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Chapter 1

Introduction

Klystrons, originally invented by Hahn and Metcalf, and named by
the Varian brothers in 1939 [1], are now widely in use in decades as radio
frequency (RF) amplifiers in many applications, such as broadcasting,
particle accelerator researches, plasma heating researches, and so on. The
klystron amplifies RF power in the regime up to several GHz range by use of
an electron beam, consisting of an electron gun to provide the beam, a
drift-tube with several RF resonant cavities where the beam interacts with
the cavity fields, and, at the end, a collector to dump the spent beam.

From the viewpoint of, in particular, the industrial application of the
klystron, the efficiency is a very important key parameter. Especially, the
efficiency enhancement is essential to reduce the operating costs in
industrial accelerator applications, such as in free electron lasers,
transmutation systems of radioactive fission wastes, and so on, since many
number of high-power klystrons are or will be used as the CW RF sources.

It 1s also important for the future fusion application, since the CW
klystron is a major and unique candidate for the RF source of the Lower
Hybrid Current Drive (several GHz range), and the Fast Wave Current
Drive (hundreds MHz), which are both required to make the steady-state
operation of the tokamak reactor.

Maximizing the klystron efficiency has been and is still, therefore, a



continuing effort, while the currently designed klystrons based on the
conventional technologies seem to have almost achieved theoretically

maximum efficiencies, and a drastic breakthrough is called for.

Depressed collector technology is one of such that could overcome
this problem with the least degradation in the klystron performance, by
directly recovering the substantial energy from the spent electron beam
through the decelerating electrostatic fields. The depressed collector is
expected to enhance appreciably the klystron efficiency by replacing the
existing water-cooled heat-removal collector. In addition, it can be made
much smaller than the conventional collector because of greatly reduced
heat flux onto the surfaces, in general.

So far, the depressed collector system has been successfully applied
to specific klystrons, i.e. medium-power CW klystrons for broadcasting in
the 60 kW and 700 MHz range, showing a remarkable efficiency
enhancement from the basic efficiency of 50 % of the prototype up to a 70%
overall efficiency [2,3].

However, for the currently available several MW klystrons with over
60 % efficiencies without depressed collectors, it is recognized generally
difficult to incorporate them successfully, because of much broader energy
spreads, higher emittances of the spent electron beams due to higher beam
currents, and much stronger interactions with the cavities. Further
improvements, therefore, require highly accurate and reliable klystron

simulations, and collector design as well.

There is another possibility to enhance the klystron efficiency, which
is use of hollow beams instead of the solid beams now preferentially used in
the existing klystrons. Since the cavity fields are generally stronger in the

vicinity of the cavity gaps on the drift-tube wall rather than those near the



symmetry axis, the hollow beams are supposed to result in higher klystron
efficiencies through efficient interactions with the cavities. In order to

examine this possibility, 2-dimensional simulations are also essential.

To investigate the above two approaches for the enhancement of the
klystron efficiency, a new set of 2-dimensional numerical codes have been
developed in this study, and are presented in this thesis. They can simulate
effectively the Kklystrons as well as other RF devices, for example the

RF-guns [4-6].

One of the developed codes is for calculating eignemodes of the
klystron cavities. So far, many codes have been developed [7-14], and are in
use as cavity design tools for many RF devices, such as klystrons, RF-guns,
and particle accelerators. However, depending on the cavity geometry or the
mode to be solved, they are sometimes not accurate enough, or in other
words, take too much CPU time to achieve the required accuracy. For these
design tools, both higher accuracy and less computational efforts are always
important, and strongly required.

From this viewpoint, a new Finite Element (FE) formulation is
proposed as will be described in chapter 3 [15], which aims at improved
calculations of cylindrically symmetric modes applicable to the klystron
simulations. This new formulation can avoid the singularity on the
symmetry axis, and, consequently, it is found that the solutions have higher
accuracy and smoother convergence compared with other existing
formulations. It should be noted that this numerical technique is applicable
not only to the present eigenmode calculations but also to calculations of
other cylindrically symmetric solenoidal fields, such as magnetostatic field

calculations, and time-domain calculations of electromagnetic fields.



For calculations of magnetostatic fields, the finite methods, such as
the Finite Element method (FEM), and the Finite Differential method
(FDM), are commonly used, while they have the disadvantage that specific
conditions are required on the boundary of the finite meshes. Unfortunately,
it is the essential feature of the magnetostatic fields to extend to the infinite
space, and accordingly no specific boundary condition is actually available
for the finite methods. On the other hand, the integral equation methods,
such as the Boundary Element method (BEM) and the Moment method
(MM), can effectively deal with the unbounded problems, but they cannot
treat nonlinear nor inhomogeneous media.

To calculate the unbounded magnetostatic fields by the klystron
focusing coils, a new FEM/MM-hybrid method is proposed in chapter 4,
which retains the advantageous characteristics of both methods. It is to be
noted that the present FEM/MM-hybrid method can be applied to other
problems where Green’s functions are known, such as electromagnetic

scattering problems, for example.

To model the interaction between the electron beam and the cavities,
the equivalent circuit model was used in this study, which is known as the
‘port-approximation’ originally proposed by Yu [16], and also by Carlsten
and Tallerico [17], and effectively utilized in the existing codes [18-20].

The simulation code in this study was developed based on the
existing 2-dimensional code known as FCI (acronym for Field Charge
Interaction) by Shintake [19, 21], and the following several improvements
were made to achieve much higher accuracy sufficient enough to provide

injection conditions for the depressed collector designing.

A new method based on the Newmark method is proposed to avoid

numerical instabilities in calculating simultaneously the electromagnetic



fields, and the particle motions in time domain.

For a stable calculation, in general, the well-known
Courant-Freidrichs condition should be fulfilled, i1.e. the spatial meshes
must be smaller than a specific size related to the time step. And further in
some cases with high beam currents, both spatial smoothing, and artificial
damping factors between the output cavity and the collector entrance are
required in the field calculation [21]. Damping factors between the output
cavity and the collector are suitable for calculating the klystron output
power, but are found not suitable in order to calculate the spent beam for
depressed collector designing.

The new method of the present study is rather straightforward, and
does not require such a condition or treatments, by including damping
factors in itself effectively to, eventually, damp the high-frequency fields

induced by the numerical errors.

Also, in the port-approximation, since the equivalent circuit shows
resonance with a high quality factor including a nonlinear term induced by
the electron beam, the final periodically steady-state solution can hardly be
obtained straightforwardly [21], and, therefore, some special treatments are
required for fast convergence within reasonable computation time [18, 21].
Again a new approach is proposed in this study, and applied to achieve

faster convergence in solving the equivalent circuit equations.

The discussions above are summarized as follows.

In this thesis, development of a set of numerical codes, and its
application are presented, aiming at efficiency enhancement of klystrons.

In chapter 2, the numerical model for the klystron simulation is

reviewed, and assumptions made for efficient computations are summarized.



Also discussed are basic equations for the numerical model, which are
derived on the assumptions from Maxwell’s equations, and the relativistic
equation of motion for electrons.

In chapter 3, a new formulation is proposed for accurate calculations
of cylindrically symmetric eigenmodes. Comparisons with the existing
formulations are made to show the advantageous features of the new
formulation with respect to both accuracy and smooth convergence of the
solutions.

In chapter 4, a new code for magnetostatic field calculations is
presented, which is to be used for calculating the external focusing fields of
klystrons. To deal with the unbounded magnetostatic field problem
including nonlinear media, a new hybrid method combining the FEM and
the MM 1is proposed.

In chapter 5, development of the overall klystron simulation code is
presented. A new method based on the Newmark method is proposed to
provide high numerical stability in solving ordinary differential equations
for time-varying electromagnetic fields in particle-in-cell simulations. A new
approach is also proposed to achieve fast convergence in solving resonant
circuit equations with high quality factors including a nonlinear term
induced by the electron beam. Application to some existing klystrons is also
presented to show agreements with experiments in terms of RF output
powers.

By wuse of the verified simulation codes developed, the two
approaches for the enhancement of the klystron efficiency are investigated
in chapter 6 [22, 23].

The discussions in this thesis are summarized in chapter 7.



Chapter 2

Basic Equations and Assumptions of

Numerical Model

In this chapter, basic equations are summarized for the code
development presented in the following chapters. They are derived from
Maxwell’s equations, and the relativistic equation of motion for electrons, on

some assumptions, mainly, for efficient computations.
2.1. Assumptions and General Structure of Simulations

In this section, the assumptions made for efficient computations in

the klystron simulations are summarized [19, 21].

As schematically shown in Fig. 2.1, a klystron consists of an electron
gun to provide a electron beam, a drift-tube with input, idler and output
cavities to modulate and bunch the electron beam, and a collector to dump
the spent beam. Some external coils and pole-pieces are set to provide
magnetostatic fields throughout to focus the beam.

In modeling a klystron numerically, some assumptions are made for

efficient computations as follows.
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Figure 2.1. Schematic cross section of a klystron.

The electromagnetic fields are assumed to be cylindrically symmetric
(no variation in the @-direction). This assumption is appropriate
since the klystron has almost complete cylindrical symmetry.
Although the output cavity has a non-symmetric connection to the
output wave-guide, the fields within the drift-tube can be assumed

to be symmetric.

Accordingly, the electron beam is also assumed to be cylindrically
symmetric, consisting of ring particles (see Fig. 2.2) specified by

their positions (z,,7,), and velocities (uv’z,uw,uvﬂ) in the cylindrical

voyly

coordinates (z,r,6), where v denotes the particle number.



(iii)

Gv)

)

(vi)

(vii)

The fields in the electron gun are assumed to be static, without

backward electromagnetic waves from the downstream drift-tube.

It is assumed that, as shown in Fig. 2.3, the fields in the drift-tube
can be separated into the resonant cavity fields, and the
beam-induced fields. The latter are approximately calculated by
solving Maxwell’s equations without influence of the cavity

configuration.

It is assumed that only one resonant mode is excited in each cavity,
whose resonance frequency is closest to the klystron operating

frequency.

The cavities have almost no coupling with each other through the
drift-tube, and accordingly the cavity fields can be calculated

separately as schematically shown in Fig. 2.3.

The cavity fields have the same frequency as the RF input, i.e. the
operating frequency of the klystron.

Ur

Figure 2.2. A ring particle in 2-dimensional particle simulations. It
is specified by its position (z,,r,), and its velocity (u V,Z,uw,uvﬁ) .
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Figure 2.3. The equivalent circuit model. The beam-induced fields
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and the cavity fields are calculated separately.



On the assumptions above, the following set of codes have been

developed in this study (see Fig. 2.4),

(1) KUSOS (Kyoto University SOlenoidal field Solver),
(2) KUEMS (Kyoto University EigenMode Solver),

(3) KUAD2 (Kyoto University Advanced Dart II),

(4) KUBLAI (Kyoto University Beam Loading AnalyslIs).

coils and pole-pieces
geometry < cavity geometry>

focusing field cavity eigen modes
KUSOS KUEMS

L initial and injection beam-cavity
iti % interaction

conditions

KUAD2 _— KUBLAI

it it

o gun and drift-tube )
geometry o drift-tube geometry

o cathode voltage ocold cavity parameters
o beam current

Figure 2.4. The set of codes developed for klystron simulations.
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On the assumption (ii), the electron trajectories in the gun are
simulated in the electro-magnetostatic fields by the KUAD2, which have
been developed by modifying the recently developed KUAD code [24]. Then
the results are used as the initial and beam-injection conditions for the
beam-cavity interaction simulation in the drift-tube by the KUBLAL.

In the KUBLAI, on the assumption (iv), the fields E and B are

expressed separately by the components as,

E(z,r,t)=E,(z,7, t)+Ec(z, r,t), (2.1.2)
B(z, 7, t) =B, (Z, 7, t) + B, (z, 7, t) + B; (z, r)

=B, (z,r,1)+B;(z,7), (2.1.b)

where E, and B, denote the electromagnetic fields induced by the beam,
E, and B, the cavity fields, and B; the external focusing fields calculated
by the KUSOS.

