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Chapter 1

Overview

1.1 Motivations

Let us start with a brief review of the previous works motivating our geo-
metric study of Dynkin quiver type quantum affine Schur-Weyl duality.

1.1.1 Quantum affine Schur-Weyl duality

For a fixed pair (n,d) € (Zs¢)? of positive integers, we have the following two
fundamental objects: the complex simple Lie algebra sl,, 1 = sl,,,1(C) of type
A, and the symmetric group &, of degree d. On the tensor power (C*1)®4,
we have a right action of G4 permuting tensor factors, which commutes with
the natural left action of the Lie algebra sl 1:

shy A (CTHEE A G,

This natural (sl, 1, &,)-bimodule structure on (C**1)®¢ produces a close re-
lationship between their representation theories. This phenomenon is known
as the classical Schur-Weyl duality and has many interesting variants.

The quantum affine Schur-Weyl duality is a variant involving their quan-
tum affinizations: the quantum loop algebra U,(Lsl, ;1) of s, and the affine
Hecke algebra H3(q) of GL4. Both algebras are defined over k := Q(q). Here
we equip the tensor power V¥4 of the natural representation V := k"1[2%1] of
U,(Lsl, 1) with a commuting right action of H3(¢~?) using the R-matrices:

U/Lsl,y1) ~ V¥~ Hi(g7?).



Chari-Pressley [9] proved that the induced functor
H5'(q?)-mod — U,(Lsl,;1)-mod; M s V4 R pratg-2) M

gives an equivalence between suitable subcategories of finite-dimensional
modules. For example, when n > d, this functor is fully faithful and its
essential image is closed under extensions of modules.

1.1.2 Ginzburg-Reshetikhin-Vasserot’s realization

The quantum affine Schur-Weyl duality has a beautiful geometric realization
due to Ginzburg-Reshetikhin-Vasserot [20]. Here we recall their construction.

Let pg : F4 — Ny be the Springer resolution of the nilpotent cone Ny of
gl,(C), where F, is the cotangent bundle of the full flag variety of GL4(C).
The morphism 4 is equivariant with respect to a natural action of the group
Gq = GL4(C) x C*, where C* acts as the scalar multiplication on the
cone Ny. Due to Ginzburg and Kazhdan-Lusztig [33], the affine Hecke al-
gebra H3'(¢~?) is isomorphic to the convolution algebra K€ (Z;) @4k of
the equivariant K-group of the Steinberg variety Z; := F; X, F4, where
A = R(C*) = Z[¢*'] is the representation ring of C*. On the other
hand, we consider another Steinberg type variety Z; := Mg X, My. Here
M, is the cotangent bundle of the variety of partial flags in C? of length
< n+ 1. Due to Ginzburg-Vasserot [21], there is an algebra homomorphism
®: U,(Lsl,y1) — K®(Z;) ®4 k with some nice properties. Based on these
facts, Ginzburg-Reshetikhin-Vasserot considered the intermediary fiber prod-
uct My X v, F4 and identified its equivariant K-group with the bimodule V®4.
More precisely, they established an isomorphism

V®d = KGd(‘Jﬁd XNy Fd) XA k

making the following diagram commute:

Uil Lot B (V9 ()

| 5 |
K®(Zy) @4 k —End (K®(My x 7, Fa) @4 k) ~—— K (Z;) @4k,
(1.1)

R

where horizontal arrows denote the bimodule structures.



1.1.3 A generalization associated with a Dynkin quiver

Recently, in a series of papers [25, 26, 27, 28], Kang, Kashiwara, Kim and
Oh have established some interesting generalized versions of the quantum
affine Schur-Weyl duality. One of them (treated in [26] by Kang-Kashiwara-
Kim) is associated with a pair (@, ) of a Dynkin quiver @) of type ADE
and a sum 3 = ) d;oy of simple roots, which plays a similar role as the
pair (n,d) in the previous paragraphs. One player here is the quantum loop
algebra U,(Lg) of the complex simple Lie algebra g whose Dynkin diagram
is the underlying graph of (). The other is the quiver Hecke algebra He(55)
associated with (@, ), or actually its completion PAIQ(ﬂ) along the grading.
The quiver Hecke algebra Hg(f) is regarded as a generalization of the affine
Hecke algebra H3!(g) from some categorical viewpoints as we explain later.

Inspired by the work of Hernandez-Leclerc [24], Kang-Kashiwara-Kim
[26] constructed on a left U, (Lg)-module V% which is a direct sum of some
tensor products of affinized fundamental modules a commuting right action
of the algebra Hg(f) by using the normalized R-matrices:

U(Lg) ~ V® ~ Hyp).

However, to make the ﬁQ(ﬁ)—action well-defined, we need a technical
assumption on the simpleness of some specific poles of the normalized R-
matrices. This assumption was verified for type AD in [26] by an explicit
computation of the denominators of the normalized R-matrices. On the other
hand, for type E, this had remained a conjecture for a few years until a recent
preprint [46] by Oh-Scrimshaw appeared. In this preprint, the assumption for
type E was verified by explicit computations with a computer. Later in the
present thesis, we give another uniform proof without a direct computation
as a by-product of our geometric realization of the bimodule V&5,

When our quiver is of type A, with a monotone orientation = (1 —
2 — .-+ — n), the corresponding complete quiver Hecke algebra PA[Q(ﬁ) is
known to be isomorphic to a certain central completion of the affine Hecke al-
gebra H3(¢=2) with d = ht 8 ([4], [47]). Under this isomorphism, we can ob-
tain Kang-Kashiwara-Kim’s bimodule V@B for this case as the corresponding
completion of the (U,(Lsl, 1), H3(¢~2))-bimodule V¢ in the usual quantum
affine Schur-Weyl duality. In this sense, Kang-Kashiwara-Kim’s construction
can be seen as a generalization of the usual quantum affine Schur-Weyl du-
ality.



1.1.4 From a categorical viewpoint

Under the well-definedness assumption, Kang-Kashiwara-Kim [26] proved
that the induced functor between the categories of finite-dimensional modules

FQ.8° ﬁQ(ﬁ)'mOdfd — U,(Lg)-modsq; M ver Baqe) M

enjoys several nice properties as explained below.

Associated with a Dynkin quiver (), we can consider the following two
interesting monoidal categories .#g and %¢. These kinds of monoidal cate-
gories are now a subject of intensive study in connection with the monoidal
categorifications of cluster algebras. R

The first one .#(, is the direct sum of categories .#g3 = Hg(5)-modsg
of finite-dimensional modules of the completed quiver Hecke algebra ﬁQ(ﬁ).
The monoidal structure on .# is given by so-called convolution product
(an analogue of the parabolic induction for the affine Hecke algebra). The
quiver Hecke algebra (which is also known as the Khovanov-Lauda-Rouquier
algebra) was introduced by Khovanov-Lauda [34] and by Rouquier [47] inde-
pendently as an algebraic object which generalizes the affine Hecke algebra
H3(q) in the sense that it gives a categorification of the dual of the inte-
gral form U, (g)z of the positive part of the quantized enveloping algebra
U,(g). More precisely, the quiver Hecke algebra Hg () is equipped with a Z-
grading. Thus the Grothendieck group direct sum over /3 of the categories of
finite-dimensional graded Hg(3)-modules becomes a Z[v*!]-algebra, where v
corresponds to the grading shift. It is known to be isomorphic to the dual
of U} (g)z, under which the classes of self-dual simple modules correspond
to the dual canonical basis elements. The category .# is obtained by for-
getting the gradings of modules, which corresponds to specializing v to 1 at
the level of the Grothendieck ring. Therefore the complexified Grothendieck
ring of the monoidal category .# is isomorphic to the coordinate ring C[N]
of the maximal unipotent group N associated with g:

K(Aq)c = C[N].

After this specialization, the classes of simple modules correspond to the dual
canonical basis elements.

The second one % is a certain monoidal subcategory of the category
of finite-dimensional modules of the quantum loop algebra U,(Lg), where g
is the complex simple Lie algebra whose Dynkin diagram is the underlying
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graph of the quiver ). This category was introduced by Hernandez-Leclerc
[24]. The definition of the category 6 involves the Auslander-Reiten quiver
of Q). Hernandez-Leclerc proved that the complexified Grothendieck ring of
%o is also isomorphic to the coordinate algebra C[N] of the unipotent group
N associated with g:

K(%g)c = C[N].

Moreover the classes of simple modules correspond to the dual canonical
basis elements also in this case.

Hence we encounter a natural question, originally asked by Hernandez-
Leclerc [24], whether there is any functorial relationship between these two
monoidal categories .Z; and %y,.

Interestingly, Kang-Kashiwara-Kim’s functor %, 5 explained above gives
an affirmative answer to this question. Let us consider the direct sum functor

Q = @ yQﬁ: %Q = @ .//Q”@ — Uq(Lg)—modfd.
peQt BeQt

9

Note that this is a functor between monoidal categories. Actually, Kang-
Kashiwara-Kim [26] proved that this functor % is exact and monoidal.
Moreover they also proved that it lands on Hernandez-Leclerc’s subcate-
gory 6g C U,(Lg)-mods and gives a bijection between simple isomorphism
classes. In particular, it induces a ring isomorphism between Grothendieck
rings

(Zal: K () > K(%p).

Later in the paper [28], Kang-Kashiwara-Kim-Oh conjectured that this
functor #, is actually an equivalence of monoidal categories. A goal of the
present thesis is to verify this conjecture.

1.2 Main results

In the present thesis, we study Kang-Kashiwara-Kim’s bimodule V@ and
Hernandez-Leclerc’s category % using a geometric technique, especially in
connection with the equivariant K-theory of a certain graded quiver variety
due to Nakajima [41]. As a result, we can prove that the functor % is an
equivalence between the monoidal categories .# and %g,.



First, we give an outline of our geometric realization of the bimodule Ves,
This can be considered as a Dynkin quiver version of Ginzburg-Reshetikhin-
Vasserot’s geometric realization of the usual quantum affine Schur-Weyl du-
ality explained in Section 1.1.2. In our case, the nilpotent cone Nj is re-
placed with the space Es := @,_,; Hom(C%,C%) of representations of the
quiver () over C of dimension vector 5. The group Gz := [[, GLg,(C) nat-
urally acts on Fjs. Instead of the Springer resolution F; — N, we consider
a proper morphism Fz — Ejz from a “quiver flag variety” Fj introduced
by Lusztig in order to construct the canonical basis of the quantum group.
Varagnolo-Vasserot [49] proved that the quiver Hecke algebra Hq(/3) is iso-
morphic to the convolution algebra of the equivariant Borel-Moore homology
oee (Z8,k), where Z3 := Fgx g, Fg. After completion, it is isomorphic to the
completed equivariant K-group K 9 (Z5)x. On the U,(Lg)-side, we consider
a canonical Gg-equivariant proper morphism 93 — 9MG ; between certain
graded quiver varieties. By Nakajima [42], we have an algebra homomor-
phism 21\),31 U,(Lg) — I?GB(Z/;)E(, where Z§ := MG Xane M3, The key of our
construction is a Gg-equivariant isomorphism

0.6 = Ep
due to Hernandez-Leclerc [24], which was originally established in order to
give a geometric interpretation to the isomorphism K(%g)c = C[N]. This
allows us to form the intermediary fiber product M3 X g, Fg. The following
theorem is a main result of the present thesis.

Theorem 1.2.1 (= Theorem 4.3.4 + Theorem 4.3.6). There is an isomor-
phism R R
V®B = KGB (ing XEH fg)k

such that the following diagram commutes (up to a twist):

U,(Lg) End (V%) Ho(B)

NN

R¢(Z3), —= End <IA(GB (MY x g, fﬁ)k) ~— K9 (Z5),

where the horizontal arrows denote the bimodule structures.



Actually, our geometric construction of the fIQ(B)-action is independent
of that of [26], which shares the same characterization of the actions. There-
fore, their comparison yields a uniform proof of:

Corollary 1.2.2 (= Corollary 4.2.3). Kang-Kashiwara-Kim’s assumption
(26, Conjecture 4.3.2] on the simpleness of some specific poles of normalized
R-matrices for tensor products of fundamental modules is true for any quiver

Q@ of type ADE.

Besides, the equivariant Chern character maps enable us to identify the
convolution algebras of the equivariant K-groups with completed equivari-
ant Yoneda algebras of perverse sheaves on Ejg, sometimes called geometric
extension algebras. More precisely, we can prove the following.

Theorem 1.2.3 (=Theorem 4.3.2). The equivariant Chern character maps
induce the following commutative diagram:

K (Z3), End (f(G" (95 X &, ]:B)k) K% (25)7

N

Exty, (L3, £3)" — End (Ext*GB (L3, ﬁﬂ)A) ~—— Extyy, (L, L),

where L3 (resp. Lg) is the (derived) push-forward of the trivial local system
k along the proper morphism M3 — Eg (resp. F3 — Egz). In particular,

the bimodule K% (9% X g, Fp)x induces a Morita equivalence between the
convolution algebras [?GB(Z/;))JK and K G (Z5)x-

Note that, in contrast to the isomorphism }AIQ(ﬁ) &~ IA(GB(Zﬂ)k, Naka-
jima’s homomorphism 65: U,(Lg) — K s (Z3%)x is unfortunately neither in-
jective nor surjective. Thus we need to add some more study about it and
actually this is the most difficult part. On the one hand, the (modified)
quantum loop algebra Uq(Lg) has a structure of an affine cellular algebra,
which is characterized by a chain of ideals whose subquotients are isomor-
phic to global Weyl modules (Beck-Nakajima [3, 45]). This can be seen as
a filtered /quantum-loop analogue of the Peter-Weyl theorem. On the other
hand, the convolution algebra K Gﬂ(ZB)k has a chain of ideals arising from
the Gg-orbit stratification of the space Ez. We compare these structures via
Nakajima’s homomorphism to prove:

10



Theorem 1.2.4 (= Proposition 2.3.6 + Theorem 3.3.6). There is a block
decomposition of the category ¢g

o= P %o
BeEQT

corresponding to the weight decomposition of the unipotent coordinate ring
C[N]. Moreover, for each 8 € QT, the pull-back along Nakajima’s homomor-
phism ®5: Uy(Lg) — K°?(Z3)y, induces the equivalence of categories:

EI\)E: I?GB (Zé)k—modfd i) %ng.
Combining the above three theorems, we finally obtain the conclusion.

Corollary 1.2.5 (= Theorem 4.3.9). For each f € Q*, Kang-Kashiwara-
Kim’s bimodule V®? gives an equivalence of categories:

Fqp: Map — CQp-

Therefore, summing up over S € Q*, we obtain the equivalence of monoidal
categories:
y@i .%Q — CKQ.

Remark 1.2.6. The convolution algebra K% (Z5)x turns out to be an affine

quasi-hereditary algebra, or equivalently, its module category KGs (Zé)k-n1odfg
is an affine highest weight category. The notion of affine highest weight cat-
egory is introduced by Kleshchev [35] as a generalization of the notion of
highest weight category introduced by Cline-Parshall-Scott [12]. An affine
highest weight category is characterized by some special homological proper-
ties. In particular, it has standard modules, which filter projective modules.
The quiver Hecke algebra Hg(5) is known to be an affine quesi-hereditary
algebra by Kato [31] and also by Brundan-Kleshchev-McNamara [5]. Thus
we could prove the equivalence Fg 5: Mo s — Cop as a consequence of a
comparison of the affine highest weight structures. Indeed, in [18] we realized
this idea by using a theory of tilting modules (see Theorem A.2.7). In the
present thesis, we do not pursue this direction because it looks less elegant
than our geometric realization and anyway a geometric discussion seems to
be inevitable. However, we shall give a proof of the fact that the convolution
algebra K Gﬂ(Zé)k is an affine quasi-hereditary algebra using the equivari-
ant K-theory and specify the standard modules for this case as it might be
interesting in itself.

11



1.3 Organization of the thesis

This thesis is written as an edited reprint of the author’s two papers [18] (a
preprint) and [19] (already published online). Roughly speaking, Chapter 2
and Chapter 3 are based on the 1st paper [18], and Chapter 4 is based on the
2nd paper [19]. However, a large part has been suitably modified compared
with the original papers, especially the notation and the ordering of the
explanation.

Chapter 2 is a review of the representation theory of the quantum loop
algebras U,(Lg) and Hernandez-Leclerc’s category €. In Section 2.1, we in-
troduce some notation around a Dynkin quiver and its representation theory
in connection with the associated root system. We also define a coordinate
¢ of the Auslander-Reiten quiver of the representation category Rep () in
Section 2.1.3, which plays an important role throughout the thesis. In Sec-
tion 2.2, we collect some known facts about the representation theory of the
quantum loop algebra U,(Lg) of type ADE. In Section 2.3, we recall the
definition of Hernandez-Leclerc’s category € and see some basic properties.
We give a block decomposition of the category € in Section 2.3.3.

Chapter 3 is a study of the category % via the equivariant K-theory
of the graded quiver variety 91%. In Section 3.1, we recall the definition
of Nakajima’s graded quiver varieties of Dynkin types and prove some basic
facts about the group actions on them. In Section 3.2, we focus on the graded
quiver varieties M3 — NG 5 associated to the data (@, 5). We give a review
of Hernandez-Leclerc’s isomorphism 9§ ; = Ej, and also study the group
actions in detail. Section 3.3 contains an important part of the present thesis
on the convolution algebra K# (Z5)k. After recalling Nakajima’s homomor-
phism in a general setting in Section 3.3.1 and Section 3.3.2, we focus on the
case associated with (@, 8) and give a proof of Theorem 1.2.4 in Section 3.3.3.
We prove that the convolution algebra K Gﬂ(Zé)k is affine quasi-hereditary
in Section 3.3.4, and that it is isomorphic to a geometric extension algebra
by the equivariant Chern character map in Section 3.3.5.

Chapter 4 is devoted to a geometric study of Dynkin quiver type quantum
affine Schur-Weyl duality. In Section 4.1, we give a brief review of the theory
of the quiver Hecke algebras and their geometric realization due to Varagnolo-
Vasserot. Section 4.2 is a short account of the original algebraic construction
of the bimodule V®? by Kang-Kashiwara-Kim. Here we state the conjectures
by Kang-Kashiwara-Kim-Oh precisely. In Section 4.3, we present a geometric
realization of the bimodule V®? and prove Theorem 1.2.1 and Theorem 1.2.3.

12



In Appendix A, we collect some general facts about the equivariant K-
thoery and affine quasi-hereditary algebras (affine highest weight categories).

1.4 Overall convention

e We write the set of integers (resp. rational numbers, complex numbers)
by Z (resp. Q, C) as usual;

e An algebra A is always associative and unital (except for the modified
quantum loop algebra U,(Lg) defined in Section 2.2.2). We denote by
A°P (resp. AX) the opposite algebra (resp. the set of invertible elements)
of A;

e The category of left A-modules is denoted by A-mod. Its full subcate-
gory consisting of finitely generated A-modules is denoted by A-modsg,;

e For a two-sided ideal a C A and a left A-module M., we denote the
quotient module M/aM by M /a for simplicity;

e Working over a base field F, the symbol ® (resp. Hom) stands for ®@p
(resp. Homp) if there is no other clarification. If A is an F-algebra, we
denote by A-mod the category of finite-dimensional left A-modules;

e For i = 1,2, let R; be a complete local commutative F-algebra with
maximal ideal v; C R; with R;/v; 2 F. For any R;-module M; (i = 1,2),
we denote by M;®M, the completion of the (R ® Ry)-module M; @ M,
with respect to the maximal ideal t1 ® Ry + R; ® to C R; ® Ry. Note
that M,®M, is a module over the complete local algebra Ri®Rs;

e For an abelian (resp. additive) category <7, we denote its Grothendieck
group (resp. split Grothendieck group) by K(<7). The class of an
object X € & in K(&/) is denoted by [X]. For a field F, we define

13



Chapter 2

Representation theory of
quantum loop algebras

2.1 Dynkin quivers

In this section, we introduce some notation around a Dynkin quiver and its
representation theory in connection with the associated root system (Gabriel’s
theorem). We also define a coordinate ¢ of the Auslander-Reiten quiver of
the representation category Rep () in Section 2.1.3, which plays a crucial role
throughout the thesis.

2.1.1 Notation

Throughout this thesis, we fix a finite-dimensional complex simple Lie algebra
g of type ADE and a quiver @ = (I, 2) whose underlying graph is the Dynkin
diagram of g (see Figure 2.1 below), where I = {1,2,...,n} (resp. 2) is the
set of vertices (resp. arrows). For an arrow h € Q, let A/, h” € I denote its
origin and goal respectively. We write i ~ j (resp. ¢ — j) if there is an arrow
h € Q such that {i,7} = {h',h"} (resp. (i,5) = (K',h")). Then the Cartan

matrix (a;;j); jer of g is given by
2 ifi=g;

0 otherwise.

14



An(n€Zs) o O O 0 o
1 2 3 n—1 n
D,(n€Zsy) o o o n—1
1 2 n—3 n-—2
9 n
E.(n=6,7,8) o O I O ®
1 3 4 ) n

Figure 2.1: Dynkin diagrams of type ADE

Let PY = &,.,; Zh; be the coroot lattice of g. The fundamental weights
{w; }ier form a basis of the weight lattice P = Homy(PY, Z) which is dual to
{hi}icr. Let o = Zje[ a;jw; be the i-th simple root and Q = @,.; Zo; C P
be the root lattice. We put P* = 3", Z>ow; and Q* = >, ; Z>o. The
Weyl group is the finite group W of linear transformations on P generated by
the set {r;};c; of simple reflections, which are given by r;(A) :== XA — A\(h;)«;
for A € P. The set R™ of positive roots is defined by Rt = (W{a;}ier) N Q™.

2.1.2 Representations of Dynkin quiver

For an element 3 € Q*, we fix an /-graded C-vector space D = @,_,; D;
such that dim D := )", _,(dim D;)oy; = . Let us consider the space
Eﬂ = @ HOIIl(Dh/, Dh//>
heQ

of representations of the quiver ) of dimension vector 8. On the space
Eg, the group Gg := [[,.; GL(D;) acts by conjugation. The set Gg\Ejs
of Gg-orbits is naturally in bijection with the set of isomorphism classes of
representations of the quiver ) of dimension vector 8. By Gabriel’s theorem,
for each o € R there exists an indecomposable representation M, such that
dim M, = « uniquely up to isomorphism. The correspondence o — M, gives
a bijection between the set RT of positive roots and the set of isomorphism
classes of indecomposable objects of the category Rep @ of finite-dimensional

15



representations of ). Hence, the set

KP(p) =

Zmaazﬁ

a€Rt

{ (ma)aeRJr G Z;g

}

of Kostant partitions of 3 labels the set of Gg-orbits: Gg\Es = {Om }mexr(s),
where for each m = (m,) € KP(f), the Gg-orbit Oy, corresponds to the
isomorphism class of the representation @@ g+ ME™. We have the natural
G g-orbit stratification

n

meKP

We define a partial order < on the set KP(3) of Kostant partitions of /3
by the opposite of the orbit closure inclusion. More precisely, for m, m’ €
KP(5), we have m < m’ if and only if Oy, D Oyy.

