cavity parameters such as resonance 

frequency, the quality factor, and the shunt impedance, which consequently 

enables cavity design with least cold testing. 

 For cylindrically symmetric standing-wave modes in klystrons, 

RF-guns, and so on, probably the most preferentially used code would be the 
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SUPERFISH [8], which calculates eigenfrequencies and corresponding 

angular magnetic fields θH  at the mesh points using the Finite Differential 

method (FDM) with triangular meshes. However, depending on the cavity 

geometry, it is sometimes not accurate enough, or, in other words, takes too 

much CPU time as well as many computer memories to achieve required 

accuracy. Since both higher accuracy and less computational efforts are 

always important from the viewpoint of saving time and effort for the users, 

continuous improvements to greater extent are called for, for specific 

problems as of the present study. 

 From this viewpoint, a new two-dimensional code KUEMS has been 

developed, which is aimed at improved calculations of cylindrically 

symmetric nm0TM  modes applicable to the klystron simulations. The 

KUEMS uses, 

 

(i) instead of θH  or θrH  preferentially used in the existing codes 

[7-9,12], the quantity rHθ  to describe the electromagnetic fields, 

which has the advantage of not requiring any special treatment on 

the symmetry axis, 

(ii) the Finite Element method (FEM) with quadratic triangular 

elements, which has high capability to model arbitrary structures. 

 

 Described in this chapter are the numerical methods used in the 

KUEMS, followed by comparisons of the numerical results among the three 

different formulations, i.e. with rHθ , θH  and θrH , to show the 

advantageous features of the new formulation with rHθ  with respect to 

the accuracy in the eigenfrequencies and the electric fields on the symmetry 

axis. Comparisons between the linear and the quadratic elements are also 

made to examine the accuracy, and also with the SUPERFISH. 
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3.2. Numerical Methods 
 

 Described in this section are the numerical methods used in the 

KUEMS, including the new Finite Element (FE) formulation with the 

quantity rHθ . The essential difference from the other formulations using 

θH  and θrH  as variables is to be described in subsection 3.2.2. 

 

3.2.1. Weak Formulation 
 

 As described in subsection 2.2.1, the eigenfrequencies af  

( ππω 22 aa ck== ), and eigenmodes aE , and aH  are described by, 

 

 aaa k HE =×∇   in Ω , (3.1.a) 

 aaa k EH =×∇   in Ω , (3.1.b) 

 0=⋅∇ aE   in Ω , (3.1.c) 

 0=⋅∇ aH   in Ω , (3.1.d) 

 0=× aEn   on Γ , (3.1.e) 

 0=⋅ aHn   on Γ , (3.1.f) 

 

where the boundary Γ  and the domain Ω  denote, respectively, the inner 

surface of the cavity wall and its volume, and n  denotes the unit vector 

normal to the boundary Γ . The frequency and the magnetic field are, thus, 

reduced to the following eigenvalue problem, 

 

 aaa k HH 2=×∇×∇   in Ω , (3.2.a) 

 0=⋅∇ aH   in Ω , (3.2.b) 
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 ( ) 0=×∇× aHn   on Γ , (3.2.c) 

 0=⋅ aHn   on Γ , (3.2.d) 

 

and the corresponding electric field is calculated by, 

 

 a
a

a k
HE ×∇=

1 . (3.3) 

 

 Since cylindrically symmetric nm0TM  modes ( θ,,, nmrnmznm EHH 000 ==  

0= , 0≡∂∂ θ . See Fig. 3.1, for example.) automatically satisfy Eqs. (3.2.b), 

and (3.2.d), they can be described only by Eqs. (3.2.a) and (3.2.c), and it is 

equivalent to the following formulation, 

 

 ( ){ }∫Ω ×∇×∇−⋅ dVk nmnmnm 00
2

0 HHv  

 ( ){ } 00 =×∇×⋅+ ∫Γ dSnmHnv ,  for any test vector v , (3.4) 

 

where dV  and dS  are, respectively, a volume element in Ω , and a surface 

element on Γ . With Gauss’ divergence theorem, Eq. (3.4) can be further 

reduced to the following well-known weak formulation [13], 

 

 ( ) ( ) ∫∫ ΩΩ
⋅=×∇⋅×∇ dVkdV nmnmnm 0

2
00 HvHv ,  for any v , (3.5) 

 

or, in components, 

 

 ( ) ( )
∫Σ ⎭

⎬
⎫

⎩
⎨
⎧

∂
∂

∂
∂

+
∂

∂
∂
∂ rdS

r
rH

r
rv

rz
H

z
v nm,nm πθθθθ 21 0

2
0 ,  

 ∫Σ= rdSHvk nmnm πθθ 2,0
2

0 ,  for any θv , (3.6) 
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where Σ  is the cross section of the domain Ω  on the z - r  plane. 
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(a) Geometric shape of the test 
cavity. 
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(b) Typical eigenmode pattern 
( 021TM  mode, contour lines 
with constant=θrH ). 

 
Figure 3.1. Test cavity for comparisons with analytical solutions. 

 

 

 

3.2.2. Choice of the Independent Variable 
 

 In the KUEMS, the quantity rH nm θ,0  is chosen as the independent 

variable instead of θ,nmH 0  or θ,nmrH 0  preferentially used in the existing 

codes, exclusively due to the fact that no special treatment of the symmetry 

axis ( 0=r ) is required to be shown as follows. 

 

 With rH nm θζ ,0=  and rvu θ= , Eq. (3.6) can be expressed by, 
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 ∫Σ ⎭
⎬
⎫

⎩
⎨
⎧ +⎟⎠

⎞⎜⎝
⎛

∂
∂

+
∂
∂

+⎟⎠
⎞⎜⎝

⎛
∂
∂

∂
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+
∂
∂

∂
∂ dSru

r
u

r
ur

rr
u

zz
ur ζζ

ζζζ 42 23  

 ∫Σ= dSurk nm ζ32
0 ,  for any u , (3.7.a) 

 
(this will be called ‘H/r-formulation’ hereafter). In contrast, choice of 

θ,nmHh 0= , θvv =  (‘H-formulation’), and choice of θξ ,nmrH0= , θrvw =  

(‘rH-formulation’) lead to the following weak formulations, respectively, 
 

 ∫∫ ΣΣ
=

⎭
⎬
⎫

⎩
⎨
⎧ +⎟⎠

⎞⎜⎝
⎛

∂
∂

+
∂
∂

+⎟⎠
⎞⎜⎝

⎛
∂
∂

∂
∂

+
∂
∂

∂
∂ rvhdSkdS

r
vhh

r
v

r
hv

r
h

r
v

z
h

z
vr nm

2
0 ,  for any v , (3.7.b) 

 ∫∫ ΣΣ
=⎟⎠

⎞⎜⎝
⎛

∂
∂

∂
∂

+
∂
∂

∂
∂ dS

r
wkdS

rr
w

zz
w

r nm
ξξξ 2

0
1 ,  for any w , (3.7.c) 

 
 It is clearly seen that, for the integration of Eq. (3.7.b) with the term 

rvh  on the left, 0=h  is always required on the axis ( 0=r ) to avoid 

infinity, and also, for Eq. (3.7.c), 0=∇ξ  is always required on the axis in 

addition, both of which are consequently equivalent to the cylindrically 

symmetric conditions 000 == rnmnm EH ,,θ , and the existence of finite znmE ,0  on 

the axis. 
 In the present ‘H/r-formulation’, on the other hand, these 
requirements are automatically satisfied so long as ζ  and ζ∇  remain 

finite, since θ,nmH0 , znmE ,0  and rnmE ,0  are all given in terms of ζ  by, 

 

 ζθ rH nm =,0 , 
r

rEk znmnm ∂
∂

+=
ζζ2,00 , 

z
rEk rnmnm ∂
∂

−=
ζ

,00 . (3.8.a) 

 

In contrast, the fields in the other formulations are given by, 
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 hH nm =θ,0 , 
r
h

r
hEk znmnm ∂

∂
+=,00 , 

z
hEk rnmnm ∂
∂

−=,00 , (3.8.b) 

 
r

H nm
ξ

θ =,0 , 
rr

Ek znmnm ∂
∂

=
ξ1

00 , , 
zr

Ek rnmnm ∂
∂

−=
ξ1

00 , . (3.8.c) 

 

 The ‘H/r-formulation’ is, thus, shown not to require any specific 

conditions on the symmetry axis as the symmetry axis is actually not the 

‘boundary’, and, with further following additional reasons, it is applied to 

the KUEMS, 

 

(i) analytical integration of Eq.(3.7.a) is easily carried out in the FE 

formulation described in the following subsection, while, for the 

other formulations, special treatments are required on the symmetry 

axis, 

(ii) the ‘H/r-formulation’ is expected to result in higher accuracy in the 

fundamental 010TM  modes, since constant010 ≈rH θ,  near the 

symmetry axis, 

(iii) the ‘H/r-formulation’ is found to result in smoother convergence in 

calculating the electric field on the axis, as will be shown in 

subsection 3.3.1. 

 

3.2.3. Finite Element Formulation 
 

 To solve numerically the weak formulation of Eq. (3.7.a), an 
N -dimensional subspace is applied to both the unknown function ζ , and 

the test function u . Suppose ζ  is a linear combination of N  basis 

functions { }iw , and an infinite number of test functions u  can be reduced 

to N  test functions. Then, with the expression, 
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 ∑
=

=
N

j
jjnm rzwxrz

1
0 ),(),( ,ζ , (3.9.a) 

 ),(),( rzwrzu i= , (3.9.b) 

 

the weak formulation of Eq. (3.7.a) can be reduced to a Galerkin 

formulation, 

 

 ∑∑
==

=
N

j
jnmijnm

N

j
jnmij xbkxa

1
0

2
0

1
0 ,, ,  for any Ni ≤≤1 , (3.10) 

 

or, simply to an algebraic eigenvalue problem, 

 

 nmnmnm k 0
2

00 BxAx = , (3.11) 

 

where, 

 

 ∫Σ ⎩⎨
⎧

⎟⎠
⎞

⎜⎝
⎛

∂
∂

∂
∂

+
∂
∂

∂
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r

w
r
w

z
w

z
wra jiji

ij
32π  

 dSwrww
r
w

r
w

wr jij
ij

i
⎭
⎬
⎫+⎟⎠

⎞
⎜⎝
⎛

∂
∂

+
∂
∂

+ 42 2 , (3.12.a) 

 ∫Σ= dSwwrb jiij
32π . (3.12.b) 

 

 The FE formulation is a Galerkin formulation above with a 

particular set of basis functions { }iw . The domain Σ  is divided into finite 

elements eΣ  with N  nodes (Fig. 3.2, for example, shows 32 linear 

elements, and 8 quadratic elements with 25=N  nodes), and the basis 

function iw  is defined as, 
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(i) 1=iw  at the node i , 

(ii) 0=iw  at the others, 

(iii) continuos in Σ ,  

(iv) piecewise smooth in eΣ . 

