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1 Introduction

The scale functions play an important role in the fluctuation theory of spectrally negative
Lévy processes. As a classical result, the exit time of a spectrally negative Lévy process
from a finite interval is characterized by the scale functions using the Laplace transform
(this characterization is called the two-sided exit problem). The killed potential densities
upon exiting a finite interval can be represented by the scale functions. As a rather later
result, Bertoin([3]) characterized in terms of the scale functions the exponential decay
parameter of the tail probabilities of the exit time from the finite interval.

The scale functions are applied to the ruin theory of insurance mathematics. A spec-
trally negative Lévy process models the surplus of an insurance company and then the
scale functions are involved in various values to expect several risks: for example, the
Gerber–Shiu measure, which characterizes the joint law of the wealth prior to ruin and
the deficit at ruin.

Kyprianou–Leoffen([13]) studied strong Markov processes whose positive and negative
motions are spectrally negative Lévy processes different from each other where the differ-
ence between the positive and negative motions is only the drifts. They constructed such
processes by proving unique existence of a strong solution for a stochastic differentiable
equation. They called them the refracted Lévy processes. In addition, they defined the
scale functions of refracted Lévy processes and represent the two-sided exit problem and
the killed potential measure using the scale functions.

Kyprianou–Loeffen’s refracted Lévy processes are applied to insurance mathematics.
Kyprianou–Loeffen–Pérez([14]) studied the optimal dividend problem for an insurance
company to pay dividends to customers. The optimal strategy can be modelled by
Kyprianou–Loeffen’s refracted Lévy processes, where the total amount of dividends is
characterized by the scale functions.

In Noba–Yano([17]), we generalized Kyprianou–Loeffen’s refracted Lévy processes to
the processes whose positive and negative motions may differ in not only the drifts but
also the Lévy measures, assuming that the positive motion does not have the Gaussian
part. We call these the generalized refracted Lévy processes. To construct such a process
we utilized the excursion theory. We also defined the scale functions of generalized re-
fracted Lévy processes and represent the two-sided exit problem and the killed potential
measure using the scale functions. In addition, we studied an approximation problem. For
generalized refracted Lévy process with unbounded variation paths, we proved that it is
the limit in distribution of a sequence of refracted Lévy processes coming from compound
Poisson processes.

In this dissertation, we define functions analogous to the scale functions, for general
standard processes with no positive jumps. We call them the generalized scale functions.
In addition, we generalize refracted Lévy processes to standard processes with no positive
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jumps (we call them the refracted processes) and we study a duality problem and an
approximation problem of refracted processes.

The definition of our generalized scale functions is based on the excursion measure.
Our idea comes from some results of Noba–Yano([17]). We prove that the generalized
scale functions characterize the two-sided exit problem and the killed potential densities
of standard processes with no positive jumps. Furthermore, we study necessary and
sufficient conditions of duality in terms of the generalized scale functions. We believe our
study will lead in the future to some applications to the insurance mathematics.

To construct a refracted process from given two standard processes with no positive
jumps, we use the excursion theory. Unlike the construction of generalized refracted Lévy
processes, we need landing functions, which indicate the landing points at the first hitting
times to (−∞, 0) of excursion processes. The landing functions play important roles in
the studies of the duality problem and of the approximation problem.

The duality problem is to characterize in terms of the generalized scale functions the
necessary and sufficient condition for the two refracted processes to be in duality. Let X
and Y be standard processes with no positive jumps and let X̂ and Ŷ be dual processes
of X and Y , respectively. Let U be the refracted process of X and Y and let Û be the
refracted process of X̂ and Ŷ . We will then obtain the necessary and sufficient condition
that the refracted processes U and Û are in duality in terms of a certain identity involving
excursion measures and landing functions. To prove duality of U and Û , we require
that their excursion measures are transformed into each other by time reversal. For
this purpose, we utilize landing functions in order to adapt the jumps at the switching
time between X and Y . We give an example of a refracted process possessing a dual.
We construct it from two spectrally negative stable processes, where we will make a
computation to find a suitable landing function.

The approximation problem is to associate to a given refracted process a sequence
of simple refracted processes which converges to it. We assume that our new refracted
process U comes from two Lévy processes X and Y . We will then prove that U is the
limit in distribution on the càdlàg function space of the sequence {U (n)}n∈N of refracted
processes coming from the drifted compound Poisson processes constructed from X and
Y by removing small jumps and by adding drifts. Noba–Yano([17]) studied this problem
in the special case of no Gaussian part of X, where our landing functions did not appear.
In our setting, our landing functions play an important role.

The organization of the present dissertation is as follows. In Section 2 we propose
some notation and recall preliminary facts about local times and excursion measures. In
Section 3, we recall preliminary facts about spectrally negative Lévy processes and its
scale functions. In Section 4, we recall some properties of Kyprianou–Loeffen’s refracted
processes and generalized refracted Lévy processes. In Section 5, we give the definition of
the generalized scale functions and apply them to the exit problems. In addition, we give
a property of generalized scale functions about duality. In Section 6 we give the precise
definition of our new refracted processes. In Section 7 we study the duality problem and
give an example of refracted processes which are in duality using stable processes. In
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Section 8 we study the approximation problem.

2 Local times and excursion measures

We give some notations and recall several preliminary facts about local times and excur-
sion measures of R-valued standard processes.

2.1 Local times and excursion measures

Let D denote the set of functions ω : [0,∞) → R ∪ {∂} which are càdlàg and satisfy
ω(t) = ∂ for t ≥ ζ(ω), where R ∪ {∂} is the one-point compactification of R and ζ(ω) =
inf{t > 0 : ω(t) = ∂}. Let B(D) denote the class of Borel sets of D equipped with the
Skorokhod topology. For ω ∈ D, we write

T−
x (ω) := inf{t > 0 : ω(t) ≤ x} , (2.1)

T+
x (ω) := inf{t > 0 : ω(t) ≥ x} , (2.2)

Tx(ω) := inf{t > 0 : ω(t) = x} . (2.3)

We sometimes write T−
x , T

+
x , Tx simply for T−

x (X), T+
x (X), Tx(X), respectively, when we

consider these times for a process (X,PXx ) with X = {Xt : t ≥ 0}. For ω, ω1, ω2 ∈ D and
s, t ∈ [0,∞), we adopt the following notation:

ρxω(t) =


ω(Tx − t−), t < Tx <∞,

x, t ≥ Tx,

∂, t ≥ 0, Tx(ω) = ∞,

(2.4)

ksω(t) =

{
ω(t), t < s,

∂, t ≥ s,
(2.5)

ω1 ◦ ω2(t) =

{
ω1(t), t < ζ(ω1),

ω2(t− ζ(ω1)), t ≥ ζ(ω1),
(2.6)

θsω(t) = ω(t+ s). (2.7)

Let T be an interval of R and set a0 = supT and b0 = inf T. In this paper, a0
may belong to (−∞,∞] and b0 to [−∞,∞). We assume that the T-valued process
(X,PXx ) considered in this section is a standard process with no positive jumps with
PXx (X0 = x) = 1, satisfying the following conditions with a σ-finite measure m on T:

(A1) (x, y) 7→ EXx
[
e−Ty

]
> 0 is a B(T)× B(T)-measurable function.

(A2) X has a reference measure m on T, i.e. for q ≥ 0 and x ∈ T, we have R
(q)
X 1(·)(x) ≪

m(·), where

R
(q)
X f(x) := EXx

[∫ ∞

0

e−qtf(Xt)dt

]
(2.8)
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for non-negative measurable function f . Here and hereafter we use the notation∫ a
b
=
∫
(b,a]∩R. In particular,

∫ a
b− =

∫
[b,a]∩R.

By [7, Theorem 18.4], there exists a family of processes {LX,x}x∈T with LX,x =
{
LX,xt

}
t≥0

for x ∈ T which we call local times such that the following conditions hold: for all q > 0,
x ∈ T and non-negative measurable function f∫ t

0

f(Xs)ds =

∫
T
f(y)LX,yt m(dy), a.s. (2.9)

R
(q)
X f(x) =

∫
T
f(y)EXx

[∫ ∞

0

e−qtdLX,yt

]
m(dy). (2.10)

We have the following two cases:

• Case 1. If x ∈ T is regular for itself, this LX,x is the continuous local time at x ([5,
pp.216]). Note that LX,x has no ambiguity of multiple constant because of (2.9) or
(2.10).

• Case 2. If x ∈ T is irregular for itself, we have

LX,xt = lXx #{0 ≤ s < t : Xs = x}, a.s. (2.11)

for some constant lXx ∈ (0,∞).

In Case 1, let ηX,x denote the inverse local time of LX,x, i.e.,

ηX,xt = inf{s > 0 : LX,xs > t}. (2.12)

Let nXx denote the excursion measure away from x which is associated with LXx (See, e.g.,
[9] or [4]). Then, for all q > 0, we have

− logEX0
[
e−qη

X,x(1)
]
= µXx q + nXx

[
1− e−qTx

]
(2.13)

for a non-negative constant µXx called the stagnancy rate. We thus have

EXx
[∫ ∞

0

e−qtdLX,xt

]
= EXx

[∫ ∞

0

e−qη
X,x(s)ds

]
=

1

µXx q + nXx [1− e−qTx ]
. (2.14)

In Case 2, we define nXx = 1
lXx
PXx

x , where PXx

x denotes the law of X started from x and
stopped at x. Then we have

EXx
[∫ ∞

0−
e−qtdLX,xt

]
= lXx

∞∑
i=0

(
EXx
[
e−qTx

])i
=

lXx
EXx [1− e−qTx ]

=
1

nXx [1− e−qTx ]
. (2.15)

Remark 2.1. Any point x ∈ T\{a0} cannot be a holding point. In fact, assume x is.
Then X leaves x by jumps (see, e.g., [23, Theorem 1 (vi)]). But X has no positive jumps,
and thus X can not exceed x, which contradicts (A1).
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2.2 Duality and local times

We recall several preliminary facts about local times and excursion measures when the
process considered has a dual process.

Let (X,PXx ) be a T-valued standard process with no positive jumps satisfying (A1)

and (A2). Let (X̂,PX̂x ) with X̂ =
{
X̂t : t ≥ 0

}
be a T-valued standard process with no

negative jumps satisfying (A1) and (A2) with the same reference measure m as X. For
q ≥ 0 and non-negative measurable function f , we denote

R
(q)

X̂
f(x) = EX̂x

[∫ ∞

0

e−qtf(X̂t)dt

]
. (2.16)

We have the local times {LX̂,x}x∈T and the excursion measures {nX̂x }x∈T of X̂ in the same
way as X’s in Section 2.1.

Definition 2.2 (See, e.g., [6]). We say that X and X̂ are in duality (relative to m) if for
q > 0, non-negative measurable functions f and g,∫

T
f(x)R

(q)
X g(x)m(dx) =

∫
T
R

(q)

X̂
f(x)g(x)m(dx). (2.17)

Theorem 2.3 (See, e.g., [6] or [22]). Suppose X and X̂ be in duality relative to m. Then,

for each q > 0, there exists a function r
(q)
X : T× T → [0,∞) such that

(i) r
(q)
X is B(T)× B(T)-measurable.

(ii) x 7→ r
(q)
X (x, y) is q-excessive and finely continuous for each y ∈ T.

(iii) y 7→ r
(q)
X (x, y) is q-coexcessive and cofinely continuous for each x ∈ T.

(iv) For all non-negative function f ,

R
(q)
X f(x) =

∫
T
f(y)r

(q)
X (x, y)m(dy), R

(q)

X̂
f(y) =

∫
T
f(x)r

(q)
X (x, y)m(dx). (2.18)

By [22, Proposition of Section V .1], if X and X̂ are in duality relative to m, there exist

local times {LX,x}x∈T of X and {LX̂,x}x∈T of X̂ satisfying

EXx
[∫ ∞

0

e−qtdLX,yt

]
= r

(q)
X (x, y), EX̂y

[∫ ∞

0

e−qtdLX̂,xt

]
= r

(q)
X (x, y) (2.19)

for all q > 0.

The following lemma shows the duality implies the time reversality of the excursion
measures.

Lemma 2.4 ([8, Lemma 4.16]). We assume that X and X̂ have the following conditions:
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• X and X̂ are in duality relative to m.

• X and X̂ are recurrent processes.

• X0 = XTx− = x, nXx -a.s. (This condition is equivalent to the counterpart of nX̂x .)

Then we have

nXx [ · ] = nX̂x [ρx( · )] . (2.20)

3 Scale functions and Gerber–Shiu formulae

We recall the well-known theory of scale functions (see, e.g., [2, Section VII], [11], [12,
Section 8] and [21]), for a spectrally negative Lévy process (X,PXx ) with X = {Xt : t ≥ 0}
and PXx (X0 = x) = 1. For q ≥ 0, the q-scale function W (q) is defined via the Laplace
transform ∫ ∞

0

e−βxW (q)(x)dx =
1

ΨX(β)− q
, β > ΦX(q), (3.1)

where ΨX(λ) = logEX0
[
eλX1

]
(λ ≥ 0) denotes the Laplace exponent and ΦX(q) = inf{λ >

0 : ΨX(λ) > q} denotes its right inverse. The Laplace transform of hitting times and the
q-potential measure can be characterized as follows: for b < x < a

EXx
[
e−qT

+
a ;T+

a < T−
b

]
=
W (q)(x− b)

W (q)(a− b)
, (3.2)

EXx

[∫ T+
a ∧T−

b

0

e−qtf(Xt)dt

]
=

∫ a

b

f(y)

(
W (q)(x− b)

W (q)(a− b)
W (q)(a− y)−W (q)(x− y)

)
dy.

(3.3)

In addition, we have

EXx
[
e−qT

−
b ;T−

b < T+
a

]
=Z(q)(x− b)− Z(q)(a− b)

W (q)(x− b)

W (q)(a− b)
, (3.4)

EXx
[
e−qT

−
b ;T−

b <∞
]
=Z(q)(x− b)− q

ΦX(q)
W (q)(x− b), (3.5)

where Z(q)(x) is the second scale function defined by

Z(q)(x) = 1 + q

∫ x

0

W (q)(y)dy. (3.6)

In (3.5) for q = 0, we understand q
ΦX(q)

in the limit as q ↓ 0. We also note that when

X has unbounded variation paths, Noba–Yano([17, Theorem 3.1]) and Avram–Pérez–
Yamazaki([1, pp.276]) proved the following.
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Theorem 3.1. The scale functions of spectrally negative Lévy processes satisfy

W (q)(x) =
1

nX0
[
e−qT

+
x ;T+

x <∞
] , q ≥ 0, x > 0, (3.7)

where nX0 denotes the excursion measure away from 0 subject to the normalization

nX0
[
1− e−qT0

]
=

1

Φ′
X(q)

, q > 0. (3.8)

We omit the proof of Theorem 3.1.

Remark 3.2. Bertoin([3, Proposition VII.15]) gave us an identity similar to (3.7). Let
nX0 be an excursion measure away from 0 of reflected process at 0. He proved that there
exists a constant k > 0 such that

W (0)(x) =
k

nX0 [T
+
x <∞]

, x > 0. (3.9)

The Laplace exponent ΨX has the following form:

ΨX(λ) = χXλ+
σ2
X

2
λ2 −

∫
(−∞,0)

(1− eλy + λy1(−1,0)(y))ΠX(dy), λ ≥ 0, (3.10)

for some constants χX ∈ R, σX ≥ 0 and some Lévy measures ΠX which satisfies
ΠX((0,∞)) = 0 and

∫
(−∞,0)

(1∧x2)ΠX(dx) <∞. We known that X has paths of bounded

variation if and only if σX = 0 and
∫
(−∞,0)

(1 ∧ |x|)ΠX(dx) < ∞; In this case, its Laplace

exponent is given by

ΨX(λ) = δXλ−
∫
(−∞,0)

(
1− eλy

)
ΠX(dy), λ ≥ 0, (3.11)

where δX = χX −
∫
(−1,0)

yΠX(dy). We recall the following result for general spectrally

negative Lévy processes, which are called the Gerber–Shiu formula.

Theorem 3.3 (See, e.g., [12, Corollary 10.2]). For q ≥ 0, x > 0 and non-negative
measurable function f , we have

EXx
[
e−qT

−
0 f(XT−

0 −, XT−
0
);T−

0 < T0

]
(3.12)

=

∫
(0,∞)

dv

∫
(−∞,0)

f(v, u)(e−ΦX(q)vW
(q)
X (x)−W

(q)
X (x− v))ΠX(du− v). (3.13)

We have its analogy to the excursion measure as follows.

Theorem 3.4 ([17, Theorem 3.4]). For q ≥ 0 and non-negative measurable function f ,
we have

nX0

[
e−qT

−
0 f(XT−

0 −, XT−
0
); 0 < T−

0 < T0

]
=

∫
(0,∞)

dv

∫
(−∞,0)

f(v, u)e−ΦX(q)vΠX(du− v).

(3.14)
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The proof of Theorem 3.4 is almost the same as that of [17, Theorem 3.4] but we give
it for completeness of the paper.

Proof. By the monotone convergence theorem, the strong Markov property and since X
has no positive jumps, we have

nX0

[
e−qT

−
0 f(XT−

0 −, XT−
0
); 0 < T−

0 < T0

]
(3.15)

= lim
ϵ↓0

nX0

[
e−qT

−
0 f(XT−

0 −, XT−
0
);T+

ϵ <∞, XT−
0
> ϵ, T−

0 < T0

]
(3.16)

= lim
ϵ↓0

nX0

[
e−qT

+
ϵ ;T+

ϵ <∞
]
EXϵ
[
e−qT

−
0 f(XT−

0 −, XT−
0
);XT−

0
> ϵ, T−

0 < T0

]
. (3.17)

By (3.7) and Theorem 3.3, we have

(3.17) = lim
ϵ↓0

1

W
(q)
X (ϵ)

∫
(ϵ,∞)

dv

∫
(−∞,0)

f(v, u)e−ΦX(q)vW
(q)
X (ϵ)ΠX(du− v), (3.18)

and by the monotone convergence theorem, we obtain (3.14).

We recall the following formula for the killed potential measure.

Theorem 3.5 ([12, Corollary 8.8]). For q ≥ 0, x > 0 and non-negative measurable
function f , we have

EXx

[∫ T−
0

0

e−qtf(Xt)dt

]
=

∫ ∞

0

f(y)(e−ΦX(q)W
(q)
X (x)−W (q)

x (x− y))dy. (3.19)

We have its analogy to the excursion measure as follows.

