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Abstract

The BCS-BEC crossover [1, 2, 3] is an exciting phenomenon in Fermionic many-body sys-
tems, which connects seemingly distinct two concepts: the condensation of weakly bound
Fermion pairs described within the celebrated Bardeen-Cooper-Schrieffer (BCS) framework
and the Bose-Einstein condensation (BEC) of tightly bound Fermion pairs. The BCS-BEC
crossover has been investigated in ultracold atomic gases by virtue of the controllability of
the attractive-interaction strength between atoms utilizing the Feshbach resonance [4]; on
the other hand, the BCS framework has been applied to most superconductors since the
attractive interaction between electrons is typically very weak.

Surprisingly, recent experiments [5, 6, 7] have suggested that FeSe and related materials
may involve a strong attractive interaction between electrons, which can open up opportu-
nities to explore physical properties, e.g., transport phenomena, magnetic-field effects, and
crystal-lattice effects, specific to superconductors with strong attractive interaction. How-
ever, a theoretical understanding of such effects is still incomplete, and in this thesis we study
magnetic-field and crystal-lattice-structure effects on superconductors with strong attractive
interaction.

First, we investigate how thermodynamic quantities related to the superconducting fluctu-
ation, which represents precursor phenomena of superconductivity, are influenced by a strong
attractive interaction especially under magnetic field [8]. We find that the fluctuation-induced
specific heat and diamagnetic susceptibility can be enhanced, and magnetization curves can
show a characteristic behavior called crossing. These numerical results are qualitatively con-
sistent with experimental results in FeSe.

Second, we explore features of the field-temperature (H-T ) phase diagram of superconduc-
tors with strong attractive interaction [9]. We find that the vortex-lattice state, which involves
a periodic array of quantized vortices and ubiquitously appears in type-II superconductors
under magnetic field, can melt into the vortex-liquid state due to the enhanced supercon-
ducting fluctuation. Consequently, the vortex-liquid region, in addition to the preformed-pair
region, can be enlarged in the H-T plane in systems with strong attractive interaction. We
also point out the expected particle-density dependence of the H-T phase diagram.

Lastly, we study how dimensionality can manifest itself in superconductors with strong
attractive interaction [10]. We find that the change in dimensionality from three-dimensional
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to two-dimensional lattice structure can induce a crossover from the weak-coupling BCS side
to the strong-coupling BEC side, or the BCS-BEC crossover, without tuning the interaction
strength. We propose that inserting insulating layers or applying anisotropic pressure in
layered superconductors can effectively change the dimensionality and thus can induce the
BCS-BEC crossover.
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Chapter 1

Introduction: superconductivity in
the BCS-BEC crossover regime

Superconducting properties of most superconductors have been well described within the
celebrated Bardeen-Cooper-Schrieffer (BCS) theory [11, 12]. This theory is based on a basic
assumption that electrons interact with weak attractive interaction mediated by, e.g., lattice
vibration.

In the field of ultracold atomic physics, it has been possible to artificially introduce a
strong attractive interaction between laser-trapped Fermion gases with the use of the Fes-
hbach resonance [4]. Accordingly, experimental and theoretical understanding of physical
properties of Fermion gases with strong attractive interaction has been improved [13]. In
particular, the so-called BCS-BEC crossover [1, 2, 3] (Sec. 1.1) is known to occur as the at-
tractive interaction changes from weak to strong. For example, the vortex lattice of rotating
superfluid Fermions has been observed in a broad range of interaction strength through the
BCS-BEC crossover [14].

Regarding material realization of strong attractive interaction in superconductors, though
it is still controversial whether a weak-coupling BCS picture is applicable to the high-
temperature cuprate superconductors, observation of strong attractive interaction between
electrons has been very rare. Surprisingly, recent experiments [5, 6] have suggested that
there can be a strong attractive interaction between electrons in FeSe and related materials
(Sec. 1.2). If this is the case, these superconductors can open up opportunities to explore
physical properties, for example, transport phenomena, magnetic-field effects, and crystal-
lattice effects, specific to superconductors involving strong attractive interaction. However,
a theoretical understanding of such effects is still incomplete. Thus, we investigate the ef-
fects of external magnetic field and crystal lattice structure on superconductors with strong
attractive interaction.

The BCS-BEC crossover in systems with an anisotropic, e.g., d-wave, pairing can be
qualitatively different from that with the isotropic s-wave pairing. For example, the particle
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density can be an important parameter in determining the macroscopic state in the case of
the d-wave pairing [15], and thereby the BCS-BEC crossover may be induced by the change
in the particle density [16]. Nevertheless, we concentrate on the simplest s-wave pairing in
this thesis. As for FeSe, while two kinds of superconducting gaps have been observed, it is
still controversial whether these gaps have nodes or not [5, 17, 18, 19, 20].

In the following, we explain basic concepts of the BCS-BEC crossover (Sec. 1.1) and
experimental backgrounds of FeSe and related materials (Sec. 1.2). Throughout this thesis,
we set kB = ~ = 1 and adopt the international system of units.

1.1 BCS-BEC crossover
The BCS-BEC crossover [1, 2, 3] has been considered both theoretically and experimentally
mainly in the field of ultracold atomic physics. In the following, we explain basic theoretical
aspects of the BCS-BEC crossover.

For simplicity, let us consider a Fermion many-body system with attractive onsite (s-wave)
interaction −U < 0 (see Ref. [21] for a review). The Hamiltonian is given as

H =
∑
k,σ

εkc
†
kσckσ −

U

M

∑
k,k′,q

c†q/2+k↑c
†
q/2−k↓cq/2−k′↓cq/2+k′↑. (1.1.1)

Here, c(†)
kσ is the annihilation (creation) operator of an electron with wave number k and spin

σ, and M is the total number of lattice sites. Specifically, we assume a three-dimensional
simple cubic lattice so that εk = −2t(cos kx + cos ky + cos kz) (t > 0), but most of the
discussions below do not depend on details of the lattice structure.

1.1.1 BCS-BEC crossover at zero temperature
Following the early work [22], we consider the ground state of the system described by
Eq. (1.1.1). Our starting point is the BCS ground-state wave function:

|ψBCS〉 =
∏
k

(
uk + vkeiθc†k↑c

†
−k↓

)
|0〉 . (1.1.2)

Here, |0〉 is the vacuum state, and the variational parameters uk ≥ 0 and vk ≥ 0 satisfy
uk

2 + vk
2 = 1 so that the normalization condition 〈ψBCS|ψBCS〉 = 1 is satisfied. The phase θ

represents the direction of the broken U(1) symmetry, and we fix as

θ = 0 (1.1.3)

in the following.
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We can show the quantum mechanical average of H with respect to |ψBCS〉 is calculated
(see, e.g., Ref. [12]) as

〈ψBCS|H|ψBCS〉 = 2
∑

k

εkvk
2 − U

M

(∑
k

ukvk

)2

− U

M

(∑
k

vk
2
)2

. (1.1.4)

On the other hand, the average of the total particle number N̂ = ∑
k,σ c

†
kσckσ is calculated

as
〈ψBCS|N̂ |ψBCS〉 = 2

∑
k

vk
2 (1.1.5)

To determine the values of the variational parameters uk and vk, we should minimize
Eq. (1.1.1) with the average of the total particle number 〈ψBCS|N̂ |ψBCS〉 fixed to a certain
value N . Therefore, introducing a chemical potential µ, we should minimize 〈ψBCS|H|ψBCS〉−
µ 〈ψBCS|N̂ |ψBCS〉 with respect to the variational parameters {vk} (note that another param-
eter uk can be written as uk =

√
1− vk

2) and also should solve 〈ψBCS|N̂ |ψBCS〉 = N to
determine the value of µ. To sum up, the following simultaneous equations should be solved
for given N and U :

∂

∂vk

〈ψBCS|(H − µN̂)|ψBCS〉 = 0, (1.1.6)

〈ψBCS|N̂ |ψBCS〉 = N. (1.1.7)