Eg

(2.1)

Om.
)

2.1.3 Coordinate for the Auslander-Reiten quiver

We fix a height function &: I — Z; 1 +— & of the quiver () i.e. it satisfies
& =& +1if ¢ — 5. Such a function £ is determined up to adding a constant.
Choose a total ordering I = {iy,49,...,4,} such that &, > &, > --- > &,
and define the corresponding Coxeter element ¢ :=r;,ry, ---1r;, € W.

The repetition quiver Q = (f, Q) is an infinite quiver defined by

(
(

Example 2.1.1. The following figure shows the repetition quiver @ of a
Dynkin quiver of type As, which does not depends on the orientation {2 of )
up to parity.

i,p) € I X Z|p—¢& €27},
i,p) = G,p+1) | (@,p), Gp+1) €T, i~ j}

{
{

QD) ~)

(37__2) (370> (372) (374)

N N /N /N S N
(2,23 (2,-1)  (2,1) (2,3)
JoON N 2N 2N /
(1,-2)  (1,0) (1,2) (1,4)

16



It is well-known (cf. [22]) that there exists an isomorphism ¢ from the
Auslander-Reiten quiver of the derived category D?(Rep Q) to the repetition
quiver @, which depends on the choice of £ and is described as follows. Since
each indecomposable object of D’(Rep Q) is isomorphic to a unique stalk
complex M,[k] for some (a, k) € R™ X Z, we have a bijection between the
sets of vertices

RT X Z 3 (o, k) — ¢(M,[k]) €1,

which we denote by the same symbol ¢. This bijection ¢: Rt x Z — I is
determined inductively as follows:

e For each 7 € I, we put v; := Zj a;; where j runs all the vertices j € I
such that there is a path in ) from j to i. Then M., is an injective hull
of the 1-dimensional representation M,,. We define ¢(~;,0) := (i, &);

e Inductively, if ¢(a, k) = (i,p) for (o, k) € R x Z, then we define as:

o(cFHa), k) == (i,p F 2) if c*'(a) € RT,
¢(—c (), k F 1) := (i,pF 2) if *'(a) € —RT.

Remark 2.1.2. The action of the Coxeter element ¢ corresponds to the
Auslander-Reiten translation.

In the present thesis, we mainly consider the restriction of the bijection
¢ to the subset Rt = R™ x {0}, which we denote by the same symbol (as an
abuse of notation), i.e. we define a map

¢:R+<—>f

by ¢(a) = ¢(a,0) for & € RT. By construction, the full subquiver of @
whose vertex set is ¢(R™) is identified with the Auslander-Reiten quiver of
the abelian category Rep Q (the core of the natural t-structure of D*(Rep Q)).

Example 2.1.3. Here we give two examples of type As. In this case, we
have six positive roots RT = {ay, ag, ag, (a1 + o), (2 + a3), (1 + g + a3) }.
In the figures below, the arrows correspond to ones in the Auslander-Reiten
quivers and the dashed arrows denote the Auslander-Reiten transformations
(or the actions of the Coxeter elements c).

(1) For the linearly oriented quiver @ = (1 — 2 — 3) with a height
(&1,&,&3) = (2,1,0), the map ¢: R™ < I is given as the following
figure.

17



a1+ ag + ag (370)
/N /N
Q9 + Q3 «- a1 + Qg ¢ (2,—1) <***(2,1)
N

—
SN N 7

- P a (1,-2) «-- (1,0) «--- (1,2)

More generally, for the linearly oriented quiver @ = (1 -2 — --- — n)
of type A,, with a height & = n — i, we have ¢(o;) = (1,n+ 1 — 21) for
all 1 <7 <n.

(2) For the quiver @ = (1 — 2 < 3) with the height (&1, &,&5) = (2,1,2),
the map ¢: Rt < [ is given as the following figure.

a1+ Qg «--- Q3 (370) <7777<352)
SN S 4 SN S

Qg «- a1+ oy + as S (2,-1) - (2,1)
N\ NN
Qo + Q3 «---0q (17()) <7777<172)

2.2 Quantum loop algebras

In this section, we recall and prove some facts about representation theory
of quantum loop algebras U,(Lg) of type ADE.

We keep the notations in the previous section. In particular, we fix a
complex simple Lie algebra of type ADE and a Dynkin quiver @ = (I,2) of

the same type. Let ¢ be an indeterminate and let k := Q(g) be the algebraic
closure of the rational function field Q(g) inside U,,,c;_. Q((¢"/™).

2.2.1 Definition

Let Lg := g ®c C[z*!] be the loop algebra of g. The quantum loop alge-
bra U,(Lg) defined below is regarded as a g-deformation of the universal
enveloping algebra U(Lg) of Lg.

Definition 2.2.1. The quantum loop algebra U, = U,(Lg) associated to g
is a k-algebra with the generators:

{eir, firli€reZYyU{q"|h € P} U{him|icI,mecZ\{0}}
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satisfying the following relations:
=1, ¢"¢" =" [¢" him] = [higm, hjs] =0,

ei,qg" =" Weir, " firqg"=qMfi,,
(z — ¢ 9w (z)a7 (w) = (¢ 2 — w)x; (w)s (2),

(2 ()] = 20 (5 (D) wir(w) — 6 (2) wi(2)).

(z = ¢ w)a (2)z5 (w) = (52 — w)ay (w)ai (2),

{27 ()2 (z2) 27 (w) = (g + ¢~ D)7 (1) (w)a (22)
+ag (w)rf (2)af ()} + {2 ¢ 2} =0 ifi~g,

where ¢ € {+,—} and §(2),¢;"°(2), 27 (2) are the formal series defined as
follows:

o0

0(z) = > 2" Pf(z) = ¢ exp ( ¢4—q Z hi imﬁm) :

r=—00

[e.e] [e.e]
= Z eirz ', x;(2):= Z firz "
r=—o00 r=—o0

In the last relation, the second term {z; <> 25} means the exchange of z;
with 29 in the first term.

Remark 2.2.2. Let g be the (untwisted) affine Lie algebra associated to g
realized as
g=Lg® CcapCd

with a suitable Lie algebra structure, where c is a central element and d :=

z% is the degree operator. The derived subalgebra

o~

=[g,9] = Lg & Cc

is a (unique) central extension of the loop algebra Lg.

Because the affine Lie algebra g is a Kac-Moody algebra associated to
a generalized Cartan matrix of affine type, we have the Drinfeld-Jimbo’s
quantum enveloping algebra U,(g) of g. By definition, this is a Hopf algebra
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over k generated by the generators {e;, f; | i € TU{0}} U{¢" | h € PV ®
Zc @ Zd} satisfying the well-known relations. The coproduct A: U,(g) —
U,(g) ® U,(g) is given by:

Ale)=e;@q¢ " +1®e, Alf)=fiol+d"ofi, Al")=¢c¢

fori e TU{0},h € PY & Zc @ Zd.

The subalgebra U (g) generated by the Chevalley generators {e;, f;, ¢~
i € 1U{0}} is a Hopf subalgebra of U,(g). This is regarded as a g-deformation
of the universal enveloping algebra of g'.

By Beck [2] (originally by Drinfeld), we have a k-algebra isomorphism
U,(Lg) = U(g)/(q° — 1). Actually this isomorphism depends on a function
o: I — {£1} such that o(i) = —o(j) if i ~ j. Although the choice does not
affect the results of this thesis, we can choose it as o(i) := (—1)% for each
1 € I for instance, where &; is the height we have fixed in Section 2.1.3. Via
this isomorphism, the quantum loop algebra U,(Lg) inherits a structure of
Hopf algebra. By [13], it is known that for each i € I and r € Z~(, we have

Alhigr) =hier @1+1@hizr € D (Up)gy @ (Uy)r, (2.2)
yeQT\{0}

where we put (U,), = {z € U, | ¢"z¢™" = @™z (Yh € P¥)}. The antipode
S is given by

Sle)) = —eid™, S(fi)=—a"fi, S")=q",

which we use to define dual modules.

2.2.2 Finite-dimensional modules

A U,module M is said to be of type 1 if it has a decomposition:

M = @M,\, My :={m e M | ¢"m = ¢@®m (Yh € PV)}.
AeP

A nonzero subspace M, is called a weight space of M and then A is called a
weight of M. Let &, denote the category of finite-dimensional U,-modules of
type 1. The category € becomes an abelian k-linear rigid monoidal category.
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We often use the modified quantum loop algebra denoted by U,(Lg),
which is defined by

U,=U,(Lg) = P Ujar, Uar:=0, | Y Uyd" — ™),

AeP hePv

where a) stands for the image of 1 in the quotient. The multiplication is
given by
axay = Oxu@y, AAT = TA\_~,

where = € (U,),,7 € Q. By definition, considering a U,(Lg)-module is the
same as considering a Ug-module of type 1. In particular, we have 6; =

Uq(Lg)—IIlOdfd.

In order to describe some more detailed structures of modules, we em-
ploy the following notation, which is less standard in references. Let P :=
@(i,a)ekax Zw,; , be the set of £-weights, which is a free abelian group with
a basis {w;, | i € I,a € k*}. We call a basis element w;, a fundamen-
tal (-weight. An element in the submonoid Pt := ) Zsow;, is said to be
¢-dominant. We define a Z-linear map cl: P — P by w;, — w;. For each
(i,a) € I x k*, we define the corresponding ¢-root a; , € P by

Qjq ‘= Wiaq T Wiag—1 — Z Wja-
i
We define the ¢-root lattice by Q := @(m)elxkx Za;, C P and set QF =
> Zsoa;,. Note that cl: P — P induces a map cl: Q — Q since cl(a;,) =
a;. We define a partial order < on P called the ¢-dominance order by the
condition that for A, u € P, we have X < p if and only if p — A € QF.

Let U,(Lb) denote the commutative k-subalgebra of U,(Lg) generated by
elements {¢" | h € PV} U{h;, | i € I,r € Z\ {0}}. A module M € %,
decomposes into a direct sum of generalized eigenspaces for U,(Lh) as M =
@ Mg+, where UF = (UF(2));e; € k[27']! and

Mys :={m € M | (¥i(z) — UF(2)id)¥m =0 for any i € [ and N > 0}.

It is known (see [16, Proposition 1]) that if Mg+ # 0, there is a unique
(-weight X = > 1; ;w; . € P such that we have

+
1— aq_2z_1 lia
(") ) (23

ackX

‘I’zi(z) — qcl(A)(hi) (
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where (—)* denotes the formal expansion at z = oo and 0 respectively. In
this case, we write My = Mg+ and call it the (-weight space of (-weight .

By definition, we get
My= & M

AP cl(A)=A

for each \ € P.
We say a module M € % is an (-highest weight module with (-highest
weight A € P if there exists a generating vector mg € M satisfying

1 _ aq—QZ—l li,a +
H ( 1—az! ) o

ackX*

$2_(Z)m0 =0, wzi(z)mo — qd()\)(hi) (

for each @ € I. Compare the latter equation with (2.3). In this case, the
¢-highest weight A automatically becomes /-dominant, i.e. A € P* and we
have My = k- my. Any simple module in %; is known to be an ¢-highest
weight module and to be determined by its ¢-highest weight uniquely up to
isomorphism. We denote by L(A) the simple module whose ¢-highest weight
is A € PT.

Remark 2.2.3. In the original classification result by Chari-Pressley [8],
the simple finite-dimensional type 1-modules are parametrized by I-tuples
of polynomials with constant terms 1, i.e. (m;(u));e; with m;(u) € 1 4 uk[ul,
which are usually referred as the Drinfeld polynomials. In this notation, the
simple module L(X) of its ¢-highest weight A € P* corresponds the Drinfeld
polynomial (7;(u));er given by

mi(u) = ] (1 —au)s
ackX
for each i € I where A = > 1; ;i q.

The following fundamental result is originally conjectured by Frenkel-
Reshetikhin [16] and proved by Nakajima [41] (for g of type ADE using quiver
varieties) and by Frenkel-Mukhin [15] (for general finite-dimensional simple
Lie algebra g).

Proposition 2.2.4. For a dominant /-weight X\ € P* and an /-weight p € P,
we have L(X), # 0 only if pp < A.
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The g-character x,(M) of a module M € % is defined as an element of
the group algebra Z[P] = @, p Ze* by

Xg(M) =" "(dim My)e*.
A€eP

In the references, the ¢-character y,(M) is usually written as a Laurent
polynomial in variables {Y;, | ¢ € I,a € k*}, where Y, is the element
e@ia € Z[P] in our notation.

Proposition 2.2.5 (Frenkel-Reshetikhin [16]). For M, M, € €, we have

Xq(My ® M) = xq(My) - xq(Ma).

Moreover, the induced ring homomorphism x,: K(%;) — Z[P] is injective.
In particular, the Grothendieck ring K(%;) is commutative.

Proof. This is a consequence of the formula (2.2) and the classification of
simple objects in €, described above. See [16, Section 3] for details. O

Remark 2.2.6. Nevertheless, M ® My 2 M, ® M, for general M, M, € €.

For each M € €, we define its left dual module M* (resp. right dual
module *M) as the dual space Homy (M, k) with the left U,(Lg)-action ob-
tained by twisting the natural right action by using the antipode S (resp.
S™1). For any M, M, € ¢,, we have

(M; @ My)* = My @ My, *(M; @ My) ="My @ * M.
We define the following Z-linear maps on P:

(=) P—=P; wia+— Wy 7= Wis aqhs
*(_) P — Pa Wi,q = *wi,a ‘= Wi* aghs

where ¢ +— ¢* is an involution on [ defined by «;« := —wpay; and h is the
Coxeter number (the order of a Coxeter element of W). Under this notation,
we have

L(wio)" = L(w),), "Llwi.) = L(*wia).

i,a
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2.2.3 Weyl modules

In this subsection, we recall the global and local Weyl modules of U, in-
troduced by Chari-Pressley [10]. Also we define the deformed local Weyl
module, which plays a role of a standard module of an affine highest weight
category.

Definition 2.2.7. A U,-module M of type 1 is said to be (-integrable if
the following property is satisfied: for each m € M, there exists an integer
ng > 1 such that we have €;, €;,, -+ €irym = fir, firy -+ firym = 0 for any
N>npandanyt € I, ry,...,ry € Z.

Remark 2.2.8. We do not impose that dim M, < oo for (-integrability.
Note that any finite-dimensional modules of type 1, i.e. any objects of the
category Cy are automatically (-integrable.

First we define the global Weyl modules.

Definition 2.2.9. Let A € P™ be a dominant weight. We define the corre-
sponding global Weyl module W(X) to be the left U,-module generated by a
cyclic vector w, satisfying the following relations:

EirWx = 07 qth - (]/\(h)w/\, (fi,’r)A(hi)Jrlw)\ = 07
where i € I,r € Z and h € PV.

For a dominant weight A = Y., l;w; € P*, we define the following k-
algebra of partially symmetric Laurent polynomials:

R(N) = Q) (k[z)%)% = R k[, ..., 255 (2.4)
el el

Theorem 2.2.10 (Chari-Pressley [10], Nakajima). Write A = >
Pt.

icl llwz €

(1) The global Weyl module W(\) is (-integrable and has the following
universal property: If M is an /(-integrable U,-module with a cyclic
vector m € M) of weight \ satisfying z; (z)m = 0 for any i € I, then
there is a unique U,-homomorphism W(A) — M such that wy — m;

(2) Endy,(W(X)) = R(A) and W(A) is free over R(\) of finite rank;
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(3) For any i € I, we have:

Proof. See [10, Section 4]. The freeness over R(\) in the assertion (2) is
proved by the geometric realization due to Nakajima. For details, see Theo-
rem 3.3.2 and Theorem 3.3.3 (2) below. O

Remark 2.2.11. The global Weyl module W(\) is known to be isomorphic
to the level 0 extremal weight module V™()) of the extremal weight A,
defined by Kashiwara [29]. See [10, Proposition 4.5] and [43, Remark 2.15].

Next we consider the local Weyl modules. We identify a point of the
quotient space (k*)V /Gy with a Zs¢-linear combination of formal symbols
{la] | @ € k*} whose coefficients sum up to N. Note that we have

Speem R(A) = [T ((k*)"/&,,) .
il
Let A = Z(i,a)ekax liawiq € PT be an (-dominant (-weight and put A :=
cl(A) € Pt. We denote by my the maximal ideal of R(\) corresponding to

the point
(Z zi,a[a]> e [T () /s.).

ackX el

Definition 2.2.12. We define the local Weyl module W (X) corresponding
to A € Pt by W(A) := W(A)/my. We denote the image of the cyclic vector
wy € W(X) by wy € W(A).

Theorem 2.2.13 (Chari-Pressley [10]). Let A € Pt be an ¢(-dominant (-
weight.

(1) The local Weyl module W () is a finite-dimensional ¢-highest weight
module of ¢-highest weight A with W(A)x = k - wx. Moreover it has
the following universal property: If M € %, is an (-highest weight
module of ¢-highest weight A with My =k - my, then there is a unique
U,-homomorphism W(X) — M with wy — mo;

(2) W(A) has a simple head isomorphic to L(A).
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Proof. Follows from Theorem 2.2.10. O

Let us introduce the deformed local Weyl modules as infinitesimal formal
deformations of the local Weyl modules. Let A = >, , ;o € P* be an
(-dominant ¢-weight and set A := cl(X). We define the my-adic completion
as

R(MNA = lim R(\) /mj.

Definition 2.2.14. We define the deformed local Weyl module /W()\) corre-
sponding to A € P* by

W(A) = W(\) @py ROV = m W() /m.

We set Wy :=w)®1 € /W()\)
We also use the following algebra:

RA) =R Q) (k[z]%lie) e (2.5)

1€l ackX

Note that the algebra R()\) is a subalgebra of R(A) for A = cl(A). Let ty be
a maximal ideal of R(A) corresponding the point

Giald)werax € ][ ((&9)%/&),,) = Speem R(A).
(i,a)€IxkX

Then we have my = R(A) Nty and there is a natural isomorphism

R(X) := lim R(A) /v = R(V)3. (2.6)

Therefore we identify R(A\)} with R(X).

Proposition 2.2.15. The deformed local Weyl module /VI?()\) satisfies the
following properties:

(1) For each M € %, taking the image of Wy gives a natural isomorphism:

Homy, (W(A), M) = {m € My | e;,m = 0 for any i € I,r € Z};

(2) Enqu(/W()\)) = R(A) and /W()\) is free over R(A) of finite rank;
(3) WA /ra = W(N).
Proof. Follows from Theorem 2.2.10. Il
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2.2.4 Affine cellular structure

In this section, we briefly recall the affine cellular algebra structure (in the
sense of [36]) of the modified quantum loop algebra U, in terms of the global
Weyl modules, following [3], [45].

Let A =) .., liw; € PT. By Theorem 2.2.10 (2), the global Weyl mod-
ule W()) is regarded as a (U,, R(\))-bimodule. We obtain a (R()),U,)-
bimodule W(A)f from W(\) by twisting the actions of U, and R()\) by the
anti-involution ¢ on U, ® R()\) determined by

fle) = fi, #(f) =e, $(d")=d" #la) =axr Hzx) =24,

where ¢;, f; (i € ITU{0}) are Chevalley generators (see Remark 2.2.2), h € P,
AePandzj(jel, 1 <k<l)areasin (2.4).

Fix a dominant weight A € PT. Let U<, be the following quotient of the
modified quantum loop algebra Uq :

Ucy = U, ﬂ Anng, W(p), (2.7)

n<A

where Anan M denotes the annihilator of a Uq—module M. We fix a num-

bering {A1, Ay, ..., A} of the set PZ, := {y € P* | u < A} such that we have
A = A and i < j whenever \; < A;. For each i € {1,2,...,1 — 1}, we define
a two-sided ideal I; of U<y by

I = () Anny_, W(N). (2.8)

j<i

We also define I := U<y and [; := 0. By definition, we have I, C I;_; for
each i € {1,...,1}.

Theorem 2.2.16 (Beck-Nakajima [3], [45]). For each i € {1,...,[}, there is
an isomorphism of (U<y, U<y)-bimodules

Under this isomorphism, the image of the element a), € I;_; corresponds to
the generating vector wy, ® wy, € W(\;) ®p(r,) W(A)L

Proof. See [45, Section A(ii), A(iii)]. O
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2.2.5 Normalized R-matrices

In this subsection, we recall some facts about R-matrices of /-fundamental
modules following [1], [25], [30].

Let us denote Endy,rg)(W(w;)) = k[zZ!] for each i € I (see Theo-
rem 2.2.10 (2)). For any pair (4, ) € I?, there is a unique homomorphism of
(U,(Lg), k[2Z}, 2£!)-bimodules, called the normalized R-matriz

w; ) Twy
R?grm: W(wz) ® W(wj) — ]]{(ij/zwi) ®k[(zw]~/zwi)i1] (W(w]) ® W(wz)) ,

such that R{$™ (g, @, ) = We, @Wg,. The denominator of the normalized
R-matrix R}™ is the monic polynomial d;;(u) € kl[u] with the smallest
degree among polynomials satisfying

I Ri5™ C di (2, /2:) 7 @ (W(e) @ W(i).

It is known that zeros of the denominator d; ;(u) belong to ¢/™Q[¢"/™]
for some m € Z- (see [30, Proposition 9.3]). In particular, we have

d; ;(1) # 0. (2.9)
Moreover, it is known that for each ¢, j € I we have
See [1, Appendix A] for example.

Theorem 2.2.17. Let A = Z;Zl Wi, a, € PT be an (-dominant (-weight.
Then the following three conditions are mutually equivalent:

(1) The tensor product module L(w;, 4,) ® L(Wiyaey) @ -+ @ L(wi,q,) is
generated by the tensor product of /-highest weight vectors;

(2) W(}‘) = L(wihal) ® L<wi2,az) Q- ® L(wihal);
(3) di, . (ar/a;) #0 forany 1 < j <k <.