Theorem 3.6 ([17, Lemma 3.6]). For q ≥ 0 and non-negative measurable function f , we
have

nX0

[∫ T−
0

0

e−qtf(Xt)dt

]
=

∫ ∞

0

f(y)e−ΦX(q)dy. (3.20)

Proof. Using the monotone convergence theorem and the strong Markov property, we
have

nX0

[∫ T−
0

0

e−qtf(Xt)dt

]
= lim

ϵ↓0
nX0

[∫ T−
0

0

e−qtf(Xt)1{Xt∈(ϵ,∞)}dt;T
+
ϵ <∞

]
(3.21)

= lim
ϵ↓0

nX0

[
e−qT

+
ϵ ;T+

ϵ <∞
]
EXϵ

[∫ T−
0

0

e−qtf(Xt)1{Xt∈(ϵ,∞)}dt

]
.

(3.22)

By (3.7) and Theorem 3.5, we have

(3.22) = lim
ϵ↓0

1

W
(q)
X (ϵ)

∫ ∞

ϵ

f(y)e−ΦX(q)W
(q)
X (ϵ)dy, (3.23)

and we obtain (3.20).
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The following lemma is obtained from the proof of [17, Theorem 3.1].

Lemma 3.7. We have

χX = (Ψ′
X(0) ∧ 0) +

∫
(−∞,0)

(∫ −u

0

eΦX(0)(u+v)dv + u1(−1,0)(u)

)
ΠX(du). (3.24)

In particular, if X has bounded variation paths, then we have

δX = (Ψ′
X(0) ∧ 0) +

∫
(−∞,0)

ΠX(du)

∫ −u

0

eΦX(0)(u+v)dv. (3.25)

Proof. The derivative of ΨX has the following form:

Ψ′
X(λ) = χX + σ2

Xλ+

∫
(−∞,0)

(yeλy − y1(−1,0)(y))ΠX(dy), λ > 0. (3.26)

So we have

Ψ′
X(0) = χX +

∫
(−∞,−1]

yΠX(dy). (3.27)

i) Suppose that Ψ′
X(0) > 0. In this case, we have Φ(0) = 0 and so the right hand side

of (3.24) is equal to

Ψ′
X(0)−

∫
(−∞,−1]

uΠX(du). (3.28)

By (3.27), we obtain (3.24).

ii) Suppose that Ψ′
X(0) ≤ 0. In this case, we have Φ(0) > 0 and so the right hand side

of (3.24) is equal to

1

ΦX(0)

∫
(−∞,0)

(
1− eΦX(0)u + ΦX(0)u1(−1,0)(u)

)
ΠX(du). (3.29)

By (3.10) with λ = ΦX(0), we obtain (3.24).

4 Refracted Lévy processes and their scale functions

In this section, we recall two previous studies Kyprianou–Loeffen([13]) and Noba–Yano([17]).

4.1 Kyprianou–Loeffen’s refracted Lévy processes

Let us recall some results of Kyprianou–Loeffen([13]). We fix a constant α > 0 and
let X be a general spectrally negative Lévy process, which may possibly have Gaussian
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component. Set Yt = Xt + αt. They defined a refracted Lévy process U as the pathwise
unique strong solution of the stochastic differential equation

Ut − U0 = Xt −X0 + α

∫ t

0

1{Us<0}ds, t ≥ 0. (4.1)

Let ΨX and ΨY denote Laplace exponent of X and Y , respectively. We write ΦX(θ) =

inf{λ > 0 : ΨX(λ) > θ} and ΦY (θ) = inf{λ > 0 : ΨY (λ) > θ}. For q ≥ 0, W
(q)
X and W

(q)
Y

are the scale functions of X and Y , respectively, in the sense of Section 3.

Theorem 4.1 ([13, Theorem 1]). There exists a pathwise unique strong solution to the
stochastic differential equation (4.1).

The proof of pathwise uniqueness. Suppose that U (1) and U (2) are two strong solutions to
(4.1) with a common starting point U

(1)
0 = U

(2)
0 = x ∈ R. We define

∆t = U
(1)
t − U

(2)
t = α

(∫ t

0

(
1{U(1)

s <0} − 1{U(2)
s <0}

)
ds

)
. (4.2)

By integration by parts, we have

∆2
t = 2α

∫ t

0

∆s

(
1{U(1)

s <0} − 1{U(2)
s <0}

)
ds. (4.3)

When U
(1)
t ≥ U

(2)
t , we have ∆t ≥ 0 and

(
1{U(1)

s <0} − 1{U(2)
s <0}

)
≤ 0. When U

(1)
t ≤ U

(2)
t , we

have ∆t ≤ 0 and
(
1{U(1)

s <0} − 1{U(2)
s <0}

)
≥ 0. So by (4.3), we have ∆2

2 ≤ 0. This implies

that ∆t = 0 and U (1) = U (2) a.s.

Sketch of the proof of existence of a strong solution. First, we assume thatX has bounded
variation paths. Suppose that X0 = 0 for simply. We set S+

0 = 0 and we put U0,+
t = Xt

for t ≥ 0. We set

S−
1 = inf

{
t > S+

0 : U0,1
t ≤ 0

}
, U1,−

t = U0,+
t + α(t− S−

1 ), t ≥ S−
1 , (4.4)

S+
1 = inf

{
t > S−

1 : U1,−
t ≥ 0

}
, U1,+

t = U1,−
t − α(t− S+

1 ), t ≥ S+
1 . (4.5)

We can and do define S−
n , {U

n,−
t : t ≥ 0}, S+

n and {Un,+
t : t ≥ 0} for n ≥ 2 similarly by

induction. Since X has bounded variation paths and 0 is irregular for (−∞, 0) for X, we
have 0 < S−

1 < S+
1 < S−

2 < S+
2 . . . and limn↑∞ S−

n = limn↑∞ S+
n = ∞ a.s. We define

Ut =

{
Un−1,+
t , t ∈ [S+

n−1, S
−
n ), n ∈ N

Un,−
t , t ∈ [S−

n , S
+
n ), n ∈ N.

(4.6)

Then we easily see that U satisfies (4.1).
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Second, we assume that X has unbounded variation paths. We fix x ∈ R. By [2,
pp.210], on the same probability space carrying X, we can construct a sequence of spec-
trally negative Lévy processes X(n) with bounded variation paths, such that for t > 0,

lim
n↑∞

sup
s∈[0,t]

∣∣X(n)
s −Xs

∣∣ = 0, a.s. (4.7)

Let U (n) be the strong solutions of (4.1) associated with X(n). We can prove that there
exists a stochastic process U (∞) such that for t > 0,

lim
n↑∞

sup
s∈[0,t]

∣∣U (n)
s − U (∞)

s

∣∣ = 0, a.s. (4.8)

We then see that U (∞) satisfies the SDE by taking limit as n ↑ ∞ in the SDE’s for U (n).

Let U be a solution to Kyprianou–Loeffen’s stochastic differential equation (4.1).

Theorem 4.2 ([13, Theorem 4]). For q ≥ 0 and x, a, b ∈ R with b < x < a, we have

EUx
[
e−qT

+
a ;T+

a < T−
b

]
=
W

(q)
U (x, b)

W
(q)
U (a, b)

, (4.9)

where W
(q)
U is defined by

W
(q)
U (x, y) =

{
W

(q)
Y (x− y) + α1{x≥0}

∫ x
0
W

(q)
X (x− z)W

(q)′
Y (z − y)dz, x ∈ R, y < 0,

W
(q)
X (x− y), x ∈ R, y ≥ 0.

(4.10)

They also calculated the potential densities with and without barriers.

Theorem 4.3 ([13, Theorem 6]). For q ≥ 0, x, a, b ∈ R with b < 0 < a, x ∈ (b, a) and
non-negative measurable function f , we have

EUx

[∫ T+
a ∧T−

b

0

e−qtf(Ut)dt

]
=

∫ a

b

f(y)rU(x, y)dy, (4.11)

EUx

[∫ T−
b

0

e−qtf(Ut)dt

]
=

∫ a

b

f(y)rU(x, y)dy, (4.12)

EUx

[∫ T+
a

0

e−qtf(Ut)dt

]
=

∫ a

b

f(y)rU(x, y)dy, (4.13)

EUx
[∫ ∞

0

e−qtf(Ut)dt

]
=

∫ a

b

f(y)rU(x, y)dy, (4.14)

where

r
(q)
U (x, y) =

W
(q)
U (x, b)

W
(q)
U (a, b)

W
(q)
U (a, y)−W

(q)
U (x, y), y ∈ [b, a] (4.15)
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r
(q)
U (x, y) =


W

(q)
U (x,b)

αH(q)

U (b;b)
e−ΦX(q)(y−b) −W

(q)
X (x− y) y ∈ (0,∞)

H(q)

U (y;b)

H(q)

U (b;b)
W

(q)
U (x, b)−W

(q)
U (x, y) y ∈ [b, 0]

(4.16)

with H
(q)
U (y; b) =

∫∞
0
e−ΦX(q)(z−b)W

(q)′
Y (z − y)dz,

r
(q)
U (x, y) =


H

(q)
U (x;b)

H
(q)
U (a;b)

W
(q)
X (a− y)−W

(q)
X (x− y) y ∈ (0, a]

H
(q)
U (x;b)

H
(q)
U (a;b)

W
(q)
U (a, y)−W

(q)
U (x, y) y ∈ (−∞, 0]

(4.17)

with H
(q)

U (x; b) = eΦY (q)(x−b) + αΦY (q)
∫ x
0
eΦY (q)(z−b)W

(q)
X (x− z)dz, and

r
(q)
U (x, y) =

{
H

(q)
U (x, y; b)−W

(q)
X (x− y) y ∈ (0,∞)

H
(q)
U (x, y; b)

∫∞
0
e−ΦY (q)(z−b)W

(q)′
Y (z − y)dz −W

(q)
U (x, y) y ∈ (−∞, 0]

(4.18)

with H
(q)
U (x, y; b) = eΦY (q)bH

(q)

U (x; b)ΦX(q)−ΦY (q)
ΦY (q)

e−ΦX(q)y, where W
(q)
U has been given in

(4.10).

4.2 Generalizations of refracted Lévy processes whose positive motions are
bounded variation

Before recalling some results of Noba–Yano([17]), we discuss refracted Lévy processes
whose positive motions have bounded variation paths.

Let us consider the stochastic differential equation

Ut − U0 =

∫
(0,t]

1{Us−≥0}dXs +

∫
(0,t]

1{Us−<0}dYs. (4.19)

Lemma 4.4 ([17]). Suppose X has bounded variation paths. Then the stochastic differ-
ential equation (4.19) has a strong solution. Furthermore, when X and Y are compound
Poisson processes with positive drifts, pathwise uniqueness for (4.19) holds.

Proof. We give the proof of the existence of a strong solution. The proof is similar to that
of Kyprianou–Loeffen’s refracted Lévy processes. Suppose that U0 = 0 for simplicity. We
set S+

0 = 0 and we put U0,+
t = Xt for t ≥ 0. We set

S−
1 = inf

{
t > S+

0 : U0,1
t ≤ 0

}
, U1,−

t = U0,+

S−
1

+ (Yt − YS−
1
), t ≥ S−

1 , (4.20)

S+
1 = inf

{
t > S−

1 : U1,−
t ≥ 0

}
, U1,+

t = U1,−
S+
1

+ (Xt −XS+
1
), t ≥ S+

1 . (4.21)

We can and do define S−
n , {U

n,−
t : t ≥ S−

n }, S+
n and {Un,+

t : t ≥ S+
n } for n ≥ 2 similarly

by induction. Since X and Y have bounded variation paths and 0 is irregular for (−∞, 0)
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for X and Y , we have 0 < S−
1 < S+

1 < S−
2 < S+

2 . . . and limn↑∞ S−
n = limn↑∞ S+

n = ∞ a.s.
We define

Ut =

{
Un−1,+
t , t ∈ [S+

n−1, S
−
n ), n ∈ N

Un,−
t , t ∈ [S−

n , S
+
n ), n ∈ N.

(4.22)

Then U satisfies (4.1). The proof in the case that X0 ̸= 0 is similar.

We assume that X and Y are compound Poisson processes with positive drifts. We
prove the pathwise uniqueness. Let U (1) denote the strong solution of (4.19) with U

(1)
0 = x

which is constructed as above. Let U (2) be another strong solutions of (4.19) with U
(2)
0 = x.

We define

T = inf{t > 0 : U
(1)
t ̸= U

(2)
t }. (4.23)

By the form of (4.19), the value U
(1)
T is determined by {U (1)

t : t < T} and the value U
(2)
T

is determined by {U (2)
t : t < T}, so we have U

(1)
T = U

(2)
T . Suppose U

(1)
T > 0, then U (1)

and U (2) behave as X for a while after time T . This fact is against the definition of T .
Similarly, if U

(1)
T < 0, then U (1) and U (2) behave as Y for a while after time T and this is

against the definition of T . So when T < ∞, it is necessary that U
(1)
T = U

(2)
T = 0. Since

{Xt+T − XT : t ≥ 0} and {Yt+T − YT : t ≥ 0} behave as pure positive drift on [T, T ′)

where T ′ = inf{t > T : Xt− ̸= Xt or Yt− ̸= Yt}, we have {U (1)
t+T −U

(1)
T : 0 ≤ t ≤ T ′ − T} =

{U (2)
t+T − U

(2)
T : 0 ≤ t ≤ T ′ − T} = {Xt+T − XT : 0 ≤ t ≤ T ′ − T}. This is against the

definition of T . So we obtain T = ∞ and the proof is completed.

4.3 Generalized refracted Lévy processes

Suppose X has unbounded variation paths. In this case we do not know existence nor
uniqueness for the SDE (4.19). Thus, following Noba–Yano([17]), we appeal to the excur-
sion theory.

Let nX0 denote the excursion measure of X away from 0 which satisfy

nX0
[
1− e−qT0

]
=

1

Φ′
X(q)

(4.24)

for q > 0. For all non-negative measurable functional F , we define the law of the stopped
process PU0

x by

EU0

x [F (U)] =

EY 0

x [F (Y 0)] , x < 0,

EXx
[
EY 0

X
T−
0

[F (w ◦ Y 0)]
∣∣
w=k

T−
0
X
; 0 < T−

0 ≤ T0

]
, x > 0,

(4.25)

and the excursion measure nU0 by

nU0 [F (U)] =n
X
0

[
EY 0

X
T−
0

[
F (w ◦ Y 0)

] ∣∣
w=k

T−
0
X
; 0 < T−

0 ≤ T0

]
. (4.26)
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By means of the excursion theory, we can construct from nU0 and {PU0

x }x∈T\{0} a R-valued
stochastic process U without stagnancy at 0.

Theorem 4.5 ([17, Theorme 6.4]). Generalized refracted Lévy process U is a Feller pro-
cess.

We will later in Theorem 6.3 state and prove it in a more general form. The corre-
sponding scale functions are introduced as follows.

Theorem 4.6 ([17, Theorem 6.2, 7.1]). For q ≥ 0, we define

W
(q)
U (x, y) =



W
(q)
Y (x− y), x ≤ 0, y < 0,

W
(q)
X (x)W

(q)
Y (−y)(Ψ′

X(0) ∨ 0)

+
∫∞
0
dv
∫
(−∞,0)

(
W

(q)
X (x)W

(q)
Y (−y)eΦX(0)u

−W
(q)
Y (u− y)W

(q)
X (x− v)

)
ΠX(du− v), x > 0, y < 0

W
(q)
X (x− y), x ∈ R, y ≥ 0.

(4.27)

Then we have (4.9), (4.11) and (4.15) for generalized refracted Lévy process U .

Corollary 4.7 ([17, Corollary 6.3]). We defined, for x > 0,

W
(q)

U (x) = W
(q)
X (x)(Ψ′

X(0) ∧ 0) (4.28)

+

∫ ∞

0

dv

∫
(−∞,0)

(
W

(q)
X (x)eΨY (0)u −W

(q)
X (x− v)eΨY (q)u

)
ΠX(du− v). (4.29)

Then for q ≥ 0 and x < a with a > 0, we have

EUx
[
e−qT

+
a

]
=
W

(q)

U (x)

W
(q)

U (a)
. (4.30)

In particular, W
(q)

U (x) is a continuous and increasing function of x.

Following [17] we also discuss an approximation problem of thier refracted Lévy pro-
cesses. Let X and Y be spectrally negative Lévy processes. Suppose that X has un-
bounded variation paths and no Gaussian component. Let ΨX and ΨY be Laplace expo-
nents of X and Y , respectively, which have the following form:

ΨX(λ) = χXλ−
∫
(−∞,0)

(1− eλy + λy1(−1,0)(y))ΠX(dy), λ ≥ 0, (4.31)

ΨY (λ) = χY λ+
σ2
Y

2
λ2 −

∫
(−∞,0)

(1− eλy + λy1(−1,0)(y))ΠY (dy), λ ≥ 0, (4.32)
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For n ∈ N, we define

ΨX(n)(λ) = δX(n)λ−
∫
(−∞,0)

(
1− eλy

)
ΠX(n)(dy), (4.33)

ΨY (n)(λ) = δY (n)λ−
∫
(−∞,0)

(
1− eλy

)
ΠY (n)(dy), (4.34)

where

δX(n) = χX +

∫
(−1,− 1

n
)

(−y)ΠX(dy), ΠX(n) = 1(−∞,− 1
n
)ΠX , (4.35)

δY (n) = χX + nσ2
X +

∫
(−1,− 1

n
)

(−y)ΠX(dy), ΠY (n) = 1(−∞,− 1
n
)ΠX + n2σ2

Y δ(− 1
n
). (4.36)

Let U be a generalized refracted Lévy process associated with X and Y , and let U (n) be
a generalized refracted Lévy process associated with X(n) and Y (n).

Theorem 4.8 ([17, Theorem 8.1]). The sequence of the processes (U (n),PU(n)

x ) converges
in distribution to (U,PUx ) for all x ∈ R.

We will later in Corollary 8.6 state and prove it in a more general form.