Transforming Eqs. (1.1.6) and (1.1.7), we finally obtain the following formulas for the
variational paramters (see, e.g., Ref. [12]):

uk = 1√
2

√
1 + ξk

Ek

, (1.1.8)

vk = 1√
2

√
1− ξk

Ek

. (1.1.9)

Here, Ek is the one-particle excitation energy in the superconducting state, or the excitation
energy of one Bogoliubov quasi particle:

Ek =
√
ξk

2 + ∆2, (1.1.10)

and ∆ > 0 (recall that the phase θ is fixed to 0 here) is the superconducting order parameter
determined from the following equation:

∆ = U

M

∑
k

〈ψBCS|c−k↓ck↑|ψBCS〉 = U

M

∑
k

ukvk = U

M

∑
k

∆
2Ek

. (1.1.11)

The free-particle energy dispersion ξk is given as

ξk = εk − µ̃ = εk − µ−
UN

2M , (1.1.12)
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where −UN/(2M) is the Hartree shift due to the attractive interaction, and µ̃ = µ +
UN/(2M) is the renormalized chemical potential [21, 23]. Equation (1.1.7) is reduced to

∑
k

(
1− ξk

Ek

)
= N. (1.1.13)

In the end, we should combine Eq. (1.1.11) with Eq. (1.1.13) to determine ∆ and µ simulta-
neously. In the following, we show the behavior of ∆ and µ in the weak-coupling (U/W � 1)
and strong-coupling (U/W � 1) regime [W is the free-particle band width and W = 12t in
the system described by Eq. (1.1.1)].

In the weak-coupling regime (U/W � 1), based on Eq. (1.1.11) with an ansatz µ̃ ' EF

(EF is the Fermi energy of the corresponding free-particle system), smallness of U compared
to W leads to the non-perturbative dependence of ∆ on U :

∆ ∼ W exp
(
− 1
NFU

)
, (1.1.14)

where NF ∼ W−1 is the electronic density of states on the Fermi surface. On the other hand,
from Eq. (1.1.13), we obtain

µ̃ ' EF, (1.1.15)

or with the use of µ̃ = µ+ UN/(2M),

µ ' EF −
UN

2M (1.1.16)

which means, as expected above, that the chemical potential µ actually takes a value near EF

if the renormalization of the chemical potential from the Hartree shift is taken into account.
The minimum energy Emin to break a Fermion pair (without changing the total particle
number) is given by

Emin = min
k

2
√
ξk

2 + ∆2 = 2∆. (1.1.17)

These results [Eqs. (1.1.14) and (1.1.15)] are equivalent to those of the BCS theory [12]; thus,
the weak-coupling regime (U/W � 1) is called the BCS regime [1]. In most superconductors,
the attractive interaction between electrons is considered to be in the BCS regime, and thus
the BCS theory is applicable without considering the equation to determine the chemical
potential like Eq. (1.1.13).

In the strong-coupling regime (U/W � 1), Eqs. (1.1.11) and (1.1.13) lead to the following
formulas [21, 23]:

∆ ' U

2

√
N

M

(
2− N

M

)
, (1.1.18)

and
µ̃ ' U

2

(
N

M
− 1

)
. (1.1.19)
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(b) Strong-coupling BEC regime(a) Weak-coupling BCS regime

Figure 1.1: Schematic figure of typical normal states in the (a) BCS and (b) BEC regimes. (a)
In the BCS regime, the normal state consists of unpaired Fermions with a hopping amplitude
t. (b) In the BEC regime, the normal state (preformed-pair state) consists of paired Fermions
with a pair hopping amplitude tpair.

We note that we can easily derive these formulas if we first assume that ∆� W and |µ̃| � W

as an ansatz. Recalling µ̃ = µ+ UN/(2M), we can rewrite Eq. (1.1.19) as

µ ' −U2 . (1.1.20)

This suggests that we gain −U , which is the (minus) two-particle binding energy in the
strong-coupling regime [21], if we put a Fermion pair in the considered system. Actually, the
minimum energy Emin to break a Fermion pair (without changing the total particle number)
is given by

Emin = min
k

2
√
ξk

2 + ∆2 = 2
√
µ̃2 + ∆2 = U. (1.1.21)

In the strong-coupling regime, since particles basically exist as pairs with the binding energy
U , we should just think of the ground-state Hilbert space as spanned by states where all the
Fermions exist as pairs; therefore, by applying the second-order perturbation theory, we can
obtain an effective nearest-neighbor hopping amplitude of pairs (Bosons) tpair [see Fig. 1.1(b)
for a schematic figure of typical normal states] as [21]

tpair = 2t2
U
. (1.1.22)

If the density is so low that we can neglect the interaction between pairs (Bosons), the
system behaves as a free Boson system in a simple cubic lattice with the hopping amplitude
tpair, and thus the ground state is equivalent to the BEC state of pairs. Accordingly, the
strong-coupling regime is called the BEC regime [1].

Interestingly, it is known that no phase transition occurs when the interaction strength
is changed from the weak-coupling BCS regime to the strong-coupling BEC regime [21, 23];
therefore, the change from the BCS to BEC regime is called the BCS-BEC crossover. The
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Figure 1.2: Order-parameter amplitude ∆
as a function of the attractive interaction U
with low density (N/M = 0.2). The asymp-
totic form in the BEC regime [Eq. (1.1.18)]
is also shown (blue dotted line).
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/t

Figure 1.3: Renormalized chemical poten-
tial µ̃ as a function of the attractive in-
teraction U (here µ̃ is measured from the
free-particle band bottom) with low density
(N/M = 0.2). The asymptotic forms in
the BCS [Eq. (1.1.15), red dashed line] and
BEC [Eq. (1.1.19), red dotted line] regimes
are also shown.

numerically calculated U dependences of ∆ and µ̃ (or µ) are shown in Figs. 1.2–1.5. In
Figs. 1.2 and 1.3, we show the case with low density (N/M = 0.2). In Figs. 1.4 and 1.5, on
the other hand, we show the case with high density near half filling (N/M = 0.9). We can
make sure that no phase transition occurs through the drastic change in U . We note that the
chemical potential is not so changed in the high-density case (Fig. 1.5) even if the interaction
is strong. We also show the asymptotic behavior of ∆ in the BEC regime and that of µ̃ in
both the BCS and BEC regimes in these figures.

The above discussions are based on the BCS ground-state wave function [Eq. (1.1.2)],
which is equivalent to the mean-field approximation [12]; thus, we neglect fluctuation effects.
Theoretical calculations [24, 25] taking into account the quantum fluctuation effects within
the Gaussian approximation around the mean-field solution has shown that fluctuations
do not qualitatively change the U dependences of ∆ and µ at zero temperature. On the
other hand, as mentioned in the next subsection, fluctuation effects are important at finite
temperature especially around the superconducting transition temperature Tc.
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Figure 1.4: Order-parameter amplitude ∆
as a function of the attractive interaction
U with high density (N/M = 0.9). The
asymptotic form is also shown in the same
way as Fig. 1.2.
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Figure 1.5: Renormalized chemical poten-
tial µ̃ as a function of the attractive in-
teraction U (here µ̃ is measured from the
free-particle band bottom) with high den-
sity (N/M = 0.9). The asymptotic forms
are also shown in the same way as Fig. 1.3.

1.1.2 BCS-BEC crossover at finite temperature
In the following, let us consider physical properties of the sytstem described by Eq. (1.1.1)
at finite temperatures [23]. Since we discuss similar problems especially in Chapters 3 and
4, we here concisely explain the way to theoretically obtain many-particle states at finite
temperatures.

Cooling the system from high enough to zero temperature can cause a phase transition
from the normal (metal) phase to the superconducting phase. We should notice that there
are two kinds of phenomena which can occur when the temperature is decreased: the pair
formation and the pair condensation. The latter is equivalent to the superconducting transi-
tion, and in general, these two phenomena can occur separately. The pair formation can be
correctly described by the mean-field approximation [12]; on the other hand, the mean-field
approximation, which neglects fluctuation effects, is in general not applicable to estimation
of the pair condensation since the superconducting fluctuation affects the macroscopic pair
condensation [23]. In this thesis, we write the pair-formation temperature as T ∗ and the
pair-condensation temperature as Tc.

