On the Casson-Walker invariant of 3-manifolds with genus one open book decompositions (summary)
 Atsushi MOCHIZUKI

1 The Casson-Walker invariant of 3-manifolds with genus one open book decompositions via surgery presentations

1.1 Surgery presentations of 3-manifolds with genus one open book decompositions

Firstly, we recall the definition of a genus one and one boundary component open book decomposition of a 3 -manifold. (We will call it a genus one open book decomposition in short in the following.) Let $\Sigma_{1,1}$ be an oriented compact surface with genus one and one boundary component and let φ be an orientation preserving homeomorphism of $\varphi: \Sigma_{1,1} \rightarrow \Sigma_{1,1}$ restricting to the identity on the boundary $\partial \Sigma_{1,1}$. For a pair $\left(\Sigma_{1,1}, \varphi\right)$, we define a 3 -manifold M_{φ} as follows.

$$
M_{\varphi}=\left(\left(\Sigma_{1,1} \times[0,1]\right) / \sim\right) \underset{\psi}{\cup}\left(D^{2} \times S^{1}\right),
$$

where " \sim " is defined by $(x, 1) \sim(\varphi(x), 0)$, and ψ is the following homeomorphism

$$
\psi: \partial\left(D^{2} \times S^{1}\right) \longrightarrow \partial\left(\left(\Sigma_{1,1} \times[0,1]\right) / \sim\right)=S^{1} \times S^{1}
$$

which maps a meridian $\partial\left(D^{2} \times S^{1}\right)$ to $\{$ a point $\} \times[0,1]$ on the boundary $\partial\left(\left(\Sigma_{1,1} \times[0,1]\right) / \sim\right)$. When a 3 -manifold M is homeomorphic to M_{φ}, we call ($\Sigma_{1,1}, \varphi$) a genus one open book decomposition of M.

When a 3-manifold M is obtained from S^{3} by surgery along a framed link L, we call L a surgery presentation of M.

In the following, we express a framed link by a standard blackboard framing convention. For integers n_{1}, \cdots, n_{N}, m, let $L_{n_{1}, \cdots, n_{N}, m}$ be the framed link in the following figure, where n_{1}, \cdots, n_{N} represents the framing of each component, N represents the number of the components of the link, where $N \geq 1$, and m represents the number of half twists. (If $m>0$ or $m<0,|m|$ represents the number of the positive or negative half twists, respectively.) Besides, we fix the shape of clasps between components as in the following left picture and we set a positive half twist as in the following right picture. Let $M_{n_{1}, \cdots, n_{N} ; m}$ be the 3-manifold obtained from S^{3} by surgery along $L_{n_{1}, \cdots, n_{N} ; m}$.

$$
\square_{n}^{n}= \begin{cases}\overbrace{\Omega \Omega}^{\overbrace{\Omega}} & (n \geq 0) \\ \overbrace{\Omega \Omega}^{-n} \cdots \Omega & (n<0)\end{cases}
$$

Next, we recall that the Kirby moves for framed links in a cube with 2-handles are given as in the following pictures.
the KI move :

 \longrightarrow

the KII move :

the KIII move :

For a compact connected orientable 3-manifold M and a framed $\operatorname{link} L$ in M, we denote by M_{L} the 3 -manifold obtained from M by surgery along L. Let L and L^{\prime} be framed links in M. It is known [10] that M_{L} and $M_{L^{\prime}}$ are homeomorphic, if and only if L and L^{\prime} are related by a sequence of isotopies and the moves KI, KII and KIII.

Lemma 1.1.

(1) $M_{n_{1}, \cdots, n_{N} ; m}$ has a genus one open book decomposition.
(2) Any 3-manifold with a genus one open book decomposition is homeomorphic to $M_{n_{1}, \cdots, n_{N} ; m}$ for some n_{1}, \cdots, n_{N}, m.

1.2 The Casson-Walker invariant of 3-manifolds with genus one open book decompositions

We show the values of the Casson-Walker invariant of a rational homology sphere which admits a genus one open book decomposition through its surgery presentation.

Theorem 1.2. Let $M_{n_{1}, \cdots, n_{N} ; m}$ be the 3-manifold obtained from S^{3} by surgery along the framed link $L_{n_{1}, \cdots, n_{N} ; m}$, which has a genus one open book decomposition. We assume that $M_{n_{1}, \cdots, n_{N} ; m}$ is a rational homology sphere. Then, the value of the Casson-Walker invariant of $M_{n_{1}, \cdots, n_{N} ; m}$ is the following.

$$
\lambda_{W}\left(M_{n_{1}, \cdots, n_{N} ; m}\right)=-\frac{1}{24}\left(\sum_{i} n_{i}-3 \sigma\right)+\frac{(-1)^{m+\sigma_{+}}}{24\left|H_{1}\right|}\left(2 \sum_{i} n_{i}+6 N+12 m\right)
$$

where σ, σ_{+}represents the signature, the number of the positive eigenvalues of the linking matrix of $L_{n_{1}, \cdots, n_{N} ; m}$, respectively. $\left|H_{1}\right|$ represents the order of $H_{1}\left(M_{n_{1}, \cdots, n_{N} ; m} ; \mathbb{Z}\right)$.