4.4 Kyprianou–Loeffen’s refracted Lévy processes viewed as generalized re-
fracted Lévy processes

Suppose that Y has the same distribution as{Xt + αt : t ≥ 0}. In this case we may expect
that generalized refracted Lévy process UNY coincides in law with Kyprianou–Loeffen’s
refracted Lévy process UKL although these two processes are constructed in different
ways. In addition, we may expect the corresponding scale functions W

(q)

UNY in Theorem

4.6 and W
(q)

UKL in Theorem 4.2 coincide, although their expressions look different. We
already know that for q ≥ 0 and (x, y) ∈ R× R\(0,∞)× (−∞, 0), we have

W
(q)

UNY (x, y) = W
(q)

UKL(x, y). (4.37)

Theorem 4.9. If Y has the same distribution as {Xt + αt : t ≥ 0}, then generalized re-
fracted Lévy process (UNY ,PUNY

x ) made by X and Y and Kyprianou–Loeffen’s refracted
Lévy process (UKL,PUKL

x ) made by X and α have the same distribution for all x ∈ R. In
addition, W

(q)

UNY and W
(q)

UKL coincide.

Proof. i) We assume that X has bounded variation paths.

We prove (4.37) for q ≥ 0 and (x, y) ∈ (0,∞)×(−∞, 0). Let ΨX denote to the Laplace
exponent of X of the form:

ΨX(λ) = δXλ−
∫
(−∞,0)

(
1− eλy

)
ΠX(dy), λ ≥ 0, (4.38)
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for δX > 0 and Lévy measure ΠX satisfying ΠX(0,∞) = 0 and
∫
(−∞,0)

(1∧|x|)ΠX(dx) <∞.

By [13, (4.13)], for (x, y) ∈ (0,∞)× (−∞, 0), we have

W
(q)

UKL(x, y) = δXW
(q)
X (x)W

(q)
Y (−y)−

∫
(0,∞)

dv

∫
(−∞,−v)

W
(q)
X (x− v)W

(q)
Y (−y + u+ v)ΠX(du).

(4.39)

By (4.27) and (4.39), it suffices to show that

δX = (Ψ′
X(0) ∨ 0) +

∫ ∞

0

dv

∫
(−∞,−v)

eΦX(0)(u+v)ΠX(du) (4.40)

By (3.25), we obtain (4.40) immediately.

Since killed potential measures of UNY and UKL are written by W
(q)

UNY and W
(q)

UKL as

(4.15), respectively, and by (4.37), resolvents of UNY and UKL are same. So (UNY ,PUNY

x )
and (UKL,PUKL

x ) have the same distribution for x ∈ R.

ii) We assume that X has unbounded variation paths.

Let {U (n)}n∈N be a sequence of refracted Lévy processes which has the same definition

as that in Theorem 4.8. By Theorem 4.8, the sequence of the processes (U (n),PU(n)

x )
converges in distribution to (UNY ,PUNY

x ) for all x ∈ R. On the other hand, by i) and the

proof of Theorem 4.1, the sequence of the processes (U (n),PU(n)

x ) converges in distribution
to (UKL,PUKL

x ) for all x ∈ R. So (UNY ,PUNY

x ) and (UKL,PUKL

x )have the same distribution
for x ∈ R.

For q ≥ 0 and x, a, b with b < x < a, we have

EUNY

x

[
e−qT

+
a ;T+

a < T−
b

]
= EUKL

x

[
e−qT

+
a ;T+

a < T−
b

]
. (4.41)

Scale functionsW
(q)

UNY andW
(q)

UKL satisfies (4.9) for UNY and UKL, respectively, so we have

W
(q)

UNY (x, b)

W
(q)

UNY (a, b)
=
W

(q)

UKL(x, b)

W
(q)

UKL(a, b)
, q ≥ 0, b < x < a. (4.42)

We already have (4.37) for x, y ∈ R2\(0,∞) × (−∞, 0). So we take x and b to satisfy
b < x < 0 and then by (4.42), we have

W
(q)

UNY (a, b) = W
(q)

UKL(a, b), a > 0. (4.43)

The proof is completed.

5 Generalized scale functions

We define generalized scale functions for standard processes with no positive jumps using
the excursion theory. In addition, we characterize the fluctuations of standard processes
with no positive jumps using the generalized scale functions. The results in this section
are based on [15].
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5.1 Definition of generalized scale functions

We define generalized scale functions. In addition, we characterize the two-sided exit
problems and the killed potential densities of standard processes with no positive jumps
using the generalized scale functions.

Let X, LX,x and nXx be those in Section 2. Let us define generalized scale functions.

Definition 5.1 ([15, Definition 3.1]). For q ≥ 0 and x, y ∈ T, we define generalized q-scale
function of X as

W
(q)
X (x, y) =


1

nX
y

[
e−qT+

x ;T+
x <∞

] , x ≥ y,

0, x < y,
(5.1)

where 1
∞ = 0.

Remark 5.2. All x ∈ T\{b0} is regular for (x,∞), i.e., PXx (T+
x = 0) = 1, thanks to the

assumptions of no positive jumps and of (A1). When x is irregular for itself, we have

W
(q)
X (x, x) = lXx by the definition of nXx .

Remark 5.3. Let us characterize generalized scale functions of diffusion processes in
terms of their characteristics. Let m and s be two R-valued strictly increasing continuous
functions on the interval [0,∞) satisfying s(0) = 0. Let X be a d

dm
d
ds
-diffusion process

with 0 being a reflecting boundary. Note that our nX0 coincides with the excursion measure
defined in [24, Definition 2.1] up to scale transformation. Let ψ(q) denote the increasing
eigenfunction d

dm
d
ds
ψ(q) = qψ(q) such that d

ds
ψ(q)(0) = 1. In other words, the ψ(q) is the

unique solution of the integral equation

ψ(q)(x) = s(x) + q

∫ x

0

(s(x)− s(y))ψ(q)(y)dm(y), x ∈ [0,∞). (5.2)

Then, by [24, Corollary 2.4], for q > 0 and x ∈ (0,∞), we have

ψ(q)(x) =
1

nX0
[
e−qT

+
x ;T+

x <∞
] , (5.3)

which shows that W
(q)
X (x, 0) = ψ(q)(x). In particular, we have W

(0)
X (x, 0) = s(x).

We fix b, a ∈ T with b < a. The upward exit time from the bounded interval [b, a] is
characterized as follows.

Theorem 5.4 ([15, Theorem 3.4]). For q ≥ 0 and x ∈ (b, a), we have

EXx
[
e−qT

+
a ;T+

a < T−
b

]
=
W

(q)
X (x, b)

W
(q)
X (a, b)

. (5.4)
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Proof. Since b < x < a and since X has no positive jumps, we have

nXb

[
e−qT

+
a ;T+

a <∞
]
= nXb

[
e−qT

+
x ;T+

x <∞
]
EXx
[
e−qT

+
a ;T+

a < T−
b

]
, (5.5)

where we utilized the strong Markov property of nXb (see, e.g., [4]).

In order to obtain killed potential density, we need the following lemma.

Lemma 5.5 ([17, Lemma 6.1], [15, Lemma 3.5]). For q ≥ 0 and x ∈ (b, a), we have

EXx
[
e−qT

+
a ;T+

a < T−
b

]
= nXx

[
e−qT

+
a ;T+

a <∞
]
EXx

[∫ T+
a ∧T−

b

0−
e−qtdLX,xt

]
. (5.6)

=
nXx

[
e−qT

+
a ;T+

a <∞
]

µXx q + nXx

[
1− e−qT01{T+

a =∞,T−
b =∞}

] . (5.7)

Proof. i) We assume that x is regular for itself.

Let p = {p(t) : t ∈ D(p)} on (Ω,F ,P) denote a Poisson point process with character-
istic measure nXx . We write ηX,x(s) =

∑
u≤s Tx(p(u)). We set A = {T+

a < ∞} ∪ {T−
b <

∞} ∪ {ζ < ∞} and κA = inf{s > 0 : p(s) ∈ A}. By the same argument as the proof of
[17, Lemma 6.1], we have

EXx
[
e−qT

+
a ;T+

a < T−
b

]
= E

[
e−qη

X,x(κA−)
] nXx [e−qT+

a ;A
]

nXx [A]
. (5.8)

We denote pAc = p|D(pAc ) with D(pAc) = {s ∈ D(p) : p(s) ∈ Ac}. We write ηX,xAc (s) =∑
u≤s Tx(pAc(u)) where Tx(∂) = 0. Note that ηX,x(κA−) = ηX,xAc (κA) and that ηX,xAc and

κA are independent. We thus have

E
[
e−qη

X,x(κA−)
]
= nXx [A]E

[∫ κA

0

exp
(
−qηX,x(t)

)
dt

]
(5.9)

= nXx [A]EXx

[∫ T+
a ∧T−

b

0−
e−qtdLX,xt

]
, (5.10)

where we used the fact that P[κA > t] = e−tn
X
x [A] and the identity

E[f(eq)] = qE
[∫ eq

0

f(t)dt

]
(5.11)

for an exponential variable with P[eq > t] = e−tq. Therefore we obtain (5.6). On the other
hand, we have

(5.9) = nXx [A]

∫ ∞

0

nXx
[
exp
(
−t
(
nXx [A] + µXx q + nXx

[
1− e−qTx ;Ac

]))]
dt (5.12)

=
nXx [A]

µXx q + nXx [1− e−qTx1Ac ]
, (5.13)
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so we obtain (5.7).

ii) We assume that x is irregular for itself.

Let T
(n)
x denote the n-th hitting time to x and let T

(0)
x = 0. Then we have

EXx

[∫ T+
a ∧T−

b

0−
e−qtdLX,xt

]
= lXx

∞∑
i=0

EXx
[
e−qT

(i)
x ;T (i)

x < T+
a ∧ T−

b

]
(5.14)

= lXx

∞∑
i=0

(
EXx
[
e−qTx ;Tx < T+

a ∧ T−
b

])i
. (5.15)

On the other hand, we have

EXx
[
e−qT

+
a ;T+

a < T−
b

]
=

∞∑
i=0

(
EXx
[
e−qTx ;Tx < T+

a ∧ T−
b

])iEXx [e−qT+
a ;T+

a < Tx ∧ T−
b

]
.

(5.16)

Therefore we obtain (5.6). Furthermore, we have

(5.16) =
EXx

x

[
e−qT

+
a ;T+

a <∞
]

1− EXx
[
e−qTx ;Tx < T+

a ∧ T−
b

] , (5.17)

so we obtain (5.7).

By Theorem 5.4 and Lemma 5.5, for q ≥ 0 and x ∈ (b, a), we obtain

EXx

[∫ T+
a ∧T−

b

0−
e−qtdLX,xt

]
=
W

(q)
X (x, b)W

(q)
X (a, x)

W
(q)
X (a, b)

. (5.18)

For q ≥ 0 and non-negative measurable function f , we have

EXx

[∫ T−
b ∧T+

a

0

e−qtf(Xt)dt

]
=

∫
(b,a)

f(y)EXx

[∫ T−
b ∧T+

a

0

e−qtdLX,yt

]
m(dy). (5.19)

The following theorem represents the potential density in terms of the generalized scale
functions.

Theorem 5.6 ([15, Theorem 3.6]). For q ≥ 0 and x, y ∈ (b, a), we have

EXx

[∫ T−
b ∧T+

a

0

e−qtdLX,yt

]
=
W

(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y)−W

(q)
X (x, y). (5.20)

Proof. i) Let us consider the case where x = y.
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When x is regular for itself, the continuity of the local time implies

EXx

[∫ T−
b ∧T+

a

0

e−qtdLX,yt

]
= EXx

[∫ T−
b ∧T+

a

0−
e−qtdLX,yt

]
(5.21)

and the absence of positive jumps implies

W
(q)
X (x, x) =

1

nXx
[
e−qT

+
x ;T+

x <∞
] = 1

nXx [T
+
x <∞]

= 0. (5.22)

Thus (5.20) follows from (5.18).

When x is irregular for itself, we have

EXx

[∫ T−
b ∧T+

a

0

e−qtdLX,yt

]
= EXx

[∫ T−
b ∧T+

a

0−
e−qtdLX,yt

]
− lXx . (5.23)

By (5.18) and Remark 5.2, we obtain (5.20).

ii) Let us consider the case where x ̸= y.

On one hand, we have

EXx

[∫ T−
b ∧T+

a

0

e−qtdLX,yt

]
= EXx

[
e−qTy ;Ty < T−

b ∧ T+
a

]
EXy

[∫ T−
b ∧T+

a

0−
e−qtdLX,yt

]
. (5.24)

On the other hand, we can prove

EXx
[
e−qTy ;Ty < T−

b ∧ T+
a

]
=
W

(q)
X (a, b)

W
(q)
X (y, b)

(
W

(q)
X (x, b)

W
(q)
X (a, b)

− W
(q)
X (x, y)

W
(q)
X (a, y)

)
. (5.25)

Indeed, for x < y, it is obvious, and, for x > y, the left-hand-side of (5.25) equals to

EXx
[
e−qT

+
a ;Ty < T+

a < T−
b

]
EXy
[
e−qT

+
a ;T+

a < T−
b

] =
EXx
[
e−qT

+
a ;T+

a < T−
b

]
− EXx

[
e−qT

+
a ;T+

a < T−
y

]
EXy
[
e−qT

+
a ;T+

a < T−
b

] , (5.26)

which leads to (5.25) by Theorem 5.4. Combining (5.24), (5.18) and (5.25), we obtain
(5.20).

The downward exit time is characterized as follows.

Corollary 5.7 ([15, Corollary 3.7]). For x, y ∈ (b0, a0), we define

Z
(q)
X (x, y) =

{
1 + q

∫
(y,x)

W
(q)
X (x, z)m(dz), x > y,

1, x ≤ y.
(5.27)

Then we have

EXx
[
e−qT

−
b ;T−

b < T+
a

]
= Z

(q)
X (x, b)− W

(q)
X (x, b)

W
(q)
X (a, b)

Z
(q)
X (a, b). (5.28)
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Proof. We have

EXx
[
e−qT

−
b ;T−

b < T+
a

]
= EXx

[
e−q(T

−
b ∧T+

a );T−
b ∧ T+

a <∞
]
− EXx

[
e−qT

+
a ;T+

a < T−
b

]
. (5.29)

By Theorem 5.6 and by the identity e−qs = 1− q
∫ s
0
e−qtdt, we have

EXx
[
e−q(T

−
b ∧T+

a )
]
= 1− q

∫
(b,a)

(
W

(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y)−W

(q)
X (x, y)

)
m(dy). (5.30)

By (5.29), (5.30) and Theorem 5.4, we have

(5.29) = 1 + q

∫
(b,a)

W
(q)
X (x, y)m(dy)− W

(q)
X (x, b)

W
(q)
X (a, b)

(
1 + q

∫
(b,a)

W
(q)
X (a, y)m(dy)

)
, (5.31)

and therefore we obtain (5.28).

5.2 Duality in terms of generalized scale functions

In this section, we give the necessary and sufficient conditions of duality in terms of
generalized scale functions.

Let X and X̂ be processes defined in Section 2.2. When X and X̂ are in duality, we
always use the local times defined by [22, Proposition of Section V .1]. In other cases, we

use the normalization of the local times in Section 2.2. We let scale functions {W (q)
X }q≥0

and {W (q)

−X̂
}
q≥0

be those in Section 5.1.

Theorem 5.8 ([15, Theorem 4.4]). If X and X̂ are in duality relative to m, then we have

W
(q)
X (x, y) = W

(q)

−X̂
(−y,−x), x, y ∈ (b0, a0). (5.32)

If T is open, then the converse is also true.

To prove Theorem 5.8, we need the following lemma, which gives us the relationship
between the killed potential densities of X and X̂.

Lemma 5.9 ([15, Lemma 4.5]). Suppose X and X̂ be in duality relative to m. Then, for
all b < a ∈ T and x, y ∈ (b, a), we have

EXx

[∫ T−
b ∧T+

a

0

e−qtdLX,yt

]
= EX̂y

[∫ T−
b ∧T+

a

0

e−qtdLX̂,xt

]
. (5.33)

Proof. Let X(b,a) and X̂(b,a) denote the X and X̂ killed on exiting (b, a), respectively. We

denote by R
(q)

X(b,a) and R
(q)

X̂(b,a)
the q-resolvent operators of X(b,a) and X̂(b,a), respectively.
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For each q > 0, there exists a function r
(q)

X(b,a) : (b, a) × (b, a) → [0,∞) such that all the
conditions (i)–(iv) of Theorem 2.3 hold. By definition, we have

R
(q)

X(b,a)f(y) = EXx

[∫ T−
b ∧T+

a

0

e−qtf(Xt)dt

]
=

∫
(b,a)

f(y)EXx

[∫ T−
b ∧T+

a

0

e−qtdLX,yt

]
m(dy).

(5.34)

So, for all x ∈ (b, a), we have r
(q)

X(b,a)(x, ·) = EXx
[∫ T−

b ∧T+
a

0
e−qtdLX,·t

]
, m-a.e. Since

EXx

[∫ T−
b ∧T+

a

0

e−qtdLX,yt

]
= EXx

[∫ ∞

0

e−qtdLX,yt

]
− EXx

[
e−q(T

−
b ∧T+

a )EXX
T−
b

∧T+
a

[∫ ∞

0

e−qtdLX,yt

]]
(5.35)

and the dominated convergence theorem, the function y 7→ EXx
[∫ T−

b ∧T+
a

0
e−qtdLX,yt

]
is

cofinely continuous. By cofine continuity, for all x, y ∈ (b, a), we see that r
(q)

X(b,a)(x, y)
coincides with the left hand side of (5.33), and also, in the same way, with the right hand
side of (5.33).

Proof of Theorem 5.8. Let us assume that X and X̂ are in duality relative to m. First,
we fix b, y, a ∈ T with b < y < a. By Lemma 5.9 and Theorem 5.6, for all q ≥ 0 and
x ∈ (b, y), we have

W
(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y) =

W
(q)

−X̂
(−y,−a)

W
(q)

−X̂
(−b,−a)

W
(q)

−X̂
(−b,−x). (5.36)

Hence there exists a function γ1 : [0,∞)× T → (0,∞) satisfying

W
(q)
X (x, b) = γ1(q, b)W

(q)

−X̂
(−b,−x) x ∈ (b, a0). (5.37)

Second, we fix b, x, a ∈ T with b < x < a. For q ≥ 0 and y ∈ (x, a), we have (5.36). Thus
there exists a function γ2 : [0,∞)× T → (0,∞)

W
(q)
X (a, y) = γ2(q, a)W

(q)

−X̂
(−y,−a) y ∈ (b0, a). (5.38)

By (5.37) and (5.38), for q ≥ 0 and a, b ∈ (b0, a0), we have γ1(q, b) = γ2(q, a), so γ1 and
γ2 depend on only q ≥ 0. By (5.36), γ1 = γ2 ≡ 1. Thus, for y, x ∈ (b0, a0) with y < x, we

have W
(q)
X (x, y) = W

(q)

−X̂
(−y,−x). By the fine continuity of W

(q)
X and the cofine continuity

W
(q)

−X̂
, for x ∈ (b0, a0), we have W

(q)
X (x, x) = W

(q)

−X̂
(−x,−x).