The beam-induced fields E, and B, are calculated in time domain

by solving Maxwell’s equations in the drift-tube without the cavities. On the

other hand, on the assumptions (v) and (vi), the cavity fields E, and B,

are expressed by,

(z,7,t)= Ze(’) () E(z,7) (2.2.a)

B, (z,7,t)= yOZhéi)(t) Héi) (z,7), (2.2.b)

i

where 4, denotes the permeability in vacuum, and E!” and H{” denote

the dominant eigenmode pattern in the i-th cavity, which are calculated by

the KUEMS. The time-dependent variables e\’ and h!’ (see Eqgs. (2.20))

12



are calculated through the beam-cavity interaction simulations based on the

equivalent circuit model shown in Fig. 2.3.

2.2. Basic Equations

2.2.1. Interactions between Beams and Cavities

In this subsection, the equivalent circuit model (see Fig. 2.3) is

derived from Maxwell’s equations on the preceding assumptions.

The electromagnetic fields E and H,, (=B,./u,) in the klystron

are described by Maxwell’s equations in vacuum,

oH

Vx E =—pu, —2< (2.3.2)
Hy o
VxH,, = 806—E+Jb, (2.3.b)
ot
v.E=P (2.3.0)
&y
V-H, =0, (2.3.d)

where J, and p, denote, respectively, the current density and the charge
density of the electron beam, and ¢, the permittivity in vacuum. Note that,

as described in Eq. (2.1.b), the total magnetic filed B is sum of B,, and

b+c
the focusing field B; induced by the focusing coil current density J;. The
magnetic field H,,, will be expressed simply as H hereafter for

convenience in the following derivation.

13



As is well known, any vector function can be divided into two kinds
of functions, namely solenoidal and irrotational eigenfunctions [25]. To

expand Maxwell’s equations, two sets of eigenfunctions {E,} and {H,} are

defined with different boundary conditions as follows.

nxE =0 on I, (2.4.2)
n-E =0 on I, (2.4.b)
| E,-E,dv=2w, (2.4.0)
[ E,-E,av =0, (2.4.d)
n-H,=0 on I, (2.4.e)
nxH, =0 on T, (2.4.9)
(|, -1, av=2m,, (2.4.9)
| H,-Hav =0, (2.4.h)

where a and b denote mode numbers, I, the inner surface of the cavity
and the drift-tube wall, T, the cross-sectional area of the input coupler and
the output wave guide, Q the domain surrounded by T, UT, (see Fig. 2.5),

and dV denotes a volume element in Q. The value W, in Egs. (2.4.c) and

(2.4.g) gives the normalization condition for the mode «. The set {E,} and
{H,} each consists of solenoidal and irrotational eigenfunctions.
On one hand, the solenoidal eigefunction can be described by,
VxE,=k,H,, (2.5.2)
VxH,=kE,, (2.5.b)

14



V-E, =0, (2.5.c)

V-H, =0, (2.5.d)

which represent a resonant eigenmode, with a resonance frequency ck, /27,
electromagnetic fields E,(z,r)cos(ck,?)/+[& , H,(z.r)sin(ck,t)/\[u, , and stored
energy W, , where c is the speed of light, and %, the wave number.

On the other hand, the irrotational functions satisfy VxE, =0 and
VxH,=0, which can be assumed as modes with eigenfrequencies

ck,/27=0, and hence do not contribute to resonant fields.

external
i circuit
lex

N

Figure 2.5. The equivalent circuit of the output cavity:.



On the assumption (iv) in section 2.1, the eigenfunctions {E,} and
{H,} are divided into cavity-related solenoidal eigenmodes, and the others,

1.e. solenoidal eigenmodes of the drift-tube and all the irrotational
eigenfunctions.

Among the former cavity modes, on the assumption (v), only the
dominant cavity modes {E("} and {H\"} are taken into account in the
KUBLAI simulations, where i denotes the cavity number, and the
subscript ‘0’ means the dominant mode.

Since the beam-induced fields E, and B, consist of the latter
eigenfunctions, and are approximately calculated by solving Maxwell’s

equations in time domain without the cavities, the fields can be written by,

E(z,r,t)=E,(z,r,1) Ze(’) (E(z,7) (2.6.a)

H(z,r,t)—l (z,r,0)+ th H{(z (2.6.b)
Hy

where, from Eqs. (2.4.0), (2.4.d), (2.4.g) and (2.4.h),

e (t)= E(z,7,t)-E\(z,r)dV , (2.7.2)

ZW(I)

W=

2W(l) H(z,r,0)-H (z,r)dV . (2.7.b)

As will be shown below, the equivalent circuit equations for the

time-dependent variables e’ and 4\’ can be derived from Maxwell’s

equations of Eqgs. (2.3.a) and (2.3.b).

16



By multiplying H{” and integrating in the domain Q, Eq. (2.3.a)
becomes,
dh(i)

jﬂ H? (VxE)dV =-2W" 4, d—‘; . (2.8)

With Eq. (2.5.b), the integrand of Eq. (2.8) is reduced to,

HY (VxE)=V-(ExH)+E-(VxH)

=V(ExHY)+kE-EY. (2.9)

Then Eq. (2.8) becomes, with Gauss’ divergence theorem and Eq. (2.4.9),

) 5 ) .
! Ho

where !’ =ck{", and n denotes the outward unit vector normal to T, UT,,

and dS denotes a surface element on I’ UT,. From Eq. (2.3.b), in the same

way with Eqgs. (2.4.a) and (2.5.a), the following equation is also obtained.

() () ()
2W0(”( O [ h + ( goeo )j J'J EO dV I (EO xHj-ndS. (2.10.b)
o it s

With the following relations,

v )=V "\eg, el (), (2.11.2)

(i) 205" wf)’ f (i)

15 (t)——T My hO (t), (211b)
0

17



_awy?

C(i) ,
(780
IO = ﬂ
o}
:0) 2% Hy’
R 17 (t):_WJ-H(E X \/Iu_oj 'I’ldS,

E(()l)

. 1
()= 5 LJb \/8_
0 0

‘ 1 (E(” j

.(i) 0
i) =——=| | —=—xH|-ndS,
ext VO(') Lz NN

av,

where V" is given by,

. E(i)
(i _ 0.z
v = —J'

dz ,

Egs. (2.10.a) and (2.10.b) are, respectively, expressed as,

()
di;

v(ci) =IO _i_R(i)l-ii),

dv® . . )
o B i 4,
t

which describe the equivalent circuit shown in Fig. 2.5.

The major circuit parameters, such as the voltage v

(2.11.¢)

(2.11d)

(2.11.e)

(2.11.9)

(2.11.g)

(2.12)

(2.13.2)

(2.13.b)

provided to

the capacitance C"” , the power loss at the resistance R, the power

provided by i\” (called beam-loading current), and the power by i

which

appears only in the input and output cavities, are, respectively, expressed

18



from Eqgs. (2.11) and (2.12) by,

vl == e E{dz, (2.14.2)
ROGT = [ AE (1)} -nas (2.14.b)
e ==[ 0, (e E)av, (2.14.0)
i = {eEY )< H)-nas. (2.14.d)

The parameters above are, thus, found to represent, respectively, the cavity
voltage, the wall loss on T, the power provided by the electron beam, and

the power through T, .

()

For the input cavity (i=1) and the output cavity (i=N), {i)} are

given in terms of the RF input current /,, and the external load G as,

i =1, sin(ar)-GYve, (2.15.2)
i =-GMy, (2.15.b)
i =0 (=2,---,N-1), (2.15.¢)

ext

where f (=w/2r) is the operating frequency of the klystron.

With the above, the equivalent circuits previously shown in Fig. 2.3

are, thus, derived.

The circuit parameters L”, C”, R”, and G” are given from the
following equations by experimentally measured cavity parameters; the

dominant resonance frequency f\” =w{’ /27, the loaded and unloaded

quality factors QO and Q!, and the R/Q-parameter (R/Q)",

19



w__ 1

@, Nk (2.16.2)
; 1
@ _
1 1 1
o o + oo’ (2.16.c)
1 u ext
(i)L(f)
i _ %o
Qu - R(,—) ’ (216d)
@) ()
o _ @ C
Qext - G(i) ’ (2166)

where the R/Q-parameter (R/Q)” is defined in terms of the unloaded

()

u ?

quality factor and the shunt impedance R by,

o _R (0

Q(i) - 2a)gi)W0(i) : (2'17)

(R7Q)

Finally, on the assumption (vii), with the complex beam-loading

current defined by,

; 2 ff ; .
I :?L i(t)exp(~ joot)dt, (2.18)

the equivalent circuit equations of Eqs. (2.13) and (2.15) are solved for the

operating frequency f in terms of the real part of the following complex

values V" and 1",

v = Re[l? exp(jwt)), (2.19.2)

i" =Re[1 exp(jwr)). (2.19.b)

20



Then, from Egs. (2.11.a), (2.11.b) and (2.17), ¢ and A}’ are consequently

given by,

1 1 .
el(t) = FWRe[VC@ exp(jo?)], (2.20.a)
0 0
, R/O)"” .
B(0) == 1y (I//—%) Re[/ exp(jw1)]. (2.20.b)
0

Accordingly, the cavity fields E, and B, in Egs. (2.2) are now given by,

E (z,7,1) )Re[VC(i) exp(jot)]ES (z,r), (2.21.a)

\/_Z(z

(l)
(z,r,0)= \/_z R/0) Re[I{” exp(jowt)|H (z,7), (2.21.b)

(l)

2.2.2. Focusing Magnetostatic Fields

The focusing field B, can be described in terms of the vector

potential A4, by,

Vx(leAfj =J;, (2.22.a)
U

B =VxA, (2.22.b)
f f

where J; is the current density in the focusing coils. As will be described in

chapter 4, the KUSOS solves Eq. (2.22.a) in the infinite space without any

21



boundary condition, taking into account nonlinear permeability x as a

function of |B;| inside the pole-pieces.

2.2.3. Beam-Induced Electromagnetic Fields

As was described in subsection 2.2.1, the beam-induced fields E,
and B, are described by Maxwell’s equations in vacuum without influence

of the cavity configuration,

OB
VXE, =——2 (2.23.a)
b o
VxB, =i28—h;b+y01b, (2.23.b)
C

V.E =2 (2.23.0)
&y

V-B, =0. (2.23.d)

On the assumption of cylindrical symmetry, the fields E, and B, can be

written as follows without loss of generality,

E, =-V§, - a(Aab’:i&) ~Vx(G, i), (2.24.2)
B, =B, i, +Vx(4,,i,), (2.24.b)

where i, is the unit vector in the @—direction. The potentials ¢, and 4,,

are, respectively, the scalar and vector potential in Coulomb gauge. The

variable G,, in Eq. (2.24.a) gives the other potentials 4, and 4,, as,

22



a(Ab B Ab,eie)

- =V x(Gy i) (2.25)

It is to be note that V-(Ab —Ab,gig)z 0 in Coulomb gauge.

Instead of the common choice of the potentials in Coulomb gauge,
Lorentz gauge [19, 21], or electromagnetic fields themselves [20], this choice
of the independent variables is exclusively due to the fact that scalar and
6 -components of vector variables are much easier to handle on the
boundary than the other z - and r -components, in the cylindrical
coordinates. It 1s to be noted that z- and r-components do couple to each
other on the drift-tube wall except for a straight drift-tube, while the
variables in Eqgs. (2.24) do not for any arbitrary boundary shapes.

The fields E, and B, given by Egs. (2.24) satisfy both Eq. (2.23.d)

and the @-component of Eq. (2.23.a). From the other Egs. (2.23), equations

for ¢,, 4,,, B,,,and G,, are derived as follows,

vig, =1 (2.26.2)
€o
VxVx (4, ,0,)+ iz a(Aab’;’ig) = 1o oy, (2.26.b)
C
(B, i
V xV x (Bbﬁie)+ci2 ( 5’:1‘9) = 1,V x (I =T, 0,), (2.26.c)
VXV x(G,i,) = a(Bab’:'H) : (2.26.d)

In the KUBLAI, 4,, and B,, are calculated by solving Eqgs. (2.26.b) and
(2.26.¢) in time domain, while ¢, and G,, (Egs. (2.26.a) and (2.26.d)) are

also calculated at each time step, from p, and 2B, ,/0t at that time.
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The boundary conditions for the beam-induced fields in the KUBLAI
are summarized in Fig. 2.6(b).

On the injection boundary, the condition 0/0t=0 is applied with the
initial potentials given by gun simulation results by the KUADZ2, on the

assumption (iil) in section 2.1.