Here, we set the linking matrices of circular chain links and straight chain links as follows.

Then, for $M_{n_{1}, \cdots, n_{N} ; m}$, we have that

$$
\left|H_{1}\right|=(-1)^{\sigma_{-}} \operatorname{det} A_{n_{1}, \cdots, n_{N} ; m},
$$

where σ_{-}denotes the number of negative eigenvalues of $A_{n_{1}, \cdots, n_{N} ; m}$.
We give a proof of the theorem in Section 1.4.

1.3 The relation between the Casson-Walker invariant and the LMO invariant

In this section, as a preparation of a proof of Theorem 1.2 in Section 1.4, we review the LMO invariant, its relation to the Casson-Walker invariant, and some useful formulae for the computation of the LMO invariant.

1.3.1 The degree 1 part of the LMO invariant and the Casson-Walker invariant

Firstly, we review the Kontsevich invariant. We use [8] as a basic reference for the theory of the LMO invariant, and will use the same notation as [8] in the following. A Jacobi diagram on $\sqcup^{\ell} S^{1}$ is a 1-manifold $\sqcup^{\ell} S^{1}$ with a graph which has univalent vertices and trivalent vertices. A univalent vertex is necessarily located on $\sqcup^{\ell} S^{1}$ and a trivalent vertex is oriented, that is, the set of the three adjacent edges is given a cyclic ordering. (We express graphs as thin lines and 1-manifolds as thick lines in the following.) The degree of a Jacobi diagram is half the number of both univalent and trivalent vertices. The picture in the following represents an example of a Jacobi diagram $S^{1} \sqcup S^{1}$ of degree 7 .

The space of Jacobi diagrams on $\sqcup^{\ell} S^{1}$ is defined as follows.

$$
\mathcal{A}\left(\sqcup^{\ell} S^{1}\right)=\operatorname{span}_{\mathbb{C}}\left\{\text { Jacobi diagrams on } \sqcup^{\ell} S^{1}\right\} / \text { AS, IHX, STU, }
$$

where AS, IHX, STU relations are the following.
AS :

STU

\qquad
Any oriented q-tangle is a tangle whose endpoints are parenthesised, generated by the following fundamental q -tangles by conducting several operations of composition \circ, tensor product \otimes, duplication Δ and antipode S.

The Kontsevich invariant is an invariant of framed links that takes value in $\mathcal{A}\left(\sqcup^{\ell} S^{1}\right)$, where l is the number of components. The Kontsevich invariant can be extended to an invariant of q-tangles that takes value in certain spaces of Jacobi diagrams. (See [8] for details.) We list the Kontsevich invariant of the fundamental q-tangles below.
where \# represents connected sum of 1-manifolds.
Besides, for composition \circ, tensor product \otimes, duplication Δ and antipode S, we define their values as follows.

$$
\begin{aligned}
& Z\left(T_{1} \circ T_{2}\right)=Z\left(T_{1}\right) \circ Z\left(T_{2}\right), \quad Z\left(T_{1} \otimes T_{2}\right)=Z\left(T_{1}\right) \otimes Z\left(T_{2}\right), \\
& Z(\Delta(\nmid))=\Delta Z(\nmid)=\Delta(\sqrt{2})=\sum^{2^{k}} \mid, \quad Z(S(\nmid))=S Z(\nmid)=S(F)=(-1)^{k},
\end{aligned}
$$

where \dagger represents a certain component of tangle, and k represents the number of the univalent vertices on the component. (As for the well-definedness of this definition, see for example [4].)

Next, we review the definition of the LMO invariant up to degree 1. (As for the LMO invariant with general degree, see for example [5].) We set

$$
\check{Z}(L)=Z(L) \# \nu^{\otimes \ell} .
$$

Here, \# denotes the connected sum of Jacobi diagrams, and $Z(L) \# \nu^{\otimes \ell}$ means that we take a connected sum with ν along each component of $Z(L)$.

The LMO invariant up to degree 1 is defined as follows. (\emptyset represents an empty diagram.)

$$
Z_{1}^{\mathrm{LMO}}(M)=\frac{\iota(\check{Z}(L))}{\iota(Z(\bigcirc))^{\sigma_{+} \iota}(Z(\bigcirc))^{\sigma_{-}}} \in \operatorname{span}_{\mathbb{C}}\{\emptyset, \circlearrowleft\}
$$

where ι is the map

$$
\iota: \mathcal{A}\left(\sqcup^{\ell} S^{1}\right) \longrightarrow \operatorname{span}_{\mathbb{C}}\{\emptyset, \bigcirc\}
$$

defined as follows. For $D \in \mathcal{A}\left(\sqcup^{\ell} S^{1}\right)$, we remove each S^{1} by the following correspondences.

$$
\begin{array}{lll}
& \longmapsto & 0 \\
\bigcirc & \longmapsto & \longmapsto \\
\bigcirc & \longmapsto & \frac{1}{6}
\end{array}
$$

S^{1} with more than 5 univalent vertices $\longmapsto 0$.

