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1 The Casson-Walker invariant of 3-manifolds with genus one
open book decompositions via surgery presentations

1.1 Surgery presentations of 3-manifolds with genus one open book decompo-
sitions

Firstly, we recall the definition of a genus one and one boundary component open book decom-
position of a 3-manifold. (We will call it a genus one open book decomposition in short in the
following.) Let Σ1,1 be an oriented compact surface with genus one and one boundary compo-
nent and let φ be an orientation preserving homeomorphism of φ : Σ1,1 → Σ1,1 restricting to the
identity on the boundary ∂Σ1,1. For a pair (Σ1,1, φ), we define a 3-manifold Mφ as follows.

Mφ = ((Σ1,1 × [0, 1])/ ∼) ∪
ψ
(D2 × S1),

where “∼” is defined by (x, 1) ∼ (φ(x), 0), and ψ is the following homeomorphism

ψ : ∂(D2 × S1) −→ ∂ ((Σ1,1 × [0, 1])/ ∼) = S1 × S1,

which maps a meridian ∂(D2 × S1) to {a point} × [0, 1] on the boundary ∂ ((Σ1,1 × [0, 1])/ ∼).
When a 3-manifold M is homeomorphic to Mφ, we call (Σ1,1, φ) a genus one open book decom-
position of M .

When a 3-manifold M is obtained from S3 by surgery along a framed link L, we call L a
surgery presentation of M .

In the following, we express a framed link by a standard blackboard framing convention. For
integers n1, · · · , nN ,m, let Ln1,··· ,nN ,m be the framed link in the following figure, where n1, · · · , nN
represents the framing of each component, N represents the number of the components of the link,
where N ≥ 1, and m represents the number of half twists. (If m > 0 or m < 0, |m| represents
the number of the positive or negative half twists, respectively.) Besides, we fix the shape of
clasps between components as in the following left picture and we set a positive half twist as in
the following right picture. Let Mn1,··· ,nN ;m be the 3-manifold obtained from S3 by surgery along
Ln1,··· ,nN ;m.
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Next, we recall that the Kirby moves for framed links in a cube with 2-handles are given as in
the following pictures.

the KI move : ←→ ∅ ←→

the KII move : ←→

the KIII move : ←→ ∅

For a compact connected orientable 3-manifold M and a framed link L in M , we denote by ML

the 3-manifold obtained from M by surgery along L. Let L and L′ be framed links in M . It is
known [10] that ML and ML′ are homeomorphic, if and only if L and L′ are related by a sequence
of isotopies and the moves KI, KII and KIII.

Lemma 1.1.
(1) Mn1,··· ,nN ;m has a genus one open book decomposition.
(2) Any 3-manifold with a genus one open book decomposition is homeomorphic to Mn1,··· ,nN ;m

for some n1, · · · , nN ,m.

1.2 The Casson-Walker invariant of 3-manifolds with genus one open book
decompositions

We show the values of the Casson-Walker invariant of a rational homology sphere which admits a
genus one open book decomposition through its surgery presentation.

Theorem 1.2. LetMn1,··· ,nN ;m be the 3-manifold obtained from S3 by surgery along the framed
link Ln1,··· ,nN ;m, which has a genus one open book decomposition. We assume that Mn1,··· ,nN ;m

is a rational homology sphere. Then, the value of the Casson-Walker invariant of Mn1,··· ,nN ;m is
the following.

λW (Mn1,··· ,nN ;m) =−
1

24

(∑
i

ni − 3σ

)
+

(−1)m+σ+

24|H1|

(
2
∑
i

ni + 6N + 12m

)
,

where σ, σ+ represents the signature, the number of the positive eigenvalues of the linking matrix
of Ln1,··· ,nN ;m, respectively. |H1| represents the order of H1(Mn1,··· ,nN ;m;Z).
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Here, we set the linking matrices of circular chain links and straight chain links as follows.

An1,··· ,nN ;m =




n1 1 (−1)m

1 n2 1
1 n3 1

. . .
. . .

. . .
1 nN−1 1

(−1)m 1 nN

 N > 2,

(
n1 1+(−1)m

1+(−1)m n2

)
N = 2,

( n1+(−1)m2 ) N = 1,

A(n1, · · · , nN ) =




n1 1
1 n2 1

1 n3 1

. . .
. . .

. . .
1 nN−1 1

1 nN

 N > 2,

(
n1 1
1 n2

)
N = 2,

( n1 ) N = 1.