Let us assume that T is open and that (5.32) is satisfied. Then, for b < a ∈ T and
x, y ∈ (b, a), we have

W
(q)
X (x, b)

W
(q)
X (a, b)

W
(q)
X (a, y)−W

(q)
X (x, y) =

W
(q)

−X̂
(−y,−a)

W
(q)

−X̂
(−b,−a)

W
(q)

−X̂
(−b,−x)−W

(q)

−X̂
(−y,−x).

(5.39)
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By Theorem 5.6, the first terms and the second terms of the both sides of (5.39) are the

potential densities of X and X̂ killed on exiting (b, a), respectively. We therefore conclude
the duality of the killed processes, which yields that of the original processes.

Remark 5.10. We suppose that X and X̂ are in duality. Then at each point x ∈ T, fine
continuity implies right continuity and cofine continuity implies left continuity. By the
proof of Lemma 5.9 and Theorem 5.6, the function x 7→ W (q)(x, y) is finely (and hence
right) continuous and y 7→ W (q)(x, y) is cofinely (and hence left) continuous.

5.3 The case of spectrally negative Lévy processes

When X is a spectrally negative Lévy process, the definition of the usual scale function
W (q)(x) is based on the Laplace transform∫ ∞

0

e−qtW (q)(x)dx =
1

Ψ(β)− q
, β > Φ(q). (3.1)

It satisfies

W (q)(x) = eΦ(q)xr(q)(0+)− r(q)(−x) (5.40)

where r(q) is the right-continuous potential density of X with respect to the Lebesgue
measure (see [21]). Pistorius([21]) provided a potential theoretic viewpoint for the scale
functions in the sense that he started from (5.40) and proved (3.1). We now provide
another viewpoint.

Theorem 5.11. For all q ≥ 0, let us start from

W (q)(x) =
1

nX0
[
e−qT

+
x ;T+

x <∞
] . (3.7)

Then we have (3.1).

Let X be a spectrally negative Lévy process and m denote the Lebesgue measure.
By Sections 5.1 and 5.2, we have local times, excursion measures and generalized scale
functions W

(q)
X . Since X has the stationary independent increment property, for q ≥ 0

and x, y ∈ R, we have

EX0
[∫ ∞

0

e−qtdLX,y−xt

]
= EXx

[∫ ∞

0

e−qtdLX,yt

]
. (5.41)

If we define r(q)(x) = r
(q)
X (0, x) and W (q)(x) = W

(q)
X (0, x), then we have

r(q)(y − x) = EXx
[∫ ∞

0

e−qtdLX,yt

]
, x, y ∈ R, (5.42)

W (q)(x− y) = W
(q)
X (x, y), x, y ∈ R, (5.43)
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for all q ≥ 0. Note that r(q) is a càglàd function. In fact, we have

lim
h↓0

r(q)(x+ h) = lim
h↓0

EX−h
[∫ ∞

0

e−qtdLX,xt

]
(5.44)

= lim
h↓0

EX−h
[
e−qT

+
0 : T+

0 ≤ Tx

]
EX0
[∫ ∞

0−
e−qtdLX,xt

]
+ lim

h↓0
EX−h

[
e−qTx ;Tx < T+

0

]
EXx
[∫ ∞

0−
e−qtdLX,xt

]
(5.45)

= EX0
[∫ ∞

0−
e−qtdLX,xt

]
(5.46)

where in (5.46) we used

EX0
[
e−qT

+
x ;T+

x <∞
]
= e−Φ(q)x, x > 0, (5.47)

and limx↓0 EX0
[
e−qT

+
x ;T+

x <∞
]
= limx↓0 e

−Φ(q)x = 1 (see, e.g., [12, Theorem 3.12]).

Proof of Theorem 5.11. By the equation obtained from (5.6) when b limits to infinity, for
x > 0, we have

W (q)(x) =
1

nX0
[
e−qT

+
x ;T+

x <∞
] (5.48)

=
1

EX0
[
e−qT

+
x ;T+

x <∞
]EX0

[∫ T+
x

0−
e−qtdL0

t

]
(5.49)

=
1

EX0
[
e−qT

+
x ;T+

x <∞
](EX0 [∫ ∞

0−
e−qtdL0

t

]
− EX0

[
e−qT

+
x ;T+

x <∞
]
EXx
[∫ ∞

0

e−qtdL0
t

])
(5.50)

=
1

EX0
[
e−qT

+
x ;T+

x <∞
]r(q)(0+)− r(q)(−x). (5.51)

By (5.47), for β > Φ(q), we have∫ ∞

0

e−βxW (q)(x)dx =

∫ ∞

0

(
e−(β−Φ(q))xr(q)(0+)− e−βxr(q)(−x)

)
dx (5.52)

=
r(q)(0+)

β − Φ(q)
−
∫ ∞

0

e−βxr(q)(−x)dx. (5.53)
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On the other hand, for all β < Φ(q), we have

1

q −Ψ(β)
=

∫ ∞

0

e−(q−Ψ(β))tdt (5.54)

=

∫ ∞

0

e−qtEX0
[
eβXt

]
dt (5.55)

=

∫ ∞

−∞
eβxr(q)(x)dx (5.56)

=

∫ ∞

0

eβxEX0
[
e−qT

+
x ;T+

x <∞
]
r(q)(0+)dx+

∫ ∞

0

e−βxr(q)(−x)dx (5.57)

=

∫ ∞

0

e−(Φ(q)−β)xr(q)(0+)dx+

∫ ∞

0

e−βxr(q)(−x)dx (5.58)

=
r(q)(0+)

Φ(q)− β
+

∫ ∞

0

e−βxr(q)(−x)dx. (5.59)

By analytic extension, we have (5.59) for β > Φ(q). By (5.53) and (5.59), we obtain (3.1).

Remark 5.12. The later part of the proof of Theorem 5.11 is almost the same as a part
of the proof of [21, Theorem 1(i)–(iii)].

Remark 5.13. We can compute the value lX := lX0 when X has bounded variation paths.
In this case, the Laplace exponent of X can be written as the following: for λ ≥ 0,

Ψ(λ) = δX −
∫
(−∞,0)

(1− eλx)ΠX(dx), (5.60)

for some constant δX > 0 and Lévy measure ΠX satisfying
∫
(−∞,0)

(|x| ∧ 1)ΠX(dx) < ∞.

By the definitions of generalized scale functions, nX0 and [12, Lemma 8.6], we obtain

lX = lim
ϵ↓0

nX0
[
T+
ϵ <∞

]
= lim

ϵ↓0
W (0)(ϵ) =

1

δX
. (5.61)

6 Refracted processes

In this section, we construct a refracted process from two R-valued standard processes
with no positive jumps X and Y using the excursion theory and a landing function. This
section is based on [16, Section 3].

6.1 The definition of refracted processes

Let a0, a1, b0 and b1 be real numbers with −∞ ≤ b0 ≤ b1 < 0 < a1 ≤ a0 ≤ ∞. Let TX be
an interval with supTX = a0 and inf TX = b1. Let TY be an interval with supTY = a1
and inf TX = b0. We let T := TX ∪ TY . Let X and Y be TX and TY -valued standard
processes with no positive jumps, respectively. We assume X (resp. Y ) satisfying the
following conditions:
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(B1) (x, y) → EXx
[
e−Ty

]
> 0 (resp. (x, y) → EYx

[
e−Ty

]
> 0) is a B(TX) × B(TX) (resp.

B(TY )× B(TY ))-measurable function.

(B2) We assume that limy↑x EXy
[
e−Tx

]
= 1 for all x ∈ TX∩(0,∞) (resp. limy↑x EYy

[
e−Tx

]
=

1 for all x ∈ TY ∩ (−∞, 0]).

(B3) If a0 /∈ TX , we assume that limx↑a0 EXx
[
e−T

−
y

]
= 0 for all y ∈ TX (resp. If b0 /∈ TY ,

we assume that limx↓b0 EYx
[
e−T

+
y

]
= 0 for all y ∈ TY ).

(B4) X (resp. Y ) has a reference measure mX on TX (resp. mY on TY ).

We have the local times {LX,x}x∈TX
and {LY,x}x∈TY

, the excursion measures {nXx }x∈TX

and {nYx }x∈TY
, and the generalized scale functions {W (q)

X }q≥0 and {W (q)
Y }q≥0 of X and Y

in the same way as those in Section 5.1, respectively.

Let ψ : (0,∞)× (−∞, 0) → (−∞, 0) be a measurable function satisfying

nX0

[
1− e−T

−
0 EYJX

[
e−T0

]
; 0 < T−

0 < T0

]
<∞, (6.1)

where JX = ψ(XT−
0 −, XT−

0
). We write X0 and Y 0 for the stopped processes of X and Y

upon hitting zero, respectively. Let c0 ≥ 0 be a constant. We define the law of stopped
process PU0

x for x ∈ T\{0} and the excursion measure nU0 away from 0 by

EU0

x

[
F (U0)

]
=

EY 0

x [f(Y 0)] , x ∈ T ∩ (−∞, 0),

EXx
[
EY 0

JX
[F (w ◦ Y 0)]

∣∣
w=k

T−
0
X
;T−

0 ≤ T0

]
, x ∈ T ∩ (0,∞),

(6.2)

nU0 [F (U)] = c0n
Y
0

[
F (Y );T−

0 = 0
]

+ nX0

[
EY 0

JX

[
F (w ◦ Y 0)

] ∣∣
w=k

T−
0
X
; 0 < T−

0 ≤ T0

]
(6.3)

for all non-negative measurable functional F (if PX0 [T0 > 0] = 1 or PY0 [T0 > 0] = 1, we
assume that c0 = 0).

Lemma 6.1. The stochastic process (U,PUx ) constructed by means of excursion theory
from nU0 and {PU0

x }x∈T\{0} without stagnancy at 0 is a T-valued right continuous strong
Markov process.

We give the proof of Lemma 6.1 in Section 6.2.

Remark 6.2. The condition c0 = 0 is necessary when PX0 [T0 > 0] = 1. Indeed, when
PX0 [T0 > 0] = 1 and c0 > 0, the measure nU0 does not satisfy the condition [23, pp.323,
(vi’)] and then nU0 is not an excursion measure.

We now prove standardness of U , or more strongly, Feller property. This property
is used to define the generalized scale functions of U and to study the approximation
theorem of U .
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Theorem 6.3 ([16, Lemma 3.2]). The refracted process U is a Feller process.

Proof. Let C0(= CT
0 ) denote the set of continuous functions f from T to R such that

f(x) → 0 as x ↓ b0 when b0 /∈ T and as x ↑ a0 when a0 /∈ T. For f ∈ C0, we write
∥f∥ = supx∈R |f(x)|. It is sufficient to verify the following conditions:

(i) For all q > 0, R
(q)
U is a map from C0 to C0.

(ii) For all f ∈ C0, limq↑∞

∥∥∥qR(q)
U f − f

∥∥∥ = 0.

1) The proof of (i)

First, we prove that R
(q)
U f is continuous. We let x ∈ T. By the construction of U and

(B2), it is easy to check that limy↑x EUy
[
e−qTx

]
= limy↓x EUx

[
e−qTy

]
= 1. We fix x ∈ T. For

y < x, we have

limy↑x

∣∣∣R(q)
U f(x)−R

(q)
U f(y)

∣∣∣ (6.4)

≤limy↑x

∣∣∣R(q)
U f(x)− EUy

[
e−qTx

]
R

(q)
U f(x)

∣∣∣+ limy↑x

∣∣∣∣EUy [∫ Tx

0

e−qtf(Ut)dt

]∣∣∣∣ = 0. (6.5)

For y > x, we have

limy↓x

∣∣∣R(q)
U f(x)−R

(q)
U f(y)

∣∣∣ (6.6)

≤limy↓x

∣∣∣EUx [e−qTy]R(q)
U f(y)−R

(q)
U f(y)

∣∣∣+ limy↓x

∣∣∣∣EUx [∫ Ty

0

e−qtf(Ut)dt

]∣∣∣∣ = 0. (6.7)

Second, we prove that limx↑a0 R
(q)
U f(x) = 0 when a0 /∈ T and limx↓b0 R

(q)
U f(x) = 0

when b0 /∈ T. We assume that a0 /∈ T. By the assumption (B3), for all x ∈ (0, a0),

limy↑a0 EUy
[
e−T

−
x

]
= limy↑a0 EXy

[
e−T

−
x

]
= 0. Since f ∈ C0, for all ϵ > 0, there exists

δ ∈ (0, a0) such that supx∈(δ,a0) |f(x)| < ϵ. So we have

lim
x↑a0

∣∣∣R(q)
U f(x)

∣∣∣ ≤ lim
x↑a0

(
EXx

[∫ T−
δ

0

e−qt |f(Xt)| dt

]
+ EUx

[∫ ∞

T−
δ

e−qt ∥f∥ dt

])
(6.8)

≤ ϵ

q
+ lim

x↑a0
EXx
[
e−qT

−
δ

] ∥f∥
q

=
ϵ

q
. (6.9)

Therefore we have limx↑a0

∣∣∣R(q)
U f(x)

∣∣∣ = 0. In the same way, we have limx↓b0

∣∣∣R(q)
U f(x)

∣∣∣ = 0

when b0 /∈ T.

2) The proof of (ii)

By classical arguments, it is sufficient to prove limq↑∞

∣∣∣qR(q)
U f(x)− f(x)

∣∣∣ = 0 for x ∈ T.
Fix x ∈ T. For all ϵ > 0, there exists δ > 0 such that

|x− y| < δ ⇒ |f(x)− f(y)| < ϵ, x, y ∈ T. (6.10)
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We define

T ↑
δ = inf{t > 0 : |Ut − x| ≥ δ} . (6.11)

Then we have∣∣∣qR(q)
U f(x)− f(x)

∣∣∣ ≤ qEUx

[∫ T ↑
δ

0

e−qt |f(Ut)− f(x)| dt

]
+ qEUx

[∫ ∞

T ↑
δ

e−qt |f(Ut)− f(x)| dt

]
(6.12)

≤ ϵEUx
[
1− e−qT

↑
δ

]
+ 2 ∥f∥EUx

[
e−qT

↑
δ

]
. (6.13)

By the dominated convergence theorem, we have

lim sup
q↑∞

∣∣∣qR(q)
U f(x)− f(x)

∣∣∣ ≤ ϵ. (6.14)

and so we have limq↑∞

∣∣∣qR(q)
U f(x)− f(x)

∣∣∣ = 0. The proof is completed.

6.2 Proof of Lemma 6.1

Let us prove Lemma 6.1. Our proof is based on [17, Appendix]. For this purpose, we
use a result of Salisubury([23]), which gives the necessary and sufficient condition for a
measure to be a excursion measure. For t ≥ 0, we denote Dt = σ(ω 7→ ω(s) : s ≤ t).

Theorem 6.4 ([23, Theorem 2]). Let (Z0,PZ0

x ) be a R-valued right-continuous strong
Markov process stopped at 0. Suppose that a σ-finite measure n on D satisfies the following
conditions:

(i) n is concentrated on D0 := {ω ∈ D : ω(0) = 0, T0(ω) > 0, ω(t) = 0 for t ≥ T0}.

(ii) n
[
1− e−T0

]
<∞.

(iii) For all t > 0, A1 ∈ Dt with A1 ⊂ {T0 > t} and A2 ∈ B(D),

n
[
A1 ∩ θ−1

t (A2)
]
=

∫
A1

PZ0

ω(t)

[
Z0 ∈ A2

]
n[dω] , (6.15)

where θt denotes the shift operator.

(iv) If a measure n′ on D satisfies n ≥ n′ ≥ 0 and the counterpart of Condition (iii) for
n′, then n′ satisfies the following:

• If n is a finite measure, then there exists k ∈ [0, 1] such that n′ = kn.

• If n is a infinite measure, then either n′[D0] = 0 or n′[D0] = ∞.
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Then there is a right-continuous strong Markov process Z for which n is an excursion
measure away from 0 and (Z0,PZ0

x ) is the stopped process.

To prove Theorem 6.1, we need to check that U0 is a right-continuous strong Markov
process and that nU0 satisfies conditions of Theorem 6.4.

Lemma 6.5. The stopped process (U0,PU0

x ) has the Markov property.

Proof. It is obvious that (U0,PU0

x ) = (Y 0,P0
x) for x < 0 satisfies the Markov property. We

thus need to prove that (U0,PU0

x ) satisfies the Markov property for x > 0. Let A1 ∈ Dt

with A1 ⊂ {T0 > t} and A2 ∈ B(D). We write A = A1 ∩ θ−1
t (A2). By the definition of

PU0

x , we have

PU0

x

[
U0 ∈ A

]
=EXx

PY 0

y

[
w ◦ Y 0 ∈ A

] ∣∣∣∣y=JX
w=(X(s))

s<T
−
0

;T−
0 ≤ t

 (6.16)

+ EXx

PY 0

y

[
w ◦ Y 0 ∈ A

] ∣∣∣∣y=JX
w=(X(s))

s<T
−
0

; t > T−
0

 , (6.17)

where w ◦ w′ denotes the concatenation of a path w = (ws)s<s0 of finite length s0 and a
path w′ = (w′

s)s≥0 of infinite length:

(w ◦ w′)s =

{
ws s < s0,

w′
s−s0 s ≥ s0.