Besides, in the definition of ι, if there appears a circle \square with a thin line after replacing S^{1}, then we remove such a circle by formally putting $\bigcirc=-2$. Besides, we also remove a graph with more than 3 trivalent vertices by formally letting the graph be 0 . We put the resulting diagram to be $\iota(D)$. In the following, we set $\theta=\ominus$. The values of the ± 1-framed trivial knots are the following.

$$
\begin{equation*}
\iota(Z(\bigcirc))=\left(-1+\frac{1}{16} \theta\right), \iota(Z(\bigcirc))=\left(1+\frac{1}{16} \theta\right) \tag{1.1}
\end{equation*}
$$

Next, we mention the relation between the Casson-Walker invariant and the coefficient of the degree 1 part of the LMO invariant. Let M be a rational homology sphere. When the LMO invariant up to degree 1 is described as

$$
Z_{1}^{L M O}(M)=c_{0}(M)+c_{1}(M) \theta
$$

the relations to the order of the first homology and the Casson-Walker invariant are

$$
\begin{equation*}
\left|H_{1}\right|=c_{0}(M), \lambda_{W}(M)=\frac{2 c_{1}(M)}{\left|H_{1}\right|} \tag{1.2}
\end{equation*}
$$

if the first Betti number of M is equal to 0 . (See [6].) For the coefficients $b_{0}(L), b_{1}(L)$ of the degree 0 part and the degree 1 part of $\iota \check{Z}(L)$ of the surgery link L,

$$
\begin{aligned}
c_{0}(M) & =(-1)^{\sigma_{+}} b_{0}(L) \\
c_{1}(M) & =(-1)^{\sigma_{+}}\left(\frac{\sigma}{16} b_{0}(L)+b_{1}(L)\right)
\end{aligned}
$$

1.3.2 A formula for the Kontsevich invariant of a clasp

Here, we show a formula for the calculation of the LMO invariant up to degree 1. It is known [9] that the value of the Kontsevich invariant of the clasp is the following.

+ (the terms with at least 3 trivalent vertices).

1.4 Proof of Theorem 1.2

Let n_{1}, \cdots, n_{N}, m be integers. For the calculation of the Kontsevich invariant of the circular chain link $L_{n_{1}, \cdots, n_{N} ; m}$, we define the straight chain link $L\left(n_{1}, \cdots, n_{N}\right)$ in the following picture, where n_{1}, \cdots, n_{N} represents the framing of each component.

For $N \geq 3$, the coefficients of the degree 0 and 1 parts of $\iota \check{Z}\left(L\left(n_{1}, \cdots, n_{N}\right)\right), b_{0}\left(L\left(n_{1}, \cdots, n_{N}\right)\right)$ and
$b_{1}\left(L\left(n_{1}, \cdots, n_{N}\right)\right)$, are as follows. (We calculate them in Appendix A.)

$$
\begin{align*}
& b_{0}\left(L\left(n_{1}, \cdots, n_{N}\right)\right)=(-1)^{N} \operatorname{det} A\left(n_{1}, \cdots, n_{N}\right) \tag{1.4}\\
& b_{1}\left(L\left(n_{1}, \cdots, n_{N}\right)\right)= \frac{(-1)^{N-1}}{48}\left(\operatorname{det} A\left(n_{1}, \cdots, n_{N}\right) \sum_{i=1}^{N} n_{i}\right. \\
&\left.+\operatorname{det} A\left(n_{1}, \cdots, n_{N-1}\right)+\operatorname{det} A\left(n_{2}, \cdots, n_{N}\right)\right) . \tag{1.5}
\end{align*}
$$

From here, we will calculate the degree 1 part of the LMO invariant of 3-manifolds with genus one open book decompositions. Recall that, in Example 2.5, we have confirmed the validity of the formula of Theorem 1.2 for the case where $N=1$. Although we can also compute the LMO invariant in the proof of the theorem for the case where $N=1$ by similar methods, to make computations simpler in the following, we assume that $N \geq 2$.

1.4.1 The degree 1 part of the LMO invariant of $M_{n_{1}, \cdots, n_{N} ; m}$

Firstly, we compute the coefficient of the degree 1 part of $\iota \check{Z}\left(L_{n_{1}, \cdots, n_{N} ; m}\right)$ in the following proposition.