Then, for Mn1,··· ,nN ;m, we have that

|H1| = (−1)σ− detAn1,··· ,nN ;m,

where σ− denotes the number of negative eigenvalues of An1,··· ,nN ;m.
We give a proof of the theorem in Section 1.4.

1.3 The relation between the Casson-Walker invariant and the LMO invariant

In this section, as a preparation of a proof of Theorem 1.2 in Section 1.4, we review the LMO in-
variant, its relation to the Casson-Walker invariant, and some useful formulae for the computation
of the LMO invariant.

1.3.1 The degree 1 part of the LMO invariant and the Casson-Walker invariant

Firstly, we review the Kontsevich invariant. We use [8] as a basic reference for the theory of the
LMO invariant, and will use the same notation as [8] in the following. A Jacobi diagram on ⊔ℓS1

is a 1-manifold ⊔ℓS1 with a graph which has univalent vertices and trivalent vertices. A univalent
vertex is necessarily located on ⊔ℓS1 and a trivalent vertex is oriented, that is, the set of the three
adjacent edges is given a cyclic ordering. (We express graphs as thin lines and 1-manifolds as
thick lines in the following.) The degree of a Jacobi diagram is half the number of both univalent
and trivalent vertices. The picture in the following represents an example of a Jacobi diagram
S1 ⊔ S1 of degree 7.

The space of Jacobi diagrams on ⊔ℓS1 is defined as follows.

A(⊔ℓS1) = spanC {Jacobi diagrams on ⊔ℓ S1}/AS, IHX, STU,
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where AS, IHX, STU relations are the following.

AS : = − ，IHX : = − ，STU : = −

Any oriented q-tangle is a tangle whose endpoints are parenthesised, generated by the follow-
ing fundamental q-tangles by conducting several operations of composition ◦, tensor product ⊗,
duplication ∆ and antipode S.

， ， ， ， ， ， ，

T1 ◦ T2 =
T1

T2

， T1 ⊗ T2 = T1 T2 ， ∆( ) = ， S( ) =

The Kontsevich invariant is an invariant of framed links that takes value in A(⊔ℓS1), where l is
the number of components. The Kontsevich invariant can be extended to an invariant of q-tangles
that takes value in certain spaces of Jacobi diagrams. (See [8] for details.) We list the Kontsevich
invariant of the fundamental q-tangles below.

Z( ) = +
1

24
+ · · ·， Z( ) = − 1

24
+ · · ·，

Z( ) = ν
1
2 = − 1

48
+ · · ·，where ν = − 1

24 + · · · ,

Z( ) = ν
1
2， Z( ) = ， Z( ) = exp

2
= +

1

2
+

1

8
+

1

48
+

· · ·，Z( ) = exp−
2
，Z( ) = #exp

2
，Z( ) = #exp−

2
,

where # represents connected sum of 1-manifolds.
Besides, for composition ◦, tensor product ⊗, duplication ∆ and antipode S, we define their values
as follows.

Z(T1 ◦ T2) = Z(T1) ◦ Z(T2)， Z(T1 ⊗ T2) = Z(T1)⊗ Z(T2)，

Z(∆( )) = ∆Z( ) = ∆( ·
·
· ) =

2k∑

·
·
· ， Z(S( )) = SZ( ) = S( ·
·
· ) = (−1)k ·
·
· ,

where represents a certain component of tangle, and k represents the number of the univalent

vertices on the component. (As for the well-definedness of this definition, see for example [4].)
Next, we review the definition of the LMO invariant up to degree 1. (As for the LMO invariant

with general degree, see for example [5].) We set

Ž(L) = Z(L)#ν⊗ℓ.

Here, # denotes the connected sum of Jacobi diagrams, and Z(L)#ν⊗ℓ means that we take a
connected sum with ν along each component of Z(L).
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The LMO invariant up to degree 1 is defined as follows. (∅ represents an empty diagram.)

ZLMO
1 (M) =

ι(Ž(L))

ι(Z( ))σ+ι(Z( ))σ−
∈ spanC{∅, }

where ι is the map

ι : A(⊔ℓS1) −→ spanC{∅, }

defined as follows. For D ∈ A(⊔ℓS1), we remove each S1 by the following correspondences.

7−→ 0

7−→

7−→ 1

2

7−→ 1

6
+

1

6

S1 with more than 5 univalent vertices 7−→ 0.

Besides, in the definition of ι, if there appears a circle with a thin line after replacing S1,

then we remove such a circle by formally putting = −2. Besides, we also remove a graph

with more than 3 trivalent vertices by formally letting the graph be 0. We put the resulting

diagram to be ι(D). In the following, we set θ = . The values of the ±1-framed trivial knots

are the following.