(6.18)

By the Markov property of Y 0, we have

EXx

PY 0

y

[
w ◦ Y 0 ∈ A

] ∣∣∣∣y=JX
w=(X(s))

s<T
−
0

;T−
0 ≤ t

 (6.19)

=EXx

PY 0

y

[
w ◦ Y 0 ∈ A1,

[
Y 0
s

]
s≥t−u ∈ A2

] ∣∣∣∣∣y=JX
w=(X(s))s<u

u=T
−
0

;T−
0 ≤ t

 (6.20)

=EXx

EY 0

y

[
1{w◦Y 0∈A1}P

Y 0

y′

[
Y 0 ∈ A2

] ∣∣∣
y′=Y 0

t−u

] ∣∣∣∣∣y=JX
w=(X(s))s<u

u=T
−
0

;T−
0 ≤ t

 (6.21)

=EUx
[
1{U∈A1}PU

0

y

[
U0 ∈ A2

] ∣∣∣
y=Ut

;T−
0 ≤ t

]
. (6.22)

We can do a similar argument for (6.17). So we obtain

PU0

x

[
U0 ∈ A

]
=

∫
A1

PU0

ω(t)

[
U0 ∈ A2

]
PU0

x

[
U0 ∈ dω

]
. (6.23)

The proof is complete.
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Lemma 6.6. The stopped process U0 has the strong Markov property.

Proof. Fix t > 0. By the proof of [6, Theorem 1 of Section 2.3], it is sufficient to prove
that x 7→ EU0

x [f(U0
t )] is continuous for all bounded continuous function f with f(0) = 0.

Continuity at x < 0 is obvious, by the Feller property of Y 0. Left-continuity at x = 0 is
also obvious. Right-continuity at x = 0 follows from the fact that PU0

y [T0 ∈ ·] →
y→0

δ0. Let

us consider continuity at x > 0.

EU0

y

[
f(U0

t )
]
=EU0

y

[
f(U0

t );T
−
0 ∧ t < Tx

]
+ EXy

[
f(Xt);Tx ≤ t < T−

0

]
(6.24)

+ EXy

EY 0

y′

[
f(Y 0

t−u)
] ∣∣∣∣

y′=JX

u=T
−
0

;Tx ≤ T−
0 ≤ t

 . (6.25)

Note that we have PX0 [limy→0 Ty = 0] = 1 by the assumption that X is spectrally negative
and of bounded variation. Since X and Y 0 have càdlàg paths, we have the following
identities:

EU0

y

[
f(U0

t );T
−
0 ∧ t < Tx

]
≤ ∥f∥PX0

[
T−
−x

2
< Tx−y

]
→
y→x

0, (6.26)

EXy
[
f(Xt);Tx ≤ t < T−

0

]
= EXy

[
EXx
[
f(Xt−u); t < T−

0

] ∣∣∣
u=Tx

;Tx ≤ t ∧ T−
0

]
(6.27)

→
y→x

EXx
[
f(Xt); t < T−

0

]
, (6.28)

EXy

EY 0

y′

[
f(Y 0

t−u)
] ∣∣∣∣

y′=JX

u=T
−
0

;Tx ≤ T−
0 ≤ t

 (6.29)

= EXy

EXx
EY 0

y′

[
f(Y 0

t−u−v)
] ∣∣∣∣

y′=JX

u=T
−
0

;T−
0 ≤ t

∣∣∣∣
v=Tx

;Tx ≤ T−
0 ∧ t

 (6.30)

→
y→x

EXx

EY 0

y′

[
f(Y 0

t−u)
] ∣∣∣∣

y′=JX

u=T
−
0

;T−
0 ≤ t

 . (6.31)

The proof is now complete.

We have already proved the strong Markov property of U0. So in the following theorem,
we check the other conditions of Theorem 6.4.

Lemma 6.7. The measure n = nU0 satisfies Conditions (i), (ii), (iii) and (iv) of Theorem
6.4.

Proof. It is obvious by definition and (6.1) that nU0 satisfies (i) and (ii).

The proof of (iii) is the same as that of the Markov property of (U0,PU0

x ) for x > 0 in
Lemma 6.5.
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Let us prove (iv). First, we prove in the case that X has unbounded variation paths.
We define the σ-finite measure n′ϵ by

n′ϵ[F (U ϵ)] = n′
[
EX0

ϵ

[
F (ω ◦X0)

]
|ω={Ut}t∈[0,T+

ϵ )
;T+

ϵ <∞
]
, (6.32)

for all non-negative measurable functional F . Then for 0 < δ < ϵ and non-negative
measurable functional F , we have

n′δ[F (U δ)
]
=n′ϵ[F (U ϵ)] + n′

[
EX0

δ

[
F (ω ◦X0);T+

ϵ = ∞
]
|ω={Ut}t∈[0,T+

δ
)
;T+

δ <∞
]

(6.33)

≥n′ϵ[F (U ϵ)] . (6.34)

So we can define a measure n′0 by n′0 = limϵ↓0 n
′ϵ as the increasing limit. Then n′0 satisfies

the Markov property for {PX0

x }x∈R\{0} and for non-negative measurable functional F , we
have

n′0
[
F ({U0

t }t<T−
0
)
]
= n′

[
F ({Ut}t<T−

0
)
]
. (6.35)

By the definition of nU0 , we have nX0 ≥ n′0 ≥ 0. By [23, Proposition 1], nX0 satisfies
Condition (iv) and n′0[T−

0 > 0
]
is equal to either 0 or ∞. By (6.35), n′[T−

0 > 0
]
is equal

to either 0 or ∞. If n′[T−
0 = 0

]
> 0, then n′|{T−

0 =0} satisfies the Markov property for Y 0

and nY0 = c0n|{T−
0 =0} ≥ c0n

′|{T−
0 =0} ≥ 0, so by [23, Proposition 1], n′[T−

0 = 0
]
is equal to

either 0 or ∞. From the above, we obtain either n′[D0] = 0 or n′[D0] = ∞.

Second, we prove in the case that X has bounded variation paths. We construct a
measure n′0 in the same way as that in the unbounded variation case. Then by [23,
Proposition 1], there exists k ∈ [0, 1] such that n′0 = knX0 . By (6.35) and the definition
of nU0 , we obtain n′ = knU0 .

The proof is completed.

7 Duality problem of refracted processes

We deal with the duality problem of refracted processes. This section follows [16, Section
6 and Section 7].

7.1 Duality problem of refracted processes

In this section, we obtain the necessary and sufficient condition that the refracted processes
U and Û are in duality in terms of an identity involving excursion measures and landing
functions.

We assume that T is an open set. Let X and Y be recurrent standard processes which
are same as those in Section 6. We assume that 0 is irregular for itself for X and Y or
0 is regular for itself for X and Y . Let X̂ and Ŷ be TX-valued and TY -valued standard
processes with no negative jumps which satisfy the following conditions:
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(B̂1) (x, y) → EX̂x
[
e−Ty

]
> 0 (resp. (x, y) → EŶx

[
e−Ty

]
> 0) is a B(TX) × B(TX) (resp.

B(TY )× B(TY ))-measurable function.

(B̂2) We assume that limy↓x EX̂y
[
e−Tx

]
= 1 for all x ∈ TX∩[0,∞) (resp. limy↓x EŶy

[
e−Tx

]
=

1 for all x ∈ TY ∩ (−∞, 0)).

(B̂3) We assume that limx↑a0 EX̂x
[
e−T

−
y

]
= 0 for all y ∈ TX (resp. We assume that

limx↓b0 EŶx
[
e−T

+
y

]
= 0 for all y ∈ TY ).

(B̂4) X̂ (resp. Ŷ ) has a reference measure mX on TX (resp. mY on TY ).

In addition we assume the following conditions:

• X0 = XT0− = 0, nX0 -a.s. Y0 = YT0− = 0, nY0 -a.s.

• X and X̂(resp. Y and Ŷ ) are in duality relative to mX (resp. mY ).

We take the local times {LX,x}x∈TX
, {LY,x}x∈TY

, {LX̂,x}x∈TX
and {LŶ ,x}x∈TY

, the excur-

sion measures {nXx }x∈TX
, {nYx }x∈TY

, {nX̂x }x∈TX
and {nŶx }x∈TY

, and the generalized scale

functions {W (q)
X }q≥0, {W

(q)
Y }q≥0, {W

(q)

−X̂
}
q≥0

, and {W (q)

−Ŷ
}
q≥0

as those in Section 5.2. As

the landing functions, let ψ : (0,∞) × (−∞, 0) → (−∞, 0) be a measurable function
satisfying (6.1) and ϕ : (−∞, 0)× (0,∞) → (0,∞) be a measurable function satisfying

nY0

[
1− e−T

+
0 EXϕ(Y

T+
0 −,YT+

0
)

[
e−T0

]
; 0 < T+

0 < T0

]
<∞. (7.1)

Let PU0

x and nU0 be those in Section 6. By the excursion theory, we can construct a T-
valued right continuous strong Markov processes U from nU0 and {PU0

x }x∈T\{0}. Let ĉ0 ≥ 0

and ĉ1 > 0 be constants. We define the law of stopped process PÛ0

x for x ̸= 0 and an

excursion measure nÛ0 away from 0 by the following identities:

PÛ0

x

[
F (Û0)

]
=


EX̂0

x

[
F (X̂0)

]
, x > 0,

EŶx
[
EX̂0

ϕ(Ŷ
T+
0 −,ŶT+

0
)

[
F (ω ◦ X̂0)

] ∣∣
w=k

T+
0
Ŷ
;T+

0 ≤ T0

]
, x < 0,

(7.2)

nÛ0

[
F (Û)

]
= ĉ0n

X̂
0

[
F (X̂);T+

0 = 0
]

+ ĉ1n
Ŷ
0

[
EX̂0

ϕ(Ŷ
T+
0 −,ŶT+

0
)

[
F (ω ◦ X̂0)

] ∣∣
w=k

T+
0
Ŷ
; 0 < T+

0 ≤ T0

]
(7.3)

for all positive measurable functional F . By the excursion theory, we can construct a
T-valued right continuous strong Markov processes Û from nÛ0 together with {PÛx }x∈T\{0}.

We may and do assume c0 = ĉ0 = ĉ1 = 1 without loss of generality. Let us ex-
plain the reason. We discuss positivity of c0. By Lemma 2.4, the excursion mea-
sures nU0 and nÛ0 need to satisfy nU0 [ · ] = c2n

Û
0 [ρx( · )] for some constant c2 > 0.
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This means that nU0
[
· ;T−

0 = 0
]
= c0n

Y
0

[
· ;T−

0 = 0
]
= c2ĉ1n

Ŷ
0

[
ρx( · );T+

0 = T0
]
=

c2n
Û
0

[
ρx( · );T+

0 = T0
]
. So c0 needs to be equal to c2ĉ1 unless nŶ0

[
ρx( · );T+

0 = T0
]
is

the zero measure. When nŶ0
[
ρx( · );T+

0 = T0
]
is the zero measure, so is nY0

[
· ;T−

0 = 0
]

by Lemma 2.4, which allows us to take c0 > 0. For the same reason, we may assume that
1 = c2ĉ0. By changing the normalization of mY , n

Y
0 and nÛ0 , we may assume c0 = c2 = 1

without loss of generality, which yields ĉ0 = ĉ1 = 1.

Furthermore, when nX0
[
· ;T−

0 = T0
]
and nY0

[
· ;T−

0 = 0
]
are the zero measures, we

fix κ ∈ TX ∩ (0,∞) and we change the normalization of mY , n
Y
0 and nÛ0 to satisfy

nU0
[
supt∈(0,ζ) Ut > κ

]
= nÛ0

[
supt∈(0,ζ) Û > κ

]
.

We define mU = mX |[0,∞) +mY |(−∞,0). The following theorem gives an identity which
characterizes the duality.

Theorem 7.1 ([16, Theorem 6.1]). If nX0 , n
Y
0 , ψ and ϕ satisfy

nX0

[
h(XT−

0 −, ψ(XT−
0 −, XT−

0
)); 0 < T−

0 < T0

]
= nY0

[
h(ϕ(YT−

0
, YT−

0 −), YT−
0
); 0 < T−

0 < T0

]
(7.4)

for all non-negative measurable function h, or equivalently,

nX̂0

[
h(X̂T+

0
, ψ(X̂T+

0
, X̂T+

0 −)); 0 < T+
0 < T0

]
= nŶ0

[
h(ϕ(ŶT+

0 −, ŶT+
0
), ŶT+

0 −); 0 < T+
0 < T0

]
(7.5)

for all h, then U and Û are in duality relative to mU . The converse is also true.

To prove Theorem 7.1, we need the following lemma about the time reversality.

Lemma 7.2 ([16, Theorem 6.2]). If (7.4) is true, then we have

nU0 [ · ]
d
= nÛ0 [ρ0( · )] . (7.6)

Proof. By (6.3) and Lemma 2.4, for non-negative measurable functional F , we have

nU0 [F (U)] = nX0
[
F (X);T−

0 = T0
]

+ nX0

[
EY 0

ψ(X
T−
0 −,XT−

0
)

[
F (ω ◦ Y 0)

] ∣∣
w=k

T−
0
X
; 0 < T−

0 < T0

]
+ nY0

[
F (Y );T−

0 = 0
]

(7.7)

= nX̂0

[
F (ρ0X̂);T+

0 = 0
]

+ nX̂0

[
EY 0

ψ(X̂
T+
0
,X̂

T+
0 −)

[
F (ω ◦ Y 0)

] ∣∣
w=kT0ρ0θT+

0
X̂t
; 0 < T+

0 < T0

]
+ nŶ0

[
F (ρ0Ŷ );T+

0 = T0

]
(7.8)
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By (7.5), Lemma 2.4 and Fubini’s theorem, we have

nX̂0

[
EY 0

ψ(X̂
T+
0
,X̂

T+
0 −)

[
F (ω ◦ Y 0)

] ∣∣
w=kT0ρ0θT+

0
X̂t
; 0 < T+

0 < T0

]
= nX̂0

[∫
PX̂0

X̂
T+
0

[
X̂0 ∈ dω

]
EY 0

ψ(X̂
T+
0
,X̂

T+
0 −)

[
F (kT0ρ0ω ◦ Y 0)

]
; 0 < T+

0 < T0

]
(7.9)

= nŶ0

[∫
PX̂0

ϕ(Ŷ
T+
0 −,ŶT+

0
)

[
X̂0 ∈ dω

]
EY 0

Ŷ
T+
0 −

[
F (kT0ρ0ω ◦ Y 0)

]
; 0 < T+

0 < T0

]
(7.10)

= nŶ0

[
EY 0

Ŷ
T+
0 −

[∫
F (ω ◦ Y 0)PX̂0

y

[
kT0ρ0X̂ ∈ dω

]] ∣∣∣
y=ϕ(Ŷ

T+
0 −,ŶT+

0
)
; 0 < T+

0 < T0

]
. (7.11)

By the strong Markov property and Lemma 2.4, we have

(7.11) = nY0

[
EY 0

Y
T−
0

[∫
F (ω ◦ Y 0)PX̂0

y

[
kT0ρ0X̂ ∈ dω

]] ∣∣∣
y=ϕ(Y

T−
0
,Y

T−
0 −)

; 0 < T−
0 < T0

]
(7.12)

= nY0

[∫
F (ω ◦ θT−

0
Y )PX̂0

ϕ(Y
T−
0
,Y

T−
0 −)

[
kT0ρ0X̂ ∈ dω

]
; 0 < T−

0 < T0

]
(7.13)

= nY0

[
EX̂0

ϕ(Y
T−
0
,Y

T−
0 −)

[
F (kT0ρ0X̂ ◦ ω′)

] ∣∣∣
ω′=θ

T−
0
Y
; 0 < T−

0 < T0

]
(7.14)

= nŶ0

[
EX̂0

ϕ(Ŷ
T+
0 −,ŶT+

0
)

[
F (ρ0(ω ◦ X̂0))

] ∣∣∣
ω=k

T+
0
Ŷ
; 0 < T+

0 < T0

]
. (7.15)

By (7.15), we have

(7.8) = nŶ0

[
F (ρ0Ŷ );T+

0 = T0

]
+ nŶ0

[
EX̂0

ϕ(Ŷ
T+
0 −,ŶT+

0
)

[
F (ρ0(ω ◦ X̂0))

] ∣∣∣
ω=k

T+
0
Ŷ
; 0 < T+

0 < T0

]
+ nX̂0

[
F (ρ0X̂);T+

0 = 0
]

(7.16)

= nÛ0

[
F (ρ0Û)

]
(7.17)

So we obtain (7.6).

To study the duality of U , we need to know a reference measure of U . The following
lemma proves that mU is a reference measure of U .

Lemma 7.3 ([16, Lemma 6.3]). For all q > 0 and x ∈ T, the measure R
(q)
U 1(·)(x) is

absolutely continuous with respect to mU(·).

Proof. Let A be a set in B(T) which satisfiesmX(A∩[0,∞)) = 0 andmY (A∩(−∞, 0)) = 0.
It is sufficient to prove that EU0

[∫∞
0
e−qt1A(Ut)dt

]
= 0. By the compensation theorem of
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excursion point processes, we have

qnU0
[
1− e−qT0

]
EU0
[∫ ∞

0

e−qt1A(Ut)dt

]
(7.18)

= nU0

[∫ T0

0

e−qt1A(Ut)dt

]
(7.19)

= nX0

[∫ T−
0

0

e−qt1A(Xt)dt

]
+ nX0

[
EYJX

[∫ T+
0

0

e−qt1A(Yt)dt

]]
+ nY0

[∫ T0

0

e−qt1A(Yt)dt;T
−
0 = 0

]
.

(7.20)

By the assumption of A, we have

nX0

[∫ T−
0

0

e−qt1A(Xt)dt

]
= qnX0

[
1− e−qT0

]
EX0
[∫ ∞

0

e−qt1A∩[0,∞)(Xt)dt

]
= 0, (7.21)

EYJX

[∫ T+
0

0

e−qt1A(Yt)dt

]
≤ EYJX

[∫ ∞

0

e−qt1A∩(−∞,0)(Yt)dt

]
= 0. (7.22)

and

nY0

[∫ T0

0

e−qt1A(Yt)dt;T
−
0 = 0

]
≤ qnY0

[
1− e−qT0

]
EY0
[∫ ∞

0

e−qt1A∩(−∞,0)(Yt)dt

]
= 0

(7.23)

So we obtain EU0
[∫∞

0
e−qt1A(Ut)dt

]
= 0.

By the same argument as the proof of Lemma 7.3, we can prove that mU is a reference
measure of Û .