@) ¢, =0
(i) ¢, =V,
(i) n-Vg, =0

(a) Static fields (KUAD2).

) 04 ) . .
(@) ¢, =0, 8?6 =0, nx {V X (Bb,ele)_ﬂo(*]b _Jb,ele)} =0, nx {V X (Gb,ele)} =0
04 OB oG
@ g, Hho_g Duo_g Doy
ot ot ot ot
04 04 OB OB oG,
(iii) %zo, bo 1 >0 0, ho 1 20—, —2%4+¢B, ,=0
Oz 0z ¢ Ot Oz c Ot Oz ’
o Lo () .

(b) Time-dependent fields (KUBLAD.

Figure 2.6. Boundary conditions for the beam-induced fields.
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On the drift-tube wall at the grounded potential, the following

conditions,

04
bo _
ot

nx {V X (Gb,eie)}

=0
nx {V x (Bb,aie)_ Hy (Jb - Jb,eie)} =0,

K

)

are applied, which give the conditions,

nxE, =0,
n-%:O.
ot

(2.27.2)

(2.27.b)

(2.27.¢)

(2.27.d)

(2.28.2)

(2.28.b)

On the beam-exit boundary, i.e. the entrance of the collector,

although strictly no condition can be applied, the following conditions are

approximately applied in the KUBLAI,

o, _,

Oz ’

ﬁAbﬁ +l GAbﬁ _0.
0z ¢ Ot

GBW +l aBbﬂ iy
Oz c Ot

G
8;’0 +cBy, = 0.

(2.29.2)

(2.29.b)

(2.29.c)

(2.29.d)

Equations (2.29.b), (2.29.c) and (2.29.d) mean that the TE and TM waves in
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terms of 4,,, B,, and G,, propagate through the boundary with the light

velocity without any variation. Also, Eq. (2.29.a) means that the irrotational

electric field is perpendicular to the symmetry axis.

For the static field calculations in the KUADZ2, the fields are given in

terms of @4, 4,, and B, as follows,

vig, =20, (2.30.a)

&y
VxV x4y i) = oy ol (2.30.b)
V x (Bygiy) = pto (T = T4 o) (2.30.c)

while G,,=0 because of §/0r=0 in Eq. (2.26.d).

Although, in general, for the low beam current, the z - and
r-components of the magnetic field may be well negligible compared with
the external focusing field, and therefore are not calculated in the existing
code KUAD [24], the improved KUAD2 code, on the other hand, calculates

them in terms of 4,, in order to provide the initial condition for the

KUBLALI simulation.

The boundary conditions in the KUAD2 are summarized in Fig.

2.6(a). For ¢, , the specific voltages are given, respectively, to the boundary

conditions on the cathode at a negative potential and the drift-tube wall at

the grounded potential. No boundary condition is required for 4,, by use of

the technique used in the KUSOS as will be described in chapter 4. And also

for B, ,, no boundary condition is needed.
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2.2.4. Electron Dynamics

Either the KUBLAI or the KUADZ2 simulates the motions of the ring

particles (see Fig. 2.2). From the positions (z,7,), and velocities
(uv,z,uv,r,uvﬂ) of the ring particles give, as follows, the charge density p,,

and the current density J, of the electron beam,

Py =Zy:2i”rv Sz—z,.r-r,), (2.31.a)
J, = 1 u dlz—z,r-r,), (2.31.b)
T2,

where v denotes the particle number, ¢, the charge of the v-th ring

particle, and o6 1is the 2-dimensional Dirac’s delta function.
In this subsection, the basic equations of the ring particle motion are

presented.

The relativistic equation of motion for an electron with velocity

u,= (uv,z,uvy,,,uvﬁ) 1s described by,

d(myy, u,)

& =—e{E(z,,r,,t)+u,xB(z,,r,t)}, (2.32)

where m, and e denote, respectively, the electron rest mass and charge,

and y, denotes the Lorentz factor defined by,

)
y,= 1= . (2.33)
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With

d dK
myc” ;/tv :_dtv =—¢E u,, (2.34)
where K, is the kinetic energy, Eq. (2.32) is reduced to,
d;tv __ e (E+uva—E'2"V uv), (2.35)
mOyv ¢
or, in components,
du .
d;,z _ e Ez+uv,.Bg—uvgB,—E :luv) (2.36.a)
mOQ/v ’ ’ ,
du E. u,,’
= = € (Er+uv6Bz_uszﬁ_#uvr)+ = ) (236b)
dt I’IflO]/V ’ c ' rv
du E. u,u
- - - (E9+uszr_uvrBz_ ZuV uv@j _M (236C)
dt myy, ’ ’ c r,

On the assumption of cylindrical symmetry, the canonical angular

momentum P,, is conserved as

P ,0 = rv(moj/v uv,H _eAQ) 9 (237)

V.

where

Ag=A, 5+ 4y, (2.38)
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It is to be noted that Eq. (2.37) is equivalent to Eq. (2.36.c), where Eq.
(2.36.¢) is derived by differentiating Eq. (2.37) with respect to time ¢, and
thus Eq.(2.37) is used in the KUBLALI instead.

In the static fields in the KUADZ, in addition to P,,, the sum W, of

the electron kinetic energy and the electric potential energy is also

conserved,
W, =m,*(y,—1)-ed, (2.39)

which is found equivalent to the equation {u,_ x(2.36.a)+u,,x(2.36.b);.
Since y, and u,, can be calculated from Eqs. (2.37) and (2.39), the

term (uv’22+u 2) 1s given by the potentials ¢ and 4, at the position

v,r

(z,,7,). When the velocity (uv’z,uw) makes the angle ¢, with respect to the

z -axis, velocity components are expressed by,

2 2

u, =+u, +u, cosa,, (2.40.a)
2 2 .

u,, =u,. +u, sina, (2.40.b)

and the following equation for the angle «, is derived from either Eq.

(2.36.2) or (2.36.b).

de, B, 1 ol v, )
dt myy, " 27v2(uv’22 +uv,,,2) or Hos
0z
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where the term y (u ? +uv,rz) is given, as follows, by the conserved values

v,z

P,, and W,, and the potentials ¢, and 4, at the position (z,.r,).

vty

2 2 2
P +er A
nz(uv,f+uv,,2)=(W”+m°c +e¢bj —[ vo T 6) ey (2.42)

myc myr,
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Chapter 3

Development of an Improved Finite Element
Code for Cylindrically Symmetric

Eigenmodes

Discussed in this chapter is development of an efficient eigenmode
solver KUEMS (acronym for Kyoto University EigenMode Solver), suitable
for calculating fundamental modes in cylindrically symmetric cavities for

the application to the klystron simulations.

3.1. Introduction

Cylindrically symmetric cavities are utilized in many RF devices,
such as Kklystrons, RF-guns and various accelerating structures in particle
accelerators. Many computer codes [7-14] have been developed so far, and
are in use for RF cavity designing in decades. They can evaluate reasonably
well electromagnetic fields, and cavity parameters such as resonance
frequency, the quality factor, and the shunt impedance, which consequently
enables cavity design with least cold testing.

For cylindrically symmetric standing-wave modes in klystrons,

RF-guns, and so on, probably the most preferentially used code would be the
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SUPERFISH [8], which calculates eigenfrequencies and corresponding

angular magnetic fields H, at the mesh points using the Finite Differential

method (FDM) with triangular meshes. However, depending on the cavity
geometry, it is sometimes not accurate enough, or, in other words, takes too
much CPU time as well as many computer memories to achieve required
accuracy. Since both higher accuracy and less computational efforts are
always important from the viewpoint of saving time and effort for the users,
continuous improvements to greater extent are called for, for specific
problems as of the present study.

From this viewpoint, a new two-dimensional code KUEMS has been
developed, which i1s aimed at improved calculations of cylindrically

symmetric TM modes applicable to the klystron simulations. The

Onm

KUEMS uses,

(i) instead of H, or rH, preferentially used in the existing codes
[7-9,12], the quantity H,/r to describe the electromagnetic fields,

which has the advantage of not requiring any special treatment on

the symmetry axis,

(i) the Finite Element method (FEM) with quadratic triangular

elements, which has high capability to model arbitrary structures.

Described in this chapter are the numerical methods used in the
KUEMS, followed by comparisons of the numerical results among the three

different formulations, i.e. with H,/r , H, and rH,, to show the
advantageous features of the new formulation with H,/r with respect to

the accuracy in the eigenfrequencies and the electric fields on the symmetry
axis. Comparisons between the linear and the quadratic elements are also

made to examine the accuracy, and also with the SUPERFISH.
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3.2. Numerical Methods

Described in this section are the numerical methods used in the
KUEMS, including the new Finite Element (FE) formulation with the

quantity H,/r. The essential difference from the other formulations using

H, and rH, as variables is to be described in subsection 3.2.2.
3.2.1. Weak Formulation

As described in subsection 2.2.1, the eigenfrequencies £,

(=w,/27 =ck,/27), and eigenmodes E,, and H, are described by,

VxE, =k H, in Q, (3.1.a)
VxH,=kE, in Q, (3.1.b)
V-E,=0 in Q, (3.1.0)
V-H,=0 in Q, (3.1.d)
nxE, =0 on T, (3.1.e)
n-H =0 on T, (3.1.9)

where the boundary I' and the domain Q denote, respectively, the inner
surface of the cavity wall and its volume, and » denotes the unit vector

normal to the boundary TI'. The frequency and the magnetic field are, thus,

reduced to the following eigenvalue problem,

VxVxH,=k’H, in Q, (3.2.a)

V-H,=0 in Q, (3.2.b)
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nx(VxH,)=0 on T, (3.2.0)

n-H,=0 on T, (3.2.d)

and the corresponding electric field is calculated by,

E =—VxH . (3.3)

modes (H =H

Since cylindrically symmetric TM =Ey0

Onm Onm,z Onm,r

=0, 0/00=0. See Fig. 3.1, for example.) automatically satisfy Egs. (3.2.b),
and (3.2.d), they can be described only by Egs. (3.2.a) and (3.2.c), and it is

equivalent to the following formulation,

Lv . {kOHmzHOMm ~-Vx(VxH,, )}dV

+Lv A{nx(VxH,, )}dS=0, forany testvector v, (3.4

where dV and dS are, respectively, a volume element in Q, and a surface
element on I'. With Gauss’ divergence theorem, Eq. (3.4) can be further

reduced to the following well-known weak formulation [13],

[ (Vxv)-(Vx H,,,)dV =k, | v-H,,dV , forany v, (3.5)

Onm

or, in components,

I{%aHOnmﬁ_'_ia(We) a(rHOnmﬂ)
>

5 2mrdS
0z Oz re or or

=k 2IZVQH011tn,92ﬂrdS’ for any v,, (3.6)

— Monm
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where X 1s the cross section of the domain Q on the z-r plane.

r, i
CIm ]
] E <
oL
o[
o
of
oL vy by e ]y
0.0 02 04 06 08 1.0
z [m]
(a) Geometric shape of the test (b) Typical eigenmode pattern
cavity. (TM ,,, mode, contour lines

with rH,= constant ).

Figure 3.1. Test cavity for comparisons with analytical solutions.

3.2.2. Choice of the Independent Variable

In the KUEMS, the quantity H,,,,/r is chosen as the independent
variable instead of H,,, or rH,, , preferentially used in the existing

codes, exclusively due to the fact that no special treatment of the symmetry

axis (» =0) is required to be shown as follows.