ι(Z( )) =

(
−1 + 1

16
θ

)
, ι(Z( )) =

(
1 +

1

16
θ

)
. (1.1)

Next, we mention the relation between the Casson-Walker invariant and the coefficient of the
degree 1 part of the LMO invariant. Let M be a rational homology sphere. When the LMO
invariant up to degree 1 is described as

ZLMO
1 (M) = c0(M) + c1(M)θ,

the relations to the order of the first homology and the Casson-Walker invariant are

|H1| = c0(M), λW (M) =
2c1(M)

|H1|
, (1.2)

if the first Betti number of M is equal to 0. (See [6].) For the coefficients b0(L), b1(L) of the
degree 0 part and the degree 1 part of ιŽ(L) of the surgery link L,

c0(M) = (−1)σ+b0(L),

c1(M) = (−1)σ+
( σ
16
b0(L) + b1(L)

)
.
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1.3.2 A formula for the Kontsevich invariant of a clasp

Here, we show a formula for the calculation of the LMO invariant up to degree 1. It is known [9]
that the value of the Kontsevich invariant of the clasp is the following.

ξ :=Z

 
= + +

1

2
+

1

6
− 1

24
+

1

96
+

1

96

+ (the terms with at least 3 trivalent vertices).

(1.3)

1.4 Proof of Theorem 1.2

Let n1, · · · , nN ,m be integers. For the calculation of the Kontsevich invariant of the circular chain
link Ln1,··· ,nN ;m, we define the straight chain link L(n1, · · · , nN ) in the following picture, where
n1, · · · , nN represents the framing of each component.

· · ·

n1 n2 n3 nN−1 nN

For N ≥ 3, the coefficients of the degree 0 and 1 parts of ιŽ(L(n1, · · · , nN )), b0 (L(n1, · · · , nN ))
and
b1 (L(n1, · · · , nN )), are as follows. (We calculate them in Appendix A.)

b0 (L(n1, · · · , nN )) = (−1)N detA(n1, · · · , nN ), (1.4)

b1(L(n1, · · · , nN )) =
(−1)N−1

48

(
detA(n1, · · · , nN )

N∑
i=1

ni

+ detA(n1, · · · , nN−1) + detA(n2, · · · , nN )

)
. (1.5)

From here, we will calculate the degree 1 part of the LMO invariant of 3-manifolds with genus
one open book decompositions. Recall that, in Example 2.5, we have confirmed the validity of
the formula of Theorem 1.2 for the case where N = 1. Although we can also compute the LMO
invariant in the proof of the theorem for the case where N = 1 by similar methods, to make
computations simpler in the following, we assume that N ≥ 2.

1.4.1 The degree 1 part of the LMO invariant of Mn1,··· ,nN ;m

Firstly, we compute the coefficient of the degree 1 part of ιŽ(Ln1,··· ,nN ;m) in the following propo-
sition.
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Proposition 1.3. The coefficient b1(Ln1,··· ,nN ;m) of the degree 1 part of ιŽ(Ln1,··· ,nN ;m) is given
by

b1(Ln1,··· ,nN ;m) =− (−1)N 1

48

(
detAn1,··· ,nN ;m

N∑
i=1

ni

)

+ (−1)m 1

48

(
2

N∑
i=1

ni + 6N + 12m

)
.

Proof of Theorem 1.2. By Proposition 1.3, the degree 1 coefficient of the LMO invariant ofMn1,··· ,nN ;m

is the following.

c1 (Mn1,··· ,nN ;m) =−
1

48
(−1)N+σ+ detAn1,··· ,nN ;m(trAN − 3σ)

+
1

48
(−1)m+σ+ (2trAn1,··· ,nN ;m + 6N + 12m) .

Considering the relation between λW (Mn1,··· ,nN ;m) and c1 (Mn1,··· ,nN ;m), we obtain the theorem.
2

2 The Casson-Walker invariant of 3-manifolds with genus one
open book decompositions via a representation of the mapping
class group

In this section, we present the Casson-Walker invariant in terms of a representation of a central
extension of M1,1 on the space of Jacobi diagrams. We give a central extension of M1,1 as the
group of equivalence classes of certain 2-tangles modulo a modification of the Kirby moves.