Proposition 1.3. The coefficient $b_{1}\left(L_{n_{1}, \cdots, n_{N} ; m}\right)$ of the degree 1 part of $\iota \check{Z}\left(L_{n_{1}, \cdots, n_{N} ; m}\right)$ is given by

$$
\begin{aligned}
b_{1}\left(L_{n_{1}, \cdots, n_{N} ; m}\right)= & -(-1)^{N} \frac{1}{48}\left(\operatorname{det} A_{n_{1}, \cdots, n_{N} ; m} \sum_{i=1}^{N} n_{i}\right) \\
& +(-1)^{m} \frac{1}{48}\left(2 \sum_{i=1}^{N} n_{i}+6 N+12 m\right) .
\end{aligned}
$$

Proof of Theorem 1.2. By Proposition 1.3, the degree 1 coefficient of the LMO invariant of $M_{n_{1}, \cdots, n_{N} ; m}$ is the following.

$$
\begin{aligned}
c_{1}\left(M_{n_{1}, \cdots, n_{N} ; m}\right)= & -\frac{1}{48}(-1)^{N+\sigma_{+}} \operatorname{det} A_{n_{1}, \cdots, n_{N} ; m}\left(\operatorname{tr} A_{N}-3 \sigma\right) \\
& +\frac{1}{48}(-1)^{m+\sigma_{+}}\left(2 \operatorname{tr} A_{n_{1}, \cdots, n_{N} ; m}+6 N+12 m\right) .
\end{aligned}
$$

Considering the relation between $\lambda_{W}\left(M_{n_{1}, \cdots, n_{N} ; m}\right)$ and $c_{1}\left(M_{n_{1}, \cdots, n_{N} ; m}\right)$, we obtain the theorem.

2 The Casson-Walker invariant of 3-manifolds with genus one open book decompositions via a representation of the mapping class group

In this section, we present the Casson-Walker invariant in terms of a representation of a central extension of $\mathfrak{M}_{1,1}$ on the space of Jacobi diagrams. We give a central extension of $\mathfrak{M}_{1,1}$ as the group of equivalence classes of certain 2 -tangles modulo a modification of the Kirby moves.

2.1 A central extension of the mapping class group $\mathfrak{M}_{1,1}$

Let $\mathfrak{M}_{1,1}$ be the mapping class group of $\Sigma_{1,1}$, a compact surface with genus one and one boundary component. It is known that every central extension of $\mathfrak{M}_{1,1}$ is trivial (see for example [3]), but, in order to avoid the complication of the calculation of the invariant, we consider a central extension $\widetilde{\mathfrak{M}_{1,1}}$ by signature, and construct the representation of $\widetilde{\mathfrak{M}_{1,1}}$ on the 2-tangle Jacobi diagram space $\hat{\mathcal{A}}(\underset{\sim}{乙})$.

As for the Kirby moves for framed links in a compact 3-manifold (possibly with boundary), in order to make the representation well-defined with regard to the signature, we introduce the KI^{\prime} move, as follows.
the KI' move :

We regard a 2 -tangle
 as in a cube. We associate this 2 -tangle with the 3 -cobordism obtained from the cube by removing tubular neighbourhood of the top and bottom components
of the 2-tangle and by surgery along the closed components L. We define an admissible 2-tangle to be a 2-tangle such that the associated 3-cobordism is homeomorphic to a mapping cylinder. We denote by \mathcal{T}_{2} the set of admissible 2 -tangles.

We regard the Kirby moves in \mathcal{T}_{2} as in the following way. For L, we use the KI, KII, KIII moves of a link in (cube $-N\left(C_{1} \cup C_{2}\right)$). For C_{1} or C_{2}, we use the KII move of a tangle, that is, the handle slide of C_{1} or C_{2} along a component of L.

Lemma 2.1 (a particular case of a theorem in [7]). $\mathcal{T}_{2} / \mathrm{KI}$, KII, KIII forms a group, and is isomorphic to $\mathfrak{M}_{1,1}$.

We put $\widetilde{\mathfrak{M}_{1,1}}=\mathcal{T}_{2} / \mathrm{KI}^{\prime}$, KII, KIII. We give the product of $\widetilde{\mathfrak{M}_{1,1}}$ by the composition of 2-tangles. This product is naturally associative.

We can show that the unit element in $\widetilde{\mathfrak{M}_{1,1}}$ is given by

$$
\underbrace{\prime} \circ \stackrel{+}{a}=
$$

Since $\mathcal{T}_{2} / \mathrm{KI}$, KII, KIII is a group by Lemma 2.1, for any admissible 2-tangle T, there is a 2 -tangle T^{\prime} such that $T \circ T^{\prime}=\underbrace{\prime}$ in $\mathcal{T}_{2} /$ KI, KII, KII. When we use the KI move in the deformation from $T \circ T^{\prime}$ to Thus, we get the inverse of T in $\widetilde{\mathfrak{M}_{1,1}}$ as the union of T^{\prime} and some copies of \bigcirc or \bigcirc. Therefore, any element in $\widetilde{\mathfrak{M}_{1,1}}$ has its inverse in $\widetilde{\mathfrak{M}_{1,1}}$. Hence, $\widetilde{\mathfrak{M}_{1,1}}$ forms a group. Moreover, since $\mathcal{T}_{2} / \mathrm{KI}$, KII, $\mathrm{KIII}=\mathfrak{M}_{1,1}$ is generated by admissible 2 -tangles α, β below, this shows that $\widetilde{\mathfrak{M}_{1,1}}$ is generated by α, β and $\mu=$

Lemma 2.2. $\widetilde{\mathfrak{M}_{1,1}}$ is a central extension of $\mathfrak{M}_{1,1}$.