To estimate the pair-formation temperature T ∗, neglecting fluctuation effects [26], we
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obtain a free-particle number equation to determine the chemical potential µ:

N = 2
∑

k

1
eξk/T + 1 . (1.1.23)

On the other hand, the equation to determine T ∗ for a given µ is the linearized gap equation
(or the so-called Thouless criterion [27]):

χ
(0)
0 (0) = 1

U
, (1.1.24)

where
χ(0)

q (iωm) = T

M

∑
k,n

G
(0)
k+q(iεn + iωm)G(0)

−k(−iεn) (1.1.25)

with the free-particle Green’s functionG(0)
k = (iεn−ξk)−1 and the Fermion (Boson) Matsubara

frequency εn (ωm). In the end, by solving Eqs. (1.1.23) and (1.1.24), we can estimate the
pair-formation temperature T ∗.

To calculate the pair-condensation temperature Tc, several approximations treating the
fluctuation effects have been proposed [1]. Here we follow the method used in Ref. [23]. To
consider the superconducting fluctuation, we take into account the ladder-like terms in the
particle-particle channel as shown diagrammatically in Fig. 1.6. Collecting the same type
of diagrams as shown in Fig. 1.6, we finally obtain the fluctuation thermodynamic potential
Ωfluct as follows:

Ωfluct = T
∑
q,m

e+iωm0 ln
[
1− Uχ(0)

q (iωm)
]
. (1.1.26)

We note that Eq. (1.1.26) is nothing but the thermodynamic potential of free Bosons in the
case where the Cooper-pair excitation (fluctuation) is identified with a Boson. Based on this
fluctuation thermodynamic potential combined with the free-particle one Ω0, we obtain as a
number equation

N =
∑

k

1
eξk/T + 1 −

∂Ωfluct

∂µ
. (1.1.27)

On the other hand, regarding the equation to determine the value of Tc for a given µ is the
same as in the case of T ∗; we use the linearized gap equation [Eq. (1.1.24)]. Therefore, we
should solve Eqs. (1.1.27) and (1.1.24) to obtain the pair-condensation temperature Tc.

In the weak-coupling BCS regime (U/W � 1), the superconducting transition can be
treated within the mean-field approximation since the fluctuation effects are weak and the
second term in Eq. (1.1.27) can be neglected compared to the first term, so that the pair
formation and the pair condensation (or superconducting transition) basically occur simul-
taneously [23], and thus

T ∗ ' Tc ∼ W exp
(
− 1
NFU

)
. (1.1.28)
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Figure 1.6: Diagrammatic representation of the contribution to the fluctuation thermody-
namic potential Ωfluct. The free-particle Green’s function G

(0)
k (iεn) (black oriented line) and

the bare interaction −U (brown wavy line) are shown.

This result is equivalent to that based on the usual BCS theory [12], in which the pair
formation and condensation occur simultaneously.

In the strong-coupling BEC regime (U/W � 1), on the other hand, the fluctuation effects
are vary strong and the second term in Eq. (1.1.27) actually becomes dominant. Neglecting
the first term in Eq. (1.1.27), we can show that the pair-condensation temperature Tc satisfies
the following relation:

Tc ∝ t2/U. (1.1.29)

Since in the BEC regime the pair hopping amplitude is given by tpair = 2t2/U [Eq.(1.1.22)]
as discussed in Sec. 1.1.1 and the BEC transition temperature has the same energy scale as a
typical kinetic energy tpair, Eq. (1.1.29) means that the pair condensation (or superconducting
transition) can be described as the BEC transition of tightly bound pairs [21]. We note that
the U dependence of Tc in the BEC regime in our lattice system is different from that in
continuum systems such as ultracold atomic gases; in such continuum systems, Tc does not
depend on U in the BEC regime because a typical kinetic energy of pairs n2/3/(4m) (m is the
mass of a Fermion and n is the density of Bosons) do not depend on the value of U [3, 21].
Regarding the pair-formation temperature T ∗ in the BEC regime, we can show that T ∗ is
proportional to the binding energy Eb ' U as expected. Thus, we obtain

T ∗ ∝ U. (1.1.30)

Comparing Eq. (1.1.29) with Eq. (1.1.30), we can see the separation between T ∗ and Tc

become larger as the interaction strength becomes stronger. We note that also in gas systems,
Tc ∼ const. while T ∗ ∝ U so that the separation between them occurs. The pairs emerging
between T ∗ and Tc are called the preformed pairs since they are not condensed but formed.
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Between T ∗ and Tc, the pseudogap is theoretically expected to appear [1, 28] because it
should cost finite energy to break a preformed pair into two independent Fermions.

Regarding the interaction-temperature (U -T ) phase diagram beyond the BCS or BEC
regime, we show some calculated results in the following chapters (see Figs. 2.3 and 3.1).
At finite temperatures, in a similar way to the BCS-BEC crossover in the ground state
(Sec. 1.1.1), it has been known that no phase transition occurs when the interaction is
changed from the weak-coupling BCS regime to the strong-coupling BEC regime as long as
the normal-superconducting transition does not occur. Therefore, the concept of the BCS-
BEC crossover is naturally extended to finite temperatures.

Apart from the approach in Ref. [23] (see also Chapter 2), several approximations have
been proposed to consider the fluctuation effects and calculate Tc in both lattice and con-
tinuum Fermion systems in the BCS-BEC crossover regime, including the (bare) T-matrix
approximation [1, 28, 29, 30] (see Chapters 3 and 4), the self-consistent T-matrix approxi-
mation [1, 30, 31, 32], and variant T-matrix approximations [1, 29, 33, 34, 35, 36, 37]. Also,
more quantitative quantum Monte Carlo calculations [38, 39, 40] have been performed. To
know qualitative features of phase diagrams and thermodynamic properties, the approach in
Ref. [23] or the simplest (bare) T-matrix approximation seems to be applicable through the
BCS-BEC crossover [1, 3] (note that there are some exceptions [36]). In this thesis, therefore,
the approach in Ref. [23] (Chapter 2) and the (bare) T-matrix approximation (Chapters 3
and 4) are applied to investigation of thermodynamic quantities and qualitative features of
phase diagrams.

1.2 FeSe and related materials
In this section, we explain experimental backgrounds of iron selenide (FeSe), one of the iron-
based superconductors. Though recent studies have proposed exotic properties of FeSe thin
films such as high-temperature superconductivity [41, 42, 43, 44, 45, 46, 47, 48] and emergence
of magnetic [49] or charge [50] orders, we here focus only on interesting bulk properties of
FeSe.

1.2.1 Basic properties of FeSe
FeSe is one of the iron-based superconductors and was discovered in 2008 [51]. It has a layered
structure consisting of Fe-Se layers. The lattice structure is tetragonal at a temperature
higher than the structural transition temperature Tstr ∼ 90K [51] and orthorhombic at a
temperature lower than Tstr. Superconductivity appears when a temperature is lower than
the superconducting transition temperature Tc ∼ 9K [51]. Based on resistivity data [5, 52],
the coherence lengths are estimated to be ξab ∼ 5.7nm in the ab plane and ξc ∼ 1.3nm in the
c axis. Comparing these coherence lengths with the a-axis length a = 3.78Å and c-axis length
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c = 5.52Å [53], both ξab > a and ξc > c are satisfied, so that superconductivity appearing in
FeSe is expected to have anisotropic three-dimensional nature.

The electronic band structure near the Fermi surface has been observed in the Shub-
nikov–de Haas oscillation measurement [52], the quasi-particle interference based on spectroscopic-
imaging scanning tunneling microscopy [5], and the angle-resolved photoemission spectroscopy
(ARPES) [54, 55, 56, 57]. According to these results, the band structure near the Fermi
surface consists of quasi-two-dimensional electron and hole bands. We stress that supercon-
ductivity in this material is (anisotropic) three dimensional in nature as mentioned above,
while the electronic band structure is (quasi) two dimensional.