2.1 A central extension of the mapping class group M1,1

Let M1,1 be the mapping class group of Σ1,1, a compact surface with genus one and one boundary
component. It is known that every central extension of M1,1 is trivial (see for example [3]), but, in
order to avoid the complication of the calculation of the invariant, we consider a central extension

M̃1,1 by signature, and construct the representation of M̃1,1 on the 2-tangle Jacobi diagram space

Â( ).

As for the Kirby moves for framed links in a compact 3-manifold (possibly with boundary), in
order to make the representation well-defined with regard to the signature, we introduce the KI′

move, as follows.

the KI′ move : ←→ ∅

We regard a 2-tangle L as in a cube. We associate this 2-tangle with the 3-cobordism

obtained from the cube by removing tubular neighbourhood of the top and bottom components
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of the 2-tangle and by surgery along the closed components L. We define an admissible 2-tangle

to be a 2-tangle L such that the associated 3-cobordism is homeomorphic to a mapping

cylinder. We denote by T2 the set of admissible 2-tangles.
We regard the Kirby moves in T2 as in the following way. For L, we use the KI, KII, KIII

moves of a link in (cube−N(C1 ∪ C2)). For C1 or C2, we use the KII move of a tangle, that is,
the handle slide of C1 or C2 along a component of L.

Lemma 2.1 (a particular case of a theorem in [7]). T2/KI, KII, KIII forms a group, and is
isomorphic to M1,1.

We put M̃1,1 = T2/KI′, KII , KIII. We give the product of M̃1,1 by the composition of 2-tangles.
This product is naturally associative.

We can show that the unit element in M̃1,1 is given by in the following formula.

◦ =
KII
=

KIII
= for ∈ M̃1,1.

Since T2/KI, KII, KIII is a group by Lemma 2.1, for any admissible 2-tangle T , there is a 2-tangle

T ′ such that T ◦ T ′ = in T2/KI, KII, KIII. When we use the KI move in the deformation

from T ◦ T ′ to , we exchange the KI move for the KI′ move by adding or .

Thus, we get the inverse of T in M̃1,1 as the union of T ′ and some copies of or .

Therefore, any element in M̃1,1 has its inverse in M̃1,1. Hence, M̃1,1 forms a group. Moreover,
since T2/KI, KII , KIII = M1,1 is generated by admissible 2-tangles α, β below, this shows that

M̃1,1 is generated by α, β and µ = .

Lemma 2.2. M̃1,1 is a central extension of M1,1.

We define a map

σ : M̃1,1 −→ Z (2.1)

by putting σ(T ) to be the signature of the linking matrix of the closure of T ∈ M̃1,1. Here,
the closure of T means the link obtained by connecting the upper ends and lower ends of T
respectively. Then, σ(T ) is invariant under the KI′, KII, KIII moves. As for our central extension

0 −→ Z f1−→ M̃1,1
f2−→M1,1 −→ 1,

σ ◦ f1 is the identity on Z.
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2.2 The Casson-Walker invariant of 3-manifolds with genus one open book
decompositions

We choose generators of M̃1,1 as follows.

α =

+1

, β = +1 , µ = . (2.2)

Using the LMO invariant, we will define liner representations ρ̂1, ρ̂2 : M̃1,1 −→ GL(4,C). As we
will see in (2.5), (2.6) and (2.7), we have that

ρ̂1 (α) =

( 1 0 0 0
1
2

1 0 0
0 0 1 0

− 1
96

− 1
24

1
2
1

)
, ρ̂1 (β) =

( 1 −2 0 0
0 1 0 0

− 1
48

1
24

1 −2

0 − 1
48

0 1

)
, ρ̂1 (µ) = −

√
−1

( 1 0 0 0
0 1 0 0

− 1
16

0 1 0

0 − 1
16

0 1

)
,

ρ̂2 (α) =
(

1 0
− 1

24
1

)
, ρ̂2 (β) =

(
1 0

− 1
24

1

)
, ρ̂2 (µ) = −

√
−1
(

1 0
− 1

16
1

)
.

It is convenient to use an element h = (αβ)3µ−2 represented by the 2-tangle . The

tangle h represents a lift of the right-handed Dehn twist along ∂Σ1,1. The image of h under ρ1
and ρ2 are given by

ρ̂1 (h) =

(
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

)
, ρ̂2 (h) =

(
−1 0
1
8

−1

)
.

By taking the trace of this representation of the monodromy, we can calculate the Casson-Walker
invariant of a 3-manifold admitting genus one and one boundary open book decompositions.