With ¢=H,,,,/r and u=v,/r, Eq. (3.6) can be expressed by,
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j{r3(6l%+al%j+2r2( g o )+4 ué’}dS
z 0z 0z Or or 6r o

= ko[ 7°ugdS , for any u, (3.7.a)

(this will be called ‘H/r-formulation’ hereafter). In contrast, choice of

h=H,,,, v=v, (H-formulation’), and choice of ¢=rH,, ,, w=r,

(‘*H-formulation’) lead to the following weak formulations, respectively,

S S35 S e i =k fponas, torany v, @70
0z 0z Or Or or >

or r
J- (8w 8§ ow af) S = kOanJ‘ W_gdS , forany w, (3.7.¢)
0z 82 or or *r

It is clearly seen that, for the integration of Eq. (3.7.b) with the term

vh/r on the left, h=0 is always required on the axis (r=0) to avoid
infinity, and also, for Eq. (3.7.c), Vé=0 is always required on the axis in

addition, both of which are consequently equivalent to the cylindrically

symmetric conditions H,,, = E,,,, =0, and the existence of finite £ on

Onm,r Onm,z
the axis.
In the present ‘H/r-formulation’, on the other hand, these

requirements are automatically satisfied so long as ¢ and V{ remain

and E,

Onm,r

finite, since H,,,,, E are all given in terms of ¢ by,

Onm,z

Homo=1s  komEams =20+122, ky By, =—r22. (3.8.2)

87" Onm "~ Onm,r 82

In contrast, the fields in the other formulations are given by,
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b oh oh

HOnm,0 = h ’ kOnmEOnm,z - 7+5 ’ kOnmEOnm,r = _g ’ (38b)
10 10
HOnmﬁ :§’ kOnm Onm,z :__5 ’ kOnmEOnm,r = ___é: . (38C)
r ror r Oz

The ‘H/r-formulation’ is, thus, shown not to require any specific
conditions on the symmetry axis as the symmetry axis is actually not the
‘boundary’, and, with further following additional reasons, it is applied to

the KUEMS,

(i) analytical integration of Eq.(3.7.a) is easily carried out in the FE
formulation described in the following subsection, while, for the
other formulations, special treatments are required on the symmetry

axis,

(1) the ‘H/r-formulation’ is expected to result in higher accuracy in the
fundamental TM,,, modes, since H,,/r~constant near the
symmetry axis,

(i) the ‘H/r-formulation’ is found to result in smoother convergence in

calculating the electric field on the axis, as will be shown in

subsection 3.3.1.

3.2.3. Finite Element Formulation

To solve numerically the weak formulation of Eq. (3.7.a), an

N -dimensional subspace is applied to both the unknown function ¢, and
the test function u . Suppose ¢ is a linear combination of N basis
functions {w.}, and an infinite number of test functions u can be reduced

to N test functions. Then, with the expression,
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N
;(Z,I") = Zxonm,jwj(za 7") ’
j=1

u(z,ry=wy(z,r),

(3.9.2)

(3.9.b)

the weak formulation of Eq. (3.7.a) can be reduced to a Galerkin

formulation,

N N

2 .
Zay.xonm,j =k, Zbijxonm,j , forany 1<i<N,
=1

j
or, simply to an algebraic eigenvalue problem,

Ax,, =k

Onm

2
BxOnm ’

where,

Oow, ow,
a, = 27[_[ r3(8wl Wiy m, W"j
/ z 0z 0z Or Or

ow . .
+2rz(w, il +%w.j+4rw.w}d5,
i ar J J

or

b; = 27Z'L rgwl.wde .

(3.10)

(3.11)

(3.12.2)

(3.12.b)

The FE formulation is a Galerkin formulation above with a

particular set of basis functions {w,}. The domain X is divided into finite

elements X, with N nodes (Fig. 3.2, for example, shows 32 linear

elements, and 8 quadratic elements with N =25 nodes), and the basis

function w, is defined as,
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(i) w,=1 atthe node i,
(i) w,=0 atthe others,

(ii)) continuosin X,

(iv) piecewise smoothin X,.

The KUEMS uses well-known Lagrange-type quadratic basis functions,
which enables the analytical integration of Egs. (3.12).

10

_08

r[m]

r[m]
0.6

04

. §\

NL 3 N\
oL €
00 02 04 06 08 10
z [m]
(a) 32 linear elements. (b) 8 quadratic elements.

Figure 3.2. Mesh examples for the test cavity with N =25 nodes.

3.2.4. Finding Eigenfrequencies

Although the KUEMS can find all eigenfrequencies at the expense of
CPU time, limiting to the eigenfrequency closest to a given target frequency
(i.e. the operating frequency of the klystron) f =ck/2x, it can quickly look
for by use of the following numerical method based on the Power method,

which finds the absolute maximum eigenvalue through iterative

39



calculations.

The algebraic eigenvalue problem expressed by Eq. (3.11) can be

rewritten as,

CxOnm = //i’Onmenm ’ (3 13)
where,
1
/’{’Onm =T 2 3¢ (3148.)
kOnm - k
C=(4-k’B)'B. (3.14.b)

The absolute maximum eigenvalue A, of the NxN matrix C 1is

Onm
found using the Power method, which proceeds the following simple

iterative calculations, with an arbitrary initial vector x, normalized as

X0, =1, where i (1<i<N) is an arbitrary number,

(D calculate y, =Cx,,,
(D) calculate x,,,, =y, /4., , Where A, =y,

(I if x,,, #x,,,, go back to (D).

For the calculation of y, at step (I), in order to save computer

memory, the matrices B and (4-k>B) are stored instead of C (note that
C 1is not spars despite both B and (A—kZB) are quite spars), and the

Conjugate Gradient method 1is applied to the linear system
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(4-4*B)y,, = Bx,, . Step (I) normalizes x,,,, as x,.,, =1.

As a consequence, the absolute maximum eigenvalue /4, gives the
eigenfrequency f, =~ with the least ‘ fo 2= f 2‘ by
, 1 (27\°
Jowm =7+ - (3.15)
/IOnm c

3.3. Numerical Examinations

To verify the accuracy of the developed KUEMS, calculations were
carried out for analytically solvable modes in a test cavity. The numerical
error from the ideal (not measured) value is, in general, mainly attributed to

the two errors;

(i) the error due to inaccurate modeling of geometric shape with a

finite number of elements,
(1) the discretization error of the formulation.
To restrict discussions here to the latter one, a pillbox, whose cross section
on the z-r plane has no curvature, is chosen as the test cavity (see Fig.
3.1).

In subsection 3.3.3, however, the KUEMS 1is applied to a practical

klystron cavity with curvatures.

3.3.1. Comparisons among Three Different Formulations

To verify the accuracy of the ‘H/r-formulation’ used in the KUEMS,
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calculations were performed using three different formulations, namely the
‘H/r-’, ‘H-’ and ‘rH-formulation’, with the linear elements. The configuration
used here is the pillbox of a 1 m radius, and a 1 m length shown in Fig. 3.1.

Figure 3.3 shows the relative errors of eigenfrequencies f, = (solid

lines) and cavity voltages ¥, (dashed lines) from the analytical accurate

nm

solutions (refer to Table 3.1), where the eigenmodes E

Onm and HOnm are
normalized as the stored energies W, =1 Joule, and ¥, is defined by
1
Vous == __|Eop.ldz . (3.16)

As for the frequencies f, , it is found that, as was expected, the

‘H/r-formulation’ results in remarkably higher accuracy for the fundamental

TM,,, mode than the other ‘H-" or ‘rH-formulation’, but in almost similar

accuracy for higher modes. High accuracy for the fundamental mode 1is,
however, quite desirable, since it is most commonly utilized in klystrons.

This advantage results from the fact that = H,,,,/r ~ constant for TM,,,

mode near the symmetry axis.

On the other hand, in the cavity voltages V;, , the ‘H/r-formulation’

nm

seems to show less accuracy for some modes (TM,,, mode in Fig. 3.3(c), for
example). However, it is rather to be noted that the voltages calculated with
the ‘H/r-formulation’ are found to converge smoothly as N increases, while
those with the ‘H- and the ‘rH-formulation’ do not.

Smooth convergence 1is remarkably important, since rough
convergence would make extrapolation difficult. This advantage also results

from the fact that the quantity ¢=H,,,,/r used in the ‘H/r-formulation’

has higher degree of freedom around the axis, compared with the other
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formulations by #=H,,, and {=rH,,,,, because no condition is applied

Onm,

to the axis in the ‘H/r-formulation’.
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Figure 3.3. Relative errors in eigenfrequencies f,,, , and cavity
voltages V,,k  for the test cavity, comparing three different

formulations.
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Table 3.1. Analytical solutions of eigenfrequencies f,, and cavity voltages

Vom 0F TM, — modes in a pillbox of a 1 m radius and a 1 m length.
T™, 10 114.7425278 516.5054777
TM,,, 188.7716270 282.6556994
TM 50 263.3819797 788.0407287
TM s, 303.0494130 616.6182798

3.3.2. Comparisons between Linear and Quadratic Elements

Since the quadratic elements are generally regarded to show higher
accuracy than the linear elements for the same number of nodes, they were
actually applied to some eigenmode solvers [9,11-13] as well as to the
present KUEMS.

However, it is not obvious whether they may result in higher
accuracy within the same CPU time, in which the users are very much
interested. To make this clear, comparisons were made between the linear
and the quadratic elements with the ‘H/r-formulation’ for the lowest three

T™ modes in the pillbox. For comparison, the SUPERFISH, which uses

Onm

the FDM of the first order, is also applied to the same modes.

As shown in Fig. 3.4(a), the relative frequency errors Af,, /f,,. are
found to scale as Af,,,/fy., €N >°"?* for the quadratic elements, while
Ny ] foum € N7 for the linear elements, and the SUPERFISH. It is also

important that, as shown in Fig. 3.4(b), the CPU time T is found also to
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increase with the same order for either the linear or the quadratic elements,

as N increases. The CPU time scales as T o N for the linear and the

quadratic elements, and 7« N'®* for the SUPERFISH. Consequently, as

shown in Fig. 3.5, the quadratic element scheme is found to take the least

CPU time among the three for all the three modes.
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3.3.3. Application to a Klystron Cavity

The KUEMS was applied to a fundamental mode of a klystron cavity
shown in Fig. 3.6. Considering the symmetry involved, the elements were
placed in the region of z>0, »>0. The boundary on the right is located
relatively far enough at z=60 mm, and E, =0 is applied as the boundary
condition. This approximation seems very reasonable, since a klystron is
designed so that the cut-off frequency of the drift-tube should be much
higher than the operating frequency.
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Figure 3.7. Calculated frequency of the fundamental mode f, as a
function of number of nodes N .

In order to verify the solution convergence of the KUEMS, the
number of nodes N was varied. Figure 3.7 shows the -calculated

eigenfrequency f, of the fundamental mode, as a function of N . The

results show smooth convergence of N'® order. The slower convergence
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than the previous case of Af,, . /fi.. < N>°"*? for the pillbox is due to the

modeling error of the cavity nose curvature.
In the application to the klystron simulation in chapter 5 and 6,
around 10,000 nodes are used, leading to less than 10° relative frequency

error evaluated from the extrapolated value f, .

3.4. Concluding Remarks

A new two-dimensional code KUEMS has been developed based on
the FEM, making it ideal for calculating cylindrically symmetric
eigenmodes.

The quantity H,,,,/r, which has the advantage of not requiring

any conditions on the symmetry axis, i1s used to represent the

electromagnetic fields, instead of H,,,, or rH;, , used so far in the
existing codes. It is found that the new FE formulation with H,,,/r

results in remarkably higher accuracy in the eigenfrequency of the
fundamental mode, but no less accuracy in the other higher modes. It also
results in smoother convergence of the calculation of the electric field on the
symmetry axis, with respect to number of the mesh points.

It is also found that, by use of the quadratic elements, faster
convergence can be achieved compared with the linear elements or the

SUPERFISH. The numerical error in the eigenfrequencies Af,,.//o,, 1N
terms of the CPU time T is found to scale as Af,,, /f,., <T* for the

quadratic elements, and Af,, /fo.. <T*° for the linear elements and the

SUPERFISH.
All these results are remarkable and encouraging from the

viewpoint of saving time and efforts for both the computers and the users.
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Chapter 4

Development of a  Finite-Element /
Boundary-Integral Hybrid Code for
Unbounded Magnetostatic Fields with

Nonlinear Media

Presented in this chapter is a hybrid Finite Element (FE) code
KUSOS (acronym for Kyoto University SOlenoidal field Solver), which has
been developed in this study, and is to be used for calculating focusing
magnetostatic fields in klystrons. The new formulation in the KUSOS gives
a minimum for the energy functional in the infinite space, taking into

account nonlinearity in media.
4.1. Introduction

The Finite Element method (FEM) is commonly used for calculations
of electromagnetic fields. The FEM suffers, however, the disadvantage that
only a finite number of elements can be used to discretise a given problem.
In some situations, one can use the FEM for unbounded problems with an

artificial boundary remote enough from the center of the problem. However,

49



this truncation does not guarantee solutions within any desired accuracy for
many problems, such as magnetostatic fields, electromagnetic scattering,
radiation from antennas, and so on, even though much computational
efforts are made.