To prove Theorem 7.1, we use the generalized scale functions of U . So we want to
find suitable normalization of local times of U . By [7, Theorem 18.4], we let local times
{LU,x′}x∈T\{0} of U be those in Section 2. We set nU ′

0 = nU0 and let nU ′
x for x ∈ T\{0} be

the excursion measure associated to LU,x′. Then there exists the positive function c(x)
such that c(0) = 1 (by the definition of U0) and for all non-negative functional F :

nU ′
x

[
F ({Ut}t<T−

0
)
]
= c(x)nXx

[
F ({Xt}t<T−

0
)
]
, x ∈ T ∩ [0,∞), (7.24)

nU ′
x

[
F ({Ut}t<T+

0
)
]
= c(x)nYx

[
F ({Yt}t<T+

0
)
]
, x ∈ T ∩ (−∞, 0]. (7.25)

Then we have c(x) = 1 mU -a.e. Indeed, for all q > 0, x, y ∈ T ∩ [0,∞) and non-negative
measurable function f , we have

EUx

[∫ T−
0

0

e−qtdLU,y′t

]
=

1

c(y)
EXx

[∫ T−
0

0

e−qtdLX,yt

]
(7.26)
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and∫
T∩[0,∞)

f(y)EUx

[∫ T−
0

0

e−qtdLU,y′t

]
mU(dy) = EUx

[∫ T−
0

0

e−qtf(Ut)dt

]
(7.27)

= EXx

[∫ T−
0

0

e−qtf(Xt)dt

]
(7.28)

=

∫
T∩[0,∞)

f(y)EXx

[∫ T−
0

0

e−qtdLX,yt

]
mU(dy).

(7.29)

So c(x) = 1 on T ∩ [0,∞) mU -a.e. Similarly, c(x) = 1 on T ∩ (−∞, 0) mU -a.e. We now
set LU,x = c(x)LU,x,′ and nUx = 1

c(x)
nU,′x . This local times satisfy (2.9) and (2.10) since

c(x) = 1 mU -a.e.

In the same way, let the excursion measures {nÛx }x∈T of Û be those in Section 2 satis-
fying the following conditions;

nÛx

[
F ({Ût}t<T−

0
)
]
= nX̂x

[
F ({X̂t}t<T−

0
)
]
, x ∈ T ∩ [0,∞), (7.30)

nÛx

[
F ({Ût}t<T+

0
)
]
= nŶx

[
F ({Ŷt}t<T+

0
)
]
, x ∈ T ∩ (−∞, 0]. (7.31)

We let the scale functions
{
W

(q)
U

}
q≥0

and
{
W

(q)

−Û

}
q≥0

be those in (5.1).

Proof of Theorem 7.1. Let us assume that we have (7.4) for all non-negative measurable
function h. By Theorem 5.8 and Lemma 7.3, it is sufficient to prove that

W
(q)
U (x, y) = W

(q)

−Û
(−y,−x), (7.32)

for q ≥ 0 and x, y ∈ T. For 0 ≤ y < x, we have

W
(q)
U (x, y) = nUy

[
e−qT

+
x ;T+

x <∞
]−1

= nXy

[
e−qT

+
x ;T+

x <∞
]−1

= W
(q)
X (x, y) (7.33)

= W
(q)

−X̂
(−y,−x) = n−X̂

−x

[
e−qT

+
−y ;T+

−y <∞
]−1

= n−Û
−x

[
e−qT

+
−y ;T+

−y <∞
]−1

= W
(q)

−Û
(−y,−x)
(7.34)

by the definitions of nUy , n
−Û
−x and Theorem 5.8. Similarly, for y < x ≤ 0, we have

W
(q)
U (x, y) = W

(q)
Y (x, y) = W

(q)

−Ŷ
(−y,−x) = W

(q)

−Û
(−y,−x). (7.35)

When y < 0 < x, by (5.7), (5.1) and (5.4), we have

W
(q)
U (x, y) = W

(q)
U (0, y)W

(q)
U (x, 0)nU0

[
1− e−qT01{T−

y =∞,T+
x =∞}

]
(7.36)
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and

W
(q)

−Û
(−y,−x) = W

(q)

−Û
(−y, 0)W (q)

−Û
(0,−x)n−Û

0

[
1− e−qT01{T−

y =∞,T+
x =∞}

]
. (7.37)

By Lemma 7.2, (7.34), (7.35), (7.36) and (7.37), we obtain (7.32).

We assume that U and Û are in duality relative to mU . By Lemma 2.4 and the
definitions of nU0 and nÛ0 , we have (7.6). We have

nX0

[
h(XT−

0 −, ψ(XT−
0 −, XT−

0
)); 0 < T−

0 < T0

]
= nU0

[
h(UT−

0 −, UT−
0
); 0 < T−

0 < T0

]
(7.38)

and

nY0

[
h(ϕ(YT−

0
, YT−

0 −), YT−
0
); 0 < T−

0 < T0

]
= nŶ0

[
h(ϕ(ŶT+

0 −, YT+
0
), ŶT+

0 −); 0 < T+
0 < T0

]
(7.39)

= nÛ0

[
h(ÛT+

0
, ÛT+

0 −); 0 < T+
0 < T0

]
. (7.40)

By (7.6), (7.38) and (7.40), we obtain (7.4). The proof is completed.

7.2 An example of the duality problem

In this section, we construct refracted processes in duality from spectrally negative stable
processes.

Let X be a spectrally negative strictly α1-stable process whose Lévy measure is

ΠX(dx) = cX1{x<0}|x|−α1−1dx (7.41)

for a constant cX > 0, and Y be a spectrally negative strictly α2-stable process whose
Lévy measure is

ΠY (dx) = cY 1{x<0}|x|−α2−1dx (7.42)

where cY > 0. Then it is known that

X̂ (under PX̂x )
d
= −X (under PX−x) (7.43)

and

Ŷ (under PŶx )
d
= −Y (under PY−x). (7.44)

We set reference measure mX(dx) as α1−1
cX

dx and reference measure mY (dx) as α2−1
cY

dx.

Let nX0 and nY0 be those in Section 7.1. We want to find suitable landing functions such

that U and Û are in duality. So we need to find ψ and ϕ satisfying (7.4).

Proposition 7.4 ([16, Proposition 7.1]). Suppose α1 > α2. We let ψ(x, y) = y(x− y)
α1−1
α2−1

−1

and ϕ(x, y) = y(y − x)
α2−1
α1−1

−1
. Then U constructed from X, Y , ψ and c0 = 0 and Û con-

structed from X̂, Ŷ , ψ̂ and c0 = 0 are well-defined and in duality relative to mU .

39



Proof. Let us prove (7.4). By Theorem 3.4, we have

nX0

[
h(XT−

0 −, ψ(XT−
0 −, XT−

0
)); 0 < T−

0 < T0

]
=
α1 − 1

cX

∫ ∞

0

dv

∫
(−∞,0)

h(v, ψ(v, u))ΠX(du− v) (7.45)

= (α1 − 1)

∫ ∞

0

dv

∫ ∞

0

h(v, ψ(v,−u))(u+ v)−1−α1du (7.46)

and

nY0

[
h(ϕ(YT−

0
, YT−

0 −), YT−
0
); 0 < T−

0 < T0

]
=
α2 − 1

cY

∫ ∞

0

dv

∫
(−∞,0)

h(ϕ(u, v), u)ΠY (du− v) (7.47)

= (α2 − 1)

∫ ∞

0

dv

∫ ∞

0

h(ϕ(−u, v),−u)(u+ v)−1−α2du. (7.48)

We set s = u
u+v

, t = u+v, t1 = t−α1+1 and t2 = t−α2+1. Then we have u = st, v = t(1−s)
and

∣∣∂u
∂s

∂v
∂t

− ∂u
∂t

∂v
∂s

∣∣ = t. So we have

(7.46) = (α1 − 1)

∫ 1

0

ds

∫ ∞

0

h(t(1− s), ψ(t(1− s),−st))t−α1dt (7.49)

=

∫ 1

0

ds

∫ ∞

0

h(t1
− 1

α1−1 (1− s), ψ(t1
− 1

α1−1 (1− s),−st1−
1

α1−1 ))dt1 (7.50)

and

(7.48) = (α2 − 1)

∫ 1

0

ds

∫ ∞

0

h(ϕ(−st, t(1− s)),−st)t−α2dt (7.51)

=

∫ 1

0

ds

∫ ∞

0

h(ϕ(−st2−
1

α2−1 , t2
− 1

α2−1 (1− s)),−st2−
1

α2−1 )dt2. (7.52)

Since ψ(x, y) = y(x− y)
α1−1
α2−1

−1
and ϕ(x, y) = y(y − x)

α2−1
α1−1

−1
, we have

ψ(t
− 1

α1−1 (1− s),−st−
1

α1−1 ) = −st−
1

α2−1 , s, t > 0 (7.53)

and

ϕ(−st−
1

α2−1 , t
− 1

α2−1 (1− s)) = t
− 1

α1−1 (1− s), s, t > 0. (7.54)

By (7.50), (7.52), (7.53) and (7.54), we obtain (7.4).

Let us prove (6.1) and (7.1). Let ΦX and ΦY be those in Section 8. By [12, Theorem
3.12], we have

nX0

[
1− e−T

−
0 EYψ(X

T−
0 −,XT−

0
)

[
e−T0

]
; 0 < T−

0 < T0

]
(7.55)

=nX0

[
1− e−T

−
0 e

ΦY (1)ψ(X
T−
0 −,XT−

0
)
; 0 < T−

0 < T0

]
(7.56)

≤nX0
[
1− e−T

−
0 e

ΦY (1)X
T−
0 ; 0 < T−

0 < T0, XT−
0 − −XT−

0
≤ 1
]

(7.57)

+ nX0

[
1− e−T

−
0 e

ΦY (1)ψ(X
T−
0 −,XT−

0
)
; 0 < T−

0 < T0, XT−
0 − −XT−

0
> 1
]

(7.58)
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where the inequality (7.57) uses α1 > α2. There is a constant q ≥ 1 such that ΦX(q) ≥
ΦY (1). By [12, Theorem 3.12] and the strong Markov property, we have

(7.57) ≤ nX0

[
1− e−qT

−
0 e

ΦX(q)X
T−
0

]
= nX0

[
1− e−qT0

]
<∞. (7.59)

By the property of excursion measures, we have

(7.58) ≤ nX0

[
XT−

0 − −XT−
0
> 1
]
<∞. (7.60)

By (7.59) and (7.60), we obtain (6.1). Since we have (7.4) and (6.1), in the same way

as the proof of Lemma 7.2, we obtain (7.1). So the refracted processes U and Û are
well-defined. By (7.4) and Theorem 7.1, the proof is completed.

8 Refracted processes coming from Lévy processes

In this section we confine ourselves to the study of refracted processes coming from Lévy
processes. We discuss representations of the generalized scale functions and study the
approximation problems.

Let X, Y be spectrally negative Lévy processes which have Laplace exponents

ΨX(λ) = χXλ+
σ2
X

2
λ2 −

∫
(−∞,0)

(1− eλy + λy1(−1,0)(y))ΠX(dy), λ ≥ 0, (8.1)

ΨY (λ) = χY λ+
σ2
Y

2
λ2 −

∫
(−∞,0)

(1− eλy + λy1(−1,0)(y))ΠY (dy), λ ≥ 0, (8.2)

for some constants χX , χY ∈ R, σX , σY ≥ 0 and some Lévy measures ΠX ,ΠY , respectively.
We let ΦX(θ) = inf{λ > 0 : ΨX(λ) > θ} and ΦY (θ) = inf{λ > 0 : ΨY (λ) > θ}. We adopt
the notation in Section 6: the reference measures mX , mY are Lebesgue measures and we
have the local times {LX,x}x∈R and {LY,x}x∈R, and the excursion measures {nXx }x∈R and

{nYx }x∈R of X and Y . For q ≥ 0, let W
(q)
X and W

(q)
Y denote the scale functions of X and

Y defined by the Laplace transform (3.1), respectively. Let ψ be a continuous landing
function which satisfies (6.1). Let c0 be a non-negative constant such that c0 = 0 when
σX = 0 or σY = 0.

In [12, Corollary 8.9], the potential densities of X is given as r
(q)
X (x, y) = r(q)(y − x)

with

r
(q)
X (x) = Φ′

X(q)e
−ΦX(q)x −W

(q)
X (−x), (8.3)

in particular, by (5.61) and [12, Lemma 8.6], we have

r
(q)
X (0) = Φ′

X(q)−W
(q)
X (0) = Φ′

X(q)− lX . (8.4)

So we have

nXx
[
1− e−qT0

]
=

1

EXx
[∫∞

0− e
−qtdLX,xt

] =
1

r
(q)
X (0) + lX

=
1

Φ′
X(q)

. (8.5)
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Let U be a refracted process constructed from X, Y , ψ and c0 in (C0). In this section,
we normalize local times {LU,x}x∈R\{0} and excursion measures {nUx }x∈R\{0} to satisfy, for
non-negative measurable functional F ,

nUx

[
F ({Ut}t<T−

0
)
]
= nXx

[
F ({Xt}t<T−

0
)
]
, x ∈ (0,∞), (8.6)

nUx

[
F ({Ut}t<T+

0
)
]
= nYx

[
F ({Yt}t<T+

0
)
]
, x ∈ (−∞, 0). (8.7)

Then by the same argument as that of the discussion after the proof of Lemma 7.3,
the local times {LU,x}x∈R satisfies the occupation formula with respect to the Lebesgue
measure.

8.1 Generalized scale functions of refracted processes

Let us discuss representations of the generalized scale functions. This section follows [17,

Section 6]. For q ≥ 0, let W
(q)
U be the generalized q-scale function of U . In this section,

we give a representation of genetralized scale functions of refracted processes using the
Laplace exponents and Lévy measures of X and Y .

Theorem 8.1. For q > 0, we have

W
(q)
U (x, y) =

{
W

(q)
Y (x− y), y < x ≤ 0,

W
(q)
X (x− y), 0 ≤ y < x.

(8.8)

In addition, for q ≥ 0 and y < 0 < x, we have

W
(q)
U (x, y) =

q

ΦX(q)
W

(q)
Y (−y)W (q)

X (x) +
σ2
X

2
W

(q)
Y (−y)

(
W

(q)′
X (x)− ΦX(q)W

(q)
X (x)

)
(8.9)

+ c0
σ2
Y

2
W

(q)
X (x)

(
ΦY (q)W

(q)
Y (−y)− σ2

Y

2
eΦY (q)y

(
W

(q)′′
Y (−y)W (q)

Y (−y)−W
(q)′2
Y (−y)

)
(8.10)

+

∫ −y

0

dv

∫
(0,∞)

eΦY (q)(u+y)
(
W

(q)′
Y (−y − v)W

(q)
Y (−y)−W

(q)
Y (−y − v)W

(q)′
Y (−y)

)
ΠY (du− v)

)
(8.11)

+

∫
(0,∞)

dv

∫
(−∞,0)

(
e−ΦX(q)vW

(q)
Y (−y)W (q)

X (x)−W
(q)
Y (−y + ψ(v, u))W

(q)
X (x− v)

)
ΠX(du− v).

(8.12)

Proof. By (8.6), (8.7) and the same argument as (7.33) and (7.36), we have,

W
(q)
U (x, y) =W

(q)
Y (x− y), y < x ≤ 0, (8.13)

W
(q)
U (x, y) =W

(q)
X (x− y), 0 ≤ x < y, (8.14)

W
(q)
U (x, y) =W

(q)
Y (−y)W (q)

X (x)nU0

[
1− e−qT01{T−

y =∞,T+
x =∞}

]
, y < 0 < x. (8.15)
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Let us compute nU0

[
1− e−qT01{T−

y =∞,T+
x =∞}

]
for q > 0 and y < 0 < x. We divide

nU0

[
1− e−qT01{T−

y =∞,T+
x =∞}

]
into the following sum:

nU0
[
1− e−qT0

]
+ nU0

[
e−qT0 ;T+

x <∞, T−
y = ∞

]
+ nU0

[
e−qT0 ;T−

y <∞
]
. (8.16)

For the first term, for q > 0, we have

nU0
[
1− e−qT0

]
= qnU0

[∫ T−
0

0

e−qtdt

]
+ nU0

[
e−qT

−
0 (1− e−q(T0−T

−
0 ))
]

(8.17)

= qnX0

[∫ T−
0

0

e−qtdt

]
+ nX0

[
e−qT

−
0 EYψ(X

T−
0 −,XT−

0
)

[
1− e−qT

+
0

]
;XT−

0
< 0

]
+ c0n

Y
0

[
1− e−qT0 ;T−

0 = 0
]
. (8.18)

By Theorem 3.4, Theorem 3.6, [12, Theorem 3.12] and [19, Lemma 2, (iv)], we have

(8.18) =q

∫ ∞

0

e−ΦX(q)xdx+

∫
(0,∞)

dv

∫
(−∞,0)

(
1− eΦY (q)ψ(v,u)

)
e−ΦX(q)vΠX(du− v) + c0

σ2
Y

2
ΦY (q)

(8.19)

=
q

ΦX(q)
+

∫
(0,∞)

dv

∫
(−∞,0)

(
1− eΦY (q)ψ(v,u)

)
e−ΦX(q)vΠX(du− v) + c0

σ2
Y

2
ΦY (q).

(8.20)

For the second term, we have

nU0
[
e−qT0 ;T+

x <∞, T−
y = ∞

]
=nU0

[
e−qT

+
x

(
e−qT01{T−

0 <∞,T−
y =∞}

)
◦ θT+

x
;T+

x <∞
]

(8.21)

=nX0

[
e−qT

+
x ;T+

x <∞
](

EXx
[
e−qT0 ;T0 = T−

0

]
(8.22)

+EXx
[
e−qT

−
0 EYψ(X

T−
0 −,XT−

0
)

[
e−qT

+
0 ;T+

0 < T−
y

]
;XT−

0
< 0

])
.

(8.23)

By [11, Theorem 1.4], for x > 0, we have

EXx
[
e−qT0 ;T0 = T−

0

]
=
σ2
X

2

(
W

(q)′
X (x)− ΦX(q)W

(q)
X (x)

)
. (8.24)

By (3.7), (8.24), Theorem 3.3 and (3.2), we have

(8.23) =
1

W
(q)
X (x)

(
σ2
X

2

(
W

(q)′
X (x)− ΦX(q)W

(q)
X (x)

)
(8.25)

+

∫
(0,∞)

dv

∫
(−∞,0)

W
(q)
Y (−y + ψ(v, u))

W
(q)
Y (−y)

(e−ΦX(q)vW
(q)
X (x)−W

(q)
X (x− v))ΠX(du− v)

)
.