Theorem 2.3. Suppose thatMφ is a rational homology sphere. Taking an element φ̃ of the central
extension corresponding to the monodromy φ, we can calculate the Casson-Walker invariant of
Mφ as follows,

λ(Mφ) =
2(
√
−1)σ(φ̃)

|H1|
(tr(Q1ρ̂1(φ̃))− 2tr(Q2ρ̂2(φ̃))) +

1

8
σ(φ̃), (2.3)

where σ is defined in (2.1), and Q1, Q2 are the following matrices,

Q1 =

(
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

)
, Q2 = ( 0 1

0 0 ) .

We give a proof of the theorem in Section 2.4.
Then, we show some examples of the concrete calculation. We will continue to assume that

Mφ is a rational homology sphere.

2.3 Preparations for Proof of Theorem 2.3

2.3.1 The space of the Jacobi diagrams on two intervals

In order to construct a representation of the mapping class group of the surface Σ1,1, we recall
that the LMO invariant up to degree 1 of mapping cylinders can be defined by using the following
map,

ιŽ :{surgery links with }/K-moves, isotopy −→ Â( ).
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Here, we define the space Â( ) by

Â( ) = {Jacobi diagrams on 2-tangles up to AS, IHX, STU}/P2, O1, I>2,

where P2, O1 and I>2 are the equivalence relations generated by the following relations.

P2 : + + ∼ 0

O1 : ∼ −2
I>2 : the Jacobi diagram with more than 2 trivalent vertices ∼ 0

In the rest of Section 2.3, we give a basis of Â( ) in Lemmas 2.6 and 2.7. In order to prove

these lemmas, we show the following two lemmas.

Lemma 2.4. ([8]) In the space Â( ), the following relations hold.

(1) = −2 .

(2) = −1

2
+

1

2
.

Lemma 2.5. In the space Â( ), the following relation holds. = − 1

12
.

Lemma 2.6. Â( ) is spanned by the following 10 diagrams.

µ00 = , µ1 = , µ10 = , µ01 = , µ11 = ,

θµ00 = ⊔ , θµ1 = ⊔ , θµ10 = ⊔ , θµ01 = ⊔ ,

θµ11 = ⊔

Lemma 2.7. The 10 diagrams of Lemma 2.6 give a basis of Â( ).
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2.3.2 The invariance under the Kirby moves

In this subsection, we construct the representation of the central extension of M1,1 on the space
of Jacobi diagrams on two intervals. (A similar representation and the relation with the Casson
invariant appeared in [2].)

Let T̃ be the set of the 2-tangles and we regard it as a monoid with the product as a

composition. Instead of Z, we use a map Ž : T̃ −→ Â((⊔ℓS1) ⊔ ) such that Ẑ(T ) of a

2-tangle T is obtained from Z(T ) by connect-summing ν into each of the closed components

⊔ℓS1 and connect-summing ν
1
2 into each of the open components . When we consider

ι : Â(⊔ℓS1) → Â(∅), we define ι̂ : Â(⊔ℓS1) → Â(∅) by ι̂ =
√
−1ℓι. Similarly, when we con-

sider ι : Â(⊔ℓS1 ⊔ )→ Â( ), we define ι̂ : Â(⊔ℓS1 ⊔ )→ Â( ) by ι̂ =
√
−1ℓι. As

for the map ι̂Ž from T̃ to Â( ), we have the following proposition.

Proposition 2.8. A monoid homomorphism

ι̂Ž : T̃ Ž−→ Â((⊔ℓS1) ⊔ )
ι̂−→ Â( )

is invariant under the KI′, KII, KIII moves.

2.3.3 A representation of the central extension of the mapping class group on the
space of the Jacobi diagrams on two intervals

We set the composition

◦ : Â((⊔ℓS1) ⊔ )⊗ Â((⊔ℓS1) ⊔ ) −→ Â(S1 ⊔ (⊔ℓS1) ⊔ )

on the space Â( ) as follows. For diagrams η = D , η′ = D
′ in Â((⊔ℓS1)⊔ ), we

define the composition η ◦ η′ to be the diagram obtained from the union of these two diagrams by
attaching the endpoints of the lower interval of η to the endpoints of the upper interval of η′ as
the orientations of intervals agree with each other, as in the following diagram.

η ◦ η′ =
D

′

D

∈ Â(S1 ⊔ (⊔ℓS1) ⊔ ).

We define ρ to be the following map.

ρ : M̃1,1 = T2/KI′, KII , KIII −→ End(Â( ))

T 7−→
(
η 7−→ ι̂(Ž(T ) ◦ η)

)
,

where Ž(T ) ◦ η represents the composition of Jacobi diagrams on two intervals
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Proposition 2.9.