To deal with such unbounded problems, many methods based on the
FEM have been developed so far. Many of them are listed in a previous
review paper [26], and, since that time, many others have been developed

mainly for electromagnetic scattering [27-35]. Representative methods are;

() the infinite element technique which extends elements to the infinite

space by use of decay functions as basis functions,

(i) the ballooning technique in which a single super element is
constructed by merging successive concentric rings in an iterative

manner,

(ii1) the iterative field-feedback methods for approximating the boundary

condition on the fictitious boundary,

(iv) the hybrid methods combining the FEM with integral equation
methods, such as the Boundary Element method (BEM), the Moment
method (MM), and the methods with eigenfunctions as basis

functions.

Among these techniques, the hybrid FEMs yield accurate and reliable
solutions that give minima for the energy functional in the infinite space. It
1s a well-known fact that the integral equation methods deal with
unbounded problems very effectively, but cannot treat inhomogeneous, nor
nonlinear media. The FEM, in contrast, can easily deal with inhomogeneous
and nonlinear media. The hybrid FEMs retain the efficient characteristics of

both methods by applying,
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(i) the FEM to the region inside the fictitious boundary within which all

nonlinear media are placed,

(ii) the integral equation methods to the exterior homogeneous region.

Presented in this chapter is a new FEM/MM-hybrid code KUSOS
developed in this study for unbounded magnetostatic field problems with

nonlinear media, having good features as follows;

(i) the solution gives a minimum for the energy functional in the infinite

space, as most of the hybrid methods do,
(ii) the fictitious boundary can have an arbitrary shape,

(i11) difficulties associated with singularity of Green’s functions on the

fictitious boundary are avoided,

(iv) continuity of both tangential and normal fields on the boundary are

fulfilled in an integral manner.

There is a previously presented FEM/MM-hybrid method for
electromagnetic scattering [27] similar to the method presented here, but
the latter has remarkable difference on the point (iii). Also, a technique
similar to (iii) was presented in an FEM/BEM-hybrid method [36], while it
does not fulfill the field continuity in an integral manner, but by a
point-matching technique.

As a consequence of (iii) and (iv), the solutions by the new
FEM/MM-hybrid method are expected to be well continuos and smooth on

the fictitious boundaries.
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4.2. Numerical Methods

4.2.1. Problem Description

Consider the situation shown in Fig. 4.1, with all source current

densities J; and media (u# y,) inside an arbitrary surface I' (what is

called a ‘picture frame’) of domain Q._, ie. u=x,, and J,=0 in the

exterior region Q_. Then the basic equation for the vector potential, Eq.

(2.22.a), can be rewritten as follows,

picture frame, I'

medium, 1

source, J;

Figure 4.1. Problem description for the FEM/MM-hybrid method.
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where A4, , and 4, denote, respectively, the vector potential inside, and
outside the picture frame. To fulfill the field continuity on I', 4, and
A;,, must satisfy, in addition,
n-(Vfo’in)zn-(Vfo,ex) on I, (4.1.0)
1 1
nx|—VxAy, |=nx|—VxA4, | on I. (4.1.d)
H Ho

4.2.2. Solution Subspace

Described in this subsection is choice of solution subspace, which

characterizes the new FEM/MM-hybrid method used in the KUSOS.

Suppose A;. , and A;,  are linear combinations of N Dbasis

functions {wm’i}, and M functions {wex,l.} expressed by, respectively,

N

Af,in(Z’r):inwin,i(zar)y (423.)
i=1
M

Af,ex(Z’r):Zy[wex,[(z’r)' (4.2.b)
i=1

For the potential A, within the picture frame, the same subspace

1s applied as in the KUEMS described in chapter 3; the cross section of the

domain Q. on the z-r plane is divided into finite elements with N
nodes, and the Lagrange-type quadratic functions {w,(z,7)} are used as the

N basis functions {wm,,:rwi ie}, where i, is the unit vector in the
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@ -direction.

For the exterior field A on the other hand, M numbers of

fex

Green’s functions in free space are used as the basis functions,

¥ty cos@

: de, (4.3)
27 '[0 \/rz ~2rr.cos@+r’ +(z—z,)

wex,i(z’ l") = i0

which satisfies,

Vx(iwaeXJ =i,0z~z,r-1), (4.4.2)
“

where, § is Dirac’s delta function. The M point sources (z,,7,) are located
at the nodes within the sources J;, and those on the surfaces of the media

(see Fig. 4.2). Because all the point sources (z,,7) are located inside the

picture frame I', the basis functions {wex,[} satisty,
1 .
\% x(—V x wex,,.j =0 in Q_ UT. (4.4.b)
4

The condition VxVxw,_.=0 on I', i.e. no point source on I', is

essential for the field continuity in the present FEM/MM method, as will be

described in the following subsection.

Thus, in addition to the potential values 4 ,/r on the nodes,

equivalent point loop currents on the surface of the media are the unknown

variables {y,}, while a part of {y,} associated with the nodes within the
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sources J; are known. Note that, because all point sources (z,,7;) are

located inside the picture frame, the exterior field A4, in terms of Eq.

(4.2.b) satisfies Eq. (4.1.b) for any {y.}.

Figure 4.2. Distribution of the equivalent point sources in the
FEM/MM-hybrid method.

4.2.3. Formulation

In this subsection, the FEM/MM- hybrid formulation in the solution
subspace is derived from Eqgs. (4.1.a), (4.1.c) and (4.1.d), while Eq. (4.1.b) is
always satisfied in the solution subspace, as described in the previous
subsection. The derivation here is based on the Garlarkin method, in order
to show clearly how the continuities of both tangential and normal fields are
preserved, although the same formulation can be obtained more easily from

the energy functional in subsection 4.2.4.

55



Satisfaction of both Egs. (4.1.a) and (4.1.d) is equivalent to the

following formulation,

[ v-{V x(le Af,m) —Jf}dV

in ,L[

1 1
+J-rv-{n x (—V X Ay ——V x Af,exj}dS =0, for any test vector v, (4.5)
H Ho

where dV, and dS denote a volume element in Q. , and a surface element

n ?

on I', respectively, and n denotes the outward unit vector normal to I.
With Gauss’ divergence theorem, it can be reduced to the following weak

formulation,

j l(va)-(Vfom)dV
Qi 1y ’
1
+J.v-{nx(—Vfoexj}dS:J. v-J.dV, forany v. (4.6)
r Hy ’ in

By applying the N -dimensional subspace {wm’i} to both the

unknown function A and the test vector v , and M -dimensional

fin

subspace {wex’i} to A4;,.,the formulation becomes

flex 2
N M
Dayx;+Y by, =f, forany i (1<i<N), (4.7)
j=1 j=1

or, an algebraic formulation,

Ax+By=f, (4.8)
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where 4R, BeR" and f eR" are given by,

a, = jg %(v xwy )-(Vxow, Jav, (4.9.a)

b= [ i, -{n x [Lv x wex,,j}ds : (4.9.b)
i =) e |

ﬁ' :IQwin,i 'Jf dv. (490)

In the situation without a medium, the equivalent loop currents

{y,} are all given by the sources J,.In that situation, the formulation of Eq.
(4.8) becomes a basic FE formulation with the boundary condition
(tangential magnetic field on I') given by the analytical solution for the

sources J, descritised by the equivalent point sources. With media, on the
other hand, in order to give the unknown equivalent currents {y,} on the

media surfaces, additional formulation is required, which is derived from Eq.

(4.1.c) as follows.

Equation (4.1.c) is equivalent to the following formulation,

Lu(VxA )-ndS:.[ru(Vfo,ex)-ndS, for any u. (4.10)

fin
With Stokes’ theorem, and v =-Vu, it becomes

—Lv-(n X Aﬁm)dS = —J‘rv-(n X Af,ex)dS ,

for any v such that Vxv=0. (4.11)

By applying the subspace {Wm,,-}, and {wex,i} to A, ,and A, respectively,
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and the subspace {waex,i} to the test vector v such that Vxv=0 (note
that, from Eq. (4.4.b), VxVxw,, =0 on I'), Eq. (4.11) is reduced to the

following formulation,

S

N
Zcijsz d;y;, forany i (1<i<M), (4.12)

or, an algebraic formulation,

Cx =Dy, (4.13)

where C eR"", and D eR"" are, respectively, given by,

¢, = —L [,ULOV X wex,l.j ~(n X win,j)dS , (4.14.a)
d, = —J-r (ﬂ%v X wex’ij (n X wex’j)dS . (4.14.b)

Because of ¢, =b, from Egs. (4.9.b) and (4.14.a), Eq. (4.13) can be rewritten

as,
y=D"'B"x. (4.15)
Substitution of Eq. (4.15) for y into Eq. (4.8), then, yields
(4+BD'B")x=f. (4.16)

By the above procedure, the hybrid formulation was derived, where
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the solution x gives not only the field within the picture frame, but also
the exterior field from Eq. (4.15). It is convenient for saving computer

memory that the matrix (A+BD‘1BT) 1s actually symmetric, since Eq.

(4.14.b) becomes, with Gauss’ divergence theorem and Eq. (4.4),

d. = L(waexyl.)-(wa .)dV. (4.17)

i = ex,
y Qux IL[O J

4.2.4. Energy Functional in the Infinite Space

As shown in the followings, the solution of Eq. (4.16) gives a

minimum for the energy functional in the infinite space Q. uQ_ . Thisis a

good feature of the hybrid method in the KUSOS, while this is not fulfilled
by some existing methods for unbounded problems as well as by the basic
BEM.

The energy functional &(x) is given by,

E=&, + &y (4.18.a)
6o =] ([HyndB—a,-3,)av
- % L [ %dedV - jQ Agy, - JidV (4.18.b)
b =], [HidBAV
1

=—| B, dV. (4.18.c)
2y P -

The energy functional takes a minimum at Ve=0. From Eq. (4.18.b), Ve,
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is given as follows.

%:lj U dB jdV——([ Ay -, dV)
Ox, 27 Ox;

:_j afm dB2U dBjdV——([ A, - JdV)
X

OB
_ 1 1 f1n dV— Afm
"2, n i OX;

=_j e {(Zx (wamj)j(gxk(wam’k)j}dV
ai {j (ijwm]j J, dV}

—'[Q luzl:x (waml) (wam/ dv — j w,,J.dV
=

-J dV)

N

—Z%x, - £ (4.19)

Jj=

Eq. (4.18.c), on the other hand, is reduced to, with Eqgs. (4.2.b), (4.15) and
(4.17),

1 M M
gex = Zzyiyjj-gex (V x wex,i).(v x wex,j)dV

2#0[:1]':1
1 7
==y'D
2)’ Y
1

x"B"D'Bx. (4.20)

Then, from Eqs. (4.19) and (4.20), Ve is obtained as follows,

Ve=Ve, +Ve,, =(Ax— f)+(B"D"'Bx). (4.21)
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Thus the solution x of Eq. (4.16) gives Ve=0 subject to the normal flux
continuity condition of Eq. (4.15), and accordingly, gives a minimum for the

energy functional ¢.
4.2.5. Treatments of Nonlinear Media

In case of nonlinear media, the matrix 4 in Eq. (4.16) depends on
the solution x. To deal with this nonlinearity, the KUSOS uses the Newton
method, which is commonly used with the FEM for nonlinear problems [37].

With the initial vector X = 0 and ro,=f,

(D calculate x,,,, =x,, +H" (x(n)) P s
(ID calculate r,,, = Vg(x(m)): f—(A(x(n+1))+ BTD‘IB)x(M),

(IID)  unless r,,,, =0, go back to (D),

where H(x) is the Hessian matrix of the component #;(x) of the energy

functional &(x), i.e.,

=(4+B"D'B), +i6a”‘ x,, (4.22.a)
= L T b
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6 N N
X —— ZZ(V X Wm,j)' (V X Wi, )xjx,}dV} X,

:ii{jg d; ; Gj(wam,,-)-(wain,k) _ (4.22.b)

X {(V X Wi, j)' (V XWin )}d V}xkxl

In each triangular element within nonlinear media, the volume
integration is performed in a manner of Gauss’ integration with 7 points [38],

with z and d(1/u)/dB* given as functions of BZ.

4.3. Numerical Examinations

In this section, numerical examinations for the verification of the

KUSOS are presented.