 

The KUEMS uses well-known Lagrange-type quadratic basis functions, 

which enables the analytical integration of Eqs. (3.12). 
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(a) 32 linear elements. 
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(b) 8 quadratic elements. 

 
Figure 3.2. Mesh examples for the test cavity with 25=N  nodes. 

 

3.2.4. Finding Eigenfrequencies 
 

 Although the KUEMS can find all eigenfrequencies at the expense of 

CPU time, limiting to the eigenfrequency closest to a given target frequency 

(i.e. the operating frequency of the klystron) π2ckf = , it can quickly look 

for by use of the following numerical method based on the Power method, 

which finds the absolute maximum eigenvalue through iterative 
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calculations. 

 

 The algebraic eigenvalue problem expressed by Eq. (3.11) can be 

rewritten as, 

 

 nmnmnm 000 xCx λ= , (3.13) 

 

where, 

 

 22
0

0
1

kk nm
nm −
=λ , (3.14.a) 

 ( ) BBAC 12 −
−= k . (3.14.b) 

 

 The absolute maximum eigenvalue nm0λ  of the NN ×  matrix C  is 

found using the Power method, which proceeds the following simple 

iterative calculations, with an arbitrary initial vector )(0x  normalized as 

10 =ix ),( , where i  ( Ni ≤≤1 ) is an arbitrary number, 

 

(I)  calculate )()( nn Cxy = , 

(II)  calculate )()()( nnn λyx =+1 , where inn y ),()( =λ , 

(III)  if )()( nn xx ≠+1 , go back to (I). 

 

 For the calculation of )(ny  at step (I), in order to save computer 

memory, the matrices B  and ( )BA 2k−  are stored instead of C  (note that 

C  is not spars despite both B  and ( )BA 2k−  are quite spars), and the 

Conjugate Gradient method is applied to the linear system 



41 

( ) )()( nnk BxyBA =− 2 . Step (II) normalizes )( 1+nx  as 11 =+ inx ),( .  

 As a consequence, the absolute maximum eigenvalue nm0λ  gives the 

eigenfrequency nmf0  with the least 22
0 ff nm −  by 

 

 
2

0

2
0

21
⎟⎠
⎞⎜⎝

⎛+=
c

ff
nm

nm
π

λ
. (3.15) 

 
3.3. Numerical Examinations 
 
 To verify the accuracy of the developed KUEMS, calculations were 
carried out for analytically solvable modes in a test cavity. The numerical 
error from the ideal (not measured) value is, in general, mainly attributed to 
the two errors;  
 

(i) the error due to inaccurate modeling of geometric shape with a 
finite number of elements, 

(ii) the discretization error of the formulation. 
 
To restrict discussions here to the latter one, a pillbox, whose cross section 
on the z - r  plane has no curvature, is chosen as the test cavity (see Fig. 

3.1). 
 In subsection 3.3.3, however, the KUEMS is applied to a practical 
klystron cavity with curvatures. 

 

3.3.1. Comparisons among Three Different Formulations 
 
 To verify the accuracy of the ‘H/r-formulation’ used in the KUEMS, 
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calculations were performed using three different formulations, namely the 
‘H/r-’, ‘H-’ and ‘rH-formulation’, with the linear elements. The configuration 
used here is the pillbox of a 1 m radius, and a 1 m length shown in Fig. 3.1. 

 Figure 3.3 shows the relative errors of eigenfrequencies nmf0  (solid 

lines) and cavity voltages nmV0  (dashed lines) from the analytical accurate 

solutions (refer to Table 3.1), where the eigenmodes nm0E  and nm0H  are 

normalized as the stored energies 10 =nmW  Joule, and nmV0  is defined by 

 

 ∫ =
=

0 0
0

0
1

r znmnm dzEV ,ε
. (3.16) 

 

 As for the frequencies nmf0 , it is found that, as was expected, the 

‘H/r-formulation’ results in remarkably higher accuracy for the fundamental 

010TM  mode than the other ‘H-’ or ‘rH-formulation’, but in almost similar 

accuracy for higher modes. High accuracy for the fundamental mode is, 
however, quite desirable, since it is most commonly utilized in klystrons. 

This advantage results from the fact that constant010 ≈= rH θζ ,  for 010TM  

mode near the symmetry axis. 

 On the other hand, in the cavity voltages nmV0 , the ‘H/r-formulation’ 

seems to show less accuracy for some modes ( 020TM  mode in Fig. 3.3(c), for 

example). However, it is rather to be noted that the voltages calculated with 

the ‘H/r-formulation’ are found to converge smoothly as N  increases, while 

those with the ‘H-’ and the ‘rH-formulation’ do not. 

 Smooth convergence is remarkably important, since rough 

convergence would make extrapolation difficult. This advantage also results 

from the fact that the quantity rH nm θζ ,0=  used in the ‘H/r-formulation’ 

has higher degree of freedom around the axis, compared with the other 
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formulations by θ,nmHh 0=  and θξ ,nmrH0= , because no condition is applied 

to the axis in the ‘H/r-formulation’. 
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(a) 010TM  mode. 
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(c) 020TM  mode. 
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(b) 011TM  mode. 
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(d) 021TM  mode. 

 
Figure 3.3. Relative errors in eigenfrequencies nmf0 , and cavity 
voltages nmV0  for the test cavity, comparing three different 
formulations. 
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Table 3.1. Analytical solutions of eigenfrequencies nmf0  and cavity voltages 
nmV0  of nm0TM  modes in a pillbox of a 1 m radius and a 1 m length. 

 

 nmf0  [MHz] nmV0  [kV] 

010TM  

011TM  

020TM  

021TM  

114.7425278 

188.7716270 

263.3819797 

303.0494130 

516.5054777 

282.6556994 

788.0407287 

616.6182798 

 

 

 

3.3.2. Comparisons between Linear and Quadratic Elements 
 

 Since the quadratic elements are generally regarded to show higher 

accuracy than the linear elements for the same number of nodes, they were 

actually applied to some eigenmode solvers [9,11-13] as well as to the 

present KUEMS. 

 However, it is not obvious whether they may result in higher 

accuracy within the same CPU time, in which the users are very much 

interested. To make this clear, comparisons were made between the linear 

and the quadratic elements with the ‘H/r-formulation’ for the lowest three 

nm0TM  modes in the pillbox. For comparison, the SUPERFISH, which uses 

the FDM of the first order, is also applied to the same modes. 

 

 As shown in Fig. 3.4(a), the relative frequency errors nmnm ff 00∆  are 

found to scale as 22~02
00

.-
nmnm Nff .−∝∆  for the quadratic elements, while 

11~01
00

.-
nmnm Nff .−∝∆  for the linear elements, and the SUPERFISH. It is also 

important that, as shown in Fig. 3.4(b), the CPU time T  is found also to 



45 

increase with the same order for either the linear or the quadratic elements, 

as N  increases. The CPU time scales as 71.NT ∝  for the linear and the 

quadratic elements, and 81.NT ∝  for the SUPERFISH. Consequently, as 

shown in Fig. 3.5, the quadratic element scheme is found to take the least 

CPU time among the three for all the three modes. 
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(a) Relative frequency error. 
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(b) CPU time. 
 

 
Figure 3.4. Relative frequency error nmnm ff 00∆ , and CPU time T  
as functions of number of nodes N , comparing linear element 
scheme, quadratic element scheme, and the SUPERFISH. 
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Figure 3.5. Relative frequency error nmnm ff 00∆  as functions of 
CPU time T , comparing linear element scheme, quadratic 
element scheme and the SUPERFISH. 

 

 

 

3.3.3. Application to a Klystron Cavity 
 

 The KUEMS was applied to a fundamental mode of a klystron cavity 

shown in Fig. 3.6. Considering the symmetry involved, the elements were 

placed in the region of 0≥z , 0≥r . The boundary on the right is located 

relatively far enough at 60=z  mm, and 0=zE  is applied as the boundary 

condition. This approximation seems very reasonable, since a klystron is 

designed so that the cut-off frequency of the drift-tube should be much 

higher than the operating frequency. 
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Figure 3.6. Meshes ( 503=N ) and a fundamental mode pattern in 
a klystron cavity. 
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Figure 3.7. Calculated frequency of the fundamental mode 0f  as a 
function of number of nodes N . 

 

 In order to verify the solution convergence of the KUEMS, the 

number of nodes N  was varied. Figure 3.7 shows the calculated 

eigenfrequency 0f  of the fundamental mode, as a function of N . The 

results show smooth convergence of 61.−N  order. The slower convergence 
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than the previous case of -2.2~02
00

.−∝∆ Nff nmnm  for the pillbox is due to the 

modeling error of the cavity nose curvature. 

 In the application to the klystron simulation in chapter 5 and 6, 

around 10,000 nodes are used, leading to less than 510−  relative frequency 

error evaluated from the extrapolated value *
0f . 

 

3.4. Concluding Remarks 
 

 A new two-dimensional code KUEMS has been developed based on 

the FEM, making it ideal for calculating cylindrically symmetric 

eigenmodes. 