Proof. The equivalence of (1) and (2) was proved by Chari-Moura [7, Theo-
rem 6.4] using the results from geometry due to Nakajima [42]. The equiva-
lence of (1) and (3) was proved by Kashiwara [30, Proposition 9.4]. O

Definition 2.2.18. Let A € Pt be an /-dominant (-weight. We define the
dual local Weyl module corresponding to A by WVY(X) := W (*A)*.
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Proposition 2.2.19. Let A = Zé:z @i, a; € PT be an (-dominant (-weight.
Assume W(A) = L(w;, 4,) @ L(wiyay) ® -+ - @ L(w;, 4,). Then we have

WV(A) = L(wihal) ® L(wi171,azf1) - ® L(wihal)‘

Proof. Use the equivalence of (2) and (3) in Theorem 2.2.17 and (2.10). O

2.3 Hernandez-Leclerc’s category %

In this section, we recall the monoidal subcategory 6o C %, associated
with our Dynkin quiver (). This category %y was originally introduced by
Hernandez-Leclerc [24]. They proved that it gives a monoidal categorification
of the coordinate ring C[N]| of the maximal uniportent subgroup associated
with g. We also describe a block decomposition of the category %; which
gives a QT-grading of the monoidal category ¢ corresponging to the weight
decomposition of C[N].

2.3.1 Definition

In Section 2.1.3, from our fixed Dynkin quiver @ = (1, £2) and an essentially
unique choice of a height function £: I — Z, we have defined the repetition
quiver @ = (I,) with

I={(i,p) eI xZ|p—¢& € 2L}

and a map ¢: Rt — 1. Using these data, we define & := ZI to be the
free abelian group with its free generating set I and &, := Z¢p(R™) to be the

subgroup generated by the subset ¢(R*) C I. Let us regard & as a subgroup
P by the embedding
P —=P; (i,p) — Wig.

Thus we have &y C & C P. We also define the following submonoids
consisting of dominant /-weights:

c@J = Zzg¢(R+) C L@+ = Zzof C PJr.

Definition 2.3.1 (Hernandez-Leclerc [23], [24]). We define the category €g
(resp. 67) as the smallest Serre subcategory of the category €, containing
the simple modules L(A) with A € 2 (resp. A € &#%). In other words,
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a module M € %, belongs to the category % (resp. ¢7) if and only if its
composition factors are isomorphic to L(A) for some A € P (resp. A €
D).

Informally, we can understand the category ¢z as the subcategory of
%, “supported on the Auslander-Reiten quiver ) of D’(Rep@)” and the
category ég as the subcategory of 47 “supported on the Auslander-Reiten
quiver of the heart Rep @ of the natural t-structure of D°(Rep Q)”.

Lemma 2.3.2 (cf. [23] Proposition 5.8 and [24] Lemma 5.8). The categories
¢z and 6g are closed under the tensor product. In other words, they are
monoidal subcategories.

Proof. By Proposition 2.2.4 and Proposition 2.2.5, it follows that [L(u) :
L(A1) ® L(A2)] # 0 occurs only if g < Ay + Ag. Therefore the assertion for
%7, follows from the following fact, which is easily verified: Assume p < A
occurs for A € ZT and p € P*. Then we have p € &7*. Similarly, the
assertion for % follows from Lemma 2.3.3 below. O]

We need to introduce another notation. Let
J:i=IxZ)\T

{(i,p) e IXZ|p—¢& €2Z+ 1},

Jo:={(i,p) € T| (i,p—1),(i,p+ 1) € (R}

For each (i,p) € J, we write

(i,p) =i = (i,p = 1)+ (i,p+1) = Y (j,p)

i
for simplicity. We define the subgroups
2= @ zip c 2= zip cQ
(i,p)eTo (ip)e]

By definition, we have 2 = & N Q C P. We also write the corresponding
submonoids generated by (i,p)’s as 2f := 2,N QT C 27 .= 2N 9+.
We get the following simple observation.

Lemma 2.3.3. Under the notation above, we have:
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(1) 2o = PyN 2.

(2) Assume that A — v € PT occurs for A € & and v € Q. Then we
have v € 2; and therefore A — v € Z.

Proof. As mentioned in the last paragraph of Section 2.1.1, the full subquiver
I'o with its vertex set ¢(R™) inside @ is isomorphic to the Auslander-Reiten
quiver of the path algebra C(Q. In particular, the following properties are
satisfied:

(1) If both (i,p1) and (7, p2) belong to ¢p(RT) with p; < pa, then (4, p) also
belongs to ¢(R1) for any p with p; < p < py and p — &; € 2Z.

(2) If both (i,p—1) and (i, p+ 1) belong to ¢(R™), then (j, p) also belongs
to ¢(R™) for any j with i ~ j.

From these properties, we obtain the assertions. Il

2.3.2 Basic properties

In this section, we recall some basic properties of the monoidal subcategories
¢z and 6 in order to show that they are natural and important objects.

First, we shall see that the subcategory %7 is an essential part of the
category ;. For each t € k*, we define the spectral shift automorphism o
on U,(Lg) as a k-Hopf algebra automorphism given by

oeir) =teir, oulfiy) =1 fir, Ut(qh> = q", ot(him) = t"him,

where i € I,r € Z,m € Z\ {0},h € PY. The pull-back functor o} on
the module category preserves the category %; of finite-dimensional type 1
representations, i.e. it gives an auto-equivalence of %;. For each simple
module L(A) with A € P*, we have o] L(X\) = L(o/\), where we define a
group automorphism o} : P = by 0w, := w4 for each (i,a) € I x k*.
By definition, we have o; & = £ if and only if t € ¢*2, and moreover we
have P = Ztekx/q% ofZ. Thus any (-dominant weight A € Pt can be
written in an essentially unique way as a sum A = of Ay + -+ + 0] Ay,
with Ai,..., A\ € Z7 and ty,...,t, € k* such that ¢;/t; € ¢** for any
1 <i# j <m. Then we have a factorization of simple module L(X) (cf. [6])

L(N) = L(oj, A1) @ -+ - ® L0, Am)-
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In particular, if ;,t, € k* satisfy ¢, /ts & ¢*%, we have
L(o} A1) ® L(0],A2) = L(o;,A2) ® L(oj Ay)

for any Aj, Ay € 2. In other words, the Grothendieck ring K (%;) factorizes

K%)= Q) oK (%)

tek* /g%

where the tensor product on the RHS is over Z and we implicitly understand
that only finitely many tensor factors are non-trivial. In this sense, we under-
stand that the subcategory %7 is an essential part of the monoidal category
Gy

We now turn to the subcategory 4y C 67. Let G be a complex affine al-
gebraic group whose Lie algebra is g and N be a maximal unipotent subgroup
of G corresponding to the positive roots RT. Recall that the coordinate ring
C[N] possesses the dual canonical basis. As a main result of the paper [24],
Hernandez-Leclerc proved that the category % gives a monoidal categorifi-
cation of the coordinate algebra C[N].

Theorem 2.3.4 (Hernandez-Leclerc [24]). There is an isomorphism of C-
algebras

K(%q)c = C[N]
which sends the classes of simple modules to the elements of the dual canon-
ical basis bijectively.

Actually, Hernandez-Leclerc established an isomorphism between quan-
tizations, i.e. an isomorphism between the quantum Grothendieck ring of
the category 46 and the quantum coordinate ring of the maximal unipotent
subgroup N.

2.3.3 Block decomposition of the category %g

In this section, we give a direct sum decomposition of the category €.
This decomposition corresponds to the weight space decomposition C[N| =
@Dsecq+ CIN]s of the uniportent coordinate ring under the isomorphism in
Theorem 2.3.4.

By the injective map
KP(8) 3 (ma) = 3 madla) € 25,
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we regard KP(3) as a subset of £2;". Then we have a disjoint union decom-
position
7§ = || KP(®)
BeEQT
satisfying KP (1) + KP(52) € KP(8; + 32) for any (1, 52 € Qt.

Definition 2.3.5. Associated with an element 8 € QT, we define the cate-
gory 6g s to be the Serre subcategory of 6, full subcategory of 6 containing
the simple modules L(m) for m € KP(f). In other words, the category %y s
is the full subcategory of € consisting of modules whose composition factors
are isomorphic to L(m) for some m € KP(f).

Proposition 2.3.6. We have a direct sum decomposition of the category:

CKQ = @ %Q,ﬂ'
BeQT

Moreover we have €4 5, ® 60,8, C €0.p+8 for b1, € QT.

Our proof of Proposition 2.3.6 relies on the following result by Chari-
Maura [7]. Recall that for any two simple modules M;, My € €,, we say that
M, and M, are linked in % if there is no splitting ¢; = 6, @ ¢> of abelian
category such that M, € €, and Ms € %5. The following fact is known.

Theorem 2.3.7 (Chari-Moura [7]). For any ¢-dominant (-weights A\, p €
P+, the corresponding simple modules L(A) and L() are linked in % if and
only if A —p € Q.

Proof of Proposition 2.3.6. Define a group surjection deg: &y — Q by set-
ting deg ¢(«) := « for each @ € RT. Then we have

KP(B) ={x € Z; | deg(A) = 5}

by the definition of our inclusion KP(3) < 7.

Let (i,p) € Jo. Then the indecomposable module M (¢~(i, p+1)) is non-
projective and its Auslander-Reiten translation is M (¢! (i,p—1)), where ¢!
is the inverse map of the bijection ¢: R™ — ¢(R") (see Remark 2.1.2). By
the Auslander-Reiten theory, there is an almost split sequence:

0— M(¢~ (i,p—1)) > P M(¢7'(j.p) = M(¢7'(i,p+1)) = 0.

jri
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Recall that we have dimM(«) = a € Q by definition for each v € R™.
Because the dimension vector function dim(—) is additive, we compute in Q
to get

deg(i,p) = ¢ (i,p— 1)+ ¢ ' (Lp+1) =D ¢ '(j,p) =0

gi

for each (i,p) € j;). Therefore, for any A, Ay € 2 with A; — Ay € Dy, we

have deg Ay = deg Ay. Combining this observation with Theorem 2.3.7 and
Lemma 2.3.3, we obtain the direct sum decomposition ¢y = @5€Q+ Co.5-

The latter assertion 6 s, ®%6q,5, C €0,p,+8, follows from Proposition 2.2.5.

[

Remark 2.3.8. The decomposition €4 = @geq+ G turns out to be
a block decomposition i.e. L(m;) and L(my) are linked in %3 s for any
m;, my € KP(3). Indeed, the composition multiplicity of the simple module
L(m) in the local Weyl module W(Ag) is non-zero for each m € KP(f).
This follows from the geometric fact MG(As —m, Ag) # & (see Lemma 3.2.3
below).
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Chapter 3

Quiver varieties and the
category ¢()

3.1 Quiver varieties

In this section, we collect definitions and some properties of (graded) quiver
varieties associated to a Dynkin quiver (). Basic references are [39], [40], [42].
We keep the notation in Section 2.2.

3.1.1 Quiver varieties of Dynkin types

Fix an element v = Zie ;i € Q" and a dominant weight A\ = Zie iy €
P*. Consider I-graded C-vector spaces V¥ = @, Vi*,W* = @,.; W;* such
that dim V¥ = n;, dim W2 = [; for each i € I. We form the following space
of linear maps:

NV, W) = ( & Hom(V;V,V;-”)) ® (@ Hom(W},v;)) :
i—jeQ iel

which is considered as the space of framed representations of the quiver @
of dimension vector (v,)). On the space N(V¥, W?*), the group G(v) :=
[Lic; GL(V}) acts by conjugation. Let

M(VY, W) := T*N(VY, W) = N(VY, W) @ N(VY, W)*

be the cotangent bundle of the space N(V¥, W*), which is naturally regarded
as a symplectic vector space. More explicitly, the space M(V¥, W?) is natu-
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rally identified with a direct sum

P Hom(v, V)| & <€B Hom(W},v;.V)> ® (EB Hom(ViV,W})> .

(4,5)3invg icl icl

According to this direct sum expression, we write an element of M(V", W?)
as a triple (B, a,b) of linear maps B = € B;j, a = @ a; and b = @Pb;. Let
p=B,c;pi: M(VY, W) — @,; 0l(V}¥) be the moment map with respect
to the G(v)-action. Explicitly, it is given by the formula

wi(B,a,b) = a;b; + Za(i,j)Biiji,
gt

where €(i,7) := 1 (resp. —1) if j — i € Q (resp. i — j € ). A point
(B,a,b) € u(0) is said to be stable if there exists no non-zero I-graded
subspace V' C V¥ such that B(V') C V' and V' C Kerb. Let u=1(0)*
be the set of stable points, on which G(v) acts freely. Then we consider
a set-theoretic quotient M (v, \) = p~1(0)*/G(v). It is known that this
quotient has a structure of a non-singular quasi-projective variety which is
isomorphic to a quotient in the geometric invariant theory. On the other
hand, we also consider the affine algebro-geometric quotient My(v, A) =
1 1(0)//G(v) = SpecClu1(0)]9"), together with the canonical projective
morphism 7: M(v, A) — My(v, \). We refer to these varieties M (v, A), Mo (v, A)
as quiver varieties.

Note that, on the linear space M(V¥, W*), the group G(\) := [[,.; GL(W}")
acts by conjugation and C* acts as the scalar multiplication. The combined
action of the group G(\) := G(A) x C* on M(V¥, W?*) commutes with the
action of the group G(v). Thus we have the induced G(\)-action on the
quotients M(v, A), My(v, \) which makes the canonical morphism 7 into a
G(\)-equivariant morphism.

For v,/ € Qt with v < ¢/, we fix a direct sum decomposition V*' =
VY @ VY ~". Extending by 0 on V¥ ¥, we have an injective linear map
M(VY, W*) < M(V¥',W?). This induces a natural closed embedding 90%(v, \) <
9My(1/, ), which does not depend on the choice of decomposition V¥ =
VY @ VY= . Via this natural embedding, we regard My(v, \) as a closed
subvariety of (', A). We consider the union of them and obtain the fol-
lowing combined morphism:

T M) =M, A) = Mo(A) == | Mo (v, ).
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For each z € My(N), let M(N), := 7' (x) denote the fiber of z. The fiber
£(\) := 771(0) of the origin 0 € My(A) is called the central fiber. We also
set M(v, A)g := M), N M(v, A) and £(v, A) := £(A) NM(v, \).

Recall that the geometric points of 9y (v, A) correspond to closed G(v)-
orbits in p~'(0). Let M;®#(v,\) be the subset of My(v, \) consisting of
closed G(v)-orbits containing elements x = (B,a,b) € p~(0) with trivial
stabilizers (i.e. Stabgq)x = {1}). This is a (possibly empty) non-singular
open set of My(v,\), on which the morphism 7 becomes an isomorphism
LN (1, N)) = (v, A). Tt is known that D (v, \) # @ if and only
if A — v is a dominant weight appearing in the finite dimensional irreducible
g-module of highest weight A. They form a stratification:

Mo(N) = || MEwN). (3.1)

veQt;A\—vePt

We have M= (v, \) C M™(v/, A) only if v < V.

3.1.2 Graded quiver varieties

Fix an element v = 7, \ 5ni,(i,p) € o@j and an /-dominant /(-weight
A= Z(ivp)efli,p(i,p) € 2*. Consider a J-graded C-vector space V¥ =
D p)er Vi (p) with dim V¥ (p) = nyy for (i,p) € J, and an I-graded C-
vector space W = Diper WA (p) with dim WA (p) = I;,, for (i,p) € 1. We

form the following space of linear maps:

M* (VY W) = B  Hom(V¥(p),Vi(p—1)
(im)e] jeTsing
o | @ Hom(WA(p),V(p-1) | @ | @ Hom(V(p), W, )
(i.p)el (i.p)eT
According to this direct sum expression, we write an element of M*(V¥, W?)
as a triple (B,a,b) of linear maps B = @ Bji(p), a = @ ai(p) and b =

D bi(p). Let p* = B, ey ptip: MO(VY, W) ~ D p)es Hom(V¥ (), V¥ (-
2)) be the map defined by the formula

pt (B, a,b) = a;(p — bi(p) + > (i, j)By(p — 1)Bji(p),

g
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where (i, j) is the same as in Section 3.1.1. The map p*® is equivariant with
respect to the conjugate action of the group G(v) = [[; 7 GL(V"(p))-

A point (B, a,b) € p®*~1(0) is said to be stable if there exists no non-zero
J-graded subspace V' C V¥ such that B(V') C V' and V' C Kerb. Let
p*~1(0)** be the set of stable points. Similarly as in Section 3.1.1, we con-
sider two kinds of quotients 9M* (v, A) := p®*~1(0)*/G(v) and MY(v, A) :=
u®~(0)//G(v), together with the canonical projective morphism 7*: 9°*(v, A) —
M (v, A). We refer to these varieties 9®* (v, X), M8 (v, A) as graded quiver va-
rieties.

On the space M*(V¥, W?), we have the conjugation action of the group
G(A) = H(i,p)efGL(VVz‘A(p)) and the scalar action of C*. The combined
action of the group G(A) := G(A) x C* on M(V¥,W?) induces actions on
the quotients M (v, A), My(v, A) which make the canonical morphism 7* into
a G(A)-equivariant morphism. As in Section 3.1.1, we can form the unions:

T MA) =M, A) = MA) = M (v, ).

M*(A), := 7 (z) denote the fiber of a point z € My(\). We set

3.1.3 Identification with fixed point subvarieties

Let A = Y 1i,(i,p) € P be an (-dominant (-weight. In this subsection,
we realize the graded quiver varieties 9t*(X), MM8(A) as subvarieties of fixed
points for a certain torus action in the usual quiver varieties (), Mo(N)
with A := cl(X).

We have A = )., l;o; with [; = Zpe2z+§¢ l;» by the definition of cl. For
each i € I, we choose a direct sum decomposition W = @ ., e, WA(p)
such that dim W>(p) = l;,. Note that this choice specifies a group embed-
ding G(X) — G()). Define a group homomorphism p;: C* — GL(W?) by
Pi()lwapy =t - idyag, for t € C*. Let

pr = ([ ] pi xid): ©° = G(A) x C* = G())
i€l
be a 1-parameter subgroup and put T(A) := px(C*). Then we consider the
subvarieties ()T 9(A)TX) consisting of T(A)-fixed points and the in-
duced canonical morphism 7™ : (AT — M(A) TN, Since the central-
izer of T(A) in G(\) is identical to the subgroup G(A) = G(A) x C* C G(A),
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we have an induced action of G(A) on the T(A)-fixed point subvarieties
IM(A)TN Mo(A) TN, The morphism 7™ is G(A)-equivariant.

On the other hand, for each v = Y n;,(i,p) € 2%, we fix a direct
sum decomposition V" = €D,coz4¢,41 Vi"(p) of I-graded vector space V"
with v := cl(v) such that dim V;(p) = n,,, just as we have done for W?
in the last paragraph. These direct sum decompositions induce an embed-
ding 1, x: M*(V¥, W) — M(V*,W?*). After taking quotients, this embed-
ding ¢, » yields the morphisms 9*(v, A) — M(v, \)TX) and M(v, A) —
mo(V, )\)p)‘ i

Lemma 3.1.1. The morphisms constructed above induce G(A)-equivariant
isomorphisms 9*(A) = M(A)TX) Mme(N) = Mo(A)T™ which make the
following diagram commute:

M (X) ——= M(N) TN

ﬂ-l lﬁﬂrw

M(AX) — M(A) TN,

In particular, we have a G(X)-equivariant isomorphism £2(X) =2 £(\)T,
Proof. See [41, Section 4] O

Under these isomorphisms, we identify graded quiver varieties 90t8(X), M* ()
with T(X)-fixed point subvarieties % (A)T™ 9(A\)T™). Then we have

M, )"V = || M@A), MEN)™M= || ;.
ve2tic(v)=v ve2ticd(v)=v
(3.2)
We define M55 (v, A) := MY(v, A) N M*(v, A). Tt is known (cf. [41,
Theorem 14.3.2]) that 954 (v, A) # @ if and only if A — v is an (-dominant
(-weight appearing in the local Weyl module W(A). By (3.1) and (3.2), we
get a stratification:

M) = | | M8 (v, N). (3.3)

ve2t A—veP+

It is known that 95 % (v1, A) C MG (v, A) only if vy < vs.
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3.1.4 Structure of non-central fibers

In this subsection, we recall the structures of (non-central) fibers of canonical
morphisms 7 and 7. Our exposition is based on [39, Section 6], [41, Section
3] and [44, Section 2.7] with some more details about group actions.

Let (v,\) € Q" x PT be a pair. For any triple x = (B, a,b) € u~1(0) C
M(V¥,W?), we consider the following two kinds of complexes of vector
spaces:

Ci(v,Nx: VB Wre @ VY 5 VY for each i € I, (3.4)

j~i

where we define o; := b; ® @, Bji and 7; := a; + >, (i, j) Bij;

T Nx: @ End(V?) 5 MV, W) L @ End(VY), (3.5)

icl el

where ¢ is given by 1(§) = (B —EB) @ (—€a) @ (b€) and du is the differential
of the moment map p = €, it; at the point x = (B, a,b). Note that the mid-
dle cohomology H°(% (v, \)x) of the complex (3.5) is identical to the quotient
space (TyG(v)x)* /TG (v)x, where (TG (v)x)* is the symplectic perpendic-
ular of the tangent space TxG(v)x of the G(v)-orbit of x. In particular, if
x is stable, then the space H°(% (v, \)y) is isomorphic to the tangent space
T,M(v, \) of the point = € M (v, A) corresponding to x.

Let (v,A) € Q" x PT be a pair such that M (v, \) # @. Recall that
we have A — v € P* in this case. We fix a point z, € My®(v, \) and its lift
x, € p~1(0) € M(V¥, W?) whose G(v)-orbit is closed. Then in the complex
Ci(v, N)x,, the map o; is injective ([40, Proposition 3.24]) and the map 7
is surjective ([40, Lemma 4.7]). In particular, the dimension of the middle
cohomology H°(C;(v, \)x,) = Ker 7;/ Im o, is equal to (A —v)(h;). Therefore
we can identify W™ = HO(Ci(v, Ny, ).

We pick an arbitrary element v’ such that v < v/. In order to construct the
natural embedding MMy (v, ) — My(v', A), we fix a direct sum decomposition
VY = VY@ VY. Extending by 0 on V¥ =¥, we have an injective linear map
M(VY, W) < M(VY,W?), by which our fixed element x, = (B,a,b) is
regarded as an element of ;~*(0) € M(V*,W?). Then we can calculate as

HYC (W' Nx,) =MV W) @ HY(E (v, My, (3.6)
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where we have W™ = H?(C;(v, M)y, ). We also see that the space H(€ (v, \)y,)
is isomorphic to the tangent space T := T, M ™ (v, \).

The stabilizer Stabe(,/) x,, is naturally isomorphic to G(’—v). Under this
isomorphism, the action of Stabg(,) x, on the LHS of (3.6) coincides with the
action of G(v' —v) on the RHS of (3.6), which is the direct sum of the natural
action on M(V*' =¥, WW*~¥) and the trivial action on 7' = H(€ (v, \)y, ).

An appropriate Hamiltonian reduction with respect to the action of the
group Stabgu)x, = G(v' — v) on the RHS of (3.6) yields the following
canonical map:

7xid: M — v, A\ —v) x T = Me(V' —v,A\—v) x T.