Firstly, for comparison with analytical solutions, the KUSOS was
applied to a simple situation shown in Fig. 4.3(a) with a pair of infinitely
long conductors (no variation in the z -direction) with uniform current
density in opposing directions. Considering the symmetries involved, finite
elements are placed in the positive quadrant as shown in Fig. 4.3(a).

Figure 4.3(b) shows the calculated magnetic fields along y=2mm in

the x -direction, together with the analytical solutions. The numerically
calculated fields by the KUSOS are found to show good agreements with the

analytical solutions, both inside and outside the picture frame.
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(b) Fields along y=2 mm in the x -direction.

Figure 4.3. KUSOS results comparing with analytical solutions.
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(b) Fields along y=2 mm in the x -direction.

Figure 4.4. KUSOS results with a different picture frame to the
previous one shown in Fig. 4.5.

64



Figure 4.4 shows the results for the same situation as Fig. 4.3 with
another choice of picture frame, also showing good agreements with the

analytical solutions.

Secondly, the KUSOS was applied to a more complex situation with
a nonlinear medium whose permeability is given in Fig. 4.5. As shown in Fig.
4.6, there placed are a coil, a homogeneous medium with relative

permeability u/u, =3000, and the nonlinear medium, with three different

choices of picture frames. In this situation, the analytical solution is not
available for comparison, while it is clearly seen that the numerical
solutions are not different among the three different choices of the picture
frames. As shown in Figs 4.6(b) and (c), more than one picture frames with
arbitrary shapes can be used in the present hybrid method.

Figure 4.7 shows the fields along r=38 mm in the z -direction.
Again, the numerical results are not different among the different choices of
the picture frames. And also, the calculated fields are found well continuos

and smooth on the picture frames.

! ! ! !
4000 6000 8000 10000

H [A/m]
Figure 4.5. B as a function of H of the nonlinear medium in Fig. 4.6.

!
0 2000
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Figure 4.6. KUSOS results with three different picture frames,
showing contour lines with rA4, = constanat, and meshes.
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Figure 4.7. Field distributions of the KUSOS results shown in Fig.
4.6, along r=38 mm in the z -direction.
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Figures 4.8 shows the KUSOS results for a klystron focusing system,
Toshiba E3718 (refer to Table 5.1 in Chapter 5). The calculated fields are to
be used as the input data for the particle-in-cell simulations presented in

the following chapters.
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(b) Magnetic flux on the axis.

Figure 4.8. KUSOS results for the E3718 klystron focusing coils.
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4.4. Concluding Remarks

The FEM or the MM each has its own advantage and disadvantage.
It 1s true that the FEM can easily deal with nonlinear media, but cannot
with unbounded problems. The situation is opposite for the MM. The
FEM/MM-hybrid method, on the other hand, retains the advantages
associated with both methods, by applying the FEM to the interior region
containing nonlinearity, and the MM to the exterior homogeneous region.

Presented in this chapter is a new FEM/MM-hybrid method used in
the KUSOS for the unbounded magnetostatic fields with nonlinear media in

2-dimension, with the following summaries;

(i) it gives a minimum for the energy functional in the infinite space,
and consequently provides reliable solutions both inside and outside

the finite elements,

(i1) more than one picture frames can be used with arbitrary shapes,

leading to efficient computations,

(iii) the formulation guarantees both tangential and normal field

continuities in an integral manner.

It i1s also found that the numerical test results show good
agreements with analytical solutions, no difference in numerical solutions
for different choices of the picture frames, and excellent continuity of

magnetic fields between the interior and the exterior regions.
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Chapter 5

Development of a 2-Dimensional Klystron

Simulation Code

5.1. Introduction

Two particle-in-cell codes have been developed in this study, and are
presented in this chapter. One is the KUAD2 (acronym for Kyoto University
Advanced Dart II) code for calculating trajectories in static fields applicable
to electron gun simulations, and the other is the KUBLAI (Kyoto University
Beam Loading AnalysIs) code for simulating interactions between beams
and cavities. The results by the KUAD2 are to be used as the initial and
beam-injection conditions for the time-domain KUBLAI simulations.

The KUAD2 is based on the recently developed KUAD (Kyoto
University Advanced Dart) code [24, 39], and modifications have been made
in this study to achieve further accuracy, which will be discussed in
subsection 5.2.1. The present KUAD2 was verified through comparisons
with experiments in terms of gun perveances.

The KUBLALI is based on the existing klystron code known as FCI
(Field Charge Interaction) developed by Shintake [19, 21|. However, while
the FCI shows reasonably high accuracy in RF output powers, following

modifications have been made to improve the accuracy enough to be able to
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provide injection conditions for depressed collector designing, as well as to

reduce the computation time;

(@)

(Gi)

(iii)

the KUBLAI can deal with a tapered drift-tube, which is, in the FCI,
replaced approximately by a straight drift-tube of an intermediate

radius for calculating the beam-induced fields,

to stabilize the numerical instability in calculating simultaneously
both the electron motions and the beam-induced fields, the FCI uses
both spatial smoothing of the fields, and artificial damping factors
between the output cavity and the collector, which is sufficient for the
klystron designing, but not appropriate enough to obtain the
parameters associated with the spent beams for the depressed
collector designing. A more straightforward and appropriate method
was thus developed in this study, and applied to the KUBLAI, as will

be described in subsection 5.2.3.

the numerical method for calculating cavity voltages was modified to
achieve faster convergence on the final periodically steady-state

solutions, which will be described in subsection 5.2.4.

Also presented are comparisons between the KUBLAI simulations and

klystron experiments for verifications, in terms of RF output powers.

5.2. Numerical Methods

5.2.1.

Initial and Beam-Injection Conditions

For the time-domain KUBLAI simulations, initial fields, initial

electron distribution in the drift-tube, and beam-injection conditions are all
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calculated by use of the KUAD2 code. The KUAD2 has been developed by
modifying the KUAD code as follows,

() instead of linear triangular elements used in the KUAD for the field
calculations, the present KUAD2 uses quadratic elements, which is

found to result in higher accuracy (see chapter 3),

(i) the KUAD2 calculates the angular component of the beam-induced
vector potential, which is neglected in the KUAD.

The modification (ii) is necessary to provide the initial fields for the

time-domain KUBLAI simulations.

Figure 5.1 shows the (input)

flow chart of the KUAD2. Just l
as the same as the KUAD code,

[ vacuum fields |

it calculates the current density

distribution on the cathode, the L Y

current density on cathode
(space-charge limited)

and the drift-tube, and the |

\

_ ) _ | electron trajectries |
until self-consistent solutions ‘

electron trajectories in the gun

beam-induced fields, iteratively,

are obtained. v
| beam-induced fields |

The trajectories are

calculated by solving Eq. (2.41) v
——<_convergence check >

using the Runge-Kutta method.

The beam-induced fields are,
then, calculated by solving Egs. (output)

(2.30), by use of the Finite Figure 6.1. Flow chart of the KUAD2.
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Element method (FEM) with quadratic triangular elements. The calculated
fields, then, give the successive current density on the cathode, by applying
Child Low [40] locally within the triangular elements on the cathode
surface.

Triangular meshes and trajectories in the Toshiba klystron E3718#3
(see Table 5.1), for example, are shown in Figs. 5.2(a) and 5.2(b).

To verify the present KUAD2, gun perveances with various cathode
voltages were calculated for the E3718#3 klystron. As summarized in Table
5.1, the E3718#3 has two different operational modes, namely CW and pulse
operation, with different perveances.

As is seen in Fig. 5.3, the KUAD2 results are found to show excellent
agreements with experiments, within —2.3 % ~ +2.4 % relative errors with

respect to the measured values. The errors are summarized in Table 5.2.

Table 6.1. Characteristics of klystrons for code verifications.

Toshiba E3718#3 Toshiba SLAC

CW pulse 1AV56 XK-5
frequency [MHz] 1250 1250 615 2856
# of cavities 6 6 4 5
beam voltage [kV] 83 147 17 265
beam current [A] 29 57 2.9 286
beam power [MW] 1.8 8.3 0.038 76

perveance [ u A/V32] 0.9 1.0 1.0 2.1
output [MW] 1.0 3.6 17 36
efficiency [%] 58 43 45 48
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Figure 56.2. Meshes, and electron trajectories calculated by the
KUADZ, in the electron gun of the K3718#3 klystron.
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KUADZ simulations and experiments
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Table 5.2. Beam current from electron gun of E3718%3, comparing KUADZ2
simulations and experimental measurements.

v, vl | v, [kVI* current [A]
: simulation experiment error [%]
60 49.4 13.1 13.2 -0.8
65 53.6 14.7 14.9 -1.3
OW mode 70 57.9 16.5 16.7 -1.2
75 62.0 18.3 18.5 -1.1
80 67.0 20.6 20.4 +1.0
83 69.2 21.6 21.5 +0.5
110 97 35.7 36.5 -2.2
115 102 38.5 39.0 -1.3
120 107 41.3 41.6 -0.7
125 112 43.8 44.2 -0.9
pulse mode 130 117 45.8 46.9 -2.3
135 122 50.3 49.6 +1.4
140 127 53.4 52.5 +1.7
145 132 56.5 55.2 +2.4
147 133.7 57.6 56.5 +1.9

* V.t voltage between cathode and body (drift-tube)

* V. voltage between cathode and anode

5.2.2. Flow Chart

The KUBLAI simulates electron motions and beam-induced fields in
time domain. It also calculates cavity voltages by use of the equivalent
circuit model described in chapter 2. Figures 5.4 and 5.5 show, respectively,

a simulation result of the E3718#3 klystron, for example, and the flow chart.
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Figure 6.4, Snapshot in the FE3718#3 klystron by KUBLAI
simulation (beam voltage V, =83 kV, beam current I, =215 A).

The dashed lines indicate axial positions of the cavities.
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Figure 5.5. Time stepping processes of the KUBLAL

In Fig. 5.4, the electron beam, which consists of ring particles (see
Fig. 2.2), is injected through the injection boundary on the left, interacts
with the cavity fields through the drift-tube, and, then, goes out of the
drift-tube from the exit boundary on the right.

As shown in Fig. 5.5, the cavity voltages are calculated successively

from the input cavity to the output cavity. The cavity voltage V. is revised
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in every RF periods iteratively, as will be described in subsection 5.2.4. The
iterations for each cavity voltage are started when the ring particles

modulated by the upstream cavity reach.

In the calculations of the electron motions, and the beam-induced

fields, each RF period T (=1/f) is divided into time steps Af.

At each time step, the electron motions are calculated in a leap-frog
manner as shown in Fig. 5.5, by solving Egs. (2.36), and, then, the
beam-loading current at that time i () is calculated by Eq. (2.11.f), and

stored in computer memories. The stored beam-loading currents through
one RF-period are transformed by Eq. (2.18) into the complex beam-loading

current /,, which is to be used for revising the cavity voltage.

The beam-induced fields are also calculated at each time step by

solving Eqgs. (2.26), as will be described in the following subsection.

5.2.3. A Stabilization Method of Numerical Instabilities in
Time-Domain Field Calculations

A numerical instability has been observed [21] in calculating
simultaneously electromagnetic fields, and charged particle motions by use
of the Finite Differential method (FDM).

Also by use of the FEM in this study in the course of the KUBLAI
code development, the high-frequency instability has been seen as shown in
Fig. 5.6, where the beam is found unreasonably modulated, and bunched
periodically according to the mesh size. The bunched beam tends to excite
the high-frequency non-physical electromagnetic fields, whereas the excited
fields modulate the bunched beam further, and finally the fields are led to
oscillate. This instability can hardly be avoided by use of larger numbers of

meshes, nor time steps.
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In this subsection, a method 1s proposed to stabilize this

non-physical instability.

By applying the FEM using quadratic rectangular elements with N
nodes (see Fig. 5.6(a), for example), Eqs. (2.26) are reduced to simply the

following ordinary differential equations,

Ax,=f,, (5.1.a)
dx d*x

A,x,+B, th +C, dt2A =f (5.1.b)
dx d’x

Ayx, + B, dzB +C, dtzB = 1., (5.1.0)
AGxG = fGa (51d)

where x’s are N -dimensional unknown vectors, f’s are time-dependent

source terms, and A’s, B’s,and C’s are constant matrices determined by

the mesh configuration.