 The quantity rH nm θ,0 , which has the advantage of not requiring 

any conditions on the symmetry axis, is used to represent the 

electromagnetic fields, instead of θ,nmH0 , or θ,nmrH0  used so far in the 

existing codes. It is found that the new FE formulation with rH nm θ,0  

results in remarkably higher accuracy in the eigenfrequency of the 

fundamental mode, but no less accuracy in the other higher modes. It also 

results in smoother convergence of the calculation of the electric field on the 

symmetry axis, with respect to number of the mesh points.  

 It is also found that, by use of the quadratic elements, faster 

convergence can be achieved compared with the linear elements or the 

SUPERFISH. The numerical error in the eigenfrequencies nmnm ff 00∆  in 

terms of the CPU time T  is found to scale as 21
00

.−∝∆ Tff nmnm  for the 

quadratic elements, and 60
00

.−∝∆ Tff nmnm  for the linear elements and the 

SUPERFISH.  

 All these results are remarkable and encouraging from the 

viewpoint of saving time and efforts for both the computers and the users. 
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Chapter 4 
 

Development of a Finite-Element / 

Boundary-Integral Hybrid Code for 

Unbounded Magnetostatic Fields with 

Nonlinear Media 
 

 

 Presented in this chapter is a hybrid Finite Element (FE) code 

KUSOS (acronym for Kyoto University SOlenoidal field Solver), which has 

been developed in this study, and is to be used for calculating focusing 

magnetostatic fields in klystrons. The new formulation in the KUSOS gives 

a minimum for the energy functional in the infinite space, taking into 

account nonlinearity in media. 

 

4.1. Introduction 
 

 The Finite Element method (FEM) is commonly used for calculations 

of electromagnetic fields. The FEM suffers, however, the disadvantage that 

only a finite number of elements can be used to discretise a given problem. 

In some situations, one can use the FEM for unbounded problems with an 

artificial boundary remote enough from the center of the problem. However, 
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this truncation does not guarantee solutions within any desired accuracy for 

many problems, such as magnetostatic fields, electromagnetic scattering, 

radiation from antennas, and so on, even though much computational 

efforts are made. 

 To deal with such unbounded problems, many methods based on the 

FEM have been developed so far. Many of them are listed in a previous 

review paper [26], and, since that time, many others have been developed 

mainly for electromagnetic scattering [27-35]. Representative methods are; 

 

(i) the infinite element technique which extends elements to the infinite 

space by use of decay functions as basis functions, 

(ii) the ballooning technique in which a single super element is 

constructed by merging successive concentric rings in an iterative 

manner, 

(iii) the iterative field-feedback methods for approximating the boundary 

condition on the fictitious boundary, 

(iv) the hybrid methods combining the FEM with integral equation 

methods, such as the Boundary Element method (BEM), the Moment 

method (MM), and the methods with eigenfunctions as basis 

functions. 

 

Among these techniques, the hybrid FEMs yield accurate and reliable 

solutions that give minima for the energy functional in the infinite space. It 

is a well-known fact that the integral equation methods deal with 

unbounded problems very effectively, but cannot treat inhomogeneous, nor 

nonlinear media. The FEM, in contrast, can easily deal with inhomogeneous 

and nonlinear media. The hybrid FEMs retain the efficient characteristics of 

both methods by applying, 
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(i) the FEM to the region inside the fictitious boundary within which all 

nonlinear media are placed,  

(ii) the integral equation methods to the exterior homogeneous region. 

 

 

 Presented in this chapter is a new FEM/MM-hybrid code KUSOS 

developed in this study for unbounded magnetostatic field problems with 

nonlinear media, having good features as follows; 

 

(i) the solution gives a minimum for the energy functional in the infinite 

space, as most of the hybrid methods do, 

(ii) the fictitious boundary can have an arbitrary shape, 

(iii) difficulties associated with singularity of Green’s functions on the 

fictitious boundary are avoided, 

(iv) continuity of both tangential and normal fields on the boundary are 

fulfilled in an integral manner. 

 

 There is a previously presented FEM/MM-hybrid method for 

electromagnetic scattering [27] similar to the method presented here, but 

the latter has remarkable difference on the point (iii). Also, a technique 

similar to (iii) was presented in an FEM/BEM-hybrid method [36], while it 

does not fulfill the field continuity in an integral manner, but by a 

point-matching technique. 

 As a consequence of (iii) and (iv), the solutions by the new 

FEM/MM-hybrid method are expected to be well continuos and smooth on 

the fictitious boundaries. 
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4.2. Numerical Methods 

 

4.2.1. Problem Description 
 

 Consider the situation shown in Fig. 4.1, with all source current 

densities fJ  and media ( 0µµ ≠ ) inside an arbitrary surface Γ  (what is 

called a ‘picture frame’) of domain inΩ , i.e. 0µµ ≡ , and 0f ≡J  in the 

exterior region exΩ . Then the basic equation for the vector potential, Eq. 

(2.22.a), can be rewritten as follows, 

 

 finf,
1 JA =⎟⎠

⎞
⎜⎝
⎛ ×∇×∇
µ

  in inΩ , (4.1.a) 

 0=⎟⎠
⎞

⎜⎝
⎛

×∇×∇ exf,
0

1 A
µ

  in exΩ , (4.1.b) 

 
 

source,

µ

Γpicture frame,
n

µ µ=
= 0

0
Jf

Jf

exΩ
Ω in

medium,

 
Figure 4.1. Problem description for the FEM/MM-hybrid method. 
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where inf,A , and exf,A  denote, respectively, the vector potential inside, and 

outside the picture frame. To fulfill the field continuity on Γ , inf,A  and 

exf,A  must satisfy, in addition, 

 

 ( ) ( )exf,inf, AnAn ×∇⋅=×∇⋅   on Γ , (4.1.c) 

 ⎟⎠
⎞

⎜⎝
⎛

×∇×=⎟⎠
⎞

⎜⎝
⎛ ×∇× exf,

0
inf,

11 AnAn
µµ

  on Γ . (4.1.d) 

 

 

4.2.2. Solution Subspace 
 

 Described in this subsection is choice of solution subspace, which 

characterizes the new FEM/MM-hybrid method used in the KUSOS. 

 

 Suppose inf,A , and exf,A  are linear combinations of N  basis 

functions { }i,inw , and M  functions { }ix,ew  expressed by, respectively, 

 

 ( ) ( )∑
=

=
N

i
ii rzxrz

1
in,inf, ,, wA , (4.2.a) 

 ( ) ( )∑
=

=
M

i
ii rzyrz

1
ex,exf, ,, wA . (4.2.b) 

 

 For the potential inf,A  within the picture frame, the same subspace 

is applied as in the KUEMS described in chapter 3; the cross section of the 

domain inΩ  on the z - r  plane is divided into finite elements with N  

nodes, and the Lagrange-type quadratic functions ( ){ }rzwi ,  are used as the 

N  basis functions { }θiw ii wr=,in , where θi  is the unit vector in the 
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θ -direction.  

 For the exterior field exf,A , on the other hand, M  numbers of 

Green’s functions in free space are used as the basis functions, 

 

 ( )
( )∫
−++−

=
π

θ θ
θ

θ
π
µ

0 222
0

ex,
22

d
zzrrrr

rrz
iii

i
i

cos

cos, iw , (4.3) 

 

which satisfies, 

 

 ( )iii rrzz
μ

−−=⎟⎠
⎞

⎜⎝
⎛

×∇×∇ ,δθiwex,
0

1 , (4.4.a) 

 

where, δ  is Dirac’s delta function. The M  point sources ( )ii rz ,  are located 

at the nodes within the sources fJ , and those on the surfaces of the media 

(see Fig. 4.2). Because all the point sources ( )ii rz ,  are located inside the 

picture frame Γ , the basis functions { }ix,ew  satisfy, 

 

 0=⎟⎠
⎞

⎜⎝
⎛

×∇×∇ iμ ex,
0

1 w   in Γ∪Ωex . (4.4.b) 

 

 The condition 0=×∇×∇ iex,w  on Γ , i.e. no point source on Γ , is 

essential for the field continuity in the present FEM/MM method, as will be 

described in the following subsection. 

 

 Thus, in addition to the potential values rA θ,inf,  on the nodes, 

equivalent point loop currents on the surface of the media are the unknown 

variables { }iy , while a part of { }iy  associated with the nodes within the 
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sources fJ  are known. Note that, because all point sources ( )ii rz ,  are 

located inside the picture frame, the exterior field exf,A  in terms of Eq. 

(4.2.b) satisfies Eq. (4.1.b) for any { }iy . 

 

 

 

4.2.3. Formulation 
 

 In this subsection, the FEM/MM- hybrid formulation in the solution 

subspace is derived from Eqs. (4.1.a), (4.1.c) and (4.1.d), while Eq. (4.1.b) is 

always satisfied in the solution subspace, as described in the previous 

subsection. The derivation here is based on the Garlarkin method, in order 

to show clearly how the continuities of both tangential and normal fields are 

preserved, although the same formulation can be obtained more easily from 

the energy functional in subsection 4.2.4. 

 

source

Γ

exΩ
Ωin

medium

 
Figure 4.2. Distribution of the equivalent point sources in the 
FEM/MM-hybrid method. 
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 Satisfaction of both Eqs. (4.1.a) and (4.1.d) is equivalent to the 

following formulation, 

 

 ∫Ω ⎭
⎬
⎫

⎩
⎨
⎧ −⎟⎠

⎞
⎜⎝
⎛ ×∇×∇⋅

in
finf,

1 dVJAv
µ

 

 011
exf,

0
inf, =

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎠
⎞

⎜⎝
⎛

×∇−×∇×⋅+ ∫Γ dSAAnv
µµ

,  for any test vector v , (4.5) 

 

where dV , and dS  denote a volume element in inΩ , and a surface element 

on Γ , respectively, and n  denotes the outward unit vector normal to Γ . 