The origin of structural and superconducting transitions and the relation between them
have been intensively discussed including other iron-based superconductors [58, 59, 60]. The
structural transition is considered to be driven by the so-called electronic nematic order [61],
in which the difference between the occupation number of the iron dxz orbital and that of
the iron dyz orbital becomes non-vanishing (nxz , nyz), due to strong electron correlation.
Since the electronic nematic order is reflected in the energy spectrum, the angle-dependent
splitting of the excitation energy appears, e.g., in the ARPES measurments [54, 55, 56, 57].
Regarding the origin of the nematicity, the spin-nematic order [61] and the orbital order [62]
have been proposed. Though the origin of superconductivity and resulting superconduct-
ing symmetry are still controversial, several novel mechanisms such as orbital-fluctuation
mediated superconductivity [63] have been theoretically suggested.

1.2.2 Possible realization of BCS-BEC crossover regime in FeSe
Apart from the microscopic origin of nematicity or superconductivity, several interesting
properties have been observed in FeSe. Three kinds of unique features of FeSe are mainly
explained in the remaining part of this subsection: a large ratio of the superconducting
transition temperature Tc to the Fermi energy EF, possible emergence of the pseudogap in
the one-particle spectrum or the electronic density of states, and strong superconducting
fluctuation effects especially under magnetic fields.

According to the quantum-oscillation measurement [52] and spectroscopic-imaging scan-
ning tunneling microscopy [5], the ratio of the superconducting transition temperature Tc to
the Fermi energy EF measured from the band bottom is very large. Specifically [5],{

Tc/EF ∼ 0.3 (for electron band)
Tc/EF ∼ 0.08 (for hole band)

. (1.2.1)

Recalling that the ratio Tc/EF is much smaller than unity in the weak-coupling BCS regime
(Sec. 1.1), we can guess that FeSe may involve strong attractive interaction and that FeSe
may be a superconductor in the BCS-BEC crossover regime [5]. Also, the superconducting
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gap ∆ in each band has a large value in units of the Fermi energy [5]:{
∆/EF ∼ 1 (for electron band)
∆/EF ∼ 0.3 (for hole band)

, (1.2.2)

which is qualitatively consistent with the speculation that FeSe involves strong attractive
interaction.

As mentioned in Sec. 1.1, emergence of the pseudogap in the one-particle spectrum is
considered to be one of the characteristic features of a Fermion system in the BCS-BEC
crossover regime. Actually, recent NMR measurements in FeSe have suggested the emergence
of the pseudogap [6, 64]. Based on the suppression of the nuclear spin-lattice relaxation
rate divided by the temperature (T1T )−1 below characteristic temperatures T ∗, emergence
of the pseudogap below T ∗ has been suggested in Refs. [6, 64]. According to Ref. [64],
T ∗ ∼ 15K ∼ 1.7Tc. Moreover, it has also been observed that T ∗(H) decreases as a function of
the magnetic-field strength H in a similar way to the superconducting transition temperature
Tc(H) [64]; this observation strongly suggests that the origin of the pseudogap is related to
superconducting phenomena and thus that the pseudogap is induced by preformed pairs
created by a strong attractive interaction between electrons. We note that the pseudogap
has not been observed in FeSe with other measurements for the one-particle spectrum such
as the scanning tunneling spectroscopy.

Strong superconducting fluctuation effects have been observed in magnetic-torque and
magnetization measurements [6]. First, according to the magnetic-torque measurements, the
diamagnetic susceptibility χdia(T ) is enhanced. In the weak-coupling BCS regime with weak
fluctuation effects, it is known that the Gaussian approximation [65] is applicable in a broad
temperature range and that we obtain the following formula for anisotropic superconductors:

χ
(Gauss)
dia (T ) = − πµ0

6φ0
2

ξab
2 Tc

ξc
√
T/Tc − 1

. (1.2.3)

Here, several symbols are used: the vacuum permeability µ0, the flux quantum φ0 = π/e

with the elementary charge e, the coherence lengths ξab in the ab plane and ξc in the c axis.
In the above-mentioned magnetic-torque measurements, χdia(T ) has been estimated to be
ten times larger or more than χ

(Gauss)
dia (T ) [6]. Since the enhancement of fluctuation effects

in the BCS-BEC crossover regime is naturally expected [66], such a large enhancement of
χdia(T ) indirectly indicates that FeSe is in the BCS-BEC crossover regime. Second, the
temperature range where the fluctuation diamagnetism is observed is much broader than in
conventional materials; actually, in FeSe, the fluctuation diamagnetism has been observed
for Tc < T < Tonset with Tonset ∼ 20K & 2Tc [6]. This also suggests that superconducting
fluctuation effects in FeSe are strong and that FeSe can be in the BCS-BEC crossover regime.
Third, the magnetization curves show the so-called crossing behavior [6, 67], which has been
also observed in quasi-two-dimensional cuprate superconductors [68]. Since this crossing
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behavior has been considered to appear in quasi-two-dimensional superconductors with strong
fluctuation effects [68, 69], it should be clarified how we can understand the crossing behavior
appearing in FeSe, in which superconductivity has anisotropic three-dimensional nature as
mentioned above. We note that the in-field specific heat in FeSe shows a broad change around
Hc2(T ) [19], which is consistent with the strong fluctuation effects; on the other hand, the
zero-field one shows a relatively sharp jump at Tc [17, 18, 19], which seemingly contradicts
the strong fluctuation nature, so that the consistency should be resolved in the future.

Regarding other materials, doped FeSe such as Fe(Se1−xSx) [70] and Fe(Se1−xTex) [7] have
been considered to be candidates for superconductors in the BCS-BEC crossover regime. In
particular, Ref. [7] proposes that the BCS-BEC crossover can be induced by doping Te in
FeSe.

1.3 Organization of this thesis
In this thesis, we investigate physical properties of superconductivity in the BCS-BEC
crossover regime, focusing on effects of fluctuation and dimensionality. In Chapter 2, fluctuation-
induced thermodynamic properties such as the specific heat and magnetization are explored.
Qualitative difference is elucidated between fluctuation effects on thermodynamics in the
BCS regime and those in the BCS-BEC crossover regime. In Chapter 3, we investigate
typical features of the field-temperature (H-T ) phase diagram in the BCS-BEC crossover
regime. Comparing the H-T phase diagram in the BCS-BEC crossover regime with that in
the conventional BCS regime, we clarify what is specific to the BCS-BEC crossover regime.
In Chapter 4, we study effects of the change in dimensionality on superconductivity with
strong pairing interaction.
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Chapter 2

Effects of superconducting fluctuation
on thermodynamic quantities

2.1 Introduction to this chapter
As shown in Sec. 1.2.2, several unique electronic properties have been observed in FeSe, one of
the iron-based superconductors. In particular, the Fermi energy of FeSe may be comparable
in magnitude to the superconducting gap [5, 52] suggesting the intriguing possibility that
electrons in FeSe effectively interact with a much stronger attractive interaction than those
in conventional superconductors; in other words, electrons in FeSe can be in the BCS-BEC
crossover regime [3]. In the following, we consider superconducting fluctuation (SCF) effects
in FeSe, which is our main focus in this chapter.

As mentioned in Chapter 1.2.2, in FeSe, thermodynamic effects of SCF near the super-
conducting transition temperaure Tc are characteristic. The observed SCF-induced diamag-
netic susceptibility in low magnetic fields is anomalously large compared to the theoretically
predicted value within the Gaussian approximation [Eq. (1.2.3)]. Also the temperature-
dependent magnetization curves in high magnetic fields show a crossing behavior [6]. This
crossing behavior has been observed mainly in strongly two-dimensional (2D) systems such as
the BSCCO compounds of the high-Tc cuprates [68] and has been theoretically supported in
a 2D model [71]. In contrast, FeSe seems to be three dimensional (3D) judging from the fact
that the size of the coherence length ξc (∼ 1.3nm [52]) along the c-axis is longer than s/

√
2,

where s (∼ 0.55nm [5]) is the interlayer spacing or the c-axis length. Hence the crossing
behavior of the magnetization curves observed in FeSe [6] is an unexpected event.