We define a map

$$
\begin{equation*}
\sigma: \widetilde{\mathfrak{M}_{1,1}} \longrightarrow \mathbb{Z} \tag{2.1}
\end{equation*}
$$

by putting $\sigma(T)$ to be the signature of the linking matrix of the closure of $T \in \widetilde{\mathfrak{M}_{1,1}}$. Here, the closure of T means the link obtained by connecting the upper ends and lower ends of T respectively. Then, $\sigma(T)$ is invariant under the KI^{\prime}, KII, KIII moves. As for our central extension

$$
0 \longrightarrow \mathbb{Z} \xrightarrow{f_{1}} \widetilde{\mathfrak{M}_{1,1}} \xrightarrow{f_{2}} \mathfrak{M}_{1,1} \longrightarrow 1
$$

$\sigma \circ f_{1}$ is the identity on \mathbb{Z}.

2.2 The Casson-Walker invariant of 3-manifolds with genus one open book decompositions

We choose generators of $\widetilde{\mathfrak{M}_{1,1}}$ as follows.

$$
\begin{equation*}
\alpha= \tag{2.2}
\end{equation*}
$$

Using the LMO invariant, we will define liner representations $\hat{\rho}_{1}, \hat{\rho}_{2}: \widetilde{\mathfrak{M}_{1,1}} \longrightarrow \operatorname{GL}(4, \mathbb{C})$. As we will see in (2.5), (2.6) and (2.7), we have that

$$
\begin{aligned}
\hat{\rho}_{1}(\alpha)= & \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{1}{96} & -\frac{1}{24} & \frac{1}{2} & 1
\end{array}\right), \hat{\rho}_{1}(\beta)=\left(\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{48} & \frac{1}{24} & 1 & -2 \\
0 & -\frac{1}{48} & 0 & 1
\end{array}\right), \hat{\rho}_{1}(\mu)=-\sqrt{-1}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{16} & 0 & 1 & 0 \\
0 & -\frac{1}{16} & 0 & 1
\end{array}\right), \\
& \hat{\rho}_{2}(\alpha)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{24} & 1
\end{array}\right), \hat{\rho}_{2}(\beta)=\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{24} & 1
\end{array}\right), \hat{\rho}_{2}(\mu)=-\sqrt{-1}\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{16} & 1
\end{array}\right) .
\end{aligned}
$$

It is convenient to use an element $h=(\alpha \beta)^{3} \mu^{-2}$ represented by the 2-tangle tangle h represents a lift of the right-handed Dehn twist along $\partial \Sigma_{1,1}$. The image of h under ρ_{1} and ρ_{2} are given by

$$
\hat{\rho}_{1}(h)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \hat{\rho}_{2}(h)=\left(\begin{array}{cc}
-1 & 0 \\
\frac{1}{8} & -1
\end{array}\right) .
$$

By taking the trace of this representation of the monodromy, we can calculate the Casson-Walker invariant of a 3 -manifold admitting genus one and one boundary open book decompositions.

Theorem 2.3. Suppose that M_{φ} is a rational homology sphere. Taking an element $\tilde{\varphi}$ of the central extension corresponding to the monodromy φ, we can calculate the Casson-Walker invariant of M_{φ} as follows,

$$
\begin{equation*}
\lambda\left(M_{\varphi}\right)=\frac{2(\sqrt{-1})^{\sigma(\tilde{\varphi})}}{\left|H_{1}\right|}\left(\operatorname{tr}\left(Q_{1} \hat{\rho}_{1}(\tilde{\varphi})\right)-2 \operatorname{tr}\left(Q_{2} \hat{\rho}_{2}(\tilde{\varphi})\right)\right)+\frac{1}{8} \sigma(\tilde{\varphi}) \tag{2.3}
\end{equation*}
$$

where σ is defined in (2.1), and Q_{1}, Q_{2} are the following matrices,

$$
Q_{1}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), Q_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

We give a proof of the theorem in Section 2.4.
Then, we show some examples of the concrete calculation. We will continue to assume that M_{φ} is a rational homology sphere.

2.3 Preparations for Proof of Theorem 2.3

2.3.1 The space of the Jacobi diagrams on two intervals

In order to construct a representation of the mapping class group of the surface $\Sigma_{1,1}$, we recall that the LMO invariant up to degree 1 of mapping cylinders can be defined by using the following map,

$$
\iota \check{Z}:\{\text { surgery links with } \underset{\curvearrowright}{\curvearrowright} \text { /K-moves, isotopy } \longrightarrow \hat{\mathcal{A}}(\underset{\curvearrowright}{\curvearrowright}) \text {. }
$$

Here, we define the space $\hat{\mathcal{A}}(\underset{\sim}{乙})$ by

$$
\hat{\mathcal{A}}(\underset{\sim}{\smile})=\{\text { Jacobi diagrams on 2-tangles up to AS, IHX, STU }\} / P_{2}, O_{1}, I_{>2},
$$

where P_{2}, O_{1} and $I_{>2}$ are the equivalence relations generated by the following relations.
$\left.P_{2}:\right)(+X+\asymp \sim 0$
$O_{1}: \bigcirc \sim-2$
$I_{>2}$: the Jacobi diagram with more than 2 trivalent vertices ~ 0
In the rest of Section 2.3, we give a basis of $\hat{\mathcal{A}}(\underset{\sim}{\bigcup})$ in Lemmas 2.6 and 2.7. In order to prove these lemmas, we show the following two lemmas.