With Gauss’ divergence theorem, it can be reduced to the following weak 

formulation, 

 

 ( ) ( )∫Ω ×∇⋅×∇
in

inf,
1 dVAv
µ

 

 ∫∫ ΩΓ
⋅=

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎠
⎞

⎜⎝
⎛

×∇×⋅+
in

fexf,
0

1 dVdS JvAnv
µ

,  for any v . (4.6) 

 

 By applying the N -dimensional subspace { }i,inw  to both the 

unknown function inf,A  and the test vector v , and M -dimensional 

subspace { }i,exw  to exf,A , the formulation becomes 

 

 i

M

j
jij

N

j
jij fybxa =+∑∑

== 11
,  for any i  ( Ni ≤≤1 ), (4.7) 

 

or, an algebraic formulation, 

 

 fByAx =+ , (4.8) 



 

57 

where NN×∈RA , MN×∈RB , and NR∈f  are given by, 

 

 ( ) ( )dVa jiij in,in,
in

1 ww ×∇⋅×∇= ∫Ω µ
, (4.9.a) 

 dSb jiij ∫Γ ⎭
⎬
⎫

⎩
⎨
⎧

⎟⎠
⎞

⎜⎝
⎛

×∇×⋅= ex,
0

in,
1 wnw
µ

, (4.9.b) 

 ∫Ω ⋅= dVf ii fin, Jw . (4.9.c) 

 

 In the situation without a medium, the equivalent loop currents 

{ }iy  are all given by the sources fJ . In that situation, the formulation of Eq. 

(4.8) becomes a basic FE formulation with the boundary condition 

(tangential magnetic field on Γ) given by the analytical solution for the 

sources fJ  descritised by the equivalent point sources. With media, on the 

other hand, in order to give the unknown equivalent currents { }iy  on the 

media surfaces, additional formulation is required, which is derived from Eq. 

(4.1.c) as follows. 

 

 Equation (4.1.c) is equivalent to the following formulation, 

 

 ( ) ( ) dSudSu ∫∫ ΓΓ
⋅×∇=⋅×∇ nAnA exf,inf, ,  for any u . (4.10) 

 

With Stokes’ theorem, and u−∇=v , it becomes 

 

 ( ) ( )dSdS ∫∫ ΓΓ
×⋅−=×⋅− exf,inf, AnvAnv , 

 for any v  such that 0=×∇ v . (4.11) 

 

By applying the subspace { }i,inw , and { }i,exw  to inf,A , and exf,A , respectively, 
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and the subspace { }i,exw×∇  to the test vector v  such that 0=×∇ v  (note 

that, from Eq. (4.4.b), 0=×∇×∇ iex,w  on Γ ), Eq. (4.11) is reduced to the 

following formulation, 

 

 ∑∑
==

=
M

j
jij

N

j
jij ydxc

11
,  for any i  ( Mi ≤≤1 ), (4.12) 

 
or, an algebraic formulation, 

 

 DyCx = , (4.13) 

 

where NM ×∈RC , and MM ×∈RD  are, respectively, given by, 

 

 ( )dSc jiij ∫Γ ×⋅⎟⎠
⎞

⎜⎝
⎛

×∇−= in,ex,
0

1 wnw
µ

, (4.14.a) 

 ( )dSd jiij ∫Γ ×⋅⎟⎠
⎞

⎜⎝
⎛

×∇−= ex,ex,
0

1 wnw
µ

. (4.14.b) 

 

Because of jiij bc =  from Eqs. (4.9.b) and (4.14.a), Eq. (4.13) can be rewritten 

as, 

 

 xBDy T1−= . (4.15) 

 
Substitution of Eq. (4.15) for y  into Eq. (4.8), then, yields 

 

 ( ) fxBBDA =+ − T1 . (4.16) 

 
 By the above procedure, the hybrid formulation was derived, where 
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the solution x  gives not only the field within the picture frame, but also 

the exterior field from Eq. (4.15). It is convenient for saving computer 

memory that the matrix ( )TBBDA 1−+  is actually symmetric, since Eq. 

(4.14.b) becomes, with Gauss’ divergence theorem and Eq. (4.4), 

 

 ( ) ( )∫Ω ×∇⋅×∇=
ex

ex,ex,
0

1 dVd jiij ww
µ

. (4.17) 

 

4.2.4. Energy Functional in the Infinite Space 
 

 As shown in the followings, the solution of Eq. (4.16) gives a 

minimum for the energy functional in the infinite space exin Ω∪Ω . This is a 

good feature of the hybrid method in the KUSOS, while this is not fulfilled 

by some existing methods for unbounded problems as well as by the basic 

BEM. 

 

 The energy functional ( )xε  is given by, 

 

 exin εεε += , (4.18.a) 

 ( )∫ ∫Ω
⋅−=

in
ffinf,in dVdBH JAε  

 ∫∫ ∫ ΩΩ
⋅−=

inin
finf,

21
2
1 dVdVdB JA

µ
, (4.18.b) 

 dVdBH∫ ∫Ω
=

ex
exf,exε  

 dVB∫Ω=
ex

2
exf,

02
1
µ

. (4.18.c) 

 

The energy functional takes a minimum at 0=∇ε . From Eq. (4.18.b), inε∇  
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is given as follows. 

 ( )∫∫ ∫ ΩΩ
⋅

∂
∂

−⎟⎠
⎞

⎜⎝
⎛

∂
∂

=
∂
∂

inin
finf,

2in 1
2
1 dV

x
dVdB

xx iii

JA
µ

ε  
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⋅

∂
∂

−⎟⎠
⎞
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⎛

∂
∂

=
inin
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2
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x
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dB
d

x
B

ii
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⋅

∂
∂

−
∂

∂
=

inin
finf,

2
inf,1

2
1 dV

x
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x
B

ii
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µ
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⎭
⎬
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⎨
⎧
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⎠
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⎜
⎝
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∂
∂

−

⎭
⎬
⎫

⎩
⎨
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⎟⎠
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∂
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∫ ∑

∫ ∑∑
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f
1
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1
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1
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1
2
1

dVx
x

dVxx
x

N

j
jj

i

N

k
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N

j
jj

i

Jw
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µ

 

 ( ) ( ) ∫∫ ∑ ΩΩ
=

⋅−×∇⋅×∇=
inin

fin,
1

in,in,
1 dVdVx i

N

j
jij Jwww

µ
 

 i

N

j
jij fxa −= ∑

=1
. (4.19) 

 

Eq. (4.18.c), on the other hand, is reduced to, with Eqs. (4.2.b), (4.15) and 

(4.17), 

 

 
( ) ( )

Dyy

ww

T

M

i

M

j
jiji dVyy

2
1
2
1

1 1
ex,ex,

0
ex

ex

=

×∇⋅×∇= ∑∑ ∫
= =

Ωµ
ε

 

 BxDBx 1

2
1 −= TT . (4.20) 

 

Then, from Eqs. (4.19) and (4.20), ε∇  is obtained as follows, 

 

 ( ) ( )BxDBfAx 1
exin

−+−=∇+∇=∇ Tεεε . (4.21) 
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Thus the solution x  of Eq. (4.16) gives 0=∇ε  subject to the normal flux 

continuity condition of Eq. (4.15), and accordingly, gives a minimum for the 

energy functional ε . 

 

4.2.5. Treatments of Nonlinear Media 
 

 In case of nonlinear media, the matrix A  in Eq. (4.16) depends on 

the solution x . To deal with this nonlinearity, the KUSOS uses the Newton 

method, which is commonly used with the FEM for nonlinear problems [37]. 

 With the initial vector 0=)(0x  and fr =)(0 , 

 

(I)  calculate ( ) )()()()( nnnn rxHxx 1
1

−
+ += , 

(II)  calculate ( ) ( )( ) )()()()( 1
1

111 +
−

+++ +−=∇= n
T

nnn xBDBxAfxr ε , 

(III)  unless 0=+ )( 1nr , go back to (I), 

 

where ( )xH  is the Hessian matrix of the component ( )xijh  of the energy 

functional ( )xε , i.e., 

 

 ( )
ji

ij xx
h

∂∂
∂

=
ε2

x  

 ( )∑
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−+
∂
∂

=
N

k
kik

T

j

x
x 1

1BDBA  

 ( ) ∑
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−

∂
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++=
N

k
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ij

T x
x
a

1

1BDBA , (4.22.a) 
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=

Ω ⎭
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Ω µ . (4.22.b) 

 

 In each triangular element within nonlinear media, the volume 

integration is performed in a manner of Gauss’ integration with 7 points [38], 

with µ  and ( ) 21 dBd µ  given as functions of 2B . 

 

4.3. Numerical Examinations 
 

 In this section, numerical examinations for the verification of the 

KUSOS are presented. 

 

 Firstly, for comparison with analytical solutions, the KUSOS was 

applied to a simple situation shown in Fig. 4.3(a) with a pair of infinitely 

long conductors (no variation in the z -direction) with uniform current 

density in opposing directions. Considering the symmetries involved, finite 

elements are placed in the positive quadrant as shown in Fig. 4.3(a). 

 Figure 4.3(b) shows the calculated magnetic fields along 2=y mm in 

the x -direction, together with the analytical solutions. The numerically 

calculated fields by the KUSOS are found to show good agreements with the 

analytical solutions, both inside and outside the picture frame. 
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(a) Magnetic flux lines and meshes within picture frame. 
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(b) Fields along 2=y  mm in the x -direction.  
 
 

Figure 4.3. KUSOS results comparing with analytical solutions. 
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(a) Magnetic flux lines and meshes within picture frame. 
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(b) Fields along 2=y  mm in the x -direction. 
 
 

Figure 4.4. KUSOS results with a different picture frame to the 
previous one shown in Fig. 4.3. 
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 Figure 4.4 shows the results for the same situation as Fig. 4.3 with 

another choice of picture frame, also showing good agreements with the 

analytical solutions. 

 

 Secondly, the KUSOS was applied to a more complex situation with 

a nonlinear medium whose permeability is given in Fig. 4.5. As shown in Fig. 