There are many candidates for the numerical method to solve the
ordinary differential equations of Eqgs. (5.1.b) and (5.1.c). Among them, the
Newmark method [41] has an advantageous feature of not requiring the
well-known Courant-Freidrichs condition. In many other methods such as
the Runge-Kutta method, the time step Ar must be set less than a specific

value related to the mesh size Az, and Ar as follows,

cAt <N AZ® + AF? (5.2)

where /1 1s a given constant less than unity. The Courant-Freidrichs
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condition of Eq. (5.2) is quite undesirable for the klystron simulation, since
it tends to lead to many time steps, and accordingly too much CPU time.

For this reason, while other codes such as the FCI [19, 21], and the
MAFIA [20] use the Eular method in a leap-frog manner (called the “Finite
Differential Time-Domain” method), the Newmark method was originally
used in the KUBLAI. In cases without beams, or with low current beams,
the field calculations are found stable for any choice of the time step Az, as
was expected.

However, in the case of an intense beam, the instability previously
shown in Fig. 5.6 was observed. This is exclusively due to the fact that, with

high current beams, the source terms f’s in Eqs. (5.1) show strongly

nonlinear dependence on the variables x’s. Thus the Newmark method is
found not always stable for nonlinear equations, although it is known to be

stable for linear ones.

By modifying the Newmark method to provide higher stability even
in the case of intense beams, a new method has been developed in this study,

whose procedure is described as follows,

Ax )+ BX (0 + CX () = Sy (5.3.2)
) . X, +X,.
Xins)y = Xy T At% ) (5.3.b)

1
Xy = Xy + LX) + (E + 5) AP %+ PNy — %), (530

where the potential at (n+1)-th step, x.,, X,.,, and ¥,,, are given by
those at the previous time step, x,,, X, , and X, , and the source vector

Sy - The factors 6 and g are constant, and the former was newly
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introduced. With §=0, the present method of Eqgs. (5.3) coincides with the

basic Newmark method.

From Egs. (5.3.b) and (5.3.c), the following expression can be

derived,

X+ X, X+ ¥ 5 1 X — X
&Mfmw+mii§—u+&ﬂJi%—u+@%§—ﬂmil%yil.@m
t

This expression is found related to the stability conditions as follows.
For linear systems without beams, it is known that the basic
Newmark method (6=0) is stable for any large At (or, for any small Az

and Ar), so long as the factor S satisfies the following condition,
1
pz-, 5=0. (5.5)

In contrast, through numerical examinations with the KUBLAI varying the

factors 6 and f from zero to unity, the stability condition of the modified

Newmark method is found,

ﬂ_EZZ’ 020, (5.6)

which is easily found consistent with the condition of Eq. (5.5) for the basic
Newmark method. And furthermore, the condition of Eq. (5.6) is found to
indicate simply that the factors 6 and (8-5/2-1/4) in Eq. (5.4) must be

positive.
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For the the intense beam previously shown in Fig. 5.6, the modified
Newmark method is empirically found to show quite high stability with the
factors around §=1/3 and S=5/12, as shown in Fig. 5.7. The non-physical
beam-modulation was not seen in Fig. 5.7 during 300 RF periods, while,
with the basic Newmark method, it was observed after only 20 RF periods

as seen in Fig. 5.6.
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Figure 6.7. KUBLAI results by use of the modified method. The
numerical instability seen in Fig. 5.6 was stabilized.
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5.2.4. A Method for Fast Convergence in Simulating
Beam-Cavity Interactions

Since the equivalent circuits shown in Fig.2.2 represent resonance
with high quality factors up to several thousands, it takes very much CPU
time to obtain the final periodically steady-state solutions by solving Egs.
(2.13) in time domain. For example, for a cavity with a quality factor of 3000,
starting at the initial cavity voltage of 0V, it will take around 3000 RF
periods to approach the solution within a 2.5% error.

To overcome this problem, Egs. (2.13) are solved in
frequency-domain in the existing codes [16-21], as well as in the KUBLAL
With Egs. (2.18) and (2.19), Egs. (2.13) are expressed by,

; 1 A , A
el NN I 74 O R (O 0
(]a)c + R(l) +']a)L(1)j VC - Ib +Iext ’ (5.7.8.)
) V(i)
I =— (5.7.b)
R + joL"

and further with Eq. (2.15.b), for example for the output cavity, Eq. (5.7.a)

can be written as,
YO =1, (5.8)
where,

1

m. (5.9)

Y9 =G+ joC" +

Since the beam-loading current ", which is given by Egs. (2.11.f)
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and (2.18), depends on the electron trajectories, it depends nonlinearly on

the cavity voltage V",

In order to obtain quickly the final steady-state cavity voltage V",

the following three methods are used in the FCI code [21], and are reviewed

in the followings:

@) By assuming the beam-loading current 7" to be linear to the cavity

voltage V" as,
)= 1y W, 510

where, I =I1{"(0) is the beam-loading current with V=0, and Y"

(called beam-admittance) is a constant determined by a previous simulation

with a specific cavity voltage, the solution can be obtained immediately by,

(@)
@) _ IbO

This linear approximation is supposed not appropriate for high cavity
voltages, and therefore, in the FCI, applied only to the cavities of lower

voltages compared with the beam voltage.

(i1) With the beam-loading current I, :Iéi)(Vc(f()n)) calculated by the
electron motions with the cavity voltage V!, , the successive V7 . is

given by,

87



(i)
b,(n)

Véin ¥~
v = TY . (5.12)

This procedure will be continued until V), and I}, satisfy Eq. (5.9). In

the FCI, this method is applied to the idler cavities of high voltages. The

initial voltage V', is given by the linear approximation ().

(111) With the expression,

v = RelV (1) exp(jeot), (5.13.2)

i =Re[I” (1) exp(jor)], (5.13.b)

the following differential equations can be obtained from Eqgs. (2.13) and
(2.15.b),

dvy

c® ” =—(G""+ja)C("))VC(")—1§")+11§"), (5.14.2)
(i)
o df{; =_(R(i)+ja)L(i))]£i)+Véi). (5.14.b)

Then, successive V)., ,and I} are given by,

i i dV(i) i i

Vit =Vt + 0T — Wil 110, (5.15.2)
i i d](l) i i

Ié,:m—l) = Ié,zn) + GT d; (VC(‘,()anE}n))’ (515b)

where o is a factor more than unity to fasten the solution convergence. A
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larger o results, of course, in faster convergence. However, this method

has the disadvantage in that that, with too large o, V!” and I do not

converge to the final solutions, and hence care must be taken in the choice of
the factor o. And further, since o has its upper limit (typically around 20),
it still takes more than hundreds RF periods for cavities with high qualities
up to 3000. In the FCI, this method is used only for the output cavity, which
has some low quality factor typically less than 50.

In the present KUBLAI developed in this study, considering the
disadvantages of the methods (i) and (iii), basically a method similar to (ii)
1s used for all cavities. But again a modification has been made to provide
faster convergence to the steady-state solutions. The modified method is

described by,

) . I(i)
VC(‘Z()nJrl) = VC(‘I()n) i i bo i i . (516)
’ YOV, + L~ 1,
Further, Eq. (5.16) can be rewritten as,
0 Iio ( )
e e 5.17.a
C,(n+1) (i) i)
Yo+ Y
](i) _[(i)
(@) __ b0 b,(n)
Yoo = RO (5.17.b)
C.(n)

and, hence, the modified method is similar to the method (i) as well, with

the beam-admittance Y, revised at each RF cycle n.
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The method (i), and the present method was compared through
KUBLALI simulations of the E3718#3 klystron. Figure 5.7 shows variations
of calculated cavity voltages through iterations, for the 2nd and 4th cavities of
the E3718#3 klystron. The modified method is found to show faster
convergence to the steady-state solutions, compared with the basic method
(ii). With the modified method, the solutions are found to converge with 3~9
RF periods within 0.1% errors, for the E3718#3 cavities with various quality

factors, and beam voltages.
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(a) E3718#3, 24 cavity (Q = 3000 ). (b) E3718#3, 4th cavity (O = 3000 ).

Figure 5.8. Variation of cavity voltages through Iiterative
calculations, comparing two different methods.
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5.3. Comparisons with Experiments

To verify the developed KUBLAI code, comparisons were made
between calculated output powers and experimentally measured ones. Three
klystrons, the E3718#3, the Toshiba 1AV56, and the SLAC XK-5, were used
for comparisons, whose major characteristics are summarized in Table 5.1.

Figures 5.9 and 5.10 show the calculated and measured output
powers for the E3718#3 klystron, Fig. 5.11 for the 1AV56, and Fig.5.12 for
the XK-5, respectively. All these numerical results are found to show
excellent agreements with experiments, within —4.9 % ~ +6.9 % relative

errors in the saturated output powers.
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Figure 5.9. Efficiency as a function of drive power (E3718#3).
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Figure 6.12. Efficiency as a function of drive power (XK-5).

5.4. Concluding Remarks

In this chapter, the 2-dimensional particle-in-cell simulation codes,
namely the KUAD2, and the KUBLAI, developed in this study are
presented.

The KUAD2 was verified through comparisons of gun perveances
with experiments, showing good agreements within —2.3 % ~ +2.4 % errors

in the gun perveances.

On the development of the KUBLAI, a modified Newmark method
was proposed to stabilize the numerical instability in calculating both
electron motions, and beam-induced fields simultaneously. Numerical test
results with the present method are found sufficiently stable.

A newly modified method for calculating cavity voltages was also
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proposed, showing faster convergence to the steady-state solution than the
basic method.

Comparisons were also made between output powers calculated by
the developed KUBLAI code, and experimentally measured ones, showing
excellent agreements within —4.9 % ~ +6.9 % errors in the saturated output

powers.
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Chapter 6

Application to Klystron Efficiency

Enhancement

6.1. Introduction

In this chapter, the two approaches for the Kklystron efficiency
enhancement described in chapter 1, namely depressed collectors, and
hollow beams, are investigated by use of the developed and verified codes.
An existing high-power klystron, Toshiba E3718#2 was taken as a reference
in this study. The beam parameters, and the prototype performances by the

KUBLALI simulations are shown in Table 6.1.

Table 6.1. Beam Parameters and calculated performances of the E3718%2
klystron.

operating frequency 1.25 GHz
beam voltage 90 kV
beam current 24.3 A
perveance 0.9 pV32/A
output power 1.32 MW
efficiency 60.5 %
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In section 6.2, the efficiency enhancements by virtue of multistage
depressed collectors (MDC) are discussed. Firstly, efficiencies were
calculated on the assumption of negligence of beam optics, in order to
evaluate the theoretical limit of the energy recovery by MDCs, and also to
determine initial design parameters such as number of electrodes, and
electrode potentials, reasonably well. Secondly, a MDC was, then, designed
by use of the KUAD2 particle-in-cell simulations.

The other approach by use of hollow beams was also studied, and is
presented in section 6.3. Because, in general, the cavity fields are stronger
in the vicinity of the cavity gap on the drift-tube wall than near the
symmetry axis, hollow beams are expected to enhance the klystron
efficiency through more efficient interactions with the cavities than the solid
beam whose innermost part least interacts. To examine this possibility,
comparisons were made between hollow beams and the currently used solid

beams by the KUBLAI simulations.

6.2. Direct Energy Recovery from Spent Beams

6.2.1. Configuration for Direct Energy Recovery

Figure 6.1 shows schematic diagram of a klystron with a 3-stage
depressed collector. In the depressed collector, the injected spent electrons
are electrostatically decelerated, and, then, slightly accelerated in the
opposing direction onto the electrodes. This configuration is expected to
suppress the secondary electrons from the electrode surfaces [2,3], which is
otherwise led to losses.

The recovered power P., and the recovery efficiency 7 by an

N -stage depressed collector are defined, respectively, by
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P=>1V,, (6.1.2)

P
=1 = , (6.1.b)
=P

where 7, , and I, denote, respectively, the n-th electrode potential, and

the beam current collected by the n-th electrode. The P, P

s’ out ? and R)
denote the power of the spent beam at the collector entrance, the RF output
power of the klystron, and the power of the incident beam to the klystron,

respectively. The overall efficiency 7 is, then, given in terms of 7. by,

Pout — Pout _ 770 (62)
Pb_Pr Pb_nr(P Pout) 1_771‘(1_770)

]7:

P.n P depressed
collector

e nykAiﬁ/V/

ST
—HH

Figure 6.1. Schematic diagram of a klystron with a 3-stage
depressed collector.
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where 7, denotes the efficiency without energy recovery, and is given by,

t
= —out (6.3)
o P,

For the klystron with 7, =60.5 %, as shown in Fig. 6.2, around 75 %

efficiency could be achieved with 50 % energy recovery.