According to the discussion in [41, Section 3|, this gives a local description
of m: M/, \) = My(V, \) around the point z, € M= (v, \) C My(v/, \).

More precisely, we have the following theorem.

Theorem 3.1.2 (Nakajima). Let z, € My®(v,\) C My(', A). Then there
exist neighborhoods U, Ug, Ur of x,, € My(v', A), 0 € Mo(v' — v, A —v), 0 €
T :=T,, My *(v, \) respectively and biholomorphic maps U = Ugx Ur;z, —
(0,0) and 7 1(U) = 7 1(Us) x Ur such that the following diagram com-
mutes:

M/, \) > 7 (U)—=7"(Us) x Uy cMY —v,A\—v)xT

ﬂl waid

Mo, \) > U — Us x Ur MoV —v, A —v) xT.

Proof. See [41, Theorem 3.3.2]. O

Now let us consider the action of the group Stabg(y x, on the fiber
M (N)z,. By the definition of 9M® (v, \), we have Stabg(,) x, = {1}. There-
fore the second projection G(v) x G(\) — G(\) restricts to an isomorphism

r: Stabguyxco) Xu = Stabg(x) 7. Via the fixed direct sum decomposition
VYV = VY@ VY, we can regard the group Stabg()xc(n) X, as a subgroup
of Stabg () xg) Xv. In fact we have a decomposition

Stabg()xc() Xy = Stabeu)xep) X X GV —v). (3.7)

Thus the group Stabg(,)xe(x) X» acts on the vector space M(2/, A). Note that
the action of the stabilizer Stabg(y) #, on the quiver varieties 9t(/, X) and
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Mo(V', A) comes from this action of the group Stabg(,)xg(n) X, on the vector
space M(V/; \).

On the other hand, via the decomposition (3.7), the group Stabg)xc) X
acts also on the complex €' (1/, \)x, and hence on its middle cohomology (3.6).
Note that this induced action preserves each summand of the RHS of (3.6).
In particular, we obtain an action of the group Stabg(,)xg (1) X, on the vector
space M(V”/_”, WA=¥). By the construction, we can easily see that this ac-
tion factors through the natural action of G(A —v) on M(V*' =%, W*=*). The
corresponding group homomorphism Stabguyxe) X» = G(A —v) = G(A —
v) x C* is the direct product of two homomorphisms ¢ : Stabg()xg() X» —
G(XA —v) and v : Stabg)xg) X, — C*. The homomorphism ¢ is given as
the induced action of the group Stabg(,)xg(n) %X, on the middle cohomology
of the complex C;(v,\)y, under the identification W™ = H°(Cy(v, M)y, )
and G(A —v) = [[,.; GL(W;*™"). The homomorphism ¢ is obtained by the
projection,

Y Stabguyxeo X — G(v) x G(A) = G(v) x G(A) x C* Psy ox.

The action of the group Stabg(,)xc(x) X, on the space M(VY'=Y, WA") com-
mutes with the action of group G(v' — v). After taking the Hamiltonian
reductions with respect to the action of the group G(v' — v), we obtain an
action of the group Stabgy) z, on the central fiber £(2'—v, A—v). The above
argument says that this action factors through the group homomorphism

Stab«;,()\) Ty T—;1—> Stabg(l,)x(g(/\) Xy M) G()\ — 7/). (38)

This homomorphism (3.8) does not depend on /.

By Theorem 3.1.2, there is an isomorphism 9(v/, \),, — £/ —v, A—v).
As stated in [41, Remark 3.3.3], this isomorphism can be made equivariant
with respect to the actions of the group Stabg(y) z,. Summing up over v/,
we obtain the following.

Lemma 3.1.3. Let (r,A\) € Q" x PT be a pair such that My*(v,\) # &
and 7: M(A) — My(N) be the canonical morphism. Then for each point
z, € My®(v, ), there exists a (Stabg(y) z,)-equivariant isomorphism

M(N)., = (A - v),

where the group Stabg() x, acts on the RHS £(\ — v) via the group homo-
morphism (¢ x ¥) or~! in (3.8).
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Next we consider graded versions. Let (v,A) € 21 x &* be a pair. For
any triple x = (B,a,b) € p®*~1(0) ¢ M*(V¥,W?) and (i,p) € I, we can
consider a complex of vector spaces

Cip(V, X)x s V¥ (p+1) 75 W (p) & @D VY () =5 V¥ (p — 1),

g

where we define 0;, := b;(p+1)©€D; Bji(p+1) and 7, := a;(p)+>_, (i, j) Bij (p)-
Now we assume that OM*™8(v, A) # &. In particular, we have A —
v e . We fix a point z, € M (v, A) and its lift x, € p*~1(0) C
M*(V¥, W?) whose G(v)-orbit is closed. By the same reason as in the non-
graded case, in the complex C;,(v, A)x,, the map o;, is injective and the
map T;, is surjective. Therefore the dimension vector of the f—graded vector
space @(i’p)efHO(CLp(v, Ay, ) is equal to A — v. This allows us to identify
WA (p) with HO(C; (v, A)x, ) for each (i,p) € I. Similarly as in (3.8), we
consider the following group homomorphism

Stabq;()‘) T, —721—) Stabg(,,)xq;,o‘) Xy M) G()\ — 1/) (3.9)

where 7 is the isomorphism obtained as the restriction of the projection
G(v)xG(A) = G(A), ¢ is given as the induced action of the group Stabg () xe(a) Xu
on WX (p) = H°(C;,(v,AN)x,) and 1 is the restriction of the projection

)

G(v) x G(A) x C* — C*.

Lemma 3.1.4. Let (v, ) € 21 x &1 be a pair such that My (v, ) # &
and 7°: M*(A) — MS(A) be the canonical morphism. Then for each point
z, € MG (v, A), there exists a (Stabg(a) 2, )-equivariant isomorphism

M (A)z, = LA —v),

where the group Stabgx) 2, acts on the RHS £*(X — v) via the group ho-
momorphism (¢ x 9) o7~ in (3.9).

Proof. We put v := cl(v),\ := cl(A). We make identifications of vec-
tor spaces: W} = ®p622+§i WX(p), VY = @pezz+§i+1 V¥ (p), which spec-
ifies an embedding ¢ = ¢, x: M*(V¥,W?) < M(V*,W?*). Using these
direct sum decompositions, we define a group homomorphism p;: C* —

[, GL(WX(p)) — GL(W}) (resp. pj: C* — [, GL(V¥(p)) — GL(V}))
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for each i € I by pi(t)|lwap) =17 - idyag, (resp. pi(t)|vy ) = ¢ - idvy ().
Recall we have I*(A) = M(N)*> and MH(A) = M(N)*> by Lemma 3.1.1,
where px = ([[;c; pi x id): C* = G(A) is the 1-parameter subgroup cor-
responding to A. Under this identification, we also regard z, is a point
of M#(v, \). We can easily see that the image t(x,) € p=*(0) C M(v, \)
has a closed G(v)-orbit corresponding to the point x, € 9My®(v, \) and in
particular Stabg() ¢(x,) = {1}. Let p := ([L;c; 0i X [T,y pi x id) : C* —
Staba)xe() t(x,) be a l-parameter subgroup. By the restriction homo-
morphism 7: Stabgu)xe) (%) =N Stabg(y) 7, the torus T = p(C*) is
isomorphic to T(X) = px(C*). In fact, we have r o p = pj.
On the other hand, we have a decomposition C;(v, A)ux,) = Doz e, Cin(Vs Mx,

of complexes and hence H(C; (v, \)y(x,) = D,peazre, H'(Cip(V, N)x, ), which
is identified with W™ = D, coze, W27 (p). Then we can easily see that

(px)or™opy=(px)op=pr.

Therefore, under the isomorphism in Lemma 3.1.3, the action of torus T(X)
on M(N),, coincides with the action of the torus T(A — v) on £(\ — v).
Therefore, by Lemma 3.1.1, we have

M (N, = M) N =2 g(\ - )TA) = g* (X —v). (3.10)

It remains to show that this isomorphism (3.10) is Stabg(a) . -equivariant.

Note that the centralizer of torus T(A) (resp. T , T(A — v)) in Stabg(y) Tw
(resp. Stabg ) xe) LX), G(A—v)) is the subgroup Stabg(x) #,, (resp. Stabg ) xa) Xu,
G(A —v)). We have the following commutative diagram:

Stab@,(,\) Ty <;— Stab(;(,,)x(;,(,\) L(X,,) ﬂ- G()\ — I/)

|

Stabq;,o\) Ty <;— Stabg(,,)x((;()\) Xy A— G()\ — l/).
Because the isomorphism in Lemma 3.1.3 is (Stabgy) 2, )-equivariant via the
homomorphism (¢ x ¢) o r~", the induced isomorphism (3.10) on the torus
fixed parts is Stabg() ,-equivariant via the homomorphism (¢ x ) o 77!
from the above commutative diagram. O
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3.2 Graded quiver variety associated with (Q, )

Henceforth, we fix a pair (@, ) of Dynkin quiver @ = (I,Q2) and a sum § =
> ics dia; € QT of simple roots with an essentially unique height £ = (&;);er €
Z!. In the following Section 3.2.1 we define a graded quiver variety associated
with these data and identify it with the space Ejg of representations of our
quiver () of dimension vector 5. Originally, this identification was established
by Hernandez-Leclerc in order to give a geometric interpretation of their
monoidal categorification theorem (= Theorem 2.3.4). In Section 3.2.2, we
further study the group action on this quiver variety.

3.2.1 Hernandez-Leclerc’s isomorphism

Recall that in Section 2.1.2 we have defined the space

Eg = @ HOHI(Dh/, Dh//)
heQ

of the representation of the Dynkin quiver ) of dimension vector (3, where
D; = C% for each i € I. It is equipped with the natural action of the
group Gz = [[,c; GL(D;), yielding the Gg-orbit stratification (2.1) Eg =

I_lmeKP(B) Om.
Associated with our fixed pair (Q, ), we set

Ag = dip(on) € P,

icl
where ¢ is the bijection Rt — ¢(R") defined in Section 2.1.1. We consider

the corresponding graded quiver variety I§(Ag). We identify G(Ag) with
G via an isomorphism D; = C% = W;\ﬁ (p;) for each i € I, where we set
(i pi) = d(cw).

We also define a homomorphism f;: C* — GL(D;) for each i € I by
fi(t) :==t"P -idp,. Then we have a group surjection

mo (id x [ f1): G(Ag) = G x C* = G x Gg — Gy

el

where m is the multiplication in G, via which Ej is equipped with a G(Ag)-
action.
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In [24], Hernandez-Leclerc constructed a G(Ag)-equivariant isomorphism
M (As) = Ez. We recall their construction. By Lemma 2.3.3 (2), it is
enough to consider the graded quiver varieties 0§ (v, Ag) with v € 2. We
define a C-algebra Ay given by the following quiver I'g with relations. The
quiver I'g consists of two types of vertices {v;(p) | (j,p) € Jo} U {w;(p) |
(7,p) = ¢(e;) for some i € I} and three types of arrows:

a;(p): wi(p) = vilp— 1), bi(p): vi(p) = wi(p — 1),
Bji(p): vi(p) = vj(p—1) forin~ j.
The relations are
ai(p— bi(p) + > (i, j)Byj(p— 1)Bji(p) =0 for each i € I.

g

For each 7 € I, let ¢; € KQ be the idempotent corresponding to the vertex
w;(p) with (7,p) = ¢(a;). Then Hernandez-Leclerc [24, Lemma 9.6] proved
that the algebra @Z el eiKer is identical to the path algebra CQ. By defi-
nition, each element x = (B, a,b) € u*~1(0) C M*(V¥ W>#) gives a repre-
sentation of _/N\Q. Then restricted to @Z jer eilN\er, it gives a representation
of CQ) of dimension vector 5. This defines a morphism 9§ (v, Ag) — Ej.

Theorem 3.2.1 (Hernandez-Leclerc [24] Theorem 9.11). The morphism con-
structed above induces a G(Ag)-equivariant isomorphism of varieties

‘;[/61 gﬁa(Aﬁ) i) Eﬁ.

Remark 3.2.2. Recall that in Section 2.3.3 we have identified the set KP(5)
of Kostant partitions of 8 with a subset of 2§ via the injection KP(3) 2
(Mma) = Y. maop(a) € Py . From Lemma 2.3.3, we have

{ne 2T [ M4 (Ns—p, Xg) # @} = {m € KP(8) | MG (Xs—m, Xg) # 2}
In particular, this is a subset of KP(f).
We give a proof of the following lemma, which is implicit in [24].
Lemma 3.2.3. For the isomorphism Wz in Theorem 3.2.1, we have
V(M54 (As —m, Ap)) = Om
for each m € KP(). In particular, we have IM§(Ag — m, A3) # @ for any
m € KP(p).
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Proof. For any m € KP(3), there is a unique v € 27 (see Remark 3.2.2
above) such that WM™ 8 (v, Az)) D Op, since each stratum 9" (v, Ag)
is stable under the action of G(/5). We need to prove that v = Az — m.
First we consider the case when 8 = o € R™ and m is the Kostant
partition m, := (d4.o/)arer+ consisting of the single root . In this case, the
orbit Oy, is the unique open dense orbit of E,. Recall that 95" (v, Ag) C

MG"#(v', Ag) implies Ag — v > Ag — /. Since the (-weight m, (= wy(a)) is
minimal in &7, the corresponding stratum 9, #(v,, A,) is maximal, where
we put v, := A, — m,. Therefore we have Ws(9My"®*(Va, An)) DO O, -

Next we consider general m = (my)q.cr+ € KP(5). For each o € RT,
we fix an element y,, € p®~1(0) C M*(V¥>, W?=) such that y, has a closed
G (v, )-orbit and Stabg,,)ya = {1} holds. By the previous paragraph, the
element y,, which is regarded as a representation of the algebra KQ, restricts
to give the indecomposable representation M («) of CQ. We put

Xm = EP y&™ € p*7H(0)

aceRt
c M* (@ (Vua)@ma, @ (W)\(,)EBma> _ M.(V'/m, WAﬁ),
a€eRTt a€ER*
where vy, i= ) g+ MaVa = Ag—m. Then x, defines a closed G(vp,)-orbit

and has a trivial stabilizer. Hence, the corresponding point z,, belongs to
MG "4 (Vm, Ag). On the other hand, the element x,,, which is regarded as a

representation of Ag, restricts to give a representation @@, g+ M(a)®™ of
C@Q. This means that Us(zm) € Op. Therefore we have U5(9M5 " (vm, Ag)) D
Om. O

From the Lemma 3.2.3 above, we conclude that the /~dominance order <
on KP(/) coming from the inclusion KP(5) < £ refines the opposite of
the orbit closure ordering < defined in Section 2.1.2.

Example 3.2.4. If our quiver () is a monotone quiver of type A,, i.e. if
Q =(1—2— -+ — n), we can see the isomorphism Wg: MM(As) 5
Ejs explicitly. In this case, the coordinate map ¢: RT — T is given by
¢(a;) = (1,n + 1 — 2i) as we have seen in Example 2.1.3 (1). Thus we have
Ag = cl(Ag) = dwy with d = Y"1 d; = ht 8. By Nakajima [39, Theorem
8.4], the quiver variety 9y(A\s) is isomorphic to the nilpotent cone

Ny = {z € End(D) | z¢ = 0}
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where D := C%. This isomorphism 9M§(A) = N is induced from a G(v)-
invariant map

M(VY, W) — End(D); (B,a,b) — bia

under an identification Wl/\ ? = D. The action of the group G(\g) = GL(D) x
C* =: Gq is given by (g,t): x — t*Ad(g)z. We fix an I-grading D = ,_; D;
with D; & C%. The l-parameter subgroup prs: € — Gy is defined by
prg = (Ilics pi x 1d) with pi(t) = ¢"*17% .idp, € GL(D;). Therefore, an
element z € Nj is fixed by the action of the torus Tg := px,(C*) if and only
if it satisfies x(D;) C D,y for each i € I, where we set D, 11 = 0. Thus we
obtain

My(As) =N, " = Ej.

3.2.2 Remarks on stabilizers

Keep the notation in the previous section. The following observation is cru-
cially used in Section 3.3.3 below.

Lemma 3.2.5. Fix a Kostant partition m € KP(f) and choose an arbitrary
point Ty, € My #(As —m, Ag). Then the maximal reductive quotient (= the
quotient by the unipotent radical) of the group Stabg(x,) Zm is isomorphic to
G(m). Moreover the group morphism (p x ¢) o 77 Stabg(xs) Tm — G(m)
defined in (3.9) is identical to the canonical quotient map.

Proof. Define vy, :== Ag — m as in the proof of Lemma 3.2.3 to simplify the
notation. By the same Lemma 3.2.3, we know the point Wz (zy,) corresponds
to a CQ-module M(m) = P, g+ M(a)®™. Then we have Stabgx,) Tm =
Stabg, ¥5(2m) = Endcg(M(m))*. We consider a subgroup

G1 = ][ Endeo(M(a)®*)* C Endeg(M (m))*.

a€Rt

Note that we have Endcg(M(«)) = C for any root @ € R™ and hence
G1 = [laers GLm,(C). We see that this subgroup G is a Levi subgroup
of Endeg(M(m))* and therefore Gy x T(Ag) < Stabg(xs) Tm is a Levi sub-
group, where m is the multiplication.

Corresponding to the decomposition M (m) = @ g+ M (a)®™, we choose
the element Xp, = @ cr+ Yo™ as a lift of the point 2, where y,’s are the
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same as in the proof of Lemma 3.2.3 above. Then we have Stabg(y,,)xc(x5) Xm =
Endg (xm)*. We consider a subgroup

Gi =[] GLm.(C-idy,) C [] Endz_(y5™)* C Endg_ (xm)"

aeRt a€RT

Note that the homomorphism 7 gives an isomorphism G 5 G1. On the other
hand, we can easily see that the homomorphism ¢: Stabg(y,)xG(As) Xm —
G(m) induces the isomorphism

i 5 T LI (Cotoy(m: As)xn)) = Glm).

aceRt

As a result, we have the following commutative diagram:

StabG(AB) T -;é Stabg(,,m)x(g()\ﬁ) Xm el G(m) (3.11)
Gy X T(Ap) = Gy xT = > G(m) x T(m)

where T is the 1-dimensional torus defined in the proof of Lemma 3.1.4 and
m stands for the multiplication. Furthermore the lower horizontal arrows are
isomorphisms for each factor. This diagram completes a proof. Il

For a linear algebraic group G, we denote its representation ring by R(G).
For G = C*, we make an identification R(C*) = A := Z[¢*'], where ¢ is an
indeterminate.

For any A € &7, the 2nd projection

G(A) = G(A) x CX — C~

induces an algebra homomorphism A < R(G(A)) via which we regard
R(G(A)) as an A-algebra. We also have the natural inclusion A — k = Q(q).
Under this notation, we shall make the standard identification:

R(G(A) @4k = R(N). (3.12)

Similarly we identify R(G(\)) @4k = R(\) for A € P*. (See Section 2.2.3
for the definition of R(A) and R(\).) As special cases of (3.12) when A = Ag
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or A =m € KP(3), we have

R(G(Ag)) @4k = @ (k[212%) % = R(Ag), (3.13)
R(Gm)) @1k = ) (k[zZ']")"" = R(m). (3.14)

Now we return to the setting of Lemma 3.2.5. We have the following
group homomorphisms:

Bxp)or—1
G(m) <27 Stabga,) 7m <> G(Ag),

which induces the following homomorphism:

Om: R(As) "2 R(G(As)) — R(Stabga,) #m) = R(G(m)) 2" R(r(r;).l |

From the proof of Lemmas 3.1.4 and 3.2.5, we obtain the following.

Corollary 3.2.6. For a positive root o = )., ¢;a; € RT, we define the
following k-algebra homomorphism:

0,: ®k[2fl}®ci — k[zFY; 2 gPled =@,
il

where p := pry 0 ¢: RT — I x Z — Z. The homomorphism 6,,: R(Ag) —
R(m) defined by (3.15) is obtained as the restriction of the homomorphism

) 057 R[] — (X) k[z"=me.

aceRt el aeRTt

3.3 Analysis of convolution algebra

Our aim is to study the structure of Hernandez-Leclerc’s category ¢y us-
ing geometry of graded quiver varieties based on Nakajima’s framework [41].
Thanks to the block decomposition € = P s.q+ €q.5 (see Section 2.3.3), we
can concentrate on a direct summand % 3. We start with recalling Naka-
jima’s geometric construction of an algebra homomorphism from the quan-
tum loop algebra U,(Lg) to the convolution algebra of the equivariant K-
group of the Steinberg type quiver variety and its properties in Section 3.3.1.

50



By completing this homomorphism along an ideal corresponding to the a
1-dimensional torus, we obtain an algebra homomorphism to a central com-
pletion of the convolution algebra of the equivariant K-group of the Steinberg
type graded quiver variety (Section 3.3.2). Our main interest in Section 3.3.3
is the case when the graded quiver variety is associated with (@, 3). In this
case, we can use Hernandez-Leclerc’s isomorphism in Section 3.2. Our main
theorem (=Theorem 3.3.6) says that the corresponding completed Nakajima
homomorphism induces a fully faithful functor on the category ¢ g. We also
discuss a structure of affine highest weight category in Section 3.3.4 and a
comparison with a geometric extension algebra in Section 3.3.5.

3.3.1 Nakajima’s homomorphism

In this section, we recall Nakajima’s homomorphism based on Nakajima’s
original paper [41]. See Appendix A.1.1 for the notation around the equiv-
arint K-groups.

Fix a dominant weight A € P* and consider the corresponding quiver
variety 7: 9(A) — Mo(A). We define the Steinberg type variety as

Z(A) = M) Xy MA) = || M1, A) xam) M2, A),

v1,v2€QT

together with the canonical map 7: Z(\) — 9My(A). By the convolution
product (see Appendix A.1.3), the equivariant K-group

EN(ZN)= @ KV, A) Xang) M(v2, A))

V1,2 EQT

becomes an algebra over the commutative algebra R(G())).

For any G(\)-variety X, we define

G(x G(A
KED(X) i= KEV(X) @k, KER(X) 1= KiG(X) @k

for brevity of notation. When X = Z()), the K-group K¢ (Z())) becomes
an algebra over R(A\) = R(G()))® 4k with respect to the convolution product.