4.6, there placed are a coil, a homogeneous medium with relative 

permeability 30000 =µµ , and the nonlinear medium, with three different 

choices of picture frames. In this situation, the analytical solution is not 

available for comparison, while it is clearly seen that the numerical 

solutions are not different among the three different choices of the picture 

frames. As shown in Figs 4.6(b) and (c), more than one picture frames with 

arbitrary shapes can be used in the present hybrid method. 

 Figure 4.7 shows the fields along 38=r  mm in the z -direction. 

Again, the numerical results are not different among the different choices of 

the picture frames. And also, the calculated fields are found well continuos 

and smooth on the picture frames. 
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Figure 4.5. B as a function of H of the nonlinear medium in Fig. 4.6. 
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Figure 4.6. KUSOS results with three different picture frames, 
showing contour lines with constanat=θrA , and meshes. 
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Figure 4.7. Field distributions of the KUSOS results shown in Fig. 
4.6, along 38=r  mm in the z -direction. 
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 Figures 4.8 shows the KUSOS results for a klystron focusing system, 

Toshiba E3718 (refer to Table 5.1 in Chapter 5). The calculated fields are to 

be used as the input data for the particle-in-cell simulations presented in 

the following chapters. 

 

 

0 500 1000

[mm]z

0
20

0
40

0

[m
m

]
r

bucking coil pole piece coils

 
(a) Magnetic flux lines (contour lines with constanat=θf,rA ). 
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(b) Magnetic flux on the axis. 

 
 

Figure 4.8. KUSOS results for the E3718 klystron focusing coils. 
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4.4. Concluding Remarks 
 

 The FEM or the MM each has its own advantage and disadvantage. 

It is true that the FEM can easily deal with nonlinear media, but cannot 

with unbounded problems. The situation is opposite for the MM. The 

FEM/MM-hybrid method, on the other hand, retains the advantages 

associated with both methods, by applying the FEM to the interior region 

containing nonlinearity, and the MM to the exterior homogeneous region.  

 Presented in this chapter is a new FEM/MM-hybrid method used in 

the KUSOS for the unbounded magnetostatic fields with nonlinear media in 

2-dimension, with the following summaries; 

 

(i) it gives a minimum for the energy functional in the infinite space, 

and consequently provides reliable solutions both inside and outside 

the finite elements, 

(ii) more than one picture frames can be used with arbitrary shapes, 

leading to efficient computations, 

(iii) the formulation guarantees both tangential and normal field 

continuities in an integral manner. 

 

 It is also found that the numerical test results show good 

agreements with analytical solutions, no difference in numerical solutions 

for different choices of the picture frames, and excellent continuity of 

magnetic fields between the interior and the exterior regions. 
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Chapter 5 
 

Development of a 2-Dimensional Klystron 

Simulation Code 
 

 

5.1. Introduction 
 

 Two particle-in-cell codes have been developed in this study, and are 

presented in this chapter. One is the KUAD2 (acronym for Kyoto University 

Advanced Dart II) code for calculating trajectories in static fields applicable 

to electron gun simulations, and the other is the KUBLAI (Kyoto University 

Beam Loading AnalysIs) code for simulating interactions between beams 

and cavities. The results by the KUAD2 are to be used as the initial and 

beam-injection conditions for the time-domain KUBLAI simulations. 

 The KUAD2 is based on the recently developed KUAD (Kyoto 

University Advanced Dart) code [24, 39], and modifications have been made 

in this study to achieve further accuracy, which will be discussed in 

subsection 5.2.1. The present KUAD2 was verified through comparisons 

with experiments in terms of gun perveances. 

 The KUBLAI is based on the existing klystron code known as FCI 

(Field Charge Interaction) developed by Shintake [19, 21]. However, while 

the FCI shows reasonably high accuracy in RF output powers, following 

modifications have been made to improve the accuracy enough to be able to 
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provide injection conditions for depressed collector designing, as well as to 

reduce the computation time; 

 

(i) the KUBLAI can deal with a tapered drift-tube, which is, in the FCI, 

replaced approximately by a straight drift-tube of an intermediate 

radius for calculating the beam-induced fields, 

(ii) to stabilize the numerical instability in calculating simultaneously 

both the electron motions and the beam-induced fields, the FCI uses 

both spatial smoothing of the fields, and artificial damping factors 

between the output cavity and the collector, which is sufficient for the 

klystron designing, but not appropriate enough to obtain the 

parameters associated with the spent beams for the depressed 

collector designing. A more straightforward and appropriate method 

was thus developed in this study, and applied to the KUBLAI, as will 

be described in subsection 5.2.3. 

(iii) the numerical method for calculating cavity voltages was modified to 

achieve faster convergence on the final periodically steady-state 

solutions, which will be described in subsection 5.2.4. 

 

Also presented are comparisons between the KUBLAI simulations and 

klystron experiments for verifications, in terms of RF output powers. 

 

5.2. Numerical Methods 
 

5.2.1. Initial and Beam-Injection Conditions 
 

 For the time-domain KUBLAI simulations, initial fields, initial 

electron distribution in the drift-tube, and beam-injection conditions are all 
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calculated by use of the KUAD2 code. The KUAD2 has been developed by 

modifying the KUAD code as follows, 

 

(i) instead of linear triangular elements used in the KUAD for the field 

calculations, the present KUAD2 uses quadratic elements, which is 

found to result in higher accuracy (see chapter 3), 

(ii) the KUAD2 calculates the angular component of the beam-induced 

vector potential, which is neglected in the KUAD. 

 

The modification (ii) is necessary to provide the initial fields for the 

time-domain KUBLAI simulations. 

 

 Figure 5.1 shows the 

flow chart of the KUAD2. Just 

as the same as the KUAD code, 

it calculates the current density 

distribution on the cathode, the 

electron trajectories in the gun 

and the drift-tube, and the 

beam-induced fields, iteratively, 

until self-consistent solutions 

are obtained. 

 The trajectories are 

calculated by solving Eq. (2.41) 

using the Runge-Kutta method. 

The beam-induced fields are, 

then, calculated by solving Eqs. 

(2.30), by use of the Finite 

(input)

electron trajectries

convergence check

(output)

vacuum fields

current density on cathode 
(space-charge limited)

beam-induced fields

Figure 5.1. Flow chart of the KUAD2.
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Element method (FEM) with quadratic triangular elements. The calculated 

fields, then, give the successive current density on the cathode, by applying 

Child Low [40] locally within the triangular elements on the cathode 

surface.  

 Triangular meshes and trajectories in the Toshiba klystron E3718#3 

(see Table 5.1), for example, are shown in Figs. 5.2(a) and 5.2(b). 

 

 To verify the present KUAD2, gun perveances with various cathode 

voltages were calculated for the E3718#3 klystron. As summarized in Table 

5.1, the E3718#3 has two different operational modes, namely CW and pulse 

operation, with different perveances.  

 As is seen in Fig. 5.3, the KUAD2 results are found to show excellent 

agreements with experiments, within –2.3 % ~ +2.4 % relative errors with 

respect to the measured values. The errors are summarized in Table 5.2. 

 

 

Table 5.1. Characteristics of klystrons for code verifications. 
 
 Toshiba E3718#3 

CW       pulse 
Toshiba 
1AV56 

SLAC  
XK-5 

frequency [MHz] 

# of cavities 

 
beam voltage [kV] 

beam current [A] 

beam power [MW] 

perveance [μA/V3/2] 

 
output [MW] 

efficiency [%] 

1250 

6 

 
83 

22 

1.8 

0.9 

 
1.0 

58 

1250 

6 

 
147 

57 

8.3 

1.0 

 
3.6 

43 

615 

4 

 
17 

2.2 

0.038 

1.0 

 
17 

45 

2856 

5 

 
265 

286 

76 

2.1 

 
36 

48 
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(a) Meshes. 
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(b) Electron trajectories. 

 
 

Figure 5.2. Meshes, and electron trajectories calculated by the 
KUAD2, in the electron gun of the E3718#3 klystron. 
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(a) CW mode. 
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(b) Pulse mode. 

 
 

Figure 5.3. Gun perveance of the E3718#3 klystron as a function of 
beam voltage (voltage between cathode and body), comparing the 
KUAD2 simulations and experiments 
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Table 5.2. Beam current from electron gun of E3718#3, comparing KUAD2 
simulations and experimental measurements.  

 bV  [kV]* aV  [kV]* current [A] 
simulation  experiment   error [%]

60 49.4 13.1 13.2 -0.8 
65 53.6 14.7 14.9 -1.3 

70 57.9 16.5 16.7 -1.2 

75 62.0 18.3 18.5 -1.1 
80 67.0 20.6 20.4 +1.0 

CW mode 

83 69.2 21.6 21.5 +0.5 
110 97 35.7 36.5 -2.2 

115 102 38.5 39.0 -1.3 

120 107 41.3 41.6 -0.7 

125 112 43.8 44.2 -0.9 

130 117 45.8 46.9 -2.3 

135 122 50.3 49.6 +1.4 

140 127 53.4 52.5 +1.7 

145 132 56.5 55.2 +2.4 

pulse mode 

147 133.7 57.6 56.5 +1.9 
* bV : voltage between cathode and body (drift-tube) 
* aV : voltage between cathode and anode 
 

 

 
5.2.2. Flow Chart 
 

 The KUBLAI simulates electron motions and beam-induced fields in 

time domain. It also calculates cavity voltages by use of the equivalent 

circuit model described in chapter 2. Figures 5.4 and 5.5 show, respectively, 

a simulation result of the E3718#3 klystron, for example, and the flow chart. 
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(a) Cavity fields on the axis. 
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(b) Electron distribution. 
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(c) Electron kinetic energy. 

 
Figure 5.4. Snapshot in the E3718#3 klystron by KUBLAI 
simulation (beam voltage 83=bV  kV, beam current 21.5=kI  A). 
The dashed lines indicate axial positions of the cavities. 
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Figure 5.5. Time stepping processes of the KUBLAI. 

 

 

 In Fig. 5.4, the electron beam, which consists of ring particles (see 

Fig. 2.2), is injected through the injection boundary on the left, interacts 

with the cavity fields through the drift-tube, and, then, goes out of the 

drift-tube from the exit boundary on the right. 