Typically, compared to the BCS regime, Tc and the coherence length are high and short in
the BCS-BEC crossover regime, respectively [3]; thus the critical region, in which fluctuation
interection is important, is enlarged [66]. Accordingly, it is natural that the SCF should
be enhanced when the system enters the BCS-BEC crossover regime. However, it is non-
trivial whether the SCF in the BCS-BEC crossover regime influences thermodynamics in the
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same manner as that in the BCS regime. Further, it is an important subject to theoretically
investigate whether the idea that FeSe is in the BCS-BEC crossover regime can explain
the observed strange thermodynamic behaviors such as the enhanced SCF effect on the
diamagnetic response.

On the basis of these backgrounds, we consider SCF effects on thermodynamics of elec-
tron systems in the BCS-BEC crossover regime under magnetic fields and elucidate several
features which are substantially different from those in the BCS regime. In the context of the
ultracold atomic gases, the fluctuation effects in the neutral superfluid systems in the BCS-
BEC crossover regime have been studied so far [72]. To the best of our knowledge, however,
the corresponding subject in superconductors under a magnetic field, and equivalently, the
thermal fluctuation effect in the neutral Fermi superfluid under rotation, i.e., the situation
where the vortices are induced by the field, has never been studied in the crossover regime.

This chapter is organized as follows. In Sec. 2.2, we explain our starting model Hamil-
tonian and our approach to estimate the SCF-induced specific heat and magnetization. In
Sec. 2.3, we present the obtained results on thermodynamic quantities in addition to some
preliminary results on the critical temperature and coherence length. In Sec. 2.4, we discuss
relevance of our results to the anomalous SCF-induced phenomena observed in FeSe under
magnetic fields and add some remarks. Finally in Sec. 2.4, we state our conclusion of this
chapter.

2.2 Theoretical approach to superconducting fluctua-
tion effects

2.2.1 Model
To consider the SCF-induced thermodynamic quantities such as the specific heat and the
diamagnetic response, we start with a simple Hamiltonian of an isotropic 3D system with a
separable attractive interaction:

H = H0 +Hint

=
∑
k,σ

k2

2mc†kσckσ −
U

V

∑
q,k,k′

ϕkϕk′c
†
q/2+k↑c

†
q/2−k↓cq/2−k′↓cq/2+k′↑. (2.2.1)

Here, m is the mass of particles, U(> 0) is the attractive interaction strength, V (= LxLyLz)
is the total volume of the system, and c(†)

kσ is the annihilation (creation) operator of a particle
with spin σ and momentum k. The interaction form factor ϕk is introduced as ϕk2 has the
Lorentzian form [23]

ϕk = 1√
1 + (k/k0)2

, (2.2.2)
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where k0 is an effective momentum cutoff, or k0
−1 represents the width of the interaction in

the real space.
We assume a system with the total number (density) of particles fixed to Ntot (ntot =

Ntot/V ) and consider a grand-canonical ensemble specified by the temperature T (= β−1) and
the chemical potential µ. Effects of an applied magnetic field is taken into account afterwards
(see Sec. 2.2.3). In a two-particle system described with Eq. (2.2.1), a two-particle bound
state can appear [29] when U is strong enough to exceed a threshold value U0 given as

U0 = 4π
mk0

. (2.2.3)

Thus we expect that a many-body system described with Eq. (2.2.1) will be in the BCS-BEC
crossover regime when U is close to U0.

Though the model described with Eq. (2.2.1) is clearly too simple to describe the electron
states in FeSe, we believe that we can sufficiently study with this model the generic nature
of the SCF effects on thermodynamics in the BCS-BEC crossover regime.

2.2.2 Shift of chemical potential
In the BCS-BEC crossover regime, as explained in Sec. 1.1, a strong attractive interaction
causes a decrease in the chemical potential from the Fermi energy defined as (3π2ntot)2/3/(2m)
(= EF). To determine the chemical potential, we calculate the thermodynamic potential in
zero field following the standard approach developed by Nozières and Schmitt-Rink [23].
First, the thermodynamic potential Ω is calculated within the ladder approximation (see
Fig. 1.6), which is equivalent to the Gaussian approximation in the functional-integral rep-
resentation [26], as

Ω = Ω0 + T
∑
q,m

e+iωm0 ln
[
1− Uχ(0)

q (iωm)
]
, (2.2.4)

where Ω0 [= −T ln Tr exp(−βH0 + βµNtot)] is the contribution from the kinetic energy of
the electrons, ωm (= 2πmT ) (m = 0,±1,±2, · · · ) is the Bosonic Matsubara frequency. In
addition, χ(0)

q (iωm) is defined as

χ(0)
q (iωm) = T

V

∑
k,n

ϕk
2G

(0)
q/2+k↑(iεn + iωm)G(0)

q/2−k↓(−iεn)

= 1
2V

∑
k

ϕk
2 tanh(βξq/2+k/2) + tanh(βξq/2−k/2)

ξq/2+k + ξq/2−k − iωm
, (2.2.5)

where ξk = ξk = k2/(2m)− µ, and G
(0)
kσ (iεn) is the free-particle Green’s function defined as

G
(0)
kσ (iεn) = 1

ξk − iεn
. (2.2.6)
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Here εn = 2π(n + 1/2)T (n = 0,±1,±2, · · · ) is the Fermionic Matsubara frequency. Next,
by differentiating Ω with respect to µ, we get the total number density:

ntot = − 1
V

∂Ω
∂µ

= 1
V

∑
k,σ

1
eβξk + 1 + T

V

∑
q,m

e+iωm0 U∂µχ
(0)
q (iωm)

1− Uχ(0)
q (iωm)

. (2.2.7)

Further, in the Gaussian approximation, the superconducting critical temperature Tc is de-
termined by

1− Uχ(0)
0 (0) = 0. (2.2.8)

From Eqs. (2.2.7) and (2.2.8), we obtain both Tc and µ(T = Tc) for a fixed ntot.

2.2.3 GL action describing zero-field SCF
In the following, we derive the Ginzburg-Landau (GL) action to describe the SCF effects on
thermodynamics near Tc. First, we rewrite the grand-canonical partition function Z in the
functional-integral form [26]:

Z = Tr e−βH+βµNtot =
∫  ∏

k,σ,n

dckσndckσn

 e−S , (2.2.9)

where the action S is defined as

S = S0 + Sint

= β

∑
k,σ,n

(−iεn + ξk) ckσnckσn −
U

V

∑
q,m

P qmPqm

 .
(2.2.10)

Here, the dimensionless Fermionic fields {ckσn, ckσn} are the Grassmann numbers, and
Pqm =

∑
k,n

ϕkcq/2−k↓−n−1cq/2+k↑n+m

P qm =
∑
k,n

ϕkcq/2+k↑n+mcq/2−k↓−n−1
(2.2.11)

Next, we use the Hubbard-Stratonovich transformation [26] to discuss fluctuation effects of
the superconducting order-parameter fields. By introducing the dimensionless Bosonic order-
parameter fields {aqm, aqm} corresponding to the superconducting order-parameter fields, we
rewrite the interaction part of the action Sint as

e−Sint =
∫ (∏

q,m

daqmdaqm

π

)
e−
∑

q,m
aqmaqme

√
βU/V

∑
q,m

(aqmPqm+aqmP qm). (2.2.12)
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Then, by integrating with respect to {ckσn, ckσn}, we obtain

Z = Z0Zeff, (2.2.13)

where Z0 (= e−βΩ0) is the non-interacting part of Z, and

Zeff =
∫ (∏

q,m

daqmdaqm

π

)
e−Seff . (2.2.14)

Here, Seff is the effective action describing the SCF, formally expressed as

e−Seff = e−
∑

q,m
aqmaqm〈e

√
βU/V

∑
q,m

(aqmPqm+aqmP qm)〉0, (2.2.15)

where 〈· · · 〉0 denotes the grand-canonical average with respect to the non-interacting part
S0.