We consider the following tautological vector bundles on 9t(v, \). The
vector bundle V! is defined by V! := p7'(0)* X, V¥ for each i € 1. We
regard V! as a G(\)-equivariant vector bundle with the trivial action. On
the other hand, we consider a trivial vector bundle W2 := 9(v, \) x W with
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fiber W for each i € I. We regard W} as a G(\)-equivariant vector bundle
with the natural G(\)-action and the trivial C*-action. Recall the complex
of vector spaces C;(v, A)x for each x € p=(0) € M(V?, W?) defined in (3.4).
This complex yields the complex C;(v, A) of G(X)-equivariant vector bundles
on M(v, \):

G A): ¢ v I gt <W}@@vy> UNNYIS

ji

Note that the class of the complex C;(r, A) in KEXM (I (v, \)) is calculated as

Ci(v, N =g ([W?] —(g+a )V + Z[W]) :

j~i
Then we have the following fundamental result due to Nakajima [42].

Theorem 3.3.1 (Nakajima [42] Theorem 9.4.1). There is a k-algebra homo-
morphism

®y: Uy(Lg) — KEN(Z(N)),
such that

® (a ) - A*[Om(l,’)\)] ifI/Z:)\—/LG Q+,
M0 otherwise,

and it sends the series 17" (2)a, with v := X — u € Q*, i € I to the series
-
¢ MIA, A—l/qz[cioj’ )] ’
/\—q/z[ci<y7 )\)]

where A: M(v, A) = M(v, A) Xanon) M(v, A) is the diagonal embedding and
(—)* denotes the formal expansion at z = oo and 0 respectively.

We refer to the homomorphism ®, as Nakajima’s homomorphism.

By construction, the equivariant K-group K®™(£())) of the central fiber
L£(A) = M(A) xomy(x) {0} becomes a left module over the convolution algebra
KCM(Z(X)). Via the Nakajima homomorphism ®,, we regard KM (£(\))
as a (U,(Lg), R(\))-bimodule.

(

Theorem 3.3.2 (Nakajima). As a (U,(Lg), R(\))-bimodule, the equivariant
K-group KEWM (g
element [Og(g )]

(A )) IS isomorphic to the global Weyl module W(A). The
€ KEW(L(N)) corresponds to the cyclic vector wy € W(A).
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Proof. See [43, Theorem 2]. O

For future references, we collect some important properties of equivariant
K-groups of central fibers.

Theorem 3.3.3 (Nakajima). For any closed reductive subgroup G’ of G(\),
the following holds true.

(1) We have K&_ (£(\) = 0;

1,top
(2) KGiop

K¢

0,top

(£(\)) is a free R(G")-module and the comparison map K (£(\)) —
(£(A)) is an isomorphism;

(3) The natural map KM (£(N\) ®gr@coy R(G") — K(L£(N)) is an iso-

morphism;

(4) The Kiinneth homomorphisms

K (8(V) ®rieny K7 (E(N) = K7 (£(A) x £()),
K§op (V) @r(er) Kiliop(E(N) = Kiop (E(A) x £(1))

are isomorphisms, where ¢ = 0, 1.

Proof. The properties (1), (2), (3) are the same as the property (Tg(y)) in

[41, Section 7]. The assertion for K™ in (4) follows from [42, Theorem 3.4].
The assertion for Kﬁ(jg in (4) follows from the properties (1), (2) and the

property (n3) in [33, Section 1.2]. O

3.3.2 Central completion

Let A € &% be an (-dominant (-weight. We consider the corresponding
graded quiver varieties 7*: 9MM*(A) — IMF(A) and form the Steinberg type

variety
Z'()\) = 931'()\) Xgma()\) gﬁ.(}\)

The G(X)-equivariant K-group K¢ (Z*(X)) becomes an algebra over R(G(\))
by the convolution product.

Set A := cl(A) € P and consider the corresponding 1-dimensional subtorus
T(A) € G(A) € G(A) as in Lemma 3.1.1. Then we have

Z*(N) =2 Z(\)T™, (3.16)
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In the sequel, for any G(X)-variety X, we define

KEN(X) = KEN(X) @ak, KV (X) = KEV(X) @4k,

2,top 2,top

for brevity of notation. They are R(A)-modules. We also define

KEN(X) = KEN(X) Doy R, KN = KEWV(x) ®R(A) R(N).

i,top i,top

When X is the Steinberg type variety Z*(A), the completed K-group KEW (Z*(N))
is an algebra over R(A) with respect to the convolution product.

Definition 3.3.4. We define the completed Nakajima homomorphism 5 : U,(Lg) —
KEXN(Z*(N)) as a k-algebra homomorphism given by the following composi-
tion:

Uy(Lg) 25 KEV(Z(N))

— KEXN(Z(N)) (restriction to G(A) C G(N))
— RG(A)(Z (A) (ta-adic completion)
~ KEN(Z*(N)). (localization theorem and (3.16))

Let v € 2% be an element such that 95" (v, A) # @. We pick an ar-
bitrary point z,, € M5 *(v, A) and consider the (non-equivariant) K-group
K(9M*(N)., )k of the fiber M®*(X),,. This is a module over the convolution al-
gebra K (Z*(A))x. We regard K (9*(A),, )i as a U;module via the following

composition:
Uy =2 KEN(Z2(X)) = KEN(Z* (X)) fex = K™V (Z* (X)) @4k = K(Z* (V).

Proposition 3.3.5. The U,-module K (9*(\),, )i is isomorphic to the local
Weyl module W(A — v).

Proof. When v = 0, we have

K(£* W) = K™)(2(\) @4k (localization theorem)
= (KG(A)(S()\» PRG) R(T(}\))) Qa4 k (Theorem 3.3.3 (3))
>~ W(N)/my (Theorem 3.3.2)
= W),
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where we should note that the maximal ideal my C R(\) is identical to the
kernel of the restriction R(\) = R(G(\)) @4k — R(T(N)) ®4 k =k.

For a general v, we know that the U;-module K (9®*(X),, )k is a quotient
of W(X —v) by [42, Proposition 13.3.1] and by the universality of the local
Weyl module. Since there is an isomorphism 9°*(A),, = £°(A — v) by
Lemma 3.1.4, we have dim K (9*(A),, )k = dim K (£*(A—v))x = dim W(A—
v) and hence the isomorphism W(A — 1) = K(OM*(A)a, ). O

3.3.3 Completion associated with (Q, )

Associated with our fixed pair (@, ) of a Dynkin quiver @) and an element
B =3 dic; we define Ag := Y., diwwga,) € KP(8) C Py as before
in Section 3.2.1 and set Ag := cl(Ag). Henceforth we identify the graded
quiver variety IG(Az) with the space Ej via Hernandez-Leclerc’s isomor-
phism Wg: ME(As) = Es (Theorem 3.2.1) and often use the following abbre-
viations:

Gp =G x C* = G(Ag) C G(N\p);
Ts:=T(Xg) C Gg;
MY = M*(Ag) = M(As) "7

g = e ME — Ep;

75 =My X, My = Z°(Xp);

Oy = By, : Uy(Lg) — K& (Z3);

tg = ta, C R(Ag).

The main theorem of this section is the following.

Theorem 3.3.6. The pull-back along the completed Nakajima homomor-
phism ®5: U,(Lg) — K®(Z5) induces an equivalence of categories:

(/ISE: RGﬁ(Zé)—mOdfd i) %Q,g.

A proof of Theorem 3.3.6 is given after Corollary 3.3.15. We need some
preparation.

Fix a Kostant partition m € KP(3). Via the k-algebra homomorphism
Om: R(Ag) — R(m), we regard R(m) to be an R(Ag)-algebra.

95



Lemma 3.3.7. The ideal (6, (vg)) C R(m) generated by the image of vz is a
primary ideal whose associated prime is the maximal ideal ty,. In particular,
we have

R(m) ®pxy) B(Ag) = R(m).
Proof. This is a direct consequence of Corollary 3.2.6. m
We set vy, := Ag —m € 2 and put
pm = cl(m) € PT, vy, :=cl(vy) € QT

Consider the inverse image M3|o,, = My X g,Om of the orbit O, = MG™* (m, Ap)
along the canonical morphism 7g: 93?/73 — Fjg. Its completed equivariant K-

group RG»@(E))TH@,“) is a (U,(Lg), R()\g))—bimodule via the completed Naka-

jima homomorphism @5

Proposition 3.3.8. Then we have the following isomorphism of (U,(Lg), ﬁ()\g))—
bimodules: R .
K (M o,,) = W (m),

where the action of é()\ﬁ) on the RHS is given via the homomorphism 6,,.
Proof. Pick an arbitrary point x € Q. Since the morphism mg: M3 — Ej
is Gg-equivariant, we have an isomorphism M3|o,, = Gg x (8tabe; ) (D5)z-
Then we have
R (903 c,,) =2 K (G x 900 (ams), )

= Ko (), >®R<A5 R(xs)

= KE(£°(m)) © ) R(m)

= KO0 (1)) @ () B(m),
where the second isomorphism is by the induction (see [11, 5.2.16]), the

third is due to Lemma 3.1.4, Lemma 3.2.5 and Lemma 3.3.7, the last is
due to the localization and Theorem 3.3.3 (3). Through this isomorphism

KCs (9]0, ) =2 KEE) (£(110m)) @ R(jumm) R(m ) we see that the action of R(As)
on KGB(‘JRH@m) extends to an action of R(m), which commutes with the

action of U,(Lg). By Proposition 3.3.5, the module RGﬂ(Sﬁm@m)/tm =
K(9M*(X3)2)x is isomorphic to the local Weyl module W (m). Therefore,
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by Nakayama’s lemma, we see that the vector in RGB(QJIH@m) which corre-
sponds t0 [Og(o ] i KEE™) (£(11m)) @piu) R(m) generates K& (9%]0,)

. ~

as (U,(Lg), R(m))-bimodule. Moreover, from the construction of isomor-
phism M(N), = £(m) in Lemma 3.1.3, we see that the restriction of the
class [C;(\,v)] in RGB(SDTH@m) corresponds to the class W) ™"][g0m) i
KEHm) (£(1im)) R }A%(m) Therefore, by the universal property of the
global Weyl module, we find a surjection /W(m) — KOs (M3 0, ) Of (U,(Lg), R(m))-
bimodules. Since both are free over R(m) of the same rank dim W (m), this
surjection should be an isomorphism /W(m) =~ KCs (%] 0,)- O

Lemma 3.3.9. Let us consider the inverse image ZE|@m of the orbit Oy,
along the canonical morphism Z3 — Ej and regard its equivariant K-group

RGE(ZEI@ﬂ) as a (U,, U,)-bimodule via the completed Nakajima homomor-
phism C/I\DB. Then the following statements hold.

(1) As a (U,, U,)-bimodule, we have RGB(ZH@m) = /W(m) @7y W (m)F:
(2) We have K\'% (Z3]0,) = 0;
(3) The comparison map gives an isomorphism K& (Z5lom) = Rngp(ZH@m)-
Proof. Pick an arbitrary point x € Qy,. Then we have an isomorphism
Z¥lom = Gy x B0 (00), x (M),)
A similar computation as in the proof of Lemma 3.3.8 yields:
R (Z5low) 2 Ko (@ x5 ((13), x (3m3).))

2 K™ (€(ftm) X £(fim)) @p(m) R(m)
2 K0 (£ (110m)) @ Ry (M) @Ry KEE™ (£(11m),

where the last isomorphism is due to Theorem 3.3.3 (4). Then Proposi-
tion 3.3.8 proves the assertion (1). Because the same computation is valid
for equivariant K-homologies, we have

~

AG [ ] ~Y (G' m G m
Ky oo (Z8]0m) 22 Ko v (£(1im)) @ Ripm) ROD) @ R K5 L™ (£(1m),

for i = 0,1. Then Theorem 3.3.3 (1), (2) prove the assertions (2), (3). O
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Let Ag := cl(Ag). We fix a numbering {pu1, pio, . . ., i} of the set {u € P |
p < Ag} such that \g = y; and ¢ < j whenever p; < p;. Let v; := A\g — p; €
Qt and M; := M (v, Ag) for ¢ € {1,...,1}. Then the stratification (3.1) is
written as:

Mo(Ag) =M UMy L--- LMY

with 9 = {0}. For each i € {1,... 1}, we set Ng; := [ |;; 9 C Mo(Ap).
Note that O; is a closed subvariety of 91<; and its complement is 9<;_;.

We set ’)’t; = ‘ﬁl N 9)?5()\5)(: ‘ﬁl N Eg) and 9?‘<Z = mgi N 9)?5()\5) for
each i € {1,...,1}. We fix a numbering {m;;, m,,,...,m;;} of the set
c1(\)) NKP(B), where we define k; = 0 if cI™(\;) N KP(B) = @. We shall
simplify the notation by setting R, s := R(m; ), ]3%-73 = E(mi,s), Ois = O, ,
for each i € I and s € {1,...,k;}. Set v, := v, € 2f and O;, :=
Om,, = MG (vis, Ag). Note that the orbit O;, is a connected component
of M? for each s € {1,..., k;}. Namely, we get the decomposition

nNe — |_| 0. (3.17)

of 9} into connected components. We define a subvariety Z? (resp. Z%,)
of Z§ to be the inverse image of the subvariety 917 (resp. 91%;) along the
canonical morphism Z§ — Eg. From the decomposition (3.17), we have

k;
zy =\ |2
s=1

By construction, Z? is a closed subvariety of Z2; and its complement is Z2; ,

Ons- (3.18)

for each i € {2,...,1}. From (A.1), we have an exact sequence:
KO# (Z2) =~ KO (Z2,) =K (Z2,_) —=0, (3.19)

where v: 2 — Z2, and y: Z2, | — Z2, are the inclusions.

Lemma 3.3.10. The map ¢, in the sequence (3.19) is injective. Therefore
we have the following short exact sequence:

0 —= KO (Z27) —= KOs (22,) L~ K% (22, ) —0,
for each i € {2,...,1}.
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Proof. We shall prove that K1 top(Z2;) = 0 and the comparison map KCs (Z%;) —
Kﬁfop(Z;i) is an isomorphism for each ¢ € {1,...,(}. If we prove this, the
exact hexagon (A.2) completes a proof. We proceed by induction on i.

When i = 1, from (3.18), we have

K] top(Zzl) = ]top . @K] top Zﬁl@ze

where j = 0,1. From Lemma 3.3.9, we know that K1 top(Z3lo,.) = 0 and

KGB(Z5|@LS) = Ko top(Z8l0,,) for each s € {1,...,ki}. Therefore we are
done in this case.

Let ¢« > 1 and assume that we know that K1 fop

(Z%;-1) = 0and KSs (Z220) =
K0 top(Z;Z 1)- By the same reason for the case i = 1 above, we have K

1 top(Z.) =
0 and KGﬂ(Z') = KO top(Z7). Then we see that K1 fop(Z;i) = 0 from the exact

hexagon (A.2). Moreover we have the following commutative diagram:

KEo(Z8) —— K% (72,) ——= K% (28,_,) —0

Lk

[ ] G (] [ ]
(Z> — Ko (Z<z)_>K0top(Z§ifl>_>O7

0,top

0 KO ,top
where the upper row is the exact sequence (3.19), the lower row is the ex-
act sequence coming from the exact hexagon (A.2). All vertical arrows are

the comparison maps. Applying the five lemma, we see that the middle
1cGs

comparison map KGB(ZQZ) — Korop(£;) is also an isomorphism. O

Recall we have defined a quotient algebra U<y of the modified quantum
loop algebra U,(Lg) for each A € P* in Section 2.2.4 by (2.7).

Lemma 3.3.11. The completed Nakajima homomorphism C/I\Dgz U,(Lg) —
K® (Z3) factor through the quotient U,(Lg) — Usxgs-

Proof. Since we have KGs (Z3) = @RGﬁ(Zg)/tg, it is enough to prove that
the composition

U,(Lg) LN KSs(Z8) — K (Z5) /) (3.20)
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factors through the quotient U<y, for every N € Z.,. We can discuss the
composition factors of K (Z8) /v as left U,(Lg)-module because it is finite
dimensional. By Lemma 3.3.9 (1) and the exact sequence (3.19), we see that
every composition factor is a subquotient of the global Weyl modules W (u)
for some 1 < Ag. Therefore the ideal ﬂuﬁ&a Anng ;) W(p) is included in
the kernel of the map (3.20). O

By Lemma 3.3.11 above, we have the induced homomorphism ) g Uxhg —
KCs (Z3), which we denote by the same symbol @5.

Proposition 3.3.12. For each N € Z-,, the homomorphism ZISéV given by
the composition

BY : Usy, =5 K (23) — K% (23) /)

is surjective. In particular, the forgetful functor from the category of left
K® (Z3)-modules to the category of (Usy,, R(Ag))-bimodules is fully faithful.

Proof. ¥Fix N € Z~(. Using the homomorphism o 3, we compare the affine
cellular structure of the algebra U<y, with the filtration of the algebra K% (Z3)
coming from the geometric stratification of MY (Ag) = Ej as in Lemma 3.3.10.

First, for each i, we observe that there is the following isomorphism of
(U<as, U<a,)-bimodules by Lemma 3.3.9 (1):

k;
KO (Z2)/e) = PK®(Z;

s=1

k;
=~ @ W(mi,s) ®§Z_‘S (w—’
s=1 )

@'L,s>/tjﬁv

= T R(p)
= SG?W(/M) Q R(s) (R(M) 3 <9i,s(t/j)N>> D) W (i)
R(pi)

= W(ki) @R ( ) R W ()%,

(3.21)

T15 ) R(p) N (0:5(xs)N)

where we apply the Chinese remainder theorem for the last isomorphism.
This is possible because maximal ideals associated to primary ideals R(u;) N
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(0; 5(vs)") are distinct by Lemma 3.3.7. By (3.21), we see that the K-group
KCs(Z?) is cyclic as (U<xs» U<x,)-bimodule. By construction, we can eas-
ily see that the class in K®(Z?) obtained as the restriction of the class
A [Osv;,24)] corresponds to the cyclic vector wy, ® 1 ® wy, of the RHS of
(3.21).

Recall the ideals I; of U<y defined by (2.8). By downward induction
on i € {1,...,1}, we construct algebra homomorphisms f: U<y,/l; —
RGﬂ(Z;i)/t]ﬁV and (U<y,, U<y, )-bimodule homomorphisms g} : I;_y/I; — RGﬁ(Zl-')/thV,
which make following diagrams commute:

b;

a;

0 —— W (i) @rury W(psi)? Uers /i Uarg/lics —0

jgzv lf;v jfzvl

Ko (23) /el K (22) /1) —=K®(22;,) e} —0,
(3.22)
where the upper row is the exact sequence coming from the ideal chain and
the lower row is exact sequence coming from (3.19).

We start from ¢ = [. Define f} to be the homomorphism @BV . Recall
that the Nakajima homomorphism ®,, sends the element a,, to the class
A, [Omopg)] (see Theorem 3.3.1). Therefore, by our observation in the pre-
vious paragraph, if we define the homomorphism g to give the quotient map
from W(A\g) ®prr,) W(As)* to the RHS of (3.21) via the isomorphism (3.21),
the left square in (3.22) commutes. Then we have the induced homomor-
phism f}¥, between the cokernels.

The induction step is similar. Assume that we have defined f». By
construction, f{¥ sends the image of element a,, to the restriction of the
class A,[Om, z)]- Then if we define g¥ to be the quotient map via the
isomorphism (3.21), the left square in (3.22) commutes. We get f~, as the
induced homomorphism between cokernels.

Note that we have f{¥ = ¢V and all the homomorphisms ¢V are surjective
by construction. Therefore we can apply the five lemma to diagram (3.22)
inductively, starting from the case i = 2, to prove that every f~ is also

surjective. Eventually we see that the homomorphism f¥ = (/Isév is surjective.
O

Using the notation in the above proof of Proposition 3.3.12, we define
KY :=Ker fN, K :=Kerg) for each i € {1,...,l} and N € Z,.
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Proposition 3.3.13. For eachi € {1,...,l} and for any Ny, Ny € Z~q, there
exists a positive integer N > N; + N, satisfying:

(1) KN c KM K
(2) K% c Kgg -KJSV;‘.

Proof. We first prove the assertion (1). Assume that k; = 0. Thus we have
gY =0 and hence KN = I, ,/I; for any N € Z~. In this case, the assertion
(1) is equivalent to the assertion (I;_1/I;)*> = I,_;/I;, which follows from

Theorem 2.2.16. Next we consider the case k; # 0. By (3.21), we have

ki

K = W(:) @nu) (H (R(u) 0 <9z‘,s<tﬁ)N>)> D) W(Hi)?,

s=1

for each N € Zso. By Lemma 3.3.7, the ideal R(u;) N (6;4(tp)") is a
primary ideal whose associated prime is the maximal ideal v, x,,. Thus
for a sufficiently large N > 0, we have R(u;) N (0;4(vs)Y) C (R(us) N
(6@]\;(1‘5)N1>)(R(ui) N (0;.s(t5)™?)). Then we obtain the assertion KN c KM -
KM,

We prove the assertion (2) by induction on i. The case i = 1 follows from
(1) since fN = gV¥. We assume that i > 1 and the assertion (2) is true for
t — 1. For given Ny, Ny € Z~q, we can find an integer M > N; + N, such
that KM c K- K by (1). Applying Lemma 3.3.14 below to the injection
KCs(Z2) — K®(Z2,), we find an integer N’ € Z-q such that we have

Ker(fN oa;) ¢ KM c KM . KM, (3.23)

where a; is the inclusion [;_/I; = U<, /I; as in the diagram (3.22). Applying
the snake lemma to the following diagram:

b;

a;

0 ——W(1i) @rpur) W(psi)* Uars /1 Uar /Loy —0

P

0 ——Im(fN oa) KGﬁ(Z%i)/tg; - KGB(Z%i—l)/tgz; 0,

we get an exact sequence:

0 —=Ker(f¥' o a;) K% KY | —0. (3.24)
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Let N{, NJ be any two integers larger than N'. By mductlon hypothesis, there

is an integer N > N{ + N} such that KX, | C K<Z 1 K<l 1- We shall prove
that the assertion (2 ) holds for this N. Let x € K2, be an arbitrary element.
Note that we have b;(z) € KX, C KSF1 : K]S\Zfl. Since the quotient map
bi : Uax/Ii — U<p/I;_1 induces the surjection K23 - K22 — K2 - K2 |
we can choose an element y € K]SVZ{ . Kgf so that b;(x —y) = 0. By the exact
sequence (3.24), there is an element ' € Ker(f{ oa;) such that 2 = y+a;(v/).
By (3.23), we see that a;(y') € KJSV; -Kévf. Therefore we have x € KJSV; -Kévf
as desired. O

Lemma 3.3.14. Let R be a commutative Noetherian complete local algebra
over a field k with the maximal ideal v. Let ¢ : M; — M, be a injective
homomorphism between finitely generated R-modules M;, M,. Put M :=
t"M; for 1 = 1,2 and for each n € Z~y. We denote the kernel of the induced
map ¢": My/Mj — My/My by K". Then for any n € Zs, there is an
integer ng > n such that we have K~ C M7 /MY for any N > n,.