 As shown in Fig. 5.5, the cavity voltages are calculated successively 

from the input cavity to the output cavity. The cavity voltage CV  is revised 
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in every RF periods iteratively, as will be described in subsection 5.2.4. The 

iterations for each cavity voltage are started when the ring particles 

modulated by the upstream cavity reach. 

 

 In the calculations of the electron motions, and the beam-induced 

fields, each RF period T  ( f1= ) is divided into time steps t∆ . 

 At each time step, the electron motions are calculated in a leap-frog 

manner as shown in Fig. 5.5, by solving Eqs. (2.36), and, then, the 

beam-loading current at that time ( )tib  is calculated by Eq. (2.11.f), and 

stored in computer memories. The stored beam-loading currents through 

one RF-period are transformed by Eq. (2.18) into the complex beam-loading 

current bI , which is to be used for revising the cavity voltage. 

 The beam-induced fields are also calculated at each time step by 

solving Eqs. (2.26), as will be described in the following subsection. 

 

5.2.3.  A Stabilization Method of Numerical Instabilities in 
Time-Domain Field Calculations 

 

 A numerical instability has been observed [21] in calculating 

simultaneously electromagnetic fields, and charged particle motions by use 

of the Finite Differential method (FDM). 

 Also by use of the FEM in this study in the course of the KUBLAI 

code development, the high-frequency instability has been seen as shown in 

Fig. 5.6, where the beam is found unreasonably modulated, and bunched 

periodically according to the mesh size. The bunched beam tends to excite 

the high-frequency non-physical electromagnetic fields, whereas the excited 

fields modulate the bunched beam further, and finally the fields are led to 

oscillate. This instability can hardly be avoided by use of larger numbers of 

meshes, nor time steps. 
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(b) Electron distribution. 
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(c) Electron kinetic energy. 

 
Figure 5.6. Numerical instability seen in the KUBLAI simulation 
with a DC beam (90 kV, 24.3 A), by use of the basic Newmark 
method. 
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 In this subsection, a method is proposed to stabilize this 

non-physical instability. 

 

 By applying the FEM using quadratic rectangular elements with N  

nodes (see Fig. 5.6(a), for example), Eqs. (2.26) are reduced to simply the 

following ordinary differential equations, 

 

 φφφ fxA = , (5.1.a) 

 A
A

A
A

AAA dt
d

dt
d fxCxBxA =++ 2

2

, (5.1.b) 

 B
B

B
B

BBB dt
d

dt
d fxCxBxA =++ 2

2

, (5.1.c) 

 GGG fxA = , (5.1.d) 

 

where x ’s are N -dimensional unknown vectors, f ’s are time-dependent 

source terms, and A ’s , B ’s , and C ’s are constant matrices determined by 

the mesh configuration. 

 

 There are many candidates for the numerical method to solve the 

ordinary differential equations of Eqs. (5.1.b) and (5.1.c). Among them, the 

Newmark method [41] has an advantageous feature of not requiring the 

well-known Courant-Freidrichs condition. In many other methods such as 

the Runge-Kutta method, the time step t∆  must be set less than a specific 

value related to the mesh size z∆ , and r∆  as follows, 

 

 22 rzhtc ∆+∆≤∆ , (5.2) 

 

where h  is a given constant less than unity. The Courant-Freidrichs 
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condition of Eq. (5.2) is quite undesirable for the klystron simulation, since 

it tends to lead to many time steps, and accordingly too much CPU time. 

 For this reason, while other codes such as the FCI [19, 21], and the 

MAFIA [20] use the Eular method in a leap-frog manner (called the “Finite 

Differential Time-Domain” method), the Newmark method was originally 

used in the KUBLAI. In cases without beams, or with low current beams, 

the field calculations are found stable for any choice of the time step t∆ , as 

was expected. 

 However, in the case of an intense beam, the instability previously 

shown in Fig. 5.6 was observed. This is exclusively due to the fact that, with 

high current beams, the source terms f ’s in Eqs. (5.1) show strongly 

nonlinear dependence on the variables x ’s. Thus the Newmark method is 

found not always stable for nonlinear equations, although it is known to be 

stable for linear ones. 

 

 By modifying the Newmark method to provide higher stability even 

in the case of intense beams, a new method has been developed in this study, 

whose procedure is described as follows, 

 

 )()()()( 1111 ++++ =++ nnnn fxCxBAx &&& , (5.3.a) 

 
2

1
1

)()(
)()(

+
+

+
∆+= nn

nn t
xx

xx
&&&&

&& , (5.3.b) 

 ( ))()()()()()( nnnnnn ttt xxxxxx &&&&&&& −∆+∆⎟⎠
⎞⎜⎝

⎛ ++∆+= ++ 1
22

1 2
1

βδ , (5.3.c) 

 

where the potential at ( )1+n -th step, )( 1+nx , )( 1+nx& , and )( 1+nx&&  are given by 

those at the previous time step, )(nx , )(nx& , and )(nx&& , and the source vector 

)( 1+nf . The factors δ  and β  are constant, and the former was newly 



84 

introduced. With 0=δ , the present method of Eqs. (5.3) coincides with the 

basic Newmark method.  

 

 From Eqs. (5.3.b) and (5.3.c), the following expression can be 

derived, 

 

 
t

ttt nnnnnn
nn ∆

−
∆⎟⎠
⎞⎜⎝

⎛ −−+
+

∆+
+

∆+= +++
+

)()()()()()(
)()(

xxxxxx
xx

&&&&&&&&&& 13121
1 4

1
222
δβδ . (5.4) 

 

This expression is found related to the stability conditions as follows. 

 For linear systems without beams, it is known that the basic 

Newmark method ( 0=δ ) is stable for any large t∆  (or, for any small z∆  

and r∆ ), so long as the factor β  satisfies the following condition, 

 

 
4
1

≥β , 0=δ . (5.5) 

 

In contrast, through numerical examinations with the KUBLAI varying the 

factors δ  and β  from zero to unity, the stability condition of the modified 

Newmark method is found, 

 

 
4
1

2
≥−

δ
β , 0≥δ , (5.6) 

 

which is easily found consistent with the condition of Eq. (5.5) for the basic 

Newmark method. And furthermore, the condition of Eq. (5.6) is found to 

indicate simply that the factors δ  and ( )412−−δβ  in Eq. (5.4) must be 

positive. 
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 For the the intense beam previously shown in Fig. 5.6, the modified 

Newmark method is empirically found to show quite high stability with the 

factors around 31=δ  and 125=β , as shown in Fig. 5.7. The non-physical 

beam-modulation was not seen in Fig. 5.7 during 300 RF periods, while, 

with the basic Newmark method, it was observed after only 20 RF periods 

as seen in Fig. 5.6. 
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(a) Electron distribution. 
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Figure 5.7. KUBLAI results by use of the modified method. The 
numerical instability seen in Fig. 5.6 was stabilized. 
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5.2.4. A Method for Fast Convergence in Simulating 
Beam-Cavity Interactions 

 

 Since the equivalent circuits shown in Fig.2.2 represent resonance 

with high quality factors up to several thousands, it takes very much CPU 

time to obtain the final periodically steady-state solutions by solving Eqs. 

(2.13) in time domain. For example, for a cavity with a quality factor of 3000, 

starting at the initial cavity voltage of 0V, it will take around 3000 RF 

periods to approach the solution within a 2.5% error. 

 To overcome this problem, Eqs. (2.13) are solved in 

frequency-domain in the existing codes [16-21], as well as in the KUBLAI. 

With Eqs. (2.18) and (2.19), Eqs. (2.13) are expressed by, 

 

 )()()(
)()(

)( iii
Cii

i IIV
LjR

Cj extb
1

+=⎟⎠
⎞

⎜⎝
⎛

+
+

ω
ω , (5.7.a) 

 )()(

)(
)(

ii

i
Ci

L LjR
VI

ω+
= , (5.7.b) 

 

and further with Eq. (2.15.b), for example for the output cavity, Eq. (5.7.a) 

can be written as, 

 

 )()()( ii
C

i IVY b= , (5.8) 

 

where, 

 

 )()(
)()()(

ii
iii

LjR
CjGY

ω
ω

+
++=

1 . (5.9) 

 

 Since the beam-loading current )(iIb , which is given by Eqs. (2.11.f) 
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and (2.18), depends on the electron trajectories, it depends nonlinearly on 

the cavity voltage )(i
CV . 

 

 In order to obtain quickly the final steady-state cavity voltage )(i
CV , 

the following three methods are used in the FCI code [21], and are reviewed 

in the followings: 

 

(i) By assuming the beam-loading current )(iIb  to be linear to the cavity 

voltage )(i
CV  as, 

 

 ( ) )()()()()( i
C

iii
C

i VYIVI b0bb −= , (5.10) 

 

where, ( )0b0b
)()( ii II =  is the beam-loading current with 0=)(i

CV , and )(iYb  

(called beam-admittance) is a constant determined by a previous simulation 

with a specific cavity voltage, the solution can be obtained immediately by, 

 

 )()(

)(
)(

ii

i
i

C YY
IV

b

0b

+
= . (5.11) 

 

This linear approximation is supposed not appropriate for high cavity 

voltages, and therefore, in the FCI, applied only to the cavities of lower 

voltages compared with the beam voltage. 

 

(ii) With the beam-loading current ( ))(
)(,

)()(
)(

i
nC

ii
n VII bb, =  calculated by the 

electron motions with the cavity voltage )(
)(,

i
nCV , the successive )(

)(,
i

nCV 1+  is 

given by, 
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This procedure will be continued until )(
)(,

i
nCV  and )(

)(
i

nIb,  satisfy Eq. (5.9). In 

the FCI, this method is applied to the idler cavities of high voltages. The 

initial voltage )(
)(,

i
CV 0  is given by the linear approximation (i). 