(8.26)
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For the third term, we have

nU0
[
e−qT0 ;T−

y <∞
]

(8.27)

=nU0
[
e−qT0 ;T−

0 = 0, T−
y <∞

]
+ nU0

[
e−qT

−
0 EUU

T−
0

[
e−qT

+
0 ;T−

y < T+
0

]
;UT−

0
< 0

]
(8.28)

=c0n
Y
0

[
e−qT0 ;T−

0 = 0, T−
y <∞

]
+ nX0

[
e−qT

−
0 EYψ(X

T−
0 −,XT−

0
)

[
e−qT

+
0 ;T−

y < T+
0

]
;XT−

0
< 0

]
.

(8.29)

By [11, Theorem 3.10], W (q) ∈ C2(0,∞) when σY > 0. By [18, Lemma 5], for y < 0, we
know that

nY0
[
e−qT0 ;T−

0 = 0, T−
y <∞

]
= −σ

4
Y

4
eΦY (q)y

(
W

(q)′′
Y (−y)− W

(q)′2
Y (−y)

W
(q)
Y (−y)

)
(8.30)

+
σ2
Y

2

∫ −y

0

dv

∫
(0,∞)

eΦY (q)(u+y)

(
W

(q)′
Y (−y − v)− W

(q)
Y (−y − v)W

(q)′
Y (−y)

W
(q)
Y (−y)

)
ΠY (du− v),

(8.31)

and by [12, Theorem 3.12] and (3.2), for y < x < 0, we have

EYx
[
e−qT

+
0 ;T−

y < T+
0

]
=EYx

[
e−qT

+
0

]
− EYx

[
e−qT

+
0 ;T+

0 < T−
y

]
(8.32)

=eΦY (q)x − W
(q)
Y (−y + x)

W
(q)
Y (−y)

. (8.33)

and Theorem 3.4, we have

(8.29) = −c0
σ4
Y

4
eΦY (q)y

(
W

(q)′′
Y (−y)− W

(q)′2
Y (−y)

W
(q)
Y (−y)

)
(8.34)

+ c0
σ2
Y

2

∫ −y

0

dv

∫
(0,∞)

eΦY (q)(u+y)

(
W

(q)′
Y (−y − v)− W

(q)
Y (−y − v)W

(q)′
Y (−y)

W
(q)
Y (−y)

)
ΠY (du− v)

(8.35)

+

∫
(0,∞)

dv

∫
(−∞,0)

(
eΦY (q)ψ(v,u) − W

(q)
Y (−y + ψ(v, u))

W
(q)
Y (−y)

)
e−ΦX(q)vΠX(du− v). (8.36)

By (8.15), (8.16), (8.20), (8.26) and (8.36), we obtain (8.12).

In the same way as above, the Laplace transforms of hitting times of U can be repre-
sented in the following lemma using the Laplace exponents and the scale functions X and
Y .

Corollary 8.2. For q > 0 and a, x ∈ R with x < a, we have

EUx
[
e−qT

+
a

]
=
W

(q)

U (x)

W
(q)

U (a)
, (8.37)
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where

W
(q)

U (x) =


eΦY (q)x, x ≤ 0,
q

ΦX(q)
W

(q)
X (x) +

σ2
X

2
(W

(q)′
X (x)− ΦX(q)W

(q)
X (x))

+
∫
(0,∞)

dv
∫
(−∞,0)

(
e−ΦX(q)vW

(q)
X (x)− eΦY (q)ψ(v,u)W

(q)
X (x− v)

)
ΠX(du− v), x > 0.

(8.38)

In particular, W
(q)

U (x) is a continuous and increasing function of x.

Proof. By (3.2), we have

EUx
[
e−qT

+
a

]
= lim

b↓−∞
EUx
[
e−qT

+
a ;T+

a < T−
b

]
= lim

b↓−∞

W
(q)
U (x, b)

W
(q)
U (a, b)

= lim
b↓−∞

W
(q)
U (x, b)/W

(q)
Y (−b)

W
(q)
U (a, b)/W

(q)
Y (−b)

.

(8.39)

By (8.8) and [12, Theorem 3.12], for x ≤ 0, we have

lim
b↓−∞

W
(q)
U (x, b)

W
(q)
Y (−b)

= lim
b↓−∞

W
(q)
Y (x− b)

W
(q)
Y (−b)

= lim
b↓−∞

EY0
[
e−qT

+
−x ;T+

−x < T−
b−x

]
= eΦY (q)x. (8.40)

By (8.15), for x > 0, we have

lim
b↓−∞

W
(q)
U (x, b)

W
(q)
Y (−b)

= lim
b↓−∞

W
(q)
X (x)nU0

[
1− e−qT01{T−

b =∞,T+
x =∞}

]
= W

(q)
X (x)nU0

[
1− e−qT01{T+

x =∞}

]
.

(8.41)

We devide the demoninator nU0

[
1− e−qT01{T+

x =∞}

]
into the following sum:

nU0
[
1− e−qT0

]
+ nU0

[
e−qT0 ;T+

x <∞
]
. (8.42)

For the second term in (8.42), by the strong Markov property, (3.7), (8.24), [12, Theorem
3.12] and Theorem 3.3, we have

nU0
[
e−qT0 ;T+

x <∞
]
= nU0

[
e−qT

+
x ;T+

x <∞
]
EUx
[
e−qT0

]
(8.43)

= nU0

[
e−qT

+
x ;T+

x <∞
](

EUx
[
e−qT0 ;T0 = T−

0

]
+ EUx

[
e−qT

−
0 EUU

T−
0

[
e−qT

+
0

]
;T−

0 < T0

])
(8.44)

=
1

W
(q)
X (x)

(
σ2
x

2

(
W

(q)′
X (x)− ΦX(q)W

(q)
X (x)

)
(8.45)

+

∫
(0,∞)

dv

∫
(−∞,0)

eΦY (q)ψ(v,u)(e−ΦX(q)vW
(q)
X (x)−W

(q)
X (x− v))ΠX(du− v)

)
. (8.46)

By (8.40), (8.41), (8.42), (8.20) and (8.46), we obtain (8.38).
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Next, we prove that W
(q)

U is increasing and continuous. It is obvious that W
(q)

U is

increasing and continuous on (−∞, 0], since W
(q)

U (x) = eΦY (q)x. Using the dominated
convergence theorem, we have

lim
ϵ↓0

W
(q)

U (ϵ) = lim
ϵ↓0

1

EU0
[
e−qT

+
ϵ

] = 1

EU0
[
limϵ↓0 e−qT

+
ϵ

] = 1, (8.47)

so that we see W
(q)

U is continuous at 0. Since

W
(q)

U (x) =
1

EU0
[
e−qT

+
x

] , (8.48)

it is thus sufficient to prove that EU0
[
e−qT

+
x

]
is decreasing and continuous on (0,∞). For

0 < x < y, we have

EU0
[
e−qT

+
x

]
− EU0

[
e−qT

+
y

]
=EU0

[
e−qT

+
x

](
1− EUx

[
e−qT

+
y

])
≥ 0. (8.49)

Using (3.2), for x > 0, we have

lim sup
ϵ↓0

∣∣∣EU0 [e−qT+
x−ϵ

]
− EU0

[
e−qT

+
x+ϵ

]∣∣∣ = lim sup
ϵ↓0

EU0
[
e−qT

+
x−ϵ

](
1− EUx−ϵ

[
e−qT

+
x+ϵ

])
(8.50)

≤ lim sup
ϵ↓0

(
1− EXx−ϵ

[
e−qT

+
x+ϵ ;T+

x+ϵ < T−
0

])
(8.51)

=

(
1− lim

ϵ↓0

W
(q)
X (x− ϵ)

W
(q)
X (x+ ϵ)

)
= 0. (8.52)

The proof is complete.

8.2 Approximation problem

In this section, we discuss the approximation problem. This section follows [16, Section
4].

We impose the following conditions:

(C0) There exist k, l > 0 such that

ψ(x, y) ≥ l(y − x), for x− y < k. (8.53)

(Note that (8.53) implies (6.1).)

(C1) Let {ϵXn }n∈N and {ϵYn }n∈N be sequences of strictly positive numbers satisfying

lim
n↑∞

ϵXn = lim
n↑∞

ϵYn = 0. (8.54)
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When c0 > 0 (and consequently σXσY > 0), we assume that

lim
n↑∞

ϵYn
ϵXn

=
σ2
Y

σ2
X

c0. (8.55)

For n ∈ N, we define

ΨX(n)(λ) = χXλ− σ2
X

(ϵXn )
2

(
1− eλ(−ϵ

X
n ) + λ

(
−ϵXn

))
−
∫
(−∞,−ϵXn )

(
1− eλy + λy1(−1,−ϵXn )(y)

)
ΠX(dy) (8.56)

= δX(n)λ−
∫
(−∞,0)

(
1− eλy

)
ΠX(n)(dy) (8.57)

where

δX(n) = χX +
σ2
X

ϵXn
+

∫
(−1,−ϵXn )

(−y)ΠX(dy) (8.58)

ΠX(n) = 1(−∞,−ϵXn )ΠX +
σ2
X

(ϵXn )
2 δ(−ϵXn ). (8.59)

Let X(n) be a compound Poisson process with positive drift which has Laplace
exponent ΨX(n) . We let ΦX(n) denote the right inverse of ΨX(n) . We note that
ΨX(n)(λ) → ΨX(λ) for all λ ≥ 0, so that we have X(n) → X in law on D. More
preciously, by [2, pp.210], we see that there exists a coupling of X(n)’s such that
X(n) → X uniformly on compact intervals almost surely. We define ΨY (n) , δY (n) ,
ΠY (n) , ΦY (n) and Y (n) in the same way as those for X.

It is known that ΨX is a strictly convex function with ΨX(0) = 0. The function ΨX(n)

satisfies the same facts. For X and X(n) satisfying the conditions in (C1), we have

ΦX(n)(λ) → ΦX(λ), λ ≥ 0. (8.60)

For the proof of (8.60), we prove the following lemma, which was omitted in [16]. Let F
denote the set of strictly convex functions f : [0,∞) → R which satisfies f(0) = 0 and
limx↑∞ f(x) = ∞. For f ∈ F, we denote

f−1(λ) = sup{x ≥ 0 : f(x) ≤ λ}. (8.61)

Lemma 8.3. Assume that the sequence {fn}n∈N ⊂ F and f ∈ F satisfy

fn(x) → f(x), as n ↑ ∞, for x ≥ 0. (8.62)

Then we have

f−1
n (λ) → f−1(λ), as n ↑ ∞, for λ ≥ 0. (8.63)
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Proof. First, we assume that f−1(0) > 0. In this case, by the strict convexity of f ,
there exists a constant af > 0 such that f si strictly decreasing on [0, af ] and f is
strictly increasing on [af ,∞). Let us fix λ ≥ 0 and write bλ = f−1(λ). Note that
0 = f(0) > f(aλ) and that bλ > aλ. For any ϵ ∈ (0, bλ − aλ), we see that f is strictly
increasing on [bλ − ϵ, bλ + ϵ]. By (8.62), there exists N > 0 such that for all n > N , we
have

|fn(bλ + ϵ)− f(bλ + ϵ)| < f(bλ + ϵ)− λ, (8.64)

|fn(bλ − ϵ)− f(bλ − ϵ)| < λ− f(bλ − ϵ). (8.65)

Then we have fn(bλ − ϵ) < λ < fn(bλ + ϵ), which implies bλ − ϵ ≤ f−1
n (λ) ≤ bλ + ϵ.

Second, we assume that f−1(0) = 0. In this case f is a strictly increasing function on
[0,∞), and so we obtain limn↑∞ f−1

n (λ) = f−1(λ) for λ > 0 in the same way as above. We
have limn↑∞ f−1

n (0) = f−1(0) similarly by ignoring (8.65). The proof is now completed.

We need the following lemma for the resolvent convergence when Y has the Gaussian
part.

Lemma 8.4 ([16, Lemma 4.1]). We assume that σY > 0. Then for all q > 0 and all
bounded continuous function f , we have

lim
n↑∞

σ2
Y

(ϵYn )
2

∫ ϵYn

0

R
(q)

k
T+
0
Y (n)f(−v) dv = nY0

[∫ T0

0

e−qtf(Yt)dt;T
−
0 = 0

]
. (8.66)

Proof. By the definition of {Y (n)}n∈N, we have that for all q > 0, u < 0 and for g =
f1(−∞,0) or f1(0,∞),

lim
n↑∞

nY
(n)

0

[∫∞
0
e−qtg(Y

(n)
t )dt

]
nY

(n)

0

[∫∞
0
e−qtdt

] = lim
n↑∞

R
(q)

Y (n)g(0) = R
(q)
Y g(0) =

nY0
[∫∞

0
e−qtg(Yt)dt

]
nY0
[∫∞

0
e−qtdt

] (8.67)

and limn↑∞R
(q)

Y (n)0f(u) = R
(q)

Y 0f(u). By Theorem 3.6 and by limn↑∞ΦY (n)(λ) = ΦY (λ) on
for all λ ≥ 0, we have, for all q > 0,

lim
n↑∞

nY
(n)

0

[∫ ∞

0

e−qtf(Y
(n)
t )1(0,∞)(Y

(n)
t )dt

]
= lim

n↑∞

∫ ∞

0

f(x)e−Φ
Y (n) (q)xdx (8.68)

=

∫ ∞

0

f(x)e−ΦY (q)xdx (8.69)

=nY0

[∫ ∞

0

e−qtf(Yt)1(0,∞)(Yt)dt

]
, (8.70)

and thus by (8.67), we have limn↑∞ nY
(n)

0

[∫∞
0
e−qtdt

]
= nY0

[∫∞
0
e−qtdt

]
. Again by (8.67),

we obtain

lim
n↑∞

nY
(n)

0

[∫ ∞

0

e−qtf(Y
(n)
t )1(−∞,0)(Y

(n)
t )dt

]
= nY0

[∫ ∞

0

e−qtf(Yt)1(−∞,0)(Yt)dt

]
. (8.71)

48



By Theorem 3.4, we have

nY0

[∫ T0

0

e−qtf(Yt)1(−∞,0)(Yt)dt

]
(8.72)

=nY0

[∫ T0

0

e−qtf(Yt)dt;T
−
0 = 0

]
+ nY0

[
e−qT

−
0 EYY

T−
0

[∫ T0

0

e−qtf(Yt)dt

]
; 0 < T−

0 < T0

]
(8.73)

=nY0

[∫ T0

0

e−qtf(Yt)dt;T
−
0 = 0

]
+

∫ ∞

0

dv

∫
(−∞,0)

R
(q)
k
T+
0
Y f(u)e

−ΦY (q)vΠY (du− v). (8.74)

and

nY
(n)

0

[∫ T0

0

e−qtf(Y
(n)
t )1(−∞,0)(Y

(n)
t )dt

]
=nY

(n)

0

[
e−qT

−
0 EY (n)

Y
(n)

T−
0

[∫ T0

0

e−qtf(Y
(n)
t )dt

]
;T−

0 < T0

]
(8.75)

=

∫ ∞

0

dv

∫
(−∞,0)

R
(q)

k
T+
0
Y (n)f(u)e

−Φ
Y (n) (q)vΠY (n)(du− v) (8.76)

=
σ2
Y

(ϵYn )
2

∫ ϵYn

0

R
(q)

k
T+
0
Y (n)f

(
v − ϵYn

)
e−Φ

Y (n) (q)vdv

+

∫ ∞

0

dv

∫
(−∞,0∧(−ϵYn +v))

R
(q)

k
T+
0
Y (n)f(u)e

−Φ
Y (n) (q)vΠY (du− v). (8.77)

By the same argument as that of the proof of [17, Theorem 8.4], we have

lim
n↑∞

∫ ∞

0

dv

∫
(−∞,0∧(−ϵYn +v))

R
(q)

k
T+
0
Y (n)f(u)e

−Φ
Y (n) (q)vΠY (du− v)

=

∫ ∞

0

dv

∫
(−∞,0)

R
(q)
k
T+
0
Y f(u)e

−ΦY (q)vΠY (du− v) (8.78)

By (8.71), (8.74), (8.77) and (8.78), we obtain

lim
n↑∞

σ2
Y

(ϵYn )
2

∫ ϵYn

0

R
(q)

k
T+
0
Y (n)f

(
v − ϵYn

)
e−Φ

Y (n) (q)vdv =nY0

[∫ T0

0

e−qtf(Yt)dt;T
−
0 = 0

]
. (8.79)

By a simple argument, we can see that the left hand side of (8.79) coincides with that of
(8.66), which leads to the desired conclusion.

(C2) Let {ψ(n)}n∈N be a sequence of functions satisfying

ψ(n)(x, y) = ψ(x, y)1{x−y>ϵXn } −
σ2
Y

σ2
X

c0x1{x−y=ϵXn } (8.80)

for all x > 0, y < 0 and n ∈ N where we understand 0
0
= 0.
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Let X(n) and Y (n) be those in (C1) and let ψ(n) be that in (C2). Let U (n) be the refracted

process constructed by X(n), Y (n), ψ(n) and c
(n)
0 = 0. Then, we obtain the following

theorem for the resolvent convergence.