Lemma 2.4. ([8]) In the space $\hat{\mathcal{A}}(\underset{\sim}{\smile})$, the following relations hold.
(1)

(2)
 $+\frac{1}{2}$ \qquad

Lemma 2.5. In the space $\hat{\mathcal{A}}(\underset{\sim}{\curlyvee})$, the following relation holds.

Lemma 2.6. $\hat{\mathcal{A}}(\underset{\sim}{\curlyvee})$ is spanned by the following 10 diagrams.

Lemma 2.7. The 10 diagrams of Lemma 2.6 give a basis of $\hat{\mathcal{A}}(\underset{\sim}{乙})$.

2.3.2 The invariance under the Kirby moves

In this subsection, we construct the representation of the central extension of $\mathfrak{M}_{1,1}$ on the space of Jacobi diagrams on two intervals. (A similar representation and the relation with the Casson invariant appeared in [2].)

Let $\tilde{\mathcal{T}}$ be the set of the 2 -tangles and we regard it as a monoid with the product as a composition. Instead of Z, we use a map $\check{Z}: \tilde{\mathcal{T}} \longrightarrow \hat{\mathcal{A}}\left(\left(\sqcup^{\ell} S^{1}\right) \sqcup \curlyvee\right)$ such that $\hat{Z}(T)$ of a 2-tangle T is obtained from $Z(T)$ by connect-summing ν into each of the closed components $\sqcup^{\ell} S^{1}$ and connect-summing $\nu^{\frac{1}{2}}$ into each of the open components \backsim. When we consider $\iota: \hat{\mathcal{A}}\left(\sqcup^{\ell} S^{1}\right) \rightarrow \hat{\mathcal{A}}(\emptyset)$, we define $\hat{\iota}: \hat{\mathcal{A}}\left(\sqcup^{\ell} S^{1}\right) \rightarrow \hat{\mathcal{A}}(\emptyset)$ by $\hat{\iota}=\sqrt{-1}^{\ell} \iota$. Similarly, when we consider $\iota: \hat{\mathcal{A}}\left(\sqcup^{\ell} S^{1} \sqcup \curvearrowright\right) \rightarrow \hat{\mathcal{A}}(\underset{\curvearrowright}{\mho})$, we define $\hat{\iota}: \hat{\mathcal{A}}\left(\sqcup^{\ell} S^{1} \sqcup \underset{\curvearrowright}{\mho}\right) \rightarrow \hat{\mathcal{A}}(\underset{\curvearrowright}{\mho})$ by $\hat{\iota}=\sqrt{-1}^{\ell} \iota$. As for the map $\hat{\iota} \check{Z}$ from $\tilde{\mathcal{T}}$ to $\hat{\mathcal{A}}(\underset{\sim}{\mho})$, we have the following proposition.

Proposition 2.8. A monoid homomorphism

$$
\hat{\iota} \check{Z}: \tilde{\mathcal{T}} \xrightarrow{\check{Z}} \hat{\mathcal{A}}\left(\left(\sqcup^{\ell} S^{1}\right) \sqcup \stackrel{\smile}{\curvearrowright}\right) \xrightarrow{\hat{\imath}} \hat{\mathcal{A}}(\underset{\curvearrowright}{\circlearrowright})
$$

is invariant under the KI^{\prime}, KII, KIII moves.

2.3.3 A representation of the central extension of the mapping class group on the space of the Jacobi diagrams on two intervals

We set the composition

$$
\circ: \hat{\mathcal{A}}\left(\left(\sqcup^{\ell} S^{1}\right) \sqcup \underset{\curvearrowright}{\curvearrowright}\right) \otimes \hat{\mathcal{A}}\left(\left(\sqcup^{\ell} S^{1}\right) \sqcup \stackrel{\smile}{\curvearrowright}\right) \longrightarrow \hat{\mathcal{A}}\left(S^{1} \sqcup\left(\sqcup^{\ell} S^{1}\right) \sqcup \underset{\curvearrowright}{\curvearrowright}\right)
$$

 define the composition $\eta \circ \eta^{\prime}$ to be the diagram obtained from the union of these two diagrams by attaching the endpoints of the lower interval of η to the endpoints of the upper interval of η^{\prime} as the orientations of intervals agree with each other, as in the following diagram.

$$
\eta \circ \eta^{\prime}=\overbrace{\sim}^{\sim} \in \hat{\mathcal{A}}\left(S^{1} \sqcup\left(\sqcup^{\ell} S^{1}\right) \sqcup \curvearrowright\right) .
$$