 

(iii) With the expression,  

 

 ( ) ( )[ ]tjtVv i
C

i
C ωexpRe )()( = , (5.13.a) 

 ( ) ( )[ ]tjtIi i
L

i
L ωexpRe )()( = , (5.13.b) 

 

the following differential equations can be obtained from Eqs. (2.13) and 

(2.15.b), 
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Then, successive )(
)(,

i
nCV 1+ , and )(

)(,
i

nLI 1+  are given by, 
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nL IV
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where σ  is a factor more than unity to fasten the solution convergence. A 
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larger σ  results, of course, in faster convergence. However, this method 

has the disadvantage in that that, with too large σ , )(i
CV  and )(i

LI  do not 

converge to the final solutions, and hence care must be taken in the choice of 

the factor σ . And further, since σ  has its upper limit (typically around 20), 

it still takes more than hundreds RF periods for cavities with high qualities 

up to 3000. In the FCI, this method is used only for the output cavity, which 

has some low quality factor typically less than 50. 

 

 

 In the present KUBLAI developed in this study, considering the 

disadvantages of the methods (i) and (iii), basically a method similar to (ii) 

is used for all cavities. But again a modification has been made to provide 

faster convergence to the steady-state solutions. The modified method is 

described by, 
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Further, Eq. (5.16) can be rewritten as, 
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and, hence, the modified method is similar to the method (i) as well, with 

the beam-admittance )(
)(,

i
nYb  revised at each RF cycle n . 
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 The method (ii), and the present method was compared through 

KUBLAI simulations of the E3718#3 klystron. Figure 5.7 shows variations 

of calculated cavity voltages through iterations, for the 2nd and 4th cavities of 

the E3718#3 klystron. The modified method is found to show faster 

convergence to the steady-state solutions, compared with the basic method 

(ii). With the modified method, the solutions are found to converge with 3~9 

RF periods within 0.1% errors, for the E3718#3 cavities with various quality 

factors, and beam voltages. 
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(a) E3718#3, 2nd cavity ( 3000=Q ). 
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(b) E3718#3, 4th cavity ( 3000=Q ). 
 

Figure 5.8. Variation of cavity voltages through iterative 
calculations, comparing two different methods. 
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5.3. Comparisons with Experiments 
 

 To verify the developed KUBLAI code, comparisons were made 

between calculated output powers and experimentally measured ones. Three 

klystrons, the E3718#3, the Toshiba 1AV56, and the SLAC XK-5, were used 

for comparisons, whose major characteristics are summarized in Table 5.1. 

 Figures 5.9 and 5.10 show the calculated and measured output 

powers for the E3718#3 klystron, Fig. 5.11 for the 1AV56, and Fig.5.12 for 

the XK-5, respectively. All these numerical results are found to show 

excellent agreements with experiments, within –4.9 % ∼ +6.9 % relative 

errors in the saturated output powers. 
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Figure 5.9. Efficiency as a function of drive power (E3718#3). 
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Figure 5.10. Saturated efficiencies for various beam voltages (E3718#3). 
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Figure 5.11. Efficiencies as functions of drive power, with three 
different loaded quality factor lQ  of the output cavity (1AV56). 
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Figure 5.12. Efficiency as a function of drive power (XK-5). 

 

 

 

5.4. Concluding Remarks 
 

 In this chapter, the 2-dimensional particle-in-cell simulation codes, 

namely the KUAD2, and the KUBLAI, developed in this study are 

presented. 

 The KUAD2 was verified through comparisons of gun perveances 

with experiments, showing good agreements within –2.3 % ∼ +2.4 % errors 

in the gun perveances. 

 

 On the development of the KUBLAI, a modified Newmark method 

was proposed to stabilize the numerical instability in calculating both 

electron motions, and beam-induced fields simultaneously. Numerical test 

results with the present method are found sufficiently stable. 

 A newly modified method for calculating cavity voltages was also 
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proposed, showing faster convergence to the steady-state solution than the 

basic method. 

 Comparisons were also made between output powers calculated by 

the developed KUBLAI code, and experimentally measured ones, showing 

excellent agreements within –4.9 % ∼ +6.9 % errors in the saturated output 

powers. 
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Chapter 6 
 

Application to Klystron Efficiency 

Enhancement 
 

 

6.1. Introduction 
 

 In this chapter, the two approaches for the klystron efficiency 

enhancement described in chapter 1, namely depressed collectors, and 

hollow beams, are investigated by use of the developed and verified codes. 

An existing high-power klystron, Toshiba E3718#2 was taken as a reference 

in this study. The beam parameters, and the prototype performances by the 

KUBLAI simulations are shown in Table 6.1. 

 

 

Table 6.1. Beam Parameters and calculated performances of the E3718#2 
klystron.  

operating frequency 1.25 GHz 
beam voltage 

beam current 

perveance 

90    kV 

24.3  A 

0.9  µV3/2/A 
output power 

efficiency 

1.32 MW 

60.5  % 
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 In section 6.2, the efficiency enhancements by virtue of multistage 

depressed collectors (MDC) are discussed. Firstly, efficiencies were 

calculated on the assumption of negligence of beam optics, in order to 

evaluate the theoretical limit of the energy recovery by MDCs, and also to 

determine initial design parameters such as number of electrodes, and 

electrode potentials, reasonably well. Secondly, a MDC was, then, designed 

by use of the KUAD2 particle-in-cell simulations. 

 The other approach by use of hollow beams was also studied, and is 

presented in section 6.3. Because, in general, the cavity fields are stronger 

in the vicinity of the cavity gap on the drift-tube wall than near the 

symmetry axis, hollow beams are expected to enhance the klystron 

efficiency through more efficient interactions with the cavities than the solid 

beam whose innermost part least interacts. To examine this possibility, 

comparisons were made between hollow beams and the currently used solid 

beams by the KUBLAI simulations. 

 

6.2. Direct Energy Recovery from Spent Beams 
 

6.2.1. Configuration for Direct Energy Recovery 
 

 Figure 6.1 shows schematic diagram of a klystron with a 3-stage 

depressed collector. In the depressed collector, the injected spent electrons 

are electrostatically decelerated, and, then, slightly accelerated in the 

opposing direction onto the electrodes. This configuration is expected to 

suppress the secondary electrons from the electrode surfaces [2,3], which is 

otherwise led to losses. 

 The recovered power rP , and the recovery efficiency rη  by an 

N -stage depressed collector are defined, respectively, by 
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where nV , and nI  denote, respectively, the n -th electrode potential, and 

the beam current collected by the n -th electrode. The sP , outP , and bP  

denote the power of the spent beam at the collector entrance, the RF output 

power of the klystron, and the power of the incident beam to the klystron, 

respectively. The overall efficiency η  is, then, given in terms of rη  by, 
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Figure 6.1. Schematic diagram of a klystron with a 3-stage 
depressed collector. 
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where 0η  denotes the efficiency without energy recovery, and is given by, 

 

 
b

out
0 P

P
=η . (6.3) 

 

For the klystron with 5600 .=η  %, as shown in Fig. 6.2, around 75 % 

efficiency could be achieved with 50 % energy recovery. 

 

 In the following discussions in this chapter, the potential of the last 

stage electrode NV  is chosen to be equal to that of the cathode as shown in 

Fig. 6.1, just to simplify the power supply system without any additional 

higher voltages, and costs. 
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Figure 6.2. Overall efficiency as a function of recovery efficiency. 
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6.2.2. Evaluation of Theoretically Maximum Efficiencies 
 

 Figure 6.3 shows energy spectrum of spent beams for various output 

powers, obtained by the KUBLAI simulations. Under the following two 

assumptions that, 

 

(i) each electron is collected by the electrode with a potential slightly less 

than the incident kinetic energy, 

(ii) no secondary electron is yielded from the electrode surfaces, 

 

then, the recovered power rP  is given from the energy spectrum dVdI  

shown in Fig. 6.3, as follows, 
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where, sI  denotes the total current of the incident spent beam, and is given 

by, 
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From Eq. (6.4.a), the following expressions can be obtained, for 

11 −≤≤ Nmn, , 
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With these expressions, the Newton method can be, then, applied, to find 

the optimized electrode potentials that give the theoretically maximum 

recovered power maxr,P . 
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Figure 6.3. Energy spectrum of spent electron beams for various 
output powers (the saturated power 1.32=satP  MW). The dashed 
line indicates the gun voltage 90=bV  kV. 
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 The theoretically maximum recovery efficiencies maxr,η , and overall 

efficiencies maxη  were calculated for the spent beams shown in Fig. 6.3, and 

for various number of stages N , with the optimized potentials. 

 As shown in Fig. 6.4(a), it is found that the recovery efficiency maxr,η  

decreases with increasing outP  due to the broader energy spectrum of the 

spent beam. Nevertheless, as shown in Fig. 6.4(b), the overall efficiency 

maxη  is found to increase as outP  increases. 

 For the saturated outP , more than 80 % overall efficiency could be 

theoretically achieved with a 5-stage depressed collector, and additional 

stages are found not to contribute appreciably to further enhancement. For 

the 5-stage collector at the saturated output, the optimized electrode 

potentials nV , the currents nI , and the heat loads nP ,heat  onto the n -th 

electrode are summarized in Table 6.2, where the heat loads were calculated 

by, 

 

 ( )∫
+

−=
1

heat,
n

n

V

V nn dV
dV
dIVVP . (6.6) 

 

 
 In the previous report on a collector design [1-3], the electrode 

potentials were chosen equally stepwise rather than the optimized ones, just 

to simplify the designing, and to reduce costs as well. To evaluate the 

degradation from the optimum value, the recovered power was also 

calculated from Eqs. (6.4) for the potentials equally stepwise, namely 18, 36, 

54, 72, and 90 kV, and for the spent beam at the saturated output.  

 As summarized in Table 6.3, the overall efficiency was calculated as 

380.=η  %, which is very encouraging compared with 5600 .=η  %, 

although it is slightly less than the optimum, 783max .=η  %. 
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(a) Theoretically maximum recovery efficiencies. 
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(b) Theoretically maximum overall efficiencies. 
 