ρ : M̃1,1 = T2/KI′, KII , KIII −→ End(Â( ))

is a representation of M̃1,1.

Then, we have the following proposition.

Proposition 2.10. Let φ ∈ M1,1, and let Mφ be the 3-manifold with a genus one open book
decomposition whose monodromy is φ. Suppose that Mφ is a rational homology sphere. Let

T ∈ M̃1,1 be a lift of φ. Then, the Casson-Walker invariant of Mφ is presented by

λ(Mφ) =
2(
√
−1)σ(T )

|H1|
tr(ψ ◦ ρ(T )) + 1

8
σ(T ), (2.4)

where |H1| denotes the order of H1(Mφ;Z), and we define

ψ : Â( ) −→ Â( )

to be the linear map whose values for the basis vectors of Â( ) are given by

ψ(µ00) = 0, ψ(µ1) = 0, ψ(µ10) = 0, ψ(µ01) = 0, ψ(µ11) = 0,

ψ(θµ00) = 0, ψ(θµ1) = −2µ1, ψ(θµ10) = µ10, ψ(θµ01) = µ01, ψ(θµ11) = 0.

2.4 Proof of Theorem 2.3

2.4.1 A matrix representation of the mapping class group

In this section, we calculate a matrix presentation of the representation of ρ : M̃1,1 −→ End(Â( ))

and the values of the invariant concretely for the basis of Â1 which we have taken in Lemma 2.6.

Proposition 2.11. We put

Â( ) = Â1 ⊕ Â′
1 ⊕ Â2

= spanC{µ00, µ10, θµ00, θµ10} ⊕ spanC{µ01, µ11, θµ01, θµ11} ⊕ spanC{µ1, θµ1}.

Then, the representation ρ is decomposed into ρ1 ⊕ ρ′1 ⊕ ρ2, where ρi represents the restriction
ρ|Âi

.

Next, we show matrix presentations of certain elements

+1

, +1 and

of M̃1,1 through the map ι̂Ž. We regard Â( ) as a vector space C10 with regard to the

12



10 elements of a basis. We denote by ρ̂ the representation ρ̂ : M̃1,1 −→ End(C10) such that

ρ̂(T ) is a 10 times 10 matrix for T ∈ M̃1,1. From Proposition 2.11, we decompose ρ̂(T ) as
ρ̂(T ) = ρ̂1(T )⊕ ρ̂′1(T )⊕ ρ̂2(T ).
We have the matrix presentations of the generators as

ρ̂


+1

 =

( 1 0 0 0
1
2

1 0 0
0 0 1 0

− 1
96

− 1
24

1
2
1

)
⊕

( 1 0 0 0
1
2

1 0 0
0 0 1 0

− 1
96

− 1
24

1
2
1

)
⊕
(

1 0
− 1

24
1

)
, (2.5)

ρ̂

 +1

 =

( 1 −2 0 0
0 1 0 0

− 1
48

1
24

1 −2

0 − 1
48

0 1

)
⊕

( 1 −2 0 0
0 1 0 0

− 1
48

1
24

1 −2

0 − 1
48

0 1

)
⊕
(

1 0
− 1

24
1

)
. (2.6)

Finally, µ is represented by another form as
+1

+1

+1

from the following transformation.

isotopy⇝ KII⇝ isotopy⇝

Then, by direct computation, we have that

ρ̂

 +1

+1

+1
 =

(
−
√
−1
)( 1 0 0 0

0 1 0 0
− 1

16
0 1 0

0 − 1
16

0 1

)
⊕
(
−
√
−1
)( 1 0 0 0

0 1 0 0
− 1

16
0 1 0

0 − 1
16

0 1

)
⊕
(
−
√
−1
) ( 1 0

− 1
16

1

)
.

(2.7)

Proof of Thorem 2.3. We set

Q
(1)
1 =

(
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

)
, Q

(2)
1 =

(
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

)
.

From the proof of Proposition 2.10,

tr(ψ ◦ ρ(T )) = tr(Qρ̂(T ))

= tr(Q
(1)
1 ρ̂1(φ̃)) + tr(Q

(2)
1 ρ̂1

′(φ̃))− 2tr(Q2ρ̂2(φ̃))

= tr(Q1ρ̂1(φ̃))− 2tr(Q2ρ̂2(φ̃)).

From (2.4), we have got (2.3). 2
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