Proof. Assume the contrary to deduce a contradiction. Namely we assume
that there is an integer n € Z- such that K ¢ M?/MY for any N > n. For
each a,b € Z~o with a < b, let k**: K’ — K° be the homomorphism induced
from the quotient homomorphism M; /M? — M;/M¢. These homomorphisms
k*? define a projective system {x** : K — K| a < b}. Note that lim K" =
Ker ¢ = 0.

By our assumption, we have ™" # 0 for any N > n. Since k™ *! =
K™V o KNNFL we get a decreasing sequence of subspaces:

K" D Imk™ ™ > Imk™ 2> ...

The fact dim K™ < oo ensures that there exists a non-zero subspace L™ C K™
which is included in Im ™ for all N > n. Define LY := (x®")~}(L") c K¥.
then we get a projective subsystem of { K™} yez_,:

s LN S LT S P 00— - — 0,

whose limit is non-zero by construction. Thus we have 0 # LLN C
L m K = 0, which is a contradiction. O

As the special case i = [ of Proposition 3.3.13 (2), we obtain the following.
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Corollary 3.3.15. For any Ny, Ny € Z~, there is an positive integer N such
that Ker @} C (Ker @gl) - (Ker CD]BVQ).

Proof of Theorem 3.3.6. From Lemmas 3.3.9 and 3.3.10, we see that the pull-
back @g (KGﬁ (Zé)) is stratified as a left U,(Lg)-module by various deformed

Weyl modules W(m) with m € KP(B). Therefore the pullback functor
®% - K¥(Z5)-modgq — %, lands in the full subcategory g 5. Note that we
have R R

KGﬁ(ZZ;)—modfd = U (KG(5)<Zé)/tg> —modfd,

NEZ>0

where (RGﬁ (Z8)/y ) ~mody is identical to the full subcategory of K& (Z5)-modsq
consisting of modules M satisfying tgﬁM = 0. Thus, by Proposition 3.3.12,

we see that the pullback functor (/I;E ; RGB(Z[;)—modfd — 6qp is fully faith-
ful. To prove that it is essentially surjective, it is enough to show that for
each module M € %y there is an positive integer N € Z-, such that
(Ker cIA>éV)]\4 = 0. We proceed by induction on the length of M. When
M = L(m) is a simple module of 6ps with m € KP(5), we see that
(Ker (/I\D}D))L(m) = 0. For induction step, we write the module M as an ex-
tension of two non-zero modules My, My € %6 3. By induction hypothesis,
there are integers Ny, No € Z~( such that (Ker Eﬁévl)Ml = (Ker EI\)]/BVQ)MQ = 0.
We can find an integer N € Z- such that Ker EISéV C (Ker @gl) - (Ker &ng)
by Corollary 3.3.15. Then we have (Ker (f]ﬁv)M =0. O

Remark 3.3.16. As a generalization of Theorem 3.2.1, Leclerc-Plamondon
[37] established some equivariant isomorphisms between graded quiver vari-
eties MS(A) associated with certain (-dominant weights A € Z* and the
spaces of representations of the repetitive algebra @ of the quiver () whose
dimension vector corresponds to A. For this generalized choice of A € PT,
the completed convolution algebra K™ (Z*(X)) still becomes affine quasi-
hereditary. In fact, it is isomorphic to the completion of the geometric ex-
tension algebra associated to m: IMM*(A) — MF(A) discussed as above, and
we can apply [38, Theorem 4.7]. However, in this generalized setting, Theo-
rem 3.3.6 does not hold. In particular, standard modules of RG(A)(Z *(X)) are
not always isomorphic to the deformed local Weyl modules in such a general
setting. This happens because an analogue of Lemma 3.2.5 does not hold in
general. In this sense, Theorem 3.3.6 is a special phenomenon for our setting.
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3.3.4 Affine highest weight structure
Thanks to Theorem 3.3.6, we can regard the category

> RGa( 7o
CKQ,B =K B(Zﬁ)—modfg
as a “completion” of the category 6 s = KGs (Z3)-modgq so that we have
enough projective modules (and hence the notation above). In this section,
we see that the category € s has a structure of affine highest weight category,

or equivalently, the algebra RGﬂ(Zé) is an affine quasi-hereditary algebra.
For the notion of affine highest weight category and affine quasi-hereditary
algebra in general, see Appendix A.2. Recall that we defined a partial order
= on the set KP(/3) to be the opposite of the orbit closure inclusion.

Theorem 3.3.17. The algebra RGﬁ(Zé) is affine quasi-hereditary for the
poset (KP(3), <). Via the completed Nakajima homomorphism @5 . U,(Lg) —
KGs (Z3), the standard (resp. proper standard, proper costandard) module as-
sociated with m € KP(3) is identified with the deformed local Weyl module
W(m) (resp. local Weyl module W (m), dual local Weyl module WV (m)).

Proof. We construct an affine quasi-heredity chain of the algebra RGB(ZE).
Let {mi,...,m,} be a total ordering of the set KP(/3) refining the partial
order =<, i.e. it satisfies j < k whenever m; < my. Then we have m, =
As. We set O := O, 05 = |;5; 05, Og; == |];.;0;. We denote the
inverse image of Q; (resp. Os;, O«;) along the canonical morphism Zy =
Eg by Zlo, (resp. Zjlo.,; Z5lo.,). By construction, Z§lo.,,, (resp. Z3|o,)
is a closed subvariety of Z§|o., (resp. Z|o_,) and its complement is Z§|o,
(resp. Z§lo.,_,). Also Zg|o., is a closed subvariety of Z§ whose complement
is Z8lo.,_,- Then we consider the following commutative diagram arising
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from (A.1):

KGB (Zé |©2i+1) - KGB (Zé |@2i+1)

0—>RGB(ZE|@Z¢)—>RGB(Z5) RGE(ZE|©51'71)_>O

0——K®(Z3]0,) K®(Z8lo.,) —= K% (Z3|o.,_,) —=0

0 0
(3.25)
Arguing as in Lemma 3.3.10, we see that the left column and the lower row
in (3.25) are exact. By downward induction on ¢ and diagram chases, we see
that the middle row (and hence the middle column) in the diagram (3.25) is
also exact. R
Therefore we can regard |; := K&s (Z5los,,,) for each i € {0,...,7} as a

two-sided ideal of the algebra K& (Z3). What we have to do is to prove that
the chain of ideals

0=1 Gl G- ChClyg=K®(Z3) (3.26)
gives an affine quasi-heredity chain. Observe that
i1/l = KO (Z3]0,) = W (m;) © Rm,) W (m,)f = T (m,)®

as a left RGB(Zé)—module, where s; := dim W (m;). By Theorem 3.3.6, the

category of finite-dimensional modules over RGB(Zé) /1; is identified with
the full subcategory of %g s consisting of modules M whose (-weights be-
long to the set J;.;{p € & | p < m;}. For such a module M, we

have Homyg ;o (W(m;), M) = My, by the universal property of the de-
formed local Weyl module (Proposition 2.2.15 (1)). In particular, the func-
tor Homy; 74 (W (m;), —) is exact on the category (K®#(Z3)/l;)-modgg. Since

any module M € (RGB(Zé)/Ii)-modfg can be written as a projective limit
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of finite-dimensional modules (i.e. M = lim M /eY), we see that the de-

formed local Weyl module W(mz) is a projective module in the category
(K®4(Zg)/1;)-mody, with its simple head L(m;). Moreover, we have

HOmRGg(Zé)(Iifl/l’h KGB<ZE)/IZ*1> = O

From these observations and Proposition 2.2.15, we conclude that the chain
(3.26) is an affine quasi-heredity chain.

By Remark A.2.5, the algebra RGﬂ(ZE) is affine quasi-hereditary for the
poset (KP(3), <), whose standard module (resp. proper standard module) as-

. ~

sociated with m € KP(5) (as a (U,(Lg), R(Ag)-bimodule) is the deformed lo-

cal Weyl module W (m) (resp. local Weyl module W (m)). To prove the asser-
tion for proper costandard modules, we have to show the Ext-orthogonality
as in Theorem A.2.6. This is done in Proposition 3.3.18 below. Il

To show the Ext-orthogonality between deformed local Weyl modules
and dual local Weyl modules, we need to prepare some notation. Note that
the dual local Weyl module WVY(m) corresponding to m € KP(3) actually
belongs to 6 s by Proposition 2.2.19 and Theorem 3.3.6.

We need to prepare some duality functors. We temporarily use the am-
bient category 4 of all (U,(Lg), R(A))-bimodules. Note that each M € %

has the weight space decomposition M = P P M,,, where M, = a, M and

each weight space M, is preserved by the action of fi()\ﬁ). We define the
full dual and the topological dual of M € % by M* := Homy(M, k) and
D(M) := Uy Homy (M/t] k) respectively. We define a left U,(Lg)-module
structure on M* (resp. on D(M)) by twisting the natural right U,(Lg)-
module structure by the antipode S (resp. S7'). Thus we obtain an exact
contravariant endofunctor (—)*: & — % and a right exact contravariant
endofunctor D: 8 — A. If M € £ is finitely generated over ]?2()\5), we
have (D(M))* = M. If M € %, (with trivial B(Ag)-action), the dual M*
(resp. D(M)) coincides with the left dual M* (resp. the right dual *M) of
M.

Proposition 3.3.18. Let m;, my; € KP(3). Then we have:

k i:O,mlzmg;

Ext’  (W(my), W =
X%Q,ﬁ( () (mo)) {O otherwise.
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Proof. The case i = 0 follows from the fact that the module W"(my) has
a simple socle L(my) with dim WY (mgs),, = 1 and the universality of the
deformed Weyl module (Proposition 2.2.15 (1)).

~

For 7 = 1, we consider an extension in 6 g:
0— WY(my) = E — W(my) — 0. (3.27)

Put p; :=cl(my) for j = 1,2. If yy £ po, then the f-weight m, is maximal in
E/ tjﬁv for any N € Z~(. By the universal property of the deformed local Weyl
module W(ml), we see that the sequence (3.27) must be split. If pu; < po,
we apply the topological duality functor D to the sequence (3.27) to get the
following exact sequence:

0 — D(W(my)) = D(E) = W (*m,). (3.28)
Since p; < p2, we have

dim D(E) _yop, = dim Eyyp, = dim E,, = 1 = dim W ("my) g s,

where the second equality is due to Weyl group symmetry coming from inte-
grability. In particular, the image of the weight space D(E)_y,,, coincides
with W (*my)_yp,, which generates W (*my). Therefore the rightmost arrow
in the sequence (3.28) is surjective. Moreover, by the universal property of
the local Weyl module W (*my), we see that the sequence (3.28) is split. By
applying the full duality functor (—)*, we find that the sequence (3.27) is
also split. Therefore we have EXt%,\Q ﬁ(/W(ml), WY (my)) = 0.

The cases i > 1 follow from the case i = 1 by a standard argument in
(affine) highest weight categories. O

3.3.5 Comparison with a geometric extension algebra

Since the group Ggz(= G(Ag)) is the centralizer of the torus Tz(= T(Ag))
inside G(Ag) (where Ag := cl(Ag) as before), the multiplication map induces
an isomorphism

Gﬁ X Tﬁ i) Gﬁ (329)

of algebraic groups. Note that this decomposition yields an isomorphism
K% (X) @4k = K% (X)),
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for any Gg-variety X with a trivial Tg-action. As a special case when X = pt,
we have an isomorphism

3.12
R(As) " R(G(Ag)) @4k = R(Gp)s
of k-algebras, via which the maximal ideal vt C R(Ag) defined in Section 2.2.3
corresponds to the augmentation ideal I C R(Gp)x. Therefore we have an
isomorphism R
[55(X) @a k], = K (X), (3.30)
where [—]tAB denotes the vg-adic completion. See Appendix A.1.2 for the RHS.
For X = Z3, we get an isomorphism
192 (] (] A ~Y > L]
KGB (Zﬁ) — [KGB (Zﬁ) R4 k} 0 -~ KGﬁ (Zﬁ)k
of convolution algebras. Here the first equality follows because we know that
K (Z3) is a finitely generated R(Ag)-module thanks to the discussions in
the previous section (see Lemmas 3.3.7, 3.3.9 and 3.3.10).

Proposition 3.3.19. The Riemann-Roch homomorphism gives an isomor-
phism of R(Gp)x-algebras:

RRO: KO(Z3), = H{? (23, k).

Proof. By Proposition A.1.3, the map RR®?: [?GB(Zﬁ)k — Hfﬁ(Zg,k)/\ is
an algebra homomorphism. To prove that the map RR%: K Gﬁ(Zé)k —

HY *(Z, k)" is an isomorphism, it suffices to check that the equivariant
M <IN ~
Chern character map (ChGﬂ)Z;X P K9 (Z8) — Hfﬁ(Zé,]k)A gives an iso-

morphism of E(Gﬁ)k-modules since RR®? is obtained from (ChGﬁ)ZéxmB by

multiplying the Gg-equivariant Todd class p’{Tdig , which is an invertible
element.

Likewise as in the proof of Theorem 3.3.17, we fix a total ordering KP(3) =
{m;,m,,...,m,} refining the partial order <, and set Q; := Oy,,, Os; :=
;> 05, O<i := | ];; O;. By Lemma 3.1.4, Lemma 3.2.5 and the reduction,
we have

K9 (Z3]o,) = K922 (my) x £°(my)),
H? (730, k) 2 HE™) (€8 (my) x £*(my), k)
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for each k. Then, using [42, Theorem 7.4.1], we can prove that the equiv-
ariant Chern character map gives an isomorphism ch®: K % (Z3lo, )k 5

H? (Z3lo,, k)" for each k. Moreover, we obtain the following commutative
diagram with exact rows for each k:

0 —— K% (Z3losy ) — K (Z3loo )k —— K (Z3|0, ) ——0

lchcﬁ jchGﬁ jchaﬁ
G ° G . G d
0— H, ﬁ(ZB’@gkfuk)/\ — H. B(ZB’@SM k)/\ — H, ﬁ(Z,B’@INk)A —0.
By induction on k, the equivariant Chern character map gives an isomor-
phism ch®: K9(Z8|o_ ) = H*(Z3|o.,, k)" for all k. O
We consider the proper push-forward
Ly = (mg).k
of the trivial local system k on 913. By the decomposition theorem, we have
£y P LnowICm= P P Ly @ ICulk,
meKP(B) meKP(B) keZ

where ZC,, denotes the intersection cohomology complex associated with
the trivial local system on the orbit Op and Ly, = €y Ly, is a finite-
dimensional graded k-vector space, which is known to be non-zero for each
m (see [42, Theorem 14.3.2]). We consider the Yoneda algebra

Exty, (L5, £3) = @D Ext, (L5, L3)
kEZ

in the derived category of Gg-equivariant constructible complexes on Eg.
This is a Z-graded k-algebra whose grading is bounded from below.
By a standard argument (see [11, Section 8.6]), we have an isomorphism
of k-algebras
* L] L] ~Y G [ ]

Note that this is not compatible with the Z-grading. This isomorphism
induces an isomorphism between the completions:

Bxty, (L5, £3)" = H (25, k) (3.31)

As a conclusion, we obtain the following.
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Corollary 3.3.20. We have the following isomorphisms of k-algebras:
Exty,, (L, £3)" = H? (25, k)" = RO (Z3),.

Remark 3.3.21. By a general theory by Kato [32], or also by McNamara [38],
the Yoneda algebra Extg; (L3, £3) is a Z-graded affine quasi-hereditary alge-
bra. Therefore its completion Ext, (L3, £5)" = K s (Z3)x inherits a struc-
ture of affine quasi-hereditary algebra (see [19, Section 4] for the completion).
This gives an alternative proof of the first statement of Theorem 3.3.17.
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Chapter 4

Dynkin quiver type quantum
affine Schur-Weyl duality

4.1 Quiver Hecke algebras

In this section, we explain the basics of the quiver Hecke algebras, also known
as Khovanov-Lauda-Rouquier algebras, of finite ADE types (Section 4.1.1)
and their geometric realization due to Varagnolo-Vasserot [49] (Section 4.1.2).
We remark that Rouquier [48] also considered a similar geometric interpre-
tation of the quiver Hecke algebras independently.

Let k be a field of characteristic zero in this section. Later we will set

k = Q(q).
4.1.1 Definition and properties

Fix an element 5 =), dio; € Q" and put d := 3, , d; = ht 5. Let

i€l
"= {i= (i1, ia) € I | iy + -+, = B).

The symmetric group &, of degree d acts on the set I from the right by
(i1, -+ ,4q) - 0 = (ig1), - - - Go(a))- Let s € &4 denote the transposition of k
and k+1for 1 <k <d.

Definition 4.1.1 (Khovanov-Lauda [34], Rouquier [47]). The quiver Hecke
algebra Hg(f) is defined to be a k-algebra with the generating set

{11 |iEIﬁ}U{l‘l,...,[Ed}U{Tl,...,Td_l},
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satisfying the following relations:

1ily = dip 1y, E Li=1, xy =2y, okly = Lizg,
ielp

Tkli:1i~sk7—k7 TeTT = TiTk 1f|k3—l| >1,

(o — Tpy1) i, if g <= dppa,
(g1 — o)y, if i — dgga,
=0,

2
Tk: 1i —
1
0 if 4 = g1,

i if Qi igt1

-1 ifl:k,ik:'ik+17
(kalil — Qfsk(l)Tk)li =<1 ifl=k+1,i = igy1,
0 otherwise,

i if i = tpgo, ip <t
(Tht1TkTh1 — TeTh1 k) Li = € =13 if 4 = dpy0, 06 — pat,
0 otherwise.

We set
PB = @k[wl, c. ,l‘d]li
ielf
with a commutative k[z,...,x4]-algebra structure 1; - 1y = &y 1;. By the
defining relations, there is a k-algebra homomorphism Pz — Hg(3) sending
the generators 1;, z, € Ps to 1i, x, € Hg(B) respectively. For each o € &y,
we fix a reduced expression o = s, - - - sg,. Then we define 7, := 73, --- 73, €
Hg(B). Note that this element 7, depends on the choice of a reduced expres-
sion of ¢ in general because we do not have the braid relation for 7;’s. Then
the following fact is known.

Proposition 4.1.2 (Khovanov-Lauda [34]). The quiver Hecke algebra Hy(f)
is a left (or right) free module over the commutative algebra Ps with a free
basis {7, | 0 € &4}.

Proof. See [34, Proposition 2.7]. O
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The quiver Hecke algebra Hy (/) is equipped with a Z-grading given by
degl; =0, degzy =2, degml;=

T Qg igy -
Since the grading is bounded from below by Proposition 4.1.2, the completion
Hqo(B) := Hg(B)" inherits a natural structure of k-algebra. Explicitly, we

have R R R
HQ(ﬁ) = @ P,BTO' = @ TO'Pﬁ7
c€G, c€Gy
where ]3ﬁ =@ k[z1,. .., z4] L
For 3,3 € Q" with ht 8 = d, ht 8’ = d’, we have an embedding

Hq(B) ® Ho(B') — Hqo(B + 5)

given by i1y — Ligy, 2 QL — xp, e @1 = 7, 1 @21 — Tdtk, 1®
Tk V> Tatk, Where we set ioi' = (iy,...,4q,79),...,1)) € I8+F" Using this
embedding, we define the convolution product M o M’ of a left Hg(3)-module
M and a left Hg(p')-module M’ by

Mo M = HQ(B —+ 5,) ®HQ(ﬁ)®H3(,3’) (M X M/) ,

which is a left Hg(8 + £')-module.

The quiver Hecke algebras categorify the quantum group in the following
sense. Let Hg(/)-proj be the additive category of finitely generated graded
projective left Hy-modules and Hg(/5)-gmod be the abelian category of finite-
dimensional graded left Hy(/5)-modules. We equip the direct sum categories

Hg-proj := @ Hq(B)-proj, Hg-gmod := @ Hq(B)-gmod
peQt peQt

with structures of monoidal category using the convolution product. Since

the convolution product is a bi-exact functor, the Grothendieck groups K (Hg-proj)
and K (Hg-gmod) become Q*-graded Z[v, v™!]-algebras, where the multipli-
cation with v*! is given by the grading shifts. The following fundamen-

tal result is a consequence of Khovanov-Lauda [34], Rouquier [47, 48] and
Varagnolo-Vasserot [49].

Theorem 4.1.3 (Categorification Theorem). Let U, (g)z be the Z[v,v™!]-
form of the positive part of the quantized enveloping algebra U,(g) (gener-
ated by the divided powers of the Chevalley generators) and U, (g)y be its
(graded) dual. Then there is a Q™-graded Z[v, v~!]-algebra isomorphism

K(Hg-proj) 2 U/ (9)z, (resp. K(Hg-gmod) = U, (g)y)
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under which the classes of self-dual indecomposable projective modules (resp. self-
dual simple modules) correspond to the canonical basis elements (resp. the
dual canonical basis elements) bijectively.

For each 5 € QT, let us consider the category
Mg = ﬁQ(ﬁ)—nlOdfd

of finite-dimensional ﬁQ(ﬂ)—modules. By Proposition 4.1.2, we see that this
category is identical to the category of finite-dimensional Hg(/5)-modules on
which the elements z; act nilpotently. Note that here we do not consider the
gradings of Hg(/) modules. By forgetting the gradings, we have an exact
functor

Ho(B)-gmod — g p.

Again by Proposition 4.1.2, we can prove that every simple module in .Z(, 3
is gradable. Therefore the above functor induces an isomorphism

K(Hg(B)-gmod)|,=1 = K(Aq )

of the Grothendieck groups. The convolution product equips the direct sum

%Q = @ %Qﬁ
peQT

with a structure of monoidal category. By forgetting the gradings, we obtain
an isomorphism

K(Hg-gmod)|,—1 = K (.4q)

of the Grothendieck rings.

Let G be a complex affine algebraic group whose Lie algebra is g and
N be a maximal unipotent subgroup of G corresponding to the positive
roots RT. Tt is well-known that the coordinate ring C[N] is isomorphic to the
(graded) dual of the positive part of the enveloping algebra U(g). Combining
the observation above with the categorification theorem (Theorem 4.1.3) we
obtain the following:

Corollary 4.1.4. There is an isomorphism of C-algebras
K(AMq)c = C[N]

which sends the classes of simple modules to the elements of the dual canon-
ical basis bijectively.
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Finally we recall the faithful polynomial right representation of Hg([)
from [34, Section 2.3]. We define f“(z1,...,24) = f(Tw@);- - Tw@) for
feklxy,...,zq and w € &,.

