AN ABSTRACT FOR "THE SEMI-ABSOLUTE ANABELIAN GEOMETRY OF GEOMETRICALLY PRO-P ARITHMETIC FUNDAMENTAL GROUPS OF ASSOCIATED LOW-DIMENSIONAL CONFIGURATION SPACES"

KAZUMI HIGASHIYAMA

Let $n \in \mathbb{Z}_{>1}$; (g, r) a pair of nonnegative integers such that 2g - 2 + r > 0; p a prime number; k a number field or a p-adic local field; X^{\log} a smooth log curve over k of type (g, r). In the present paper, we study the n-th log configuration space X_n^{\log} associated to $X^{\log} \to \operatorname{Spec}(k)$. Write U_S for the interior of a log scheme S^{\log} . The log scheme X_n^{\log} may be thought of as a compactification of the usual n-th configuration space U_{X_n} associated to the smooth curve U_X . It is known that the function field of U_X may be reconstructed group-theoretically

- from its profinite arithmetic fundamental group whenever U_X is of strictly Belyi type or,
- from its geometrically pro- Σ arithmetic fundamental group, where Σ is a set of prime numbers of cardinality ≥ 2 that contains p, equipped with the auxiliary data constituted by the collection of decomposition groups associated to the closed points of U_X , regardless of whether or not U_X is of strictly Belyi type.

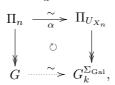
By contrast, in the present paper, we reconstruct the function field of U_X grouptheoretically from various geometrically pro-*p* arithmetic fundamental groups associated to U_{X_n} , equipped with the auxiliary data constituted by the collection of decomposition groups associated to the closed points of the underlying scheme X_n of X_n^{\log} .

Our main result is as follows:

Theorem 1. (Semi-absolute bi-anabelian formulation) Let $n \in \mathbb{Z}_{>1}$; (g, r) a pair of nonnegative integers such that 2g-2+r > 0; Σ_{Δ} , Σ_{Gal} sets of prime numbers such that $\Sigma_{\Delta} \subseteq \Sigma_{\text{Gal}}$, and Σ_{Δ} , Σ_{Gal} are of cardinality 1 or equal to the set of prime numbers. Let $\mathscr{B} = (\Pi_n, G, \mathcal{D}_n)$ be a PGCS-collection of type $(g, r, n, \Sigma_{\Delta}, \Sigma_{\text{Gal}})$. That is to say, Π_n is a profinite group; G is a quotient of Π_n ; \mathcal{D}_n is a set of subgroups of Π_n ; there exist a prime number $p \in \Sigma_{\Delta}$, a generalized sub-p-adic local field k, an algebraic closure \overline{k} of k, a smooth log curve X^{\log} over k of type (g, r), and an isomorphism

$$\alpha \colon \Pi_n \xrightarrow{\sim} \Pi_{U_{X_n}} \stackrel{\text{def}}{=} \begin{cases} \pi_1 (U_{X_n})^{\Sigma_\Delta} & (if \ \Sigma_\Delta = \Sigma_{\text{Gal}}) \\ \pi_1 (U_{X_n})^{[p]} & (if \ \Sigma_\Delta \subsetneq \Sigma_{\text{Gal}}) \end{cases}$$

- where $\pi_1(U_{X_n})^{\Sigma_{\Delta}}$ denotes the maximal pro- Σ_{Δ} quotient of $\pi_1(U_{X_n})$, and $\pi_1(U_{X_n})^{[p]}$ denotes the maximal geometrically pro-p quotient of $\pi_1(U_{X_n})$ — such that, if we write $G_k \stackrel{\text{def}}{=} \operatorname{Gal}(\bar{k}/k)$ and $K \subseteq \bar{k}$ for the maximal pro- $\Sigma_{\operatorname{Gal}}$ subextension of \bar{k}/k (so $G_k^{\Sigma_{\operatorname{Gal}}} = \operatorname{Gal}(K/k)$), then the natural outer action $G_k \stackrel{\text{out}}{\frown} \pi_1(U_{X_n} \times_k \bar{k})^{\Sigma_{\Delta}}$ factors through the natural surjection $G_k \twoheadrightarrow G_k^{\Sigma_{\text{Gal}}}$, and α induces a commutative diagram



where the lower horizontal arrow is an isomorphism, as well as a bijection

 $\mathcal{D}_n \xrightarrow{\sim} \{D \subseteq \Pi_{U_{X_n}} \mid D \text{ is a decomposition group associated to some } x \in X_n(K)\}.$ Suppose that X(k) is a nonempty set, and that (g, r, n) is tripodally ample, i.e., one of the following conditions (i), (ii), (iii) holds:

(i) $n \in \mathbb{Z}_{>3}$; (ii) $n \in \mathbb{Z}_{>2}, r \neq 0$; (iii) (g, r, n) = (0, 3, 2).

Write $\operatorname{Aut}(U_{X_n})$ for the set of automorphisms of the scheme U_{X_n} and $\operatorname{Aut}(\mathscr{B})$ for the set of automorphisms of the PGCS-collection \mathscr{B} , considered up to composition with an inner automorphism arising from $\operatorname{Ker}(\Pi_n \twoheadrightarrow G)$. Then any α as above induces a bijection

$$\operatorname{Aut}(U_{X_n}) \xrightarrow{\sim} \operatorname{Aut}(\mathscr{B}).$$