We note that we can reproduce Eqs. (2.2.7) and (2.2.8) by expanding Seff up to the
second order in {aqm, aqm}, i.e., using the Gaussian approximation. However, since the
critical region is strongly enhanced in the BCS-BEC crossover regime [66], we need to go
beyond the Gaussian approximation, i.e., the mode coupling between the SCFs has to be
incorporated to consider the critical behavior.

To treat the mode coupling between the SCFs, or the order-parameter fields , we expand
Seff up to the fourth order in {aqm, aqm}. In addition, we neglect the quantum fluctuation
(i.e., aqm and aqm with m , 0) and use the gradient expansion, which is valid at least
when we describe the long-wavelength and low-energy SCF. This results in replacing Seff in
Eq. (2.2.14) with the GL action SGL:

SGL =
∫

d3r

{
a
[
ε|ψ|2 + ξ0

2|(−i∇)ψ|2
]

+ b

2 |ψ|
4
}
. (2.2.16)

Here ψ(r) [= V −1/2∑
q aq0 exp(iq · r)] is the classical order-parameter field in the coordinate

representation, ε [= (T − Tc)/Tc] is the dimensionless temperature measured from the Gaus-
sian critical temperature Tc, and ξ0 is the bare GL coherence length. In the following, since
only the classical fluctuation described by aq0 is considered, we omit the suffix denoting the
Matsubara index so that aq0 is simply expressed as aq. The coefficients in Eq. (2.2.16) are
expressed as

a = U

4TcV

∑
k

ϕk
2

Yk − ∂µ

∂T

Tc

ξk
Yk − 2

(
Tc

ξk

)2

Xk

 , (2.2.17)

b = U2Tc

V

∑
k

ϕk
4
(
Xk

4ξk3 −
Yk

8Tcξk
2

)
, (2.2.18)

ξ0
2 = U

aV

∑
k

ϕk
2 1
16mξk2

(
Xk −

ξk
2Tc

Yk + ξkk
2

6mTc
2XkYk

)
, (2.2.19)

whereXk = tanh[ξk/(2Tc)] and Yk = sech2[ξk/(2Tc)]. µ and ∂µ/∂T appearing in Eqs. (2.2.17)-
(2.2.19) are assumed to take their values at Tc.
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2.2.4 Zero-field SCF effect on specific heat
To calculate the SCF-induced specific heat in zero magnetic field, we have to incorporate
the mode-coupling effect in some manner. To this end, we use the variational method [73]
equivalent to the Hartree-Fock approximation, combined with the use of an effective high-
energy cutoff of the SCF modes [74]. In the following, we explain the details of this treatment.

We divide the GL action (SGL) into two parts as

SGL = S0
GL + S1

GL

=
∫

d3r a
[
η|ψ|2 + ξ0

2|(−i∇)ψ|2
]

+
∫

d3r

[
a(ε− η)|ψ|2 + b

2 |ψ|
4
]
, (2.2.20)

where η is a variational parameter corresponding to the renormalized mass of the SCF. By
tuning η to optimize a trial free-energy density given below, we expect that S0

GL will be
dominant while S1

GL will be a small perturbation [75]. The free-energy density f(ε) can be
estimated as

f = f0 −
Tc

V
ln〈e−S1

GL〉0GL ≤ f0 + Tc

V
〈S1

GL〉0GL ≡ ftri, (2.2.21)

where ftri(ε; η) is a trial free-energy density, which should be optimized, i.e., minimized, with
respect to η. Here f0(η) is the contribution from S0

GL, and 〈· · · 〉0GL is the average with respect
to S0

GL.
As mentioned above, the GL action SGL is meaningful only for the low-energy SCF. Since

SGL is isotropic in real space, it is natural that we should impose an isotropic cutoff in the
momentum space. Accordingly, we simply introduce a high-energy (and short-wavelength)
cutoff ξ0

2qc
2. In other words, we restrict the SCF modes to those satisfying

ξ0
2q2 ≤ ξ0

2qc
2 ≡ c2, (2.2.22)

where c is positive and c = O(1). Using this cutoff, we can obtain the explicit form of f0(η)
as follows:

f0(η) = −Tc

V
ln
∫ (∏

q

dReaq dImaq

π

)
e−S0

GL

= Tc

2π2ξ0
3

{
−2

9c
3 + 2

3cη −
2
3η

3/2 arctan c
√
η

+ 1
3c

3 ln
[
a
(
c2 + η

)]}
. (2.2.23)

The optimizing equation ∂ftri/∂η = 0 can be transformed into

η = ε+ 2b
a2Tc

∂f0

∂η
. (2.2.24)

Combining Eq. (2.2.23) and (2.2.24), we explicitly obtain the optimizing equation:

η = ε+ 2
π

√
Gi

(
c− √η arctan c

√
η

)
, (2.2.25)
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The Ginzburg number Gi in Eq. (2.2.25) represents the mode-coupling strength and is defined
as

Gi =
(

b

2πa2ξ0
3

)2

=
(

1
2π∆cV ξ0

3

)2

, (2.2.26)

where ∆cV is the mean-field jump of the specific heat at Tc.
The trial free-energy density ftri(ε, η) can be rewritten as

ftri(ε, η) = f0 + (ε− η)∂f0

∂η
+ b

Tca2

(
∂f0

∂η

)2

. (2.2.27)

The optimized free-energy density fopt(ε) can be obtained from the combination of Eqs. (2.2.24)
and (2.2.27). The entropy density s(ε) and specific heat cV (ε) around Tc are respectively given
as

s = −∂fopt

∂T
= − 1

2π2ξ0
3

(
c−
√
η∗ arctan c√

η∗

)
(2.2.28)

and
cV = Tc

∂s

∂T
, (2.2.29)

where η∗ is the solution of the optimizing equation [Eq. (2.2.25)]. We note that small tem-
perature dependence irrelevant to ε is neglected.

2.2.5 Renormalization of critical temperature and coherence length
at zero temperature

Now we examine how the critical temperature and the coherence length are renormalized
via the mode coupling between the SCFs. The mode coupling decreases the critical tem-
perature Tc, which is defined within the Gaussian approximation, down to a renormalized
critical temperature TcR. In the context of the ultra-cold atomic gases, TcR has been theoret-
ically estimated as a function of U using various methods. They include, e.g., the quantum
Monte Carlo method [38, 39, 40] and the self-consistent T-matrix approximation [32]. In our
formalism, TcR is determined from Eq. (2.2.25) by setting the renormalized mass η to zero:

TcR =
(

1− 2c
π

√
Gi
)
Tc. (2.2.30)

When T is so close to TcR that the condition η � c is satisfied, Eq. (2.2.25) can be rewritten
as

η = T − TcR

Tc
−
√
Gi
√
η. (2.2.31)

Therefore, the renormalized mass η is asymptotically given as

η '


T − TcR

Tc

(
Gi� T − TcR

Tc
� c

)
1
Gi

(
T − TcR

Tc

)2 (
T − TcR

Tc
� Gi

)
.

(2.2.32)
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Thus when Gi � (T − TcR)/Tc � c, the dominant part of the GL action S0
GL can be

approximated as follows:

S0
GL '

∫
d3r

(
TcR

Tc

)
a
[
T − TcR

TcR
|ψ|2 + Tc

TcR
ξ0

2|(−i∇)ψ|2
]

=
∫

d3r aR
[
εR|ψ|2 + ξ0R

2|(−i∇)ψ|2
]
, (2.2.33)

where the renormalized parameters are given as

aR =
(
TcR

Tc

)
a, (2.2.34)

εR = T − TcR

TcR
, (2.2.35)

ξ0R
2 = Tc

TcR
ξ0

2. (2.2.36)

From Eq. (2.2.36), we find that the coherence length is renormalized along with the renor-
malization of the critical temperature. Thus, it is not the bare depairing field (the so-called
upper critical field) Bc2(T ) [= φ0(Tc−T )/(2πξ0

2Tc)] but the corresponding renormalized one

Bc2R(T ) ≡ φ0(TcR − T )
2πξ0R

2TcR
(2.2.37)

that is estimated from conventional experiments, where φ0 is the flux quantum. That is,
since the coherence length determined experimentally will be not ξ0 but ξ0R, one should pay
attention to the difference between ξ0 and ξ0R especially when the mode coupling is important
as in the BCS-BEC crossover regime. Similar renormalization of the coherence length due to
the reduction of the critical temperature has also been stressed in the context of underdoped
cuprates [76].