Theorem 4.1.5 ([34] Proposition 2.3). The following formulas give a faithful
right Hg(f)-module structure on the k-vector space Pgs:

a - 11 = ali,

a- T = alg,

Sk
Hli if iy = ipy1,
k— Thtl
1) -7 = e ,
(FL) - 7 (Trr — 2i) o L, i dk < dpy,
[, otherwise,

where a € Ps and f1; € k[zy, ..., z4]1;.

Replacing the polynomial ring k[xy, ..., z4] with the ring k[z1, ..., z4] of
formal power series, we get the completion of the representation Pjs:

ﬁﬁz@k[[l'l,...,l‘d]]lizpﬁ ®HQ(,B) HQ(ﬁ) (41)
ielf
4.1.2 Varagnolo-Vasserot’s realization

Fix an I-graded C-vector space D = @,_; D; with dim D = 3, i.e. dim D; =
d; as in Section 2.1.2. We consider the following two non-singular Gj-
varieties:

Bs={F*=(D=F'2F'2...2 F*=0) | F* is an I-graded subspace of D},
Fs={(F*,z) € Bg x Eg | o(F*) C F* for any 1 < k < d}.

The G-action on Fjp is defined so that the projections pr;: Fz — Bg and
fp = pry: Fg — Eg are Gg-equivariant. They decompose into connected

components as
Bi=||B.  F=[]A
ielp ielB

where we put

B; = {F* € Bg | diim F* ' = dim F* + o, Yk}, Fi:= (pr;) ' (B:)
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for i = (iy,...,iq4) € I”.

We fix a basis {vj }1<r<aq of the vector space D so that the set {v; ; }1<j<q,
forms a basis of the vector space D; for each i € I, where we put v;; :=
Uiy +td;_1+5- Let H; C GL(D;) be the maximal torus fixing the lines {Cv; ; }1<j<q;
for each i € I. We set Hg := [[..; H; C Gj.

Let Fy € Bg be the flag defined by Fj := @,., Cuv;, which belongs to
the component B;, with ip := (19,292 ... n%) € [°. For each i € I”,
we fix an element w; € &, such that i = iy - w;. The set {w;}icrs forms
a complete system of coset representatives for the quotient S3\&4, where
S := Stabg, (ig) = G4, % - xS, . Foreach w € &4, we define the flag F? by
Fi = @, Cvyqy which belongs to the component By,..,. Let FY := Fy5 € B
for i € I”?. Then we have B; = G/B; with B; := Stabg,(F?") C G being
the Borel subgroup fixing the flag F;*, which contains the maximal torus Hz.
Then we have

‘H"‘Gﬁ(Bbk) = H*Bl(ptﬂ k) = H};B(pmk) = k[xla s 7xd]]~i7 (42>

where the last isomorphism sends the 1st Hg-equivariant Chern class of the
line Cv,,(x) to the element x;1;. Thus we get an isomorphism

(B k) = @D H (B k) = @D Klan,... wqli = P (4.3)

ielp ielf
We consider the Steinberg type variety Zz := Fz Xpg, Fp associated
with the morphism pg: Fg — Es. Its Gg-equivariant Borel-Moore homol-

ogy group H*G ?(Z3,k) becomes a k-algebra with respect to the convolution
product relative to Fz x Fg x Fg. We identify the variety Bg with the fiber
product {0} X g, F3. Then the convolution product relative to {0} x Fg x Fp

makes the space Hfﬁ(Bﬂ, k) into a right H*Gﬁ(ZB, k)-module.
Let p; denote the restriction of the proper morphism pg: Fg — Eg to the
component F; for i € I%. We put

£5 = EP(pu).kldim 7],
Ha

where k[dim F;] is the trivial local system (i.e. the constant k-sheaf of rank
1) on F; homologically shifted by dim F;. By the decomposition theorem, we

have

mcKP(B) meKP(8) keZ
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where ZC,, denotes the intersection cohomology complex associated with the
trivial local system on the orbit Oy, and Ly, = @,y Lmk[k] is a self-dual
finite-dimensional graded k-vector space for each m € KP(5). The vector
space Ly, is known to be non-zero for all m € KP(f3) (see [31, Corollary 2.8]).

Similarly to Section 3.3.5, we have a standard isomorphism of k-algebras

Exty,, (Ls, Lg) = H?(25,k). (4.4)

Let £;(k) be the Gs-equivariant line bundle on F; whose fiber at the point
(F*,z) € Fiis F*"Y/FFforie [P and 1 <k <d.

Theorem 4.1.6 (Varagnolo-Vasserot [49]). There is a unique isomorphism
of Z-graded k-algebras

Hq(B) = Extg, (Ls, Ls) (4.5)
which satisfies the following properties:

(1) The composition Hg(f) = HO (Z5,k) of the isomorphisms (4.5) and
(4.4) sends the element 1; (resp. zx1;) to the push-forward of the fun-
damental class [F;] (resp. the 1st Gg-equivariant Chern class of the line
bundle £;(k)) with respect to the diagonal embedding F; — F; X By i

(2) We have the following commutative diagram:

Ho(8) ———— H{"(25.k)

| |

End (P;)*" —=~ End (HS* (Bs, k))op ,

where the lower horizontal arrow denotes the isomorphism induced from
(4.3) and the vertical arrows denote the right module structures.

Remark 4.1.7. Because our convention of the flag variety B differs from
Varagnolo-Vasserot’s [49], we need a modification. Actually, our isomorphism
(4.5) is obtained by twisting the original isomorphism Hg(8) = Extg, (Ls, Ls)
in [49] by a k-algebra involution on Hg(5) given by

—Ta—plior  if ip = igq1;

L= Liew, g = Tg—pt1, Trlir> o 4
Ta—klior  if i 7# g1,

where i% := (ig, ..., i,11) for i = (i, 49, ...,iq) € I°.
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Similarly to the case of the Gg-equivariant Borel-Moore homologies, the
K-group K% (Z3), becomes an R(Gj)i-algebra and the K-group K (Bgs)y
becomes a right K (Zg),-module with respect to the convolution products.

For each i € I°, we have

K% (B =2 KB (pt), =2 K" (pt), = R(Hp) = k[yi, ..., y5 1

where the last isomorphism sends the class [Cvyy,x)] of the 1-dimensional
Hg-module Cv,, to the element y;1;. The Gg-equivariant Chern character
map (chGﬁ)gi gives an isomorphism of k-algebras

KO (B 2 klys — 1, ya — 1L > ko, .zl 1s 2 H (B k)

where the middle arrow sends the element y,1; to the exponential e®*1;
for 1 < k < d. Applying the equivariant Riemann-Roch theorem (=The-
orem A.1.1) to the inclusion B; < F;, we have

(ch® ) = G- (ch®)B, ;= (TdF) ' Ty - 1 € kzy,. .., za]li (4.6)

and hence the map (ch®?)7! is an isomorphism of R(Gg)g-modules. Summing

i

up over i € I?, we obtain an isomorphism of }/%(G 3)x-modules
(ch )57+ K% (Bg), = H.” (Ba, k)", (4.7)

Proposition 4.1.8. The Riemann-Roch homomorphism gives an isomor-
phism of R(Gp)x-algebras:

RRO?: K9 (Z4) = HO?(Z5,k)",
which makes the following diagram commute:

K% (Zp)y H?(Z,k)" (4.8)

| |

End (f{Ga (B,B)]k> " 2. End (Hfﬁ (Bs, k)A>Op ,

where the lower horizontal arrow denotes the isomorphism induced from (4.7)
and the vertical arrows denote the right module structures.
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Proof. As in the proof of Proposition 3.3.19, it suffices to prove that the
equivariant Chern character map (cth’);:ZXf‘3 L KGo(Z5), — HO?(Z5,k)" is
an isomorphism.

Because we have the connected component decomposition

Zp = |_| Ziy, Ziy = Fi Xg, Fi,

iirers
we focus on a connected component
Ziy = {(F*,F* x) € By x By x Eg | o(F*) C F* x(F™*) c F'*, Vk}.
For each w € Ggwy, we define a locally closed Gg-subvariety
Zl = Ga xP{(F7,F* x) € Ziyy | F'* € BiF}}

which is a Gg-equivariant affine bundle over B;. They give a G g-stable strati-

fication Z;y := Uweesﬁw./ Z3%. Fix a total ordering Spwy = {w1, wa, ..., Wn}

such that we have wyw; < wywy !in the Bruhat ordering only if & < 1. We
simply write ZF, = 2% and set Zlgf = | |;<x Z{y- Then for each k, the

ii/ ii’-
. <k—-1 . . <k . . . .
variety Z5 " is closed in Z5) and its complement is ZF,. Since ZF, is a

G g-equivariant affine bundle over B;, its homology of odd degree vanishes:

H ffﬁl(zi’fi,, k) = 0. Therefore an inductive argument with respect to k yields

H iﬁl(ng k) = 0. Using the cellular fibration lemma [11, 5.5.1] for equivari-

ii’»

ant K-groups and Proposition A.1.2, we obtain the following commutative
diagram with exact rows for each k:

OékcB(ZSk_l)kékGﬁ(Zi’Siﬁ)k [/(\'GB(ZIC

i,i’ ii

lchcﬁ lchgﬁ lchGﬁ

0— H (257 k) —— HOP (25 k) —— HP (25, k) — 0.

i,i’ i,i’

) —0

Yo = HI?(ZF

i,i’

Note that the map ch®?: KGs(Zk

S k)" is an isomorphism for

any k since again the variety Zi’fi, is an affine bundle over B;. Hence, by
induction on k, we conclude that ch®: K% (Z5F), — H? (257,k)" is an
isomorphism for all k. Il
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Note that the isomorphism (4.4) induces an isomorphism between the
completions:

EXJGZﬁ (ﬁﬁ, Eﬂ)A = H*GB (Zﬁ, ]1{)/\
As a summary of this subsection, we have the following.

Corollary 4.1.9. We have the following isomorphisms of k-algebras:

Hq(B) = Bxty, (L5, L) = H? (25,k)" 2 K% (Z5)..

4.2 Algebraic construction

In this section and the next section, we study the Dynkin quiver type quan-
tum affine Schur-Weyl duality. In the present section, we give a concise
explanation of the original algebraic construction due to Kang-Kashiwara-
Kim [25, 26]. We remark that actually their construction is a special (but
quite interesting) case of more general framework of their generalized quan-
tum affine Schur-Weyl duality developed further in their joint works [27, 28]
with Se-jin Oh.
In this section, we take the field k to be Q(q) as before.

4.2.1 Kang-Kashiwara-Kim’s bimodule

Recall that for each i € I, the global Weyl module W(w;) of highest weight
w; is a (Uy(Lg), R(w;))-bimodule (see Theorem 2.2.10), where we can write
R(w;) =k[zZ!]. We set \; == w; and a; := ¢” if ¢(a;) = (4, p) € I. Then the
deformed local Weyl module

~ —

Vo= W(g(a)

is a (U,(Lg), R(¢(c;)))-bimodule, where we can write R(¢(a;)) = K[z, — ad].
For each i = (i1, 19, ...,iq) € I®, we consider a left U,(Lg)-module
Ve =V, &V,8 - &V,

We define Xy, := z), , which is the equivariant parameter acting on the k-

th tensor factor Azk of V& for each 1 < k < d. Under this notation, we
have a commuting action of the algebra k[X; — a;,..., X4 — a;,] on the
U,(Lg)-module V&,
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We want to construct on the left U,(Lg)-module

7o T

icIf

a commuting right action of the quiver Hecke algebra Hy(/) using the nor-
malized R-matrices in Section 2.2.5. In order to do this, we need the following
technical assumption. Recall that the normalized R-matrix is a homomor-
phism of (U,(Lg),k[zE!, 2£!])-bimodules,

Ri5™: W(ws) @ W(w;) = K(ze,/20,) Qkj(em, /21 (W(@;) @ W(w;)),
whose denominator is denoted by d; j (2, /2w,)-

Assumption 4.2.1. For any i1,i5 € I, the order of zero of the denominator
dj, j,(u) at the point u = ¢ P (= a;,/a;,) is at most one, where ¢(a;,) =
(J1,p1), Piy) = (2, p2)-

Theorem 4.2.2 (Kang-Kashiwara-Kim [26]). Under Assumption 4.2.1, the
following formulas define a commuting right action of the completed quiver
Hecke algebra Hg (/) on the left U,(Lg)-module V7

(O 1i’ = 5“/1), (49)

v-xp = (a; ' Xp — 1), (4.10)
(i, Xi — a5, X)) (R (v) =) if ig = g,

v = (0, X — a5} X3 R (v) if g < gt (4.11)
Rj(v) otherwise,

for v € V& with i = (i1,...,iq) € I°. Here the operator Ri: Vi Vise s
induced from the normalized R-matrix from W(\;,) ® W(A;,,) to a local-
ization of W(\;,,,) ® W(\;,). In particular, this operator R}, is well-defined
under Assumption 4.2.1.

Conjecture 4.2.3 (Kang-Kashiwara-Kim [26] Conjecture 4.3.2). Assump-
tion 4.2.1 is true for any Dynkin quiver Q).

This conjecture is now a theorem, i.e. Assumption 4.2.1 has been verified
by some explicit computations of the denominators of the normalized R-
matrices. For type AD this is checked by [26]. For type E, a recent preprint
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[46] by Oh-Scrimshaw has verified the assumption by explicit computations
with a computer.
Later in Corollary 4.3.7, we give a uniform proof of Conjecture 4.2.3 for

any Dynkin quiver of type ADE via our geometric realization of the bimodule
VB,

Remark 4.2.4. When our quiver is of type A,, with a monotone orientation
Q= (1 —2— -+ = n), the corresponding complete quiver Hecke alge-
bra ﬁQ(ﬁ) is known to be isomorphic to a certain central completion of the
affine Hecke algebra H3'(¢=2) with d = ht 8 by Brundan-Kleshchev [4] and
by Rouquier [47]. Under this isomorphism, we can obtain Kang-Kashiwara-
Kim’s bimodule V8 for this case as the corresponding completion of the
bimodule V¥ in the usual quantum affine Schur-Weyl duality. For a ge-
ometric interpretation of this fact, see Example 3.2.4 above together with
Remark 4.3.10 below.

4.2.2 Properties of the induced functor

For each 8 € QT, we define the functor

9@75 : %Qﬁ — ng; M — ‘7®B ®EQ M

)

induced from the bimodule V3 between finite-dimensional modules. We
also consider their direct sum over S € Q*, i.e. we define the functor

y@ = @ ﬁQﬁ : %Q = @ %Q,ﬁ — ng
BeQt peQt

between monoidal categories. In the paper [26], Kang-Kashiwara-Kim stud-
ied some properties of this functor, which are summarized as follows.

Theorem 4.2.5 (Kang-Kashiwara-Kim [26]). The functor .% is exact and
monoidal, i.e. there is a natural isomorphism

Foprp (Mo M) = Fqs(M)® Fg e (M)

for any 8,5 € Qt and M € Ay 3, M' € M . Moreover, the functor lands
into the monoidal full subcategory 6o C ¢y and induces an isomorphism
between Grothendieck rings

(Zq) : K (M) = K(€g)
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which is compatible with the isomorphisms in Theorem 2.3.4 and Corol-
lary 4.1.4. In other words, the functor % g sends simple modules in .Z 3
to the simple modules in g s bijectively for each 8 € Q.

Conjecture 4.2.6 (Kang-Kashiwara-Kim-Oh [28]). The functor %, gives
an equivalence

y@t %Q i) %Q
of monoidal categories.

We give a proof of Conjecture 4.2.6 in the next section via our geometric
realization of the bimodule V5,

Remark 4.2.7. Actually, Conjecture 4.2.6 is only a half of Kang-Kashiwara-
Kim-Oh’s [28, Conjecture 5.7]. For the other half, they consider Dynkin
quiver type Schur-Weyl duality for twisted quantum loop algebras and con-
jecture that it is also an equivalence of monoidal categories. For the twisted
cases, we do not have any geometric technique at the moment. This should
be an interesting subject of a future research.

4.3 Geometric realization

In this section, we identify the convolution bimodule of the completed K-
group of the fiber product M3 X g, Fg with Kang-Kashiwara-Kim’s bimodule

VB, After all, we give proofs of Conjecture 4.2.3 and Conjecture 4.2.6.
We keep the notation so far. In particular, k = Q(q).

4.3.1 Intermediary fiber product

We fix an element § =Y., d;o; € Q" and put Ag := cl(Ag) € P*. From the
two Gg-equivariant proper morphisms 7g: My — Eg and pg: Fg — Eg, we
form the fiber product M} X g, F3. The convolution products make its com-
pleted G s-equivariant K-group KGs (MG X g, Fp)x into a (IA(GB (Z5)x KGs (Z5)k)-
bimodule. More precisely, the convolution products give k-algebra homomor-
phisms

RO (Z8) — Bnd (K9 (05 xp, Fy))  KO(Z,),
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whose images commute with each other. In the rest of this subsection, we
prove that this bimodule induces a Morita equivalence.

For a moment, we focus on a component My X g, F; for a fixed i € T 8,
Using the isomorphism B; = G3/B; with B; = Stabg, (F}), we have

MG Xp, Fi =My Xpg, (Gﬁ x Bi prl_l(F;))
= Gy xP (MY xp, pri ' (FY)) (4.12)

where pr; is the projection F; 3 (F*, z) — F* € B;. We define a 1-parameter
subgroup pi: C* — Hg by pi(t) v, := tFvw for t € C*. Note that this
depends on the choice of w; € G, fixed in Section 4.1.2. We observe that

1

pry H(F) 2 {z € Eg | o(FF) C FF, vk} = {I € B3 ‘ 1ir%pi(t):p = 0} .
—
Therefore we get
M X, pry () = {w € o3

1

ln (1) () = 0

Since the morphism 7g: 95 — Ejp is the Tpg-fixed part of 7: M(\g) —
Mo(Ns), it is natural to consider the following subvariety of 2t (A\g):

300 w;) == {m € M(\y) ] lim py(t)7(x) = 0 € smo(Aﬂ)} ,

which turns out to be the tensor product variety introduced by Nakajima
[42]. Since the subgroups Ty and p;(C*) commute with each other, we have

MY %, pry - (F) = 3(Ag;wi) ™. (4.13)

1

Using (4.12), (4.13) and the reduction, we obtain

KO (MM X, Fi) 2 KM (3(Ags wi) ™), (4.14)
HYP (O X, Fi k) 22 Hi (3(Ag; wi)™, k). (4.15)

Proposition 4.3.1. The G-equivariant Chern character map gives an iso-
morphism:

ch®: KO8 (MY X g, Fi)e — He? (MY x g, Fi k).
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Proof. Thanks to (4.14) and (4.15), it is enough to show that the Hpg-
equivariant Chern character map

chfs . KHs (3()\5; w;)"8 ) — H,"” (g()\ﬁu wi) ™ k)"

is an isomorphism. This latter assertion follows from a Ts-fixed part analogue
of [42, Theorem 3.10. (1)]. O

The G g-equivariant Borel-Moore homology H? (M X g, Fp, k) becomes
a (Hf *(Z5,k), HE? (Z3,k))-bimodule by the convolution products, similarly
to the case of K-groups. On the other hand, the Ext-group Extgﬁ( % Ls)
becomes a (Extg, (L3, £3), Extg, (L5, Ls))-bimodule by the Yoneda prod-
ucts. This bimodule Extg, B(ﬁ%,ﬁfg) gives a Morita equivalence between
Exte, (£, £3) and Extg, (Ls, L) because ICy, appears as a non-zero di-
rect summand of both L5 and L3 for each m € KP(3). Moreover, we have
a standard isomorphism

H? (O %, Fa. k) = Bxty, (L5, Ls) (4.16)

Theorem 4.3.2. We have the following commutative diagram:

[/(\'Gﬁ(Zzg)k End ([?Gﬁ (M5 ¥ g, JT",B)k) KG(2Z5)

o

R
IR

RRES RRES RREB

HE? (23, k)" —~ End (Hfﬂ(zm; x5, fﬂ,k)A) — HE(Z4k) P

(3.31) | = (4.16) | = (4.4) | =

Exte, (L5, £3)"

End (Ext’éﬁ (L3, cB)A) Exty,, (L5, Lg)",

where each row denotes the bimodule structure defined above. In particular,
the bimodule K (MY x g, Fp)x gives a Morita equivalence between two

convolution algebras K %5 (Z%)k and K% (Zg)y.

Proof. The commutativity of the upper half (resp. lower half) of the dia-
gram follows from Proposition A.1.3 (resp. an equivariant version of [11,
Theorem 8.6.7]). O
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4.3.2 The left action of U,(Lg)

In this subsection, we fix i = (iy,...,i4) € I® and investigate the U,(Lg)-
module structure of the pull-back @E([A( Go (MY X g, Fi))-

We recall the notation introduced in Section 4.2.1. For each ¢ € I, we
define \; := cl(¢(y)) = w; and a; := ¢” if ¢(a;) = (4,p) € I. We identify

Endy, (W(A\)) 2 R(G(\)) ®ak = R(G\)) = k[, (4.17)

where z,, is identified with the class of the 1-dimensional representation of
G(\i) = C* of weight 1.
We recall some properties of the tensor product variety 3(Ag; w;). Let

HBZ:HBXCXCGQXCX:(GﬁCG()\ﬁ)

be a maximal torus. By construction, the subvariety E(Aﬁ;wi) C M(Ns)
is stable under the action of Hgz. The convolution product makes the Hpg-

equivariant K-group K™ (3(A\g;w;)) into a left K4 (Z(A\3))-module. Via the
composition of the homomorphisms
®
Uy(Lg) = KOO (Z(Ng)) @4k — K™(Z(\s)) @4 k,

where the latter one is the restriction to Hz C G(Ag), we regard the Hg-

equivariant K-group K™ (3(A\g;w;)) ®4 k as a U,(Lg)-module.
Theorem 4.3.3 (Nakajima [42]). There is a U,(Lg)-module isomorphism
K™ (3(hg;wi)) ®4k 2 VI = WA, ) ® - @ W(N,),

where the action of R(Hjz) ®4 k on the LHS is translated into the action on
the RHS via the isomorphism

R(Hp) @4k = O; == k[X}', ..., X C Endy, (VE); (4.18)
[Cou, )] = X,
where we set X}, := z), using the notation in (4.17).