In the following discussions in this chapter, the potential of the last

stage electrode 7, 1is chosen to be equal to that of the cathode as shown in

Fig. 6.1, just to simplify the power supply system without any additional

higher voltages, and costs.
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Figure 6.2. Overall efficiency as a function of recovery efficiency.
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6.2.2. Evaluation of Theoretically Maximum Efficiencies

Figure 6.3 shows energy spectrum of spent beams for various output
powers, obtained by the KUBLAI simulations. Under the following two

assumptions that,

(i) each electron is collected by the electrode with a potential slightly less

than the incident kinetic energy,

(i1) no secondary electron is yielded from the electrode surfaces,

then, the recovered power P is given from the energy spectrum dI/dV

T

shown in Fig. 6.3, as follows,

B =SV, - 10,) + VAL - 107, (6.4

where, I, denotes the total current of the incident spent beam, and is given

by,
V)= '[OV;Z—II/dV, (6.4.b)
I, =1(o). (6.4.0)

From Eq. (6.4.a), the following expressions can be obtained, for

1<n,m<N-1,

F _ i1 )- _y )L
o = 10a)=10,)+ 0, =V, 0) 22 0), (6.5.2)

n
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dl d*I
_ZW(I/}'I)_(I/n _Vn—l)dV2 (Vn), (n = m),
o°P, dr e
ov.ov, “lav (Vma"(mm))’ (]m ”| —1)’ (6.5.b)
0, Qm — n| > 1).

With these expressions, the Newton method can be, then, applied, to find
the optimized electrode potentials that give the theoretically maximum

recovered power P
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Figure 6.3. Energy spectrum of spent electron beams for various
output powers (the saturated power P, =1.32 MW). The dashed

line indicates the gun voltage V, =90 kV.
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The theoretically maximum recovery efficiencies 7, . , and overall

efficiencies 7, were calculated for the spent beams shown in Fig. 6.3, and

for various number of stages N, with the optimized potentials.

As shown in Fig. 6.4(a), it is found that the recovery efficiency 7,,,..
decreases with increasing P, . due to the broader energy spectrum of the

spent beam. Nevertheless, as shown in Fig. 6.4(b), the overall efficiency

Nwae 18 found to increase as P, increases.
For the saturated P, ,, more than 80 % overall efficiency could be

theoretically achieved with a 5-stage depressed collector, and additional
stages are found not to contribute appreciably to further enhancement. For
the b5-stage collector at the saturated output, the optimized electrode

potentials ¥, , the currents 7/,, and the heat loads A onto the n-th

n heat,n
electrode are summarized in Table 6.2, where the heat loads were calculated

by,

Brwin = jVV V-, )j—{/ dv . (6.6)

In the previous report on a collector design [1-3], the electrode
potentials were chosen equally stepwise rather than the optimized ones, just
to simplify the designing, and to reduce costs as well. To evaluate the
degradation from the optimum value, the recovered power was also
calculated from Egs. (6.4) for the potentials equally stepwise, namely 18, 36,
54, 72, and 90 kV, and for the spent beam at the saturated output.

As summarized in Table 6.3, the overall efficiency was calculated as

n=80.3 %, which is very encouraging compared with 7,=60.5 %,

although it is slightly less than the optimum, 7, =83.7 %.
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Table 6.2. Optimized electrode potentials for the saturated output, and
corresponding electrode currents and heat loads, on the assumption of
negligence of beam optics.

electrode no. potential [kV] current [A] heat-load [kW]
0 0 2.03 18.4
1 9.7 6.10 33.5
2 21.5 6.56 42.7
3 32.3 6.86 68.8
4 54.1 1.53 14.4
5 90 1.22 71.9

Table 6.3. Recovery and overall efficiencies with the optimized potentials,
and the potentials equally stepwise, on the assumption of negligence of
beam optics.

electrode potentials recovery efficiency [%] | overall efficiency [%]

9.7, 21.5, 32.3, 54.1, 90

(optimized potentials) 71.1 83.7

18, 36, 54, 72, 90 62.4 80.3

6.2.3. Multistage Depressed Collector Design

A depressed collector was designed by use of the KUADZ2 simulations,
where the beam optics was taken into consideration.

The KUBLALI results on the positions and the velocities of the spent
electrons were used as the injection conditions. Approximately, all the spent

electrons were injected at a moment, and the electron trajectories were
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simulated in static fields. The trajectories of both the incident and the

secondary electrons were simulated self-consistently.

Considering the results in the previous subsection, the designed
number of stages was chosen as N =5, and the electrode potentials equally
stepwise, for the reason that neither additional stages nor optimized
potentials would result in appreciably further efficiency enhancement, while
they would rather result in more complicated designing. Thus, only the

electrode shapes were optimized, with trials and errors.

Repeated design refinements resulted in an optimized geometry
shown in Fig. 6.5. Care was taken to assure no electron backstreaming
towards the collector entrance, which otherwise causes degradation in the
klystron performance. The trajectories of the incident, and the secondary
electrons from the electrode surfaces with the yield ratio of 6=0.5, are,
respectively, shown in Figs. 6.5(a) and (b). The simulation results on the
electrode currents are shown in Table 6.4.

From Table 6.4, the recovery efficiency was evaluated to be

n. =38.4 %, leading to an overall efficiency of 7n=71.3 %, which is also very

encouraging compared with the 60.5 % efficiency without a depressed
collector. The obtained efficiencies are, however, lower than the theoretically
maximum ones shown in Table 6.3, and, therefore, there is still possibility of
further enhancement by further design refinements.

As shown in Fig. 6.5 and Table 6.4, the secondary electrons from the
2nd to 4th electrodes are found to be suppressed successfully. Power loss due
to the secondary electrons from the 1st and 5th electrodes is estimated to be
32 kW, leading to only 8.8 % degradation in the recovered power (net of 332
kW).
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Figure 6.5. Equipotential lines and electron trajectories by the
KUADZ2 simulations in the 5-stage depressed collector.
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Table 6.4. KUADZ results on beam currents, and heat loads onto the MDC
electrodes shown in Fig. 6.5.

T | TN | inedont secondary | Pt load 1w
0 0.00 13.00 0.09 286
1 0.09 6.90 0.00 107
2 0.00 2.15 0.08 42
3 0.00 0.89 0.27 31
4 0.00 0.48 0.09 17
5 0.44 0.89 0.00 51

6.3. Efficiency Enhancement by use of Hollow Beams

Hollow beams in the klystron drift-tube were simulated by the
KUBLAI, and comparisons were made with the solid beam.
Figures 6.6(a), (b), and (c) show, respectively, the snapshots of the

solid beam, and two hollow beams with different hollow radii 5, (see Fig.
6.7). The hollow beams were injected with the same beam radius 7 =11.2

mm, and the same current of 24.3 A as the solid beam, while with different

" . . . 2 2
current densities according to their cross-sectional areas 7Z'(Fb -7, )

Table 6.5 shows calculated output powers with four different hollow
radii, together with the solid beam. The hollow beams are certainly found to
enhance the klystron efficiency, as was expected.

It is also found that the hollow radius of 7.92 mm results in less
efficiency than the smaller hollow radii of 5.60, and 6.86 mm. The reason for
this 1s supposed that a larger hollow results in a less bunched beam because

of larger space-charge forces in the z -direction. Among the four hollow
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efficiency of 67.0 %, which is very encouraging compared with the 60.5 %

beams in Table 6.5, the hollow radius of 5.60 mm gives the maximum
efficiency with the solid beam, although design of an electron gun to provide

such a hollow beam with high accuracy is required.
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Figure 6.7. Description of the hollow radius r,, and beam radius

r, ofa hollow beam.

Table 6.5. KUBLAI results on efficiencies with hollow beams.

hollow radius* ratio of hollow area* o
r, [mml] ~ /’”b2 [%] efficiency [%]
0.00 0.0 60.5
3.96 12.5 64.6
5.60 25.0 67.0
6.86 37.5 66.8
7.92 50.0 66.2

*at injection boundary,

6.4. Concluding Remarks

In this chapter, the two approaches to the klystron efficiency

enhancement were discussed.

Theoretical limit of energy recovery with depressed collectors was

made clear. It is found that, as the RF output power increases, the overall
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efficiency increases, despite the recovery efficiency decreases because of
broader energy spread of the spent beam. It is also found that a 5-stage
collector with electrode potentials equally stepwise could, theoretically,
enhance the efficiency up to 80.3 %, from the 60.5 % efficiency without a
depressed collector, and neither additional stages nor optimized potentials
would result in appreciably further enhancement. A 5-stage depressed
collector was designed by the KUADZ2 simulations, to provide an enhanced
efficiency of 71.3 %.

Hollow beams are found also to result in higher efficiencies than the
currently used solid beam. With an optimum hollow radius, an enhanced
efficiency of 67.0 % could be achieved. It is also found that a larger hollow
than the optimum results in a lower efficiency due to larger longitudinal
space-charge forces.

It is to be noted that the two above techniques could be applied
simultaneously to a klystron, and are expected to enhance the efficiency

much further.
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Chapter 7

Summary

This thesis discusses performance characteristics of depressed
collectors, and hollow beams aiming at appreciable enhancements of
klystron efficiencies. Also presented are developments of a set of
2-dimensional numerical codes to investigate these two approaches. The

results are summarized as follows.

@) A new Finite Element eigenmode solver (KUEMS) has been
developed in this study, aiming at improved accuracy in calculating

cylindrically symmetric modes. Instead of H,, or rH, preferentially used
so far in the existing codes, the quantity H,/r is newly used in this study

to represent the electromagnetic fields.

This present Finite Element formulation is found to result in
remarkably higher accuracy than the other formulations, particularly, in the
eigenfrequency of the fundamental mode. It is also found to result in
smoother convergence of the solutions with respect to number of the mesh

points, to provide good extrapolation property.

(1) Also developed was a solenoidal field solver (KUSOS) for calculating

external focusing fields in klystrons. A new hybrid method is proposed,
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which can deal with unbounded problems including nonlinear media by
combining the Finite Element method and the Moment method.

The numerical results show good agreements with the analytical
solutions, no difference in the numerical solutions for different choices of the
picture frames, and excellent continuity of the calculated magnetic fields on

the picture frames.

(ii1) Two particle-in-cell simulation codes have been developed by
modifying the existing codes. One is for simulations of electron trajectories
in static fields (KUAD2). It was verified through comparisons of gun
perveances with experiments, showing excellent agreements within —2.3% ~
+2.4% relative errors.

The other is for simulations of interactions between electron beams
and klystron cavities (KUBLAI). A modified Newmark method is proposed to
stabilize the numerical instability in calculating simultaneously both
electron motions, and beam-induced fields. Also proposed is a modified
method for calculating cavity voltages, which eventually shows faster
convergence to the steady-state solutions than the basic method.

Comparisons were also made between the KUBLAI simulations and
experiments, showing excellent agreements within —4.9% ~ +6.9% relative

errors with respect to the saturated output powers of klystrons.

(Gv) By use of the verified codes developed in this study, the
aforementioned two approaches were investigated for the klystron efficiency
enhancements.

Theoretical limit of the energy recovery with depressed collectors
was evaluated. It is found that a 5-stage collector could, theoretically,
enhance the efficiency up to 80.3% from the basic efficiency of 60.5%, and

neither additional stages nor optimized potentials would enhance the
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efficiency appreciably further. A 5-stage depressed collector was, then,
designed through the KUAD2 simulations, leading to an enhanced efficiency
of 71.3%, which is very encouraging compared with the 60.5% efficiency
without depressed collectors.

Hollow beams are found also to result in higher efficiencies than the
currently used solid beam. It is found that, with an optimized hollow radius,
an enhanced efficiency of 67.0% could be achieved without depressed
collectors. It is also found that larger hollows than the optimum tend to

result in rather lower efficiencies.

In summary, the simulation codes newly developed in this study are
found to be efficient in high-power klystron designing, and, also, by use of
these numerical codes, either the depressed collectors, or the hollow beams
are found, numerically, to result in appreciable efficiency enhancements of

klystrons.
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