Figure 6.4. Theoretically maximum efficiencies as functions of 
output power. 
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Table 6.2. Optimized electrode potentials for the saturated output, and 
corresponding electrode currents and heat loads, on the assumption of 
negligence of beam optics.  

electrode no. potential [kV] current [A] heat-load [kW] 

0 

1 

2 

3 

4 

5 

0 

9.7 

21.5 

32.3 

54.1 

90 

2.03 

6.10 

6.56 

6.86 

1.53 

1.22 

18.4 

33.5 

42.7 

68.8 

14.4 

71.9 
 

 

Table 6.3. Recovery and overall efficiencies with the optimized potentials, 
and the potentials equally stepwise, on the assumption of negligence of 
beam optics.   

electrode potentials recovery efficiency [%] overall efficiency [%] 

9.7, 21.5, 32.3, 54.1, 90 
(optimized potentials) 

 
18, 36, 54, 72, 90 

 
71.1 

 

62.4 

 
83.7 

 

80.3 

 

 

 

6.2.3. Multistage Depressed Collector Design 
 

 A depressed collector was designed by use of the KUAD2 simulations, 

where the beam optics was taken into consideration.  

 The KUBLAI results on the positions and the velocities of the spent 

electrons were used as the injection conditions. Approximately, all the spent 

electrons were injected at a moment, and the electron trajectories were 
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simulated in static fields. The trajectories of both the incident and the 

secondary electrons were simulated self-consistently. 

 

 Considering the results in the previous subsection, the designed 

number of stages was chosen as 5=N , and the electrode potentials equally 

stepwise, for the reason that neither additional stages nor optimized 

potentials would result in appreciably further efficiency enhancement, while 

they would rather result in more complicated designing. Thus, only the 

electrode shapes were optimized, with trials and errors. 

 

 Repeated design refinements resulted in an optimized geometry 

shown in Fig. 6.5. Care was taken to assure no electron backstreaming 

towards the collector entrance, which otherwise causes degradation in the 

klystron performance. The trajectories of the incident, and the secondary 

electrons from the electrode surfaces with the yield ratio of 50.=δ , are, 

respectively, shown in Figs. 6.5(a) and (b). The simulation results on the 

electrode currents are shown in Table 6.4. 

 From Table 6.4, the recovery efficiency was evaluated to be 

438.=rη  %, leading to an overall efficiency of 371.=η  %, which is also very 

encouraging compared with the 60.5 % efficiency without a depressed 

collector. The obtained efficiencies are, however, lower than the theoretically 

maximum ones shown in Table 6.3, and, therefore, there is still possibility of 

further enhancement by further design refinements. 

 As shown in Fig. 6.5 and Table 6.4, the secondary electrons from the 

2nd to 4th electrodes are found to be suppressed successfully. Power loss due 

to the secondary electrons from the 1st and 5th electrodes is estimated to be 

32 kW, leading to only 8.8 % degradation in the recovered power (net of 332 

kW). 
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(a) Incident electrons. 
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(b) Secondary electrons. 

 
 

Figure 6.5. Equipotential lines and electron trajectories by the 
KUAD2 simulations in the 5-stage depressed collector. 
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Table 6.4. KUAD2 results on beam currents, and heat loads onto the MDC 
electrodes shown in Fig. 6.5.  

electrode 
no. 

secondary 
yield [A] 

collected current [A] 
incident      secondary heat load [kW]

0 

1 

2 

3 

4 

5 

0.00 

0.09 

0.00 

0.00 

0.00 

0.44 

13.00 

6.90 

2.15 

0.89 

0.48 

0.89 

0.09 

0.00 

0.08 

0.27 

0.09 

0.00 

286 

107 

42 

31 

17 

51 
 

 

 

6.3. Efficiency Enhancement by use of Hollow Beams 
 

 Hollow beams in the klystron drift-tube were simulated by the 

KUBLAI, and comparisons were made with the solid beam. 

 Figures 6.6(a), (b), and (c) show, respectively, the snapshots of the 

solid beam, and two hollow beams with different hollow radii hr  (see Fig. 

6.7). The hollow beams were injected with the same beam radius 211b .=r  

mm, and the same current of 24.3 A as the solid beam, while with different 

current densities according to their cross-sectional areas ( )2
h

2
b rr −π . 

 Table 6.5 shows calculated output powers with four different hollow 

radii, together with the solid beam. The hollow beams are certainly found to 

enhance the klystron efficiency, as was expected. 

 It is also found that the hollow radius of 7.92 mm results in less 

efficiency than the smaller hollow radii of 5.60, and 6.86 mm. The reason for 

this is supposed that a larger hollow results in a less bunched beam because 

of larger space-charge forces in the z -direction. Among the four hollow 



107 

beams in Table 6.5, the hollow radius of 5.60 mm gives the maximum 

efficiency of 67.0 %, which is very encouraging compared with the 60.5 % 

efficiency with the solid beam, although design of an electron gun to provide 

such a hollow beam with high accuracy is required. 
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(a) Solid beam. 
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(b) 5.6 mm hollow. 
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(c) 7.9 mm hollow. 

 
Figure 6.6. Snapshots of solid and hollow beams in the drift-tube. 
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Figure 6.7. Description of the hollow radius hr , and beam radius 

br  of a hollow beam. 
 
 
Table 6.5. KUBLAI results on efficiencies with hollow beams.  

hollow radius* 
hr  [mm] 

ratio of hollow area* 
2

b
2

h rr  [%] efficiency [%] 

0.00 

3.96 

5.60 

6.86 

7.92 

0.0 

12.5 

25.0 

37.5 

50.0 

60.5 

64.6 

67.0 

66.8 

66.2 
*at injection boundary, 

 

 

 

6.4. Concluding Remarks 
 

 In this chapter, the two approaches to the klystron efficiency 

enhancement were discussed. 

 Theoretical limit of energy recovery with depressed collectors was 

made clear. It is found that, as the RF output power increases, the overall 
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efficiency increases, despite the recovery efficiency decreases because of 

broader energy spread of the spent beam. It is also found that a 5-stage 

collector with electrode potentials equally stepwise could, theoretically, 

enhance the efficiency up to 80.3 %, from the 60.5 % efficiency without a 

depressed collector, and neither additional stages nor optimized potentials 

would result in appreciably further enhancement. A 5-stage depressed 

collector was designed by the KUAD2 simulations, to provide an enhanced 

efficiency of 71.3 %. 

 Hollow beams are found also to result in higher efficiencies than the 

currently used solid beam. With an optimum hollow radius, an enhanced 

efficiency of 67.0 % could be achieved. It is also found that a larger hollow 

than the optimum results in a lower efficiency due to larger longitudinal 

space-charge forces. 

 It is to be noted that the two above techniques could be applied 

simultaneously to a klystron, and are expected to enhance the efficiency 

much further. 
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Chapter 7 
 

Summary 
 

 

 This thesis discusses performance characteristics of depressed 

collectors, and hollow beams aiming at appreciable enhancements of 

klystron efficiencies. Also presented are developments of a set of 

2-dimensional numerical codes to investigate these two approaches. The 

results are summarized as follows. 

 

(i) A new Finite Element eigenmode solver (KUEMS) has been 

developed in this study, aiming at improved accuracy in calculating 

cylindrically symmetric modes. Instead of θH , or θrH  preferentially used 

so far in the existing codes, the quantity rHθ  is newly used in this study 

to represent the electromagnetic fields. 

 This present Finite Element formulation is found to result in 

remarkably higher accuracy than the other formulations, particularly, in the 

eigenfrequency of the fundamental mode. It is also found to result in 

smoother convergence of the solutions with respect to number of the mesh 

points, to provide good extrapolation property. 

 

(ii) Also developed was a solenoidal field solver (KUSOS) for calculating 

external focusing fields in klystrons. A new hybrid method is proposed, 
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which can deal with unbounded problems including nonlinear media by 

combining the Finite Element method and the Moment method.  

 The numerical results show good agreements with the analytical 

solutions, no difference in the numerical solutions for different choices of the 

picture frames, and excellent continuity of the calculated magnetic fields on 

the picture frames. 

 

(iii) Two particle-in-cell simulation codes have been developed by 

modifying the existing codes. One is for simulations of electron trajectories 

in static fields (KUAD2). It was verified through comparisons of gun 

perveances with experiments, showing excellent agreements within –2.3% ∼ 

+2.4% relative errors. 

 The other is for simulations of interactions between electron beams 

and klystron cavities (KUBLAI). A modified Newmark method is proposed to 

stabilize the numerical instability in calculating simultaneously both 

electron motions, and beam-induced fields. Also proposed is a modified 

method for calculating cavity voltages, which eventually shows faster 

convergence to the steady-state solutions than the basic method. 

 Comparisons were also made between the KUBLAI simulations and 

experiments, showing excellent agreements within –4.9% ∼ +6.9% relative 

errors with respect to the saturated output powers of klystrons. 

 

(iv) By use of the verified codes developed in this study, the 

aforementioned two approaches were investigated for the klystron efficiency 

enhancements. 

 Theoretical limit of the energy recovery with depressed collectors 

was evaluated. It is found that a 5-stage collector could, theoretically, 

enhance the efficiency up to 80.3% from the basic efficiency of 60.5%, and 

neither additional stages nor optimized potentials would enhance the 
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efficiency appreciably further. A 5-stage depressed collector was, then, 

designed through the KUAD2 simulations, leading to an enhanced efficiency 

of 71.3%, which is very encouraging compared with the 60.5% efficiency 

without depressed collectors. 

 Hollow beams are found also to result in higher efficiencies than the 

currently used solid beam. It is found that, with an optimized hollow radius, 

an enhanced efficiency of 67.0% could be achieved without depressed 

collectors. It is also found that larger hollows than the optimum tend to 

result in rather lower efficiencies. 

 

 

 In summary, the simulation codes newly developed in this study are 

found to be efficient in high-power klystron designing, and, also, by use of 

these numerical codes, either the depressed collectors, or the hollow beams 

are found, numerically, to result in appreciable efficiency enhancements of 

klystrons. 
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