In studying a disordered superconductor with s-wave pairing, a reduction of Tc of the
type shown in Eq. (2.2.30) may occur due to an interplay between the repulsive interaction
and the disorder especially in low-dimensional materials [77, 78, 79]. In the 3D and clean
superconductor FeSe of our interest, however, such an origin of Tc reduction is not expected
to be effective.

According to Eq. (2.2.32), the temperature dependence of the correlation length ξR(T ) =
ξ0R/

√
η(T ) defined above the superconducting transition is changed on approaching TcR, and

we have ξR(T ) ∼ (T−TcR)−1 in the vicinity of TcR. Consequently, within the present Hartree-
Fock approach, the critical behaviors of physical quantities may be remarkably different from
those in the Gaussian approximation where ξR(T ) ∼ (T − TcR)−1/2. As an illustration, we
focus here on the diamagnetic susceptibility χdia and the specific heat cV . Noting that the
singular part of the free-energy density behaves like −Tc/[ξR(T )]3 and that a change of the
flux density carries the factor [ξR(T )]2 due to the gauge invariance while cV is the second
derivative of the free-energy density with respect to T , one finds that χdia ∝ (T − TcR)−1

while cV saturates a finite value in the vicinity of TcR.
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2.2.6 SCF effect on specific heat and diamagnetism in magnetic
fields

In non-zero magnetic fields, −i∇ in the GL action [Eq. (2.2.16)] needs to be replaced with
−i∇+2πA/φ0. Here, A(r) [= (0, Bx, 0)] is the vector potential in the Landau gauge. As far
as the paramagnetic pair-breaking effect is negligible, the resulting GL action will correctly
describe the low-energy SCF around Tc in magnetic fields.

To estimate the SCF-induced diamagnetism and specific heat in magnetic fields, we use
the variational method combined with the introduction of a certain cutoff as in the zero-field
case, which is explained in the following.

We first divide the action SGL in magnetic fields into two parts:

SGL = S0
GL + S1

GL

=
∫

d3r a

η|ψ|2 + ξ0
2
∣∣∣∣∣
(
−i∇+ 2π

φ0
A

)
ψ

∣∣∣∣∣
2


+
∫

d3r

[
a (ε− η) |ψ|2 + b

2 |ψ|
4
]
. (2.2.38)

Then, in quite the same way as in the zero-field case, the trial free-energy density ftri is
estimated with f0. We stress that the equations determining the optimized free-energy density
fopt [Eqs. (2.2.21), (2.2.24), and (2.2.27)] are just the same as in the zero-field case (the
explicit form of f0 is explained in the next paragraph). However, the order-parameter field
in magnetic fields needs to be expanded as

ψ(r) =
∑

N,qy ,qz

bNqyqzfNqy(x) eiqyy√
Ly

eiqzz

√
Lz
, (2.2.39)

where N is the Landau-level index, fNqy(x) is the Nth-Landau-level eigen function, and
bNqyqz is the expansion coefficient describing the SCF mode in magnetic fields. By using this
representation, S0

GL is written as

S0
GL =

∑
N,qy ,qz

a
[
η + 2h

(
N + 1

2

)
+ ξ0

2qz
2
]
|bNqyqz |2, (2.2.40)

where h [= 2πξ0
2B/φ0 ≡ B/Bc2(0)] is a dimensionless magnetic field. Changing the integral

variables from {aq, a
∗
q} into {bNqyqz , b

∗
Nqyqz

} [cf. Eq. (2.2.23)] leads to the following formula
of f0:

f0 = −Tc

V
ln
∫  ∏

N,qy ,qz

dRebNqyqz dImbNqyqz

π

 e−S0
GL . (2.2.41)

Since SGL cannot correctly describe the high-energy SCF, we should introduce a high-
energy cutoff ξ0

2qc
2 in a similar way to Eq. (2.2.22). Here we restrict the SCF modes to those
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satisfying  2h(N + 1) + ξ0
2qz

2 ≤ ξ0
2qc

2 ≡ c2

ξ0
2qz

2 ≤ ξ0
2qc

2.
(2.2.42)

We note that the factor N+1 is different from N+1/2 appearing in Eq. (2.2.40). Combining
Eqs. (2.2.40), (2.2.41), and (2.2.42) leads to the following explicit form of f0:

f0(h; η) = Tc

2π2ξ0
3

[
c3

3 ln(2ah) + hI0(h; η)
]
, (2.2.43)

where
I0(h; η) =

∫ c

0
dx
[
ln Γ

(
η + c2

2h + 1
2

)
− ln Γ

(
η + x2

2h + 1
2

)]
. (2.2.44)

Here Γ(x) is the gamma function. With the use of Eqs. (2.2.24) and (2.2.43), the explicit
form of the optimizing equation is given by

η = ε+ 1
π

√
GiI1(h; η), (2.2.45)

where
I1(h; η) =

∫ c

0
dx
[
ψ

(
η + c2

2h + 1
2

)
− ψ

(
η + x2

2h + 1
2

)]
. (2.2.46)

Here ψ(x) = d ln Γ(x)/dx is the digamma function.
Now we explain why we choose the seemingly strange cutoff condition [Eq. (2.2.42)].

Considering the zero-field limit (h→ 0) in the finite-field expression of f0 [Eq. (2.2.43)] and
using the asymptotic form of the Gamma function, we can obtain the zero-field expression
of f0 [Eq. (2.2.23)]. As mentioned above, moreover, the equations determining the optimized
free-energy density fopt in the finite-field case are just the same as in the zero-field case and
given by Eqs. (2.2.21), (2.2.24), and (2.2.27). In other words, we can consistently reproduce
the zero-field isotropic behavior if we adopt the cutoff condition given by Eq. (2.2.42). This
is the reason why we choose the cutoff condition given by Eq. (2.2.42).

The entropy density s(ε, h) is calculated as

s = −∂fopt

∂T
= − 1

4π2ξ0
3 I1(h; η∗), (2.2.47)

where η∗ is the solution of the optimizing equation [Eq. (2.2.45)]. The specific heat cV (ε, h)
around Tc is calculated as

cV = Tc
∂s

∂T
(2.2.48)

The magnetization Mdia(ε, h) is estimated as

Mdia = −∂fopt

∂B
= − Tc

πφ0ξ0

[
c3

3h + I0(h; η∗)− I3(h; η∗)
]
, (2.2.49)
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where
I3(h; η) =

∫ c

0
dx
[
η + c2

2h ψ

(
η + c2

2h + 1
2

)
− η + x2

2h ψ

(
η + x2

2h + 1
2

)]
.

The diamagnetic susceptibility χdia(ε, h) is simply defined as χdia = µ0Mdia/B, where µ0 is
the vacuum permeability.