Theorem 8.5 ([16, Theorem 4.2]). For all q > 0, x ∈ R and bounded continuous function
f , we have

lim
n↑∞

R
(q)

U(n)f(x) = R
(q)
U f(x). (8.81)

Proof. i) We prove (8.81) for x = 0. For this purpose we shall prove that

lim
n↑∞

nU
(n)

0

[∫ T0

0

e−qtf(U
(n)
t )dt

]
= nU0

[∫ T0

0

e−qtf(Ut)dt

]
. (8.82)

for all q > 0 and bounded continuous function f . By Theorem 3.6 and limn↑∞ΦX(n)(λ) =
ΦX(λ) for all λ ≥ 0, we have

lim
n↑∞

nU
(n)

0

[∫ T−
0

0

e−qtf(U
(n)
t )dt

]
= lim

n↑∞
nX

(n)

0

[∫ T−
0

0

e−qtf(X
(n)
t )dt

]
(8.83)

= nX0

[∫ T−
0

0

e−qtf(Xt)dt

]
(8.84)

= nU0

[∫ T−
0

0

e−qtf(Ut)dt

]
. (8.85)

By the definition of nU
(n)

0 and Theorem 3.4, we have

nU
(n)

0

[∫ T0

T−
0

e−qtf(U
(n)
t )dt

]

=nX
(n)

0

[
e−qT

−
0 EY (n)

ψ(n)(X
T−
0 −,XT−

0
)

[∫ T0

0

e−qtf(U
(n)
t )dt

]
;T−

0 < T0

]
(8.86)

=

∫ ∞

0

dv

∫
(−∞,0)

R
(q)

k
T+
0
Y (n)f(ψ

(n)(v, u))e−Φ
X(n) (q)vΠX(n)(du− v) (8.87)

=
σ2
X

(ϵXn )
2

∫ ϵXn

0

R
(q)

k
T+
0
Y (n)f

(
ψ(n)(v, v − ϵXn )

)
e−Φ

X(n) (q)vdv

+

∫ ∞

0

dv

∫
(−∞,0∧(−ϵXn +v))

R
(q)

k
T+
0
Y (n)f(ψ(v, u))e

−Φ
X(n) (q)vΠX(du− v) (8.88)

=(I) + (II). (8.89)

Let us compute the limit of (II). We have

(II) =

∫
(−∞,0)

ΠX(du)1{u<−ϵYn }

∫ −u

0

R
(q)

k
T+
0
Y (n)f(ψ(v, u+ v))e−Φ

X(n) (q)vdv (8.90)
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To use the dominated convergence theorem, we dominate the integrand as∣∣∣∣1{u<−ϵYn }

∫ −u

0

R
(q)

k
T+
0
Y (n)f(ψ(v, u+ v))e−Φ

X(n) (q)vdv

∣∣∣∣ (8.91)

≤∥f∥
∫ −u

0

e−Φinf
X (q)vEY (n)

ψ(v,u+v)

[∫ T0

0

e−qtdt

]
dv (8.92)

=
∥f∥
q

∫ −u

0

e−Φinf
X (q)v(1− eΦ

inf
Y (q)ψ(v,u+v))dv, (8.93)

where Φinf
X (q) = infn∈N ΦX(n)(q) and Φinf

Y (q) = infn∈N ΦY (n)(q). By (8.53), we have

(8.93) ≤ ∥f∥
q

∫ −u

0

e−Φinf
X (q)v(1− 1{u>−k}e

Φinf
Y (q)lu)dv (8.94)

=
∥f∥

qΦinf
X (q)

(1− eΦ
inf
X (q)u)(1− 1{u>−k}e

Φinf
Y (q)lu) ∈ L1(ΠX). (8.95)

By (8.95) and the dominated convergence theorem, we have

lim
n↑∞

(8.90) =

∫
(−∞,0)

ΠX(du)

∫ −u

0

R
(q)
k
T+
0
Y f(ψ(v, u+ v))e−ΦX(q)vdv (8.96)

=

∫ ∞

0

dv

∫
(−∞,0)

R
(q)
k
T+
0
Y f(ψ(v, u))e

−ΦX(q)vΠX(du− v). (8.97)

By the definition of nU0 and Theorem 3.4, we have

(8.97) =nX0

[
e−qT

−
0 EYψ(X

T−
0 −,XT−

0
)

[∫ T0

0

e−qtf(Yt)dt

]
; 0 < T−

0 < T0

]
(8.98)

=nU0

[∫ T0

T−
0

e−qtf(Ut)dt; 0 < T−
0 < T0

]
. (8.99)

Let us compute the limit of (I). Let c1 =
σ2
Y

σ2
X
c0. By the definition of ψ(n), we have

(I) =
σ2
X

(ϵXn )
2

∫ ϵXn

0

R
(q)

k
T+
0
Y (n)f(−c1v) e−Φ

X(n) (q)vdv. (8.100)

When c1 = 0, we have (8.100) = 0. When c1 > 0, we have

lim
n↑∞

(8.100) = lim
n↑∞

c0c1
σ2
Y

(ϵYn )
2

∫ ϵXn

0

R
(q)

k
T+
0
Y (n)f(−c1v) dv, (8.101)

if the right hand side of (8.101) has the limit. By the change of variables, we have

c0c1
σ2
Y

(ϵYn )
2

∫ ϵXn

0

R
(q)

k
T+
0
Y (n)f(−c1v) dv = c0

σ2
Y

(ϵYn )
2

∫ c1ϵXn

0

R
(q)

k
T+
0
Y (n)f(−v) dv. (8.102)
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We prove

lim
n↑∞

∣∣∣∣∣c0 σ2
Y

(ϵYn )
2

∫ c1ϵXn

0

R
(q)

k
T+
0
Y (n)f(−v) dv − c0

σ2
Y

(ϵYn )
2

∫ ϵYn

0

R
(q)

k
T+
0
Y (n)f(−v) dv

∣∣∣∣∣ = 0. (8.103)

Let MY (q) = supn∈N ΦY (n)(q)× (1 ∨ supn∈N
c1ϵXn
ϵYn

). We have∣∣∣∣∣c0 σ2
Y

(ϵYn )
2

∫ c1ϵXn

0

R
(q)

k
T+
0
Y (n)f(−v) dv − c0

σ2
Y

(ϵYn )
2

∫ ϵYn

0

R
(q)

k
T+
0
Y (n)f(−v) dv

∣∣∣∣∣ (8.104)

≤ c0
σ2
Y

(ϵYn )
2

∣∣c1ϵXn − ϵYn
∣∣ ∥f∥ sup

0≤v≤(c1ϵXn )∨ϵYn
EY (n)

−v

[∫ T0

0

e−qtdt

]
(8.105)

≤ c0σ
2
Y ∥f∥
q

∣∣∣∣c1 ϵXnϵYn − 1

∣∣∣∣ 1− e−MY (q)ϵYn

ϵYn
. (8.106)

By the definition of c1, we have

c0σ
2
Y ∥f∥
q

∣∣∣∣c1 ϵXnϵYn − 1

∣∣∣∣ 1− e−MY (q)ϵYn

ϵYn
→ c0σ

2
Y ∥f∥
q

× 0×MY (q) = 0, as n ↑ ∞. (8.107)

So we have (8.103). By (8.100), (8.101), (8.102), (8.103) and Lemma 8.4, we have

lim
n↑∞

σ2
X

(ϵXn )
2

∫ ϵXn

0

R
(q)

k
T+
0
Y (n)f

(
ψ(n)(v, v − ϵXn )

)
e−Φ

X(n) (q)vdv (8.108)

=c0n
Y
0

[∫ T0

0

e−qtf(Yt)dt;T
−
0 = 0

]
(8.109)

=nU0

[∫ T0

0

e−qtf(Ut)dt;T
−
0 = 0

]
. (8.110)

By (8.85), (8.89), (8.99) and (8.110), we obtain (8.82).

ii) We prove (8.81) for x < 0. By the strong Markov property and the definition of
U (n), we have

R
(q)

U(n)f(x) =R
(q)

Y (n)0f(x) + EY (n)0

x

[
e−qT

+
0

]
R

(q)

U(n)f(0) (8.111)

=R
(q)

Y (n)0f(x) + eΦY (n) (q)xR
(q)

U(n)f(0). (8.112)

By [17, Lemma 8.3] and i), we obtain

(8.112) → R
(q)

Y 0f(x) + eΦY (q)xR
(q)
U f(0) = R

(q)
U f(x) (8.113)

as n ↑ ∞.

iii) We prove (8.81) for x > 0. We divide

R
(q)
U f(x) = EUx

[∫ T−
0

0

e−qtf(Ut)dt

]
+ EUx

[∫ T0

T−
0

e−qtf(Ut)dt

]
+ EUx

[∫ ∞

T0

e−qtf(Ut)dt

]
(8.114)
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and we can divide R
(q)

U(n)f(x) similarly. By the definition of U and [12, Theorem 3.12], we
have the following:

EUx

[∫ T−
0

0

e−qtf(Ut)dt

]
= EXx

[∫ T−
0

0

e−qtf(Xt)dt

]
, (8.115)

EUx

[∫ T0

T−
0

e−qtf(Ut)dt

]
= EXx

[
e−qT

−
0 R

(q)
k
T+
0
Y f(ψ(XT−

0 −, XT−
0
));T−

0 <∞
]
, (8.116)

EUx
[∫ ∞

T0

e−qtf(Ut)dt

]
= EXx

[
e−qT

−
0 e

ΦY (q)ψ(X
T−
0 −,XT−

0
)
;T−

0 <∞
]
R

(q)
U f(0), (8.117)

where we understand ψ(0, 0) = 0. We have similar identities also for U (n). By the
dominated convergence theorem, by the uniformly convergent coupling, by [17, Lemma
8.3], i) and by limn↑∞ΦY (n) = ΦY , it is sufficient to prove that{

T−
0 (X(n)) → T−

0 (X),

1{T−
0 (X(n))<∞}ψ

(n)(X
(n)

T−
0 (X(n))−, X

(n)

T−
0 (X(n))

) → 1{T−
0 (X)<∞}ψ(XT−

0 (X)−, XT−
0 (X))

(8.118)

hold as n ↑ ∞ almost surely.

First, we prove (8.118) on A := {T−
0 (X) = ∞}∪{T−

0 (X) <∞, XT−
0 (X) < 0}. We have

inf
t∈[0,T−

0 (X))
Xt > 0 and XT−

0 (X) < 0 a.s. on A. (8.119)

For almost every sample path with A based on the uniformly convergent coupling of [2,
pp.210], we have

inf
t∈[0,T−

0 (X))
X

(n)
t →

n↑∞
inf

t∈[0,T−
0 (X))

Xt on A (8.120)

X
(n)

T−
0 (X)

→
n↑∞

XT−
0 (X) on

(
T−
0 (X) <∞

)
, (8.121)

so that we have

T−
0 (X) = T−

0 (X(n)) for large n on A (8.122)

and

lim
n↑∞

X
(n)

T−
0 (X(n))− = XT−

0 (X)− and lim
n↑∞

X
(n)

T−
0 (X(n))

= XT−
0 (X) on A ∩ {T−

0 (X) <∞}. (8.123)

By (8.123) and the definition of ψ(n), we obtain (8.118) on A.

Second, we prove (8.118) on Ac = {T−
0 (X) < ∞, XT−

0 (X) = 0}. Let ϵ > 0 and let us

argue on Ac. Set Iϵ := [T−
0 (X)− ϵ, T−

0 (X)+ ϵ] and ϵ′ :=
(
inft∈[0,T−

0 (X)−ϵ]Xt

)
∧ |inft∈Iϵ Xt|.

Then there exists N(ϵ) > 0 such that for all n > N(ϵ), we have

sup
t∈[0,T−

0 (X)+ϵ]

∣∣∣X(n)
t −Xt

∣∣∣ < ϵ′. (8.124)
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By (8.124), (8.53) and the definition of ψ(n), for n > N(ϵ), we have

T−
0 (X)− ϵ < T−

0 (X(n)) < T−
0 (X) + ϵ, (8.125)

ψ(n)(X
(n)

T−
0 (X(n))−, X

(n)

T−
0 (X(n))

) < 2(l ∨ c1)
(
sup
t∈Iϵ

Xt − inf
t∈Iϵ

Xt

)
. (8.126)

By (8.125) and (8.126), we have (8.118) on Ac.

The proof is therefor completed.

We now obtain the following corollary for the convergence in distribution. Let W
(q)

U be
the same as that in Corollary 8.2.

Corollary 8.6 ([16, Corollary 4.3]). Under the same assumption of Theorem 8.5, the

process (U (n),PU(n)

x ) converges in distribution to (U,PUx ) for all x ∈ R.

Proof. This proof is almost the same as that of [17, Theorem 8.1 and 8.5].

We prove, for f ∈ C0,

R
(q)

U(n)f → R
(q)
U f (8.127)

uniformly as n ↑ ∞. Then using Theorem 6.3 and [20, Theorem 3.4.2], we have, for t > 0
and f ∈ C0,

PU(n)

t f → PU
t f (8.128)

uniformly as n ↑ ∞, where

PZ
t f(x) = EZx [f(Zt)] (8.129)

for a Markov process Z and t > 0. Using [10, Theorem 19.25], we can conclude that

(U (n),PU(n)

x ) converges in distribution to (U,PUx ) for all x ∈ R.

Let us prove (8.127). We divide the proof of (8.127) into three steps.

Step.1 Let k > 0 be a constant. We prove {W (q)

U(n)(x)}n∈N is equicontinuous in x ∈
[−k, k]. For this, we prove pointwise convergence limn↑∞W

(q)

U(n)(x) = W
(q)

U (x). Since

{W (q)

U(n)}n∈N is increasing and continuous by Corollary 8.2, the pointwise convergence

implies convergence in x ∈ [−k, k] uniformly, thus {W (q)

U(n)(x)}n∈N is equicontinuous in

x ∈ [−k, k]. The desired convergence is obvious for x ≤ 0 by the definition of W
(q)

U (x).

For x > 0, it suffices to show

lim
n↑∞

EU(n)

0

[
e−qT

+
x

]
= EU0

[
e−qT

+
x

]
(8.130)
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by Corollary 8.2. By the strong Markov property, we have

R
(q)

U(n)1(−∞,x)(0) =
1

q

(
1− EU(n)

0

[
e−qT

+
x

])
+ EU(n)

0

[
e−qT

+
x

]
R

(q)

U(n)1(−∞,x)(x). (8.131)

As f− := 1(−∞,x) is not continuous, we take bounded continuous functions such that
f−
m and f+

m such that f−
m ↑ f− and f+

m ↓ f+ := 1(−∞,x]. Using Theorem 8.5, we have

R
(q)

U(n)f
±
m → R

(q)
U f±

m. It is obvious that R
(q)

U(n)f
± → R

(q)
U f±. Thus we obtain (8.130).

Step.2 We may assume without loss of generality that ∥f∥ = 1. Let us prove

R
(q)

U(n)f(x) → R
(q)
U f(x) uniformly in x ∈ [−k, k]. (8.132)

Since we have the pointwise convergence by Theorem 8.5, it is sufficient to prove {R(q)

U(n)f}n∈N
is equicontinuous. For all x, y ∈ R with x < y, making a computation similar to 1) of
the proof of Theorem 6.3, we have∣∣∣R(q)

U(n)f(y)−R
(q)

U(n)f(x)
∣∣∣ ≤ 2

q
∥f∥

(
1− W

(q)

U(n)(x)

W
(q)

U(n)(y)

)
. (8.133)

Let ϵ > 0 be a constant. By Step.1 and since infn∈NW
(q)

U(n)(−k) = infn∈N e
−Φ

Y (n) (q)k > 0,
we see that there exists ξ > 0 such that for all x, y ∈ [−k, k] with 0 < y − x < ξ

sup
n∈N

∣∣∣W (q)

U(n)(y)−W
(q)

U(n)(x)
∣∣∣ ≤ ϵ inf

n∈N
W

(q)

U(n)(−k). (8.134)

Then we have

(8.133) ≤ 2

q
∥f∥ ϵ infn∈NW

(q)

U(n)(−k)
W

(q)

U(n)(y)
≤ 2

q
∥f∥ ϵ, (8.135)

where we used the fact that W
(q)

U(n) is increasing. Therefore we conclude that {R(q)

U(n)f}n∈N
is equicontinuous.

Step.3 We prove that for any ϵ > 0 there is k > 0 such that

sup
x∈(−∞,−k)∪(k,∞)

sup
n∈N

∣∣∣R(q)

U(n)f(x)
∣∣∣ < ϵ. (8.136)

For all x < y < 0 we have∣∣∣R(q)

U(n)f(x)
∣∣∣ = ∣∣∣∣∣EU(n)

x

[∫ T+
y

0

e−qtf(U
(n)
t )dt

]
+ EU(n)

x

[
e−qT

+
y

]
R

(q)

U(n)f(y)

∣∣∣∣∣ (8.137)

≤1

q
sup
z<y

|f(z)|+ 1

q
sup
m∈N

EY (m)

x

[
e−qT

+
y

]
∥f∥ . (8.138)

By the same argument, for all x > y > 0, we have∣∣∣R(q)

U(n)f(x)
∣∣∣ ≤1

q
sup
z>y

|f(z)|+ sup
m∈N

EX(m)

x

[
e−qT

−
y

]
∥f∥ . (8.139)
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Since f ∈ C0, there exists k1 > 0 such that

sup
|z|>k1

|f(z)| < 1

3
qϵ. (8.140)

Using the uniformly convergence coupling, we have for x > y > 0

lim
n↑∞

EY (n)

−x

[
e−qT

+
−y

]
= EY−x

[
e−qT

+
−y

]
and lim

n↑∞
EX(n)

x

[
e−qT

−
y

]
= EXx

[
e−qT

−
y

]
(8.141)

and

lim
x↑∞

EY−x
[
e−qT

+
−y

]
= 0 and lim

x↑∞
EXx
[
e−qT

−
y

]
= 0. (8.142)

By (8.142), there exists k2 > k1 such that

EY−k2
[
e−qT

+
−k1

]
<

ϵ

3 ∥f∥
and EXk2

[
e−qT

−
k1

]
<

ϵ

3 ∥f∥
(8.143)

By (8.141), there exists N ∈ N such that for all n > N∣∣∣EY (n)

−k2

[
e−qT

+
−k1

]
− EY−k2

[
e−qT

+
−k1

]∣∣∣ < ϵ

3 ∥f∥
(8.144)

and ∣∣∣EX(n)

k2

[
e−qT

+
k1

]
− EXk2

[
e−qT

+
k1

]∣∣∣ < ϵ

3 ∥f∥
. (8.145)

By (8.142) again, there exists k3 > k2 such that for all n ≤ N

EY (n)

−k3

[
e−qT

+
−k1

]
<

ϵ

3 ∥f∥
and EX(n)

k3

[
e−qT

−
k1

]
<

ϵ

3 ∥f∥
(8.146)

Thus we obtain

sup
n∈N

EY (n)

−k3

[
e−qT

+
−k1

]
<

2ϵ

3 ∥f∥
and sup

n∈N
EX(n)

k3

[
e−qT

−
k1

]
<

2ϵ

3 ∥f∥
. (8.147)

By (8.138), (8.139), (8.140) and (8.147), we obtain (8.136).

The proof is complete.
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[2] J. Bertoin. Lévy processes, Vol. 121 of Cambridge Tracts in Mathematics. Cambridge
University Press, Cambridge, 1996.

56



[3] J. Bertoin. Exponential decay and ergodicity of completely asymmetric Lévy pro-
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