The decomposition (3.29) Gz = G x T induces the decomposition Hp =
Hg x Tps of the maximal torus Hpg. Similarly to the case of Gg-equivariant
K-groups in Section 3.3.1, this decomposition yields a natural isomorphism

K% (X))@, k =2 K73 (X)),
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for any Hg-variety X with a trivial Tg-action. When X = pt, we have the
following commutative diagram:

R(Hs) @4 k = R(Hp)yx (4.19)

(4.18)l% lg

Oi - k[Xlilv o 7Xdil] _:)k[yli17 o 7y21/t1]1i7

where the bottom horizontal arrow sends the element a;, X, to yrli for 1 <
k < d. Under this isomorphism, the maximal ideal tj; C R(Hjs) ®4 k defined
as the kernel of the restriction R(Hz) ®4k — R(T3) ® 4k = k corresponds to
the augmentation ideal of R(Hpz)x. Therefore we have a natural isomorphism
[57(X) @a K], = K™ (X), (4.20)

5

where [—]2 denotes the t/;-adic completion. In particular, completing the
t B g

diagram (4.19), we get

R

[R(Hs) ®a k}fzﬁ R(Hp)x

@i = k[[Xl — Ay - - ,Xd — aidﬂ i)kﬂyl — 1, oy Ya — 1]]11
Theorem 4.3.4. We have the following isomorphism of U,(Lg)-modules:
&y (RO (M5 xp, F)e) 2 V¥ @o, Oy = VO

Proof. Actually, there is the following isomorphism:

A~ . ~ N
7= [KHB (3N w;)) ®a k] (Theorem 4.3.3)
%
~ A
= [KH/B (3 wi)™) @4 k} / (localization theorem)
‘s
~ 5 (3(N:w;) ™) (isomorphism (4.20))
~ [(Cs (M X g, Fi)k- (isomorphism (4.14))
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We need to show that this is a U,(Lg)-homomorphism. By construction, the
following diagram of k-algebras commutes:

A

KEO9(Z(A9)) @4 k— [K(2) ©4K]] 2

K% (Z3)

K52 (Z(\g)) ©4 k—— [K5(28) @4 K]}, == KT(Z3)s,

vy (4.20)

where the vertical arrows denote the restrictions to the maximal tori. More-
over, by using an Hg-equivariant version of [41, Proposition 8.2.3], we can
see that the following diagram also commutes:

K (Z8)x @ K9 (MY X g, Fi) —— K (MY X, Fie

(restriction to H@)®(4.14)l (4.14) j"

KM5(Z8) @ K™ (3(Ag; ws) " )i —— K8 (3(\g; wi)™ )i,

where the horizontal arrows denote the convolution products. From these
commutative diagrams, combined with the definition of ®3 and Theorem 4.3.3,
we obtain the conclusion. Il

4.3.3 The right action of ﬁQ(ﬁ)

~

Summarizing the discussion so far, we have obtained a (U,(Lg), Ho(5))-
bimodule structure on the left U,(Lg)-module

VB — EB el
ielf
such that the following diagram commutes:

U,(Lg) End(V#°) Sl Ho(B)°P

L) j~

K% (Z8) —End (I?Gﬁ (M8 X g, fﬁ)k) ~— KC(Z5)".

In this subsection, we describe the right action 1): ﬁQ(ﬂ) — Enqu(‘A/®5)°p
of the quiver Hecke algebra Hg(f3) on the space V5.
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For each i = (iy,...,iq) € I?, we set
vii=(wy, @@y, ) @1V = (W) ®- - @ W(\;,)) Qo O;.

Proposition 4.3.5. The highest weight space @, ;s @ivi C VOB of weight
A is stable under the right action of Hg(/5). Moreover it is isomorphic to the
completed polynomial representation Pg defined in (4.1).

Proof. Note that the connected component of the graded quiver variety I3 =
IM(As)™ corresponding to the highest weight space is (0, A\3)™# = pt and
hence M(0, A\g)"™# x g, F3 = Bg. Therefore we have

P O = K4 (M0, 09)"™ x5, Fo)e = KO (B = Py
icI8

as ﬁQ(ﬁ)—module, where the last isomorphism comes from (4.3) and (4.7).
0

Henceforth, we normalize the isomorphism K Gﬁ(i)ﬁ% X gy Fi)k = Vel of

U,(Lg)-modules in Theorem 4.3.4 by multiplying the element of @i corre-
sponding to the ratio C; ' of Todd classes defined in (4.6) for each i € I” so
that the isomorphism

@Oivi:@kﬂ)ﬁ—ah,..., aldvl%Pﬁ—@kxl,..., 1;
icrf icrf icr?

in Proposition 4.3.5 above sends the elementA v; to 1;.
Let K; be the fraction field of the ring O; for each i € I?. It is known
that the U,(Lg) ® K;-module

V®1 V@l ®(9 K V®1 ®(’) K

is irreducible (see e.g. [30, Proposition 9.5]). For each w € &, the k-algebra
isomorphism

Gt Os = Os; f(X1,.., Xa) = fX0, 0 Xa) = F(Xu@)s - Ko@)

induces an isomorphism K; =N Kj., of the fr.action fields, which we denote by
the same symbol ,,. The pull-back ¢, V2" is an irreducible U,(Lg) ® K-
module.
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For each i € I and 1 < k < d, we define the following non-zero U,(Lg) ®
K;-homomorphism

Rk — (1®(k—1) ® RMom 1®(d—k—1)) ® Ds, : ‘7]1?1 N szk‘//\vﬂg)i-sk’

where R"™ is the normalized R-matrix from W(\; ) ® W(A;,,,) to a local-
ization of W(X\;,,,) ® W(A;,). By the irreducibility, this is an isomorphism
and we have

Homy, (1g)sk; (Vu?i, SOEkVH?i'S’“) =K;- R} (4.21)
Let ‘711?6 1= Dicye ‘A/H?i- We regard Ve YA/]SB naturally.

Theorem 4.3.6. The right action of the quiver Hecke algebra ﬁQ(B) on the
space V7 is given by the following formulas:

v-ly =6 yv (4.22)
VT = log(ai_lek)v (4.23)
(log(a; ' Xy) — log(a;ileH))_l(R}C(v) —v) if i = dgya,
VTR = (log(a;ﬁleH) — log(a;kile))R}c(v) if iy < dpi1,
Ri (v) otherwise,
(4.24)

Proof. The first formula (4.22) is clear from Theorem 4.1.6 (1) and the con-
struction.

To prove the second formula (4.23), we assume that the vector v € V&
corresponds to an element ¢ € K Gﬁ‘(i)ﬁ;j X g, Ji)x under the isomorphism in
Theorem 4.3.4. By Theorem 4.1.6 (1), the right action of e € ﬁQ(ﬁ) on V&
corresponds to the convolution with the class A,[L;(k)] € K% (F; x Es Fi)k
from the right, where £;(k) is the line bundle on F; defined in Section 4.1.2
and A: F; — Fi X g, Ji is the diagonal embedding. By [41, Lemma 8.1.1], we
have ¢ x (A.[Li(k)]) = C®p5[Li(k)], where py: MG X 5, Fi — Fi is the second
projection. The isomorphism (4.14) translates the operation — ® p3[L;(k)]
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on K (IM% x g, F;) into the multiplication of the element y;1; € R(Hpz) on
KM5(3(\;w;)™?). Thus we have v - ™ = (a;' Xp)v (see (4.19)).

Let us verify the third formula (4.24). Let ¢: ]/-\IQ(B) — Enqu(Lg)(‘A/(@B)Op
be the structure morphism. First, we consider the case 1 = ixy1. From the
commutation relation between 137, and z; in Hp(f3), and the formula (4.23)
for ¢(x;) which we have proved in the previous paragraph, we see that

(DY (Limi) + 1) f = f*(Dp(Limk) + 1)

holds in Endy, Lg)(‘A/@)i) for any f € O;, where we put D = log(ai_lek) —
log(a %HX’CH) In other words, the operator Dy (1;7) + 1 belongs to the

space Homy; o106, (\7@17 o V®1) Therefore it extends to an operator on the
localizations. Namely, we can regard

Dy(1ime) + 1 € Hom, e, (ViE 03, U8 2 K- BRI,

where the last isomorphism is (4.21). By Proposition 4.3.5 and the formulas
in Theorem 4.1.5, we see that (Dy(1y7) + 1)v1 = v; = Ri(v;). Therefore we
obtain D1 (1;7;,) + 1 = R} as an operator on Vel

The case i, # ipyq is easier. In this case, the commutation relation
in Hp(p) and the formula (4. 23) for w(acl) show that the operator ¢ (1;7%)
already belongs to End, J(Ly)o0; (V®‘, ©s, V®‘) Therefore it extends to an ele-
ment in Homy,( Lg)®K1(VK s Pss V®‘). Then we proceed just as in the previous
paragraph to obtain the desned formula (4.24), taking Proposition 4.3.5, the
formulas in Theorem 4.1.5 and (4.21) into consideration. O

Corollary 4.3.7. Conjecture 4.2.3 is true. Namely, for any ¢;,75 € I, the
order of zero of the denominator dj, ;,(u) at the point v = czl2 / a;, is at most

one, where ¢(ai1> - (jlapl)u (b(@w) (]27]72) and iy = q - qu

Proof. Since we know (2.9), we may assume that i; # i5. We consider a
sequence i = (i1,i3) € I? with 8 = a;, + a;,. When 1; < 19, the for-
mula (4. 24) tells us that the operator (log(a; '21) — log(a;,'22)) Ri belongs to

Homy, (1, (V®‘ VEs1) where we put 2, = zy,, for k =1,2 as before. Notice
that

log(a;;'z1) — log(a;,'z) € (22/21 — ai, /ai,) - @ix.
Therefore we find that the order of zero of d;, ;,(u) at u = a;,/a;, is at most
one. For the other case i 4 iry1, by the formula (4.24), the operator R}
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already belongs to Hoqu(Lg)(‘A/@,V@i'sl). Therefore the order of zero of
dj, j,(u) at u = aj,/a;, is zero. ]

Remark 4.3.8. For eachi € [ B we define a topological k-algebra automor-
phism o; of O; by setting

oi(log(a; ' Xi)) == a; ' X), — 1

for all k. This induces a U,(Lg)-module automorphism o := ;. ;s (1®0;) on
the module V7. If we twist our right Hg(/3)-action by this automorphism
o (i.e. we replace the structure map ¢ with o)(—)o~!), we get a new right

H, o(B)-action This new action is same as Kang-Kashiwara-Kim’s action given
by the formulas (4.9), (4.10) and (4.11) in Section 4.2.

Theorem 4.3.9. The formulas (4.22), (4.23) and (4.24) (or the formulas
(4.9), (4.10) and (4.11)) define a structure of a (U,(Lg), Hg(S))-bimodule on
the left U,(Lg)-module V®?. The functor gives an equivalence of categories:

ﬁQﬁi .//Qﬁ — %Q”g.

Therefore, summing up over 8 € Q, we obtain the equivalence of monoidal
categories:
Lg‘\Qi %Q — ch_

Hence Conjecture 4.2.6 is true.

Proof. This follows from the discussions in this section, Theorem 3.3.6 and
Theorem 4.3.2. O

Remark 4.3.10. Let us consider the case when our quiver ) is of type
A, with a monotone orientation @ = (1 — 2 — --- — n). We shall
remark that our geometric realization in this case can be obtained from
Ginzburg-Reshetikhin-Vasserot’s geometric realization of the usual quantum
affine Schur-Weyl duality in Section 1.1.2. We freely use the notation in Sec-
tion 1.1.2. As we have seen in Example 3.2.4, we have A\g = dw, in this case.
The corresponding G(Ag)-equivariant morphism M (Ag) — My(Ag) between
the quiver varieties is nothing but the Gg-equivariant morphism 9ty — Nj.
Recall that we have N;FB = Fj3 in Example 3.2.4. Taking Tps-fixed parts,
we get the Gg-equivariant morphism 7g: 93 — Ejp for this case. On the
other hand, the Gg-equivariant morphism Fg — Ej is also obtained as the
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Ts-fixed part of the Springer resolution F; — N for GLy4(C). Completing
the Ginzburg-Reshetikhin-Vasserot’s diagram (1.1) with respect to the ideal
my, C R(Ag) = R(G4) ®4k, we obtain our diagram in Theorem 1.2.1 by the
localization theorem.
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Appendix A

Preliminaries

A.1 Equivariant K-theory

In this section, we collect some well-known facts around the equivariant K-
theory in order to fix the notation. For the materials in this section, we refer
to [11, Chapter 5], [14] and [41, Section 6].

A.1.1 Notation

Let G be a complex linear algebraic group. A G-variety X is a quasi-
projective complex algebraic variety equipped with an algebraic action of
the group GG. We set pt := Spec C with the trivial G-action. The equivariant
K-group K%(X) is defined to be the Grothendieck group of the abelian cat-
egory of G-equivariant coherent sheaves on X. For a G-equivariant coherent
sheaf F on X, we denote by [F] the corresponding element in K%(X). We
denote the structure sheaf of X by Ox. For a G-equivariant vector bundle
& on X, the map K9(X) 2 [F] — [€] - [F] := [€ ®o, F| € KE(X) is well-
defined. Thus the equivariant K-group K(X) becomes a module over the
representation ring R(G) = K% (pt) = K(Rep G) of the group G.

For a G-equivariant vector bundle £ on X, we also define A [£] :=
SUEWINE] € [Ox] + uKS(X)[u]. 0 = & — & = & — 0is an
exact sequence of G-equivariant vector bundles on X, we have A [£] =
A& - A E2). Therefore we set A\ ([&1] + [&2]) = A,E] - A& and
Nu(=[€]) = (AJIED ! € [Ox] + uK(X)[u].

We also use the equivariant topological K-homologies denoted by K ﬁop

(X)
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(i = 0,1). There is a canonical comparison map K%(X) — K& (X)

0,top
(see [11, Section 5.5.5]).
Let Y be a G-invariant closed subvariety of X and U = X \'Y be the

complement of Y. Then the inclusions ¥ = X < U induce the followings:

(1) an exact sequence:
KO(Y)—= K6(X) L= KG(U) —0, (A1)
(2) an exact hexagon:

(V) = K§, (X) —2= G, (U) (A.2)

0,top

l
(X) <= KG

1,top

KG

1,top

(U) <L KG

1,top

(Y).

A.1.2 Completion and equivariant Chern character
Let k be a field of characteristic zero. We put
KC(X) = KX)®zk, R(G):= R(G)®zk.

Let I C R(G)k be the augmentation ideal, i.e. the ideal generated by virtual
representations of dimension 0. We define the I-adic completions by

KX ) o= lm KX)o/ IFKO(X )y, R(G)e := lim R(G)/I*.

The completed K-group K%(X)y is a module over the algebra R(G)s.
Likewise, the G-equivariant Borel-Moore homology with k-coefficients

HY(X k) = P Hf (X, k),

kEZ

is a module over the G-equivariant cohomology ring H¢ (pt, k) of pt (with the
cup product). Let us define the completion of a Z-graded k-vector space V' =
Dz Vi by V" :=[],cz Vi- The completion HE(pt, k)" naturally becomes a
k-algebra and the completion HE (X, k)" becomes a module over H(pt, k).

96



Assume that our G-variety X is a G-stable closed subvariety of a non-
singular ambient G-variety M. Then we have the G-equivariant local Chern
character map

(ch)M : KG(X), — HE (X, k)"
relative to M. We simply write ch® instead of (ch®)Y if the pair (M, X)
is obvious from the context. When X = M = pt, the corresponding Chern
character map induces an isomorphism of k-algebras

R(G), = K%(pt)e = HE (pt, k)" = HE(pt, k)"

We identify HE(pt,k)" with ﬁ(G)k via this isomorphism. Then (ch®)} is
regarded as an R(G),-homomorphism.

For a G-equivariant vector bundle E on a non-singular M, let Td%(E) €
HE(M, k)™ be the G-equivariant Todd class. This is an invertible element
with respect to the cup product. For the tangent bundle T, of M, we put

TdS, .= Td%(Ty).

Theorem A.1.1 (Equivariant Riemann-Roch [14]). For i = 1,2, let X; be
a G-variety which is a G-stable closed subvariety of a non-singular ambient
G-variety M;. Assume that a G-equivariant morphism f: My — M, restricts
to a proper morphism f: X; — X5. Then we have

Fo (TS, - (hDYE(Q)) = TSy, - (hD)NE(£), ¢ € KX
The following proposition is standard.

Proposition A.1.2. Let M be a non-singular G-variety. Let Y C X C M
be G-stable closed subvarieties, and i: Y < X j: X \Y < X be inclusions.
Then we have the following commutative diagram:
RE(Y ) —2 > RE(X )y — = KG(X\ V),
t (ch®)M l (ch®)M t (ch® )g\\g

HE(Y, k)" —= HE (X, k) L~ HE(X \ Y k).

A.1.3 Convolution product

Next we consider the convolution products. Let M; be non-singular G-
varieties for ¢ = 1,2, 3. We denote by p;;: My x My x Mz — M; x M; the pro-
jection to the (i, j)-factors for (7, 5) = (1,2),(2,3),(1,3). Let Z15 C M; x M,
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and Zyz C My X M3 be G-stable closed subvarieties such that the morphism

P13t Po (Z12) Ny (Zos) = Zis i= pi3(p1s (Z12) N a3 (Za3))

is proper. Then we define the convolution product *: K¢ (Z12)®pq) K% (Za3) —
K% (Z3) relative to My, x My x Ms by

¢ # 1 = P1se(PiaC Oy wnrysnsy Pis)s ¢ € K€(Zh2),n € K(Zas).

This naturally induces the convolution product on the completed G-equivariant
K-groups K (Z12)k PR, K% (Zoz)x — KO (Z13)x.

Similarly, we have the convolution product on the G-equivariant Borel-
Moore homologies *: HY (Z12,k) @ gz (i) HE (Zo3, k) = HE (Z13,k) relative
to My x My x M3 and its completed version HE (715, k)/\@’ﬁ(c) HE (Zy3, k)N —
H*G(Zlg, k)"

Under the situation in the previous paragraphs, for each (7, j) = (1, 2), (2, 3), (1, 3),

k

we also define the G-equivariant Riemann-Roch homomorphism RR%: K NZij)k —
H*G(Zij,]k>/\ relative to Mz X Mj by

RRY(¢) := (pjTdF,) - (chD) 7" (0), ¢ € K(Zy)e,

where p;: M; x M; — M; is the projection. By a completely similar discussion
as in [11, 5.11.11], we can prove the following.

Proposition A.1.3. The G-equivariant Riemann-Roch homomorphisms are
compatible with the convolution product, i.e. we have

RRE(¢ ) = RRE(¢) * RRE(), ¢ € K% (Z12),n € K (Zo3).

A.2 Affine highest weight categories

In this section, we recall the definitions and some properties of (topolog-
ically complete) affine quasi-hereditary algebras and affine highest weight
categories.

Let A be a left Noetherian algebra over an algebraically closed field k and
J C A be the Jacobson radical of A. Throughout this section, we assume
that dim(A/J) < co and A is complete with respect to the J-adic topology,
ie. l'glA/J” = A. Let ¥ := A-modg be the k-linear abelian category of
all finitely generated left A-modules. Our assumption guarantees that any
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simple module of % is finite-dimensional and the number of isomorphism
classes of simple modules in ¥ is finite. We parametrize the set Irr € of simple
isomorphism classes in € by a finite set Il as Irr ¢ = {L(r) € € | = € 11}.
For each 7 € II, we fix a projective cover P(m) of the simple module L(r).

Definition A.2.1. A two-sided ideal I C A is called affine heredity if the
following three conditions are satisfied:

(1) We have Homy (1, A/I) = 0;
(2) As aleft A-module, we have I = P(m)®™ for some 7 € Il and m € Z;

(3) The endomorphism k-algebra End4(P(7)) is isomorphic to a ring of
formal power series k[z1, ..., 2,] for some n € Zs(, and P(x) is free of
finite rank over End4(P(r)).

Definition A.2.2. We say that the algebra A is affine quasi-hereditary if
there is a chain of ideals:

O:Ilg[lflg"'gllgjozA (AS)

such that, for each i € {1,2,...,1}, the ideal I;,_1/I; is an affine heredity
ideal of the algebra A/I;. We refer to such a chain (A.3) as an affine heredity
chain.

Let < be a partial order of II.

Definition A.2.3. The category 4 = A-modys, is called an affine high-
est weight category for the poset (II, <) if, for each m € II, there exists
an indecomposable module A(7) which is a nonzero quotient of P(7w) (i.e.
P(m) - A(m) — L(m)) satisfying the following three conditions:

(1) The endomorphism k-algebra B, := Endg(A(m)) is isomorphic to a
ring of formal power series k[z1,. .., 2, ] for some n, € Z>q, and A(w)
is free of finite rank over B;;

(2) Define A(7) := A(n)/rad B,, where rad B, denotes the maximal ideal
of Br. Then each composition factor of the kernel of the natural quo-
tient map A(m) — L(m) is isomorphic to L(c) for some o < T;

(3) The kernel of natural quotient map P(7) — A(m) is filtered by various
A(o)’s with o > 7.
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We refer to the module A(7) (resp. A(n)) as the standard module (resp. proper
standard module) corresponding to the parameter 7 € II.

Theorem A.2.4 (Cline-Parshall-Scott [12], Kleshchev [35]). The category
A-mody, is an affine highest weight category if and only if the algebra A is
an affine quasi-hereditary algebra.

Proof. See [35, Theorem 6.7]. O

Remark A.2.5. Let A be an affine quasi-hereditary algebra with lrr ¢ =
{L(m) € m € II}. Then standard modules of the affine highest weight category
¢ are obtained as indecomposable direct summands of subquotients 1; 1/1;
of an affine heredity chain (A.3). More precisely, an affine heredity chain
(A.3) gives a total order {my, s, ..., m} of the parameter set II by I;_1/I; =
A(m;)®™i. Using this notation, we define a partial order < on the set II by
the following condition:

(x) For o,7 € I, we have o < 7 if and only if for any affine heredity chain
we have o = 7;, 7 = m; for some %, j such that 1 <7< j <.

Then we can prove that the category % is an affine highest weight category
for this partial order < on II.

The following theorem is the Ext-version of BGG type reciprocity.

Theorem A.2.6 (Kleshchev [35]). Let € be an affine highest weight category
for a poset (I, <). Then, for each 7 € II, there is an indecomposable module
V(m) € € characterized by the following Ext-orthogonality:

k 1=0,0=m;

0 else.

Exty (A(0), V(r)) = {

Proof. See [35, Lemma 7.2 and 7.4]. O

We refer to the module V(7) as the proper costandard module correspond-
ing to the parameter m € II. The following criterion is proved by using a
theory of tilting modules in affine highest weight categories.

Theorem A.2.7 ([17] Theorem 3.9). For i = 1,2, let 4, = A;,-mody, be an
affine highest weight category for a poset (II;, <;). Assume that we have an
exact functor F': ¢ — %> and the following conditions are satisfied:
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(1) The algebra A; is a finitely generated module over its center (i = 1, 2);

(2) There exists a bijection f: II; =N I, preserving partial orders and we
have the following isomorphisms for each 7 € Il;:

1

F(A(m) = A(f(m),  F(V(m) = V(f(7)).

Then the functor F gives an equivalence of categories F': €, — %5.
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