We define ρ to be the following map.

$$
\begin{aligned}
& \rho: \widetilde{\mathfrak{M}_{1,1}}=\mathcal{T}_{2} / \mathrm{KI}^{\prime}, \mathrm{KII}, \mathrm{KIII} \longrightarrow \operatorname{End}(\hat{\mathcal{A}}(\underset{\sim}{\vee})) \\
& T \longmapsto(\eta \longmapsto \hat{\iota}(\check{Z}(T) \circ \eta)),
\end{aligned}
$$

where $\check{Z}(T) \circ \eta$ represents the composition of Jacobi diagrams on two intervals

Proposition 2.9.

$$
\rho: \widetilde{\mathfrak{M}_{1,1}}=\mathcal{T}_{2} / \mathrm{KI}^{\prime}, \mathrm{KII}, \mathrm{KIII} \longrightarrow \operatorname{End}(\hat{\mathcal{A}}(\underset{\sim}{\vee}))
$$

is a representation of $\widetilde{\mathfrak{M}_{1,1}}$.

Then, we have the following proposition.

Proposition 2.10. Let $\varphi \in \mathfrak{M}_{1,1}$, and let M_{φ} be the 3 -manifold with a genus one open book decomposition whose monodromy is φ. Suppose that M_{φ} is a rational homology sphere. Let $T \in \widetilde{\mathfrak{M}_{1,1}}$ be a lift of φ. Then, the Casson-Walker invariant of M_{φ} is presented by

$$
\begin{equation*}
\lambda\left(M_{\varphi}\right)=\frac{2(\sqrt{-1})^{\sigma(T)}}{\left|H_{1}\right|} \operatorname{tr}(\psi \circ \rho(T))+\frac{1}{8} \sigma(T), \tag{2.4}
\end{equation*}
$$

where $\left|H_{1}\right|$ denotes the order of $H_{1}\left(M_{\varphi} ; \mathbb{Z}\right)$, and we define

$$
\psi: \hat{\mathcal{A}}(\underset{\sim}{\smile}) \longrightarrow \hat{\mathcal{A}}(\underset{\sim}{\smile})
$$

to be the linear map whose values for the basis vectors of $\hat{\mathcal{A}}(\underset{\sim}{\checkmark})$ are given by

$$
\begin{aligned}
& \psi\left(\mu_{00}\right)=0, \psi\left(\mu_{1}\right)=0, \psi\left(\mu_{10}\right)=0, \psi\left(\mu_{01}\right)=0, \psi\left(\mu_{11}\right)=0 \\
& \psi\left(\theta \mu_{00}\right)=0, \psi\left(\theta \mu_{1}\right)=-2 \mu_{1}, \psi\left(\theta \mu_{10}\right)=\mu_{10}, \psi\left(\theta \mu_{01}\right)=\mu_{01}, \psi\left(\theta \mu_{11}\right)=0 .
\end{aligned}
$$

2.4 Proof of Theorem 2.3

2.4.1 A matrix representation of the mapping class group

In this section, we calculate a matrix presentation of the representation of $\rho: \widetilde{\mathfrak{M}_{1,1}} \longrightarrow \operatorname{End}(\hat{\mathcal{A}}(\underset{\sim}{\bigcup}))$ and the values of the invariant concretely for the basis of $\hat{\mathcal{A}}_{1}$ which we have taken in Lemma 2.6.

Proposition 2.11. We put

$$
\begin{aligned}
\hat{\mathcal{A}}(\stackrel{\sim}{\curvearrowright}) & =\hat{\mathcal{A}}_{1} \oplus \hat{\mathcal{A}}_{1}^{\prime} \oplus \hat{\mathcal{A}}_{2} \\
& =\operatorname{span}_{\mathbb{C}}\left\{\mu_{00}, \mu_{10}, \theta \mu_{00}, \theta \mu_{10}\right\} \oplus \operatorname{span}_{\mathbb{C}}\left\{\mu_{01}, \mu_{11}, \theta \mu_{01}, \theta \mu_{11}\right\} \oplus \operatorname{span}_{\mathbb{C}}\left\{\mu_{1}, \theta \mu_{1}\right\} .
\end{aligned}
$$

Then, the representation ρ is decomposed into $\rho_{1} \oplus \rho^{\prime}{ }_{1} \oplus \rho_{2}$, where ρ_{i} represents the restriction $\left.\rho\right|_{\hat{\mathcal{A}}_{i}}$.

Next, we show matrix presentations of certain elements

 and
 of $\widetilde{\mathfrak{M}_{1,1}}$ through the map $\hat{i Z}$. We regard $\hat{\mathcal{A}}(\underset{\curvearrowright}{\curvearrowright})$ as a vector space \mathbb{C}^{10} with regard to the

10 elements of a basis. We denote by $\hat{\rho}$ the representation $\hat{\rho}: \widetilde{\mathfrak{M}_{1,1}} \longrightarrow \operatorname{End}\left(\mathbb{C}^{10}\right)$ such that $\hat{\rho}(T)$ is a 10 times 10 matrix for $T \in \widetilde{\mathfrak{M}_{1,1}}$. From Proposition 2.11, we decompose $\hat{\rho}(T)$ as $\hat{\rho}(T)=\hat{\rho}_{1}(T) \oplus \hat{\rho}_{1}^{\prime}(T) \oplus \hat{\rho}_{2}(T)$.
We have the matrix presentations of the generators as

$$
\left.\begin{array}{l}
\hat{\rho}\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{1}{96} & -\frac{1}{24} & \frac{1}{2} & 1
\end{array}\right) \oplus\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-\frac{1}{96} & -\frac{1}{24} & \frac{1}{2} & 1
\end{array}\right) \oplus\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{24} & 1
\end{array}\right), \\
\hat{\rho}(
\end{array}\right)=\left(\begin{array}{cccc}
1 & -2 & 0 & 0 \tag{2.6}\\
0 & 1 & 0 & 0 \\
-\frac{1}{48} & \frac{1}{24} & 1 & -2 \\
0 & -\frac{1}{48} & 0 & 1
\end{array}\right) \oplus\left(\begin{array}{cccc}
1 & -2 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{48} & \frac{1}{24} & 1 & -2 \\
0 & -\frac{1}{48} & 0 & 1
\end{array}\right) \oplus\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{24} & 1
\end{array}\right) . .
$$

Finally, μ is represented by another form as

from the following transformation.

Then, by direct computation, we have that

$$
\hat{\rho}\left(\begin{array}{cc}
 \tag{2.7}\\
+1
\end{array}\right)=(-\sqrt{-1})\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{16} & 0 & 1 & 0 \\
0 & -\frac{1}{16} & 0 & 1
\end{array}\right) \oplus(-\sqrt{-1})\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-\frac{1}{16} & 0 & 1 & 0 \\
0 & -\frac{1}{16} & 0 & 1
\end{array}\right) \oplus(-\sqrt{-1})\left(\begin{array}{cc}
1 & 0 \\
-\frac{1}{16} & 1
\end{array}\right) .
$$

Proof of Thorem 2.3. We set

$$
Q_{1}^{(1)}=\left(\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right), Q_{1}^{(2)}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

From the proof of Proposition 2.10,

$$
\begin{aligned}
\operatorname{tr}(\psi \circ \rho(T)) & =\operatorname{tr}(Q \hat{\rho}(T)) \\
& =\operatorname{tr}\left(Q_{1}^{(1)} \hat{\rho}_{1}(\tilde{\varphi})\right)+\operatorname{tr}\left(Q_{1}^{(2)} \hat{\rho}_{1}^{\prime}(\tilde{\varphi})\right)-2 \operatorname{tr}\left(Q_{2} \hat{\rho}_{2}(\tilde{\varphi})\right) \\
& =\operatorname{tr}\left(Q_{1} \hat{\rho}_{1}(\tilde{\varphi})\right)-2 \operatorname{tr}\left(Q_{2} \hat{\rho}_{2}(\tilde{\varphi})\right)
\end{aligned}
$$

From (2.4), we have got (2.3).

References

[1] D. Bar-Natan, Non-Associative Tangles, Geom. Topol., proceedings of the Georgia international topology conference, W. H. Kazez, ed., Amer. Math. Soc. and International Press, Providence (1997), 139-183.
[2] D. Cheptea, K. Habiro, G. Massuyeau, A functorial LMO invariant for Lagrangian cobordisms, Geom. Topol., 12 (2008), 1091-1170.
[3] B. Farb, D. Margalit, A Primer on Mapping Class Groups, Princeton Mathematical Series 49, Princeton University Press (2011).
[4] T. Q. T. Le, J. Murakami, Parallel version of the universal VassilievKontsevich invariant, J. Pure Appl. Algebra, 121 (1997), 271-291.
[5] T. T. Q. Le, J. Murakami and T. Ohtsuki, On a universal perturbative invariant of 3manifolds, Topology, 37 (1998), 539-574.
[6] T. Q. T. Le, H. Murakami, J. Murakami and T. Ohtsuki, A three-manifold invariant via the Kontsevich integral, Osaka J. Math., 36 (1999), 365-395.
[7] S. Matveev, M. Polyak, A geometrical presentation of the surface mapping class group and surgery, Comm. Math. Phys., 160 (1994), 537-550.
[8] T. Ohtsuki, Quantum Invariants: A Study of Knots, 3-Manifolds, and Their Sets, Series on Knots and Everything Vol. 29, World Scientific (2001).
[9] T. Ohtsuki, On the 2-loop polynomial of knots, Geom. Topol., 11 (2007), 1357-1475.
[10] J. Roberts, Kirby calculus in manifolds with boundary, Turkish J. Math, 21 (1997), 111-117.
Research Institute for Mathematical Sciences, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan. E-mail: mochia@kurims.kyoto-u.ac.jp