Before finishing this section, we note some comments. If we consider the zero-field case
(h → 0) in addition to neglecting both of the mode-coupling effect (η → ε) and the cutoff
effect (c→∞), cV approaches the familiar result in the Gaussian approximation:

cV →
1

8πξ0
3

1√
ε
. (2.2.50)

On the other hand, if we neglect both of the mode-coupling effect (η → ε) and the cutoff
effect (c→∞) while keeping the magnetic field finite, we obtain

Mdia → −
Tc

πφ0ξ0

∫ ∞
0

dxΥ
(
ε+ x2

2h + 1
2

)
, (2.2.51)

where
Υ(x) = − ln Γ(x) +

(
x− 1

2

)
ψ(x)− x+ 1

2 [1 + ln(2π)] . (2.2.52)

This formula of magnetization is equivalent to the well-known Prange’s result [80].
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2.3 Fluctuation-induced thermodynamic quantities
In the following, we show the obtained thermodynamic quantities estimated with the ap-
proach explained in Sec. 2.2. First, we fix some parameters to investigate the BCS-BEC
crossover regime as well as the weak-coupling BCS regime. Next, the renormalizations of
the critical temperature and the coherence length are shown to be quantitatively large in the
BCS-BEC crossover regime. Then, we demonstrate that the obtained specific heat and dia-
magnetic susceptibility can exceed in magnitude their Gaussian-approximation values. Next,
we explain that the so-called lowest-Landau-level scaling, observed in high-Tc cuprates [68],
can break down in the BCS-BEC crossover regime due to an increase [81] of Gi, which mea-
sures the strength of the mode coupling. Finally, we illustrate that the crossing behavior of
magnetization curves, often observed in 2D high-Tc cuprates, can still occur in the present
3D systems over a broad field range in the BCS-BEC crossover regime, even though the
lowest-Landau-level scaling is not satisfied.

2.3.1 Parameters
As a preliminary, we note the values of some parameters used in our numerical calculations.
First, by using the momentum cutoff [k0 appearing in Eq. (2.2.2)], we fix the total number
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density as ntotk0
−3 ' 0.007, which corresponds to a relatively dilute electron system. Next,

the effective high-energy cutoff is fixed as c = ξ0qc = 1 [see Eq. (2.2.42)], where ξ0 is the bare
coherence length and qc is the short-wavelength cutoff of the SCF mode. There is a tendency
for the obtained results to be qualitatively insensitive to c as long as c is small.

As mentioned in Sec. 2.1, the critical region or the Ginzburg number Gi is expected
be large in the BCS-BEC crossover regime. Hence, to fix a typical value of the attractive-
interaction strength U in each of the BCS and BCS-BEC crossover regime, we check the U
dependence of Gi and obtain the result1 shown in Fig. 2.1, where U is measured in units of
U0 = 4π/(mk0), which is the threshold value necessary to form a two-particle bound state
(see Sec. 2.2.1). Figure 2.1 shows that Gi rapidly increases as U becomes large. Reflecting
the well-known expression of Tc valid in the BCS regime [12], Tc ∝ exp[−1/(NFU)] and
∆cV ∝ Tc, where NF is the density of states at the Fermi surface; thus, ξ0 (∝ Tc

−1) sharply
decreases as U increases at least in the BCS regime (Fig. 2.2). Since Gi ∝ (∆cV ξ0

3)−2 ∝ Tc
4,

the rapid increase of Gi is mainly due to the sharp decrease of ξ0. From Fig. 2.1, we assume
that U/U0 = 0.5 (Gi ∼ 10−6) and U/U0 = 0.8 (Gi ∼ 0.2) correspond to the values for typical
BCS and BCS-BEC crossover regimes, respectively.

2.3.2 Critical temperature and coherence length
The bare critical temperature Tc and the critical temperature TcR renormalized by the mode
coupling between SCF (see Sec. 2.2.5) are shown in Fig. 2.3. Here the temperatures are
measured in units of the Fermi energy EF [= (3π2ntot)2/3/(2m)]. We see from Fig. 2.3
that the renormalization (or lowering) of the critical temperature is enhanced in the BCS-
BEC crossover regime. This is because of the strong mode coupling between SCFs, or the
large value of Gi, as mentioned in Sec. 2.3.1. We also see that TcR starts to decrease as a
function of U when U/U0 exceeds around 0.8. This may mean that our theoretical approach,
the variational method on the GL action combined with the effective high-energy cutoff, is
improper when U/U0 & 0.8. In other words, we believe that our approach should be applicable
if U/U0 . 0.8. Therefore, we restrict our analysis of the SCF effects to the interaction range
satisfying U/U0 ≤ 0.8. We note that this interaction range includes the BCS (U/U0 = 0.5)
and BCS-BEC crossover (U/U0 = 0.8) regimes defined in Sec. 2.3.1.

Figure 2.4 shows the renormalized coherence length ξ0R and the bare one ξ0 within the
range of the interaction satisfying U/U0 ≤ 0.8. We see that the renormalized coherence
length is elongated compared with the bare one especially in the BCS-BEC crossover regime.

1We neglect the term proportional to ∂µ/∂T in Eq. (2.2.17) since this term is small compared to the other
term at least in the interaction range U/U0 . 1.
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2.3.3 Specific heat and diamagnetic susceptibility
Before discussing the calculated specific heat and diamagnetic susceptibility, we mention the
well-known results in the Gaussian approximation in the low-field limit. We first consider the
case where the mode coupling is so weak as in the BCS regime that ξ0R ' ξ0 and TcR ' Tc. At
temperatures higher than the critical temperature where the mode coupling between SCF is
negligible (i.e., outside the critical region), it is known [see Eq. (2.2.50)] that the SCF-induced
specific heat c̃(Gauss)

V is represented as

c̃
(Gauss)
V = 1

8π
1

ξ0
3
√
T/Tc − 1

, (2.3.1)

and that the SCF-induced diamagnetic susceptibility χ̃(Gauss)
dia is represented as [65]

χ̃
(Gauss)
dia = − πµ0

6φ0
2

ξ0Tc√
T/Tc − 1

, (2.3.2)

where µ0 is the vacuum permeability. On the other hand, if the mode coupling is strong as in
the BCS-BEC crossover regime, the experimentally determined coherence length and critical
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temperature will be the renormalized ones ξ0R (> ξ0) and TcR (< Tc), respectively. Thus, if
we use these experimentally determined values, Eqs. (2.3.1) and (2.3.2) should be replaced
respectively with

c
(Gauss)
V = 1

8π
1

ξ0R
3
√
T/TcR − 1

(2.3.3)

and
χ

(Gauss)
dia = − πµ0

6φ0
2

ξ0RTcR√
T/TcR − 1

. (2.3.4)

Therefore, even the expression of thermodynamic quantities in the Gaussian approximation
can be greatly affected by the mode coupling in the BCS-BEC crossover regime.

First, let us start with our numerical results of the specific heat in the low-field limit.
Figures 2.5 and 2.6 respectively show the temperature dependence of the specific heat in the
BCS and BCS-BEC crossover regimes. In each figure, the red solid line is our numerical
result, while the black dotted line is the analytical result in the Gaussian approximation
[Eq. (2.3.3)].

In the BCS regime (Fig. 2.5), the numerical result is in accord with that in the Gaussian
approximation if T is sufficiently close to TcR (T/TcR − 1 . 0.01), which is consistent with
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the fact that mode coupling is so weak (i.e., Gi ∼ 10−6 � 1) that the critical behavior
cannot appear except in a very narrow temperature range (T/TcR − 1 . 10−6). When
T/TcR − 1 & 0.01, on the other hand, the numerical value is smaller than the Gaussian-
approximation value. This is simply caused by the high-energy cutoff c [see Eqs. (2.2.22)
and (2.2.42)], which is not used in the conventional Gaussian approximation and effectively
suppresses the SCF-induced thermodynamic response.

In the BCS-BEC crossover regime (Fig. 2.6), the numerical result does not fit anymore
that in the Gaussian approximation due to the strong mode coupling. In contrast to the
BCS regime (Fig. 2.5), the numerical value is larger than the Gaussian-approximation value
when the temperature is relatively far from TcR (T/TcR− 1 & 0.03). We note that saturation
of the specific heat cV (T ) at TcR in Fig. 2.6 is an artifact of the Hartree-Fock approximation
used here (see the last paragraph of Sec. 2.2.5).

Next, we show our numerical results of the diamagnetic susceptibility in the low-field
limit. Figures 2.7 and 2.8 respectively show the temperature dependence of the diamagnetic
susceptibility in the BCS and BCS-BEC crossover regimes. In each figure, the red solid line
is the numerical result, while the black dotted line is the analytical result in the Gaussian
approximation [Eq. (2.3.4)] in the same way as in Figs. 2.5 and 2.6.

In the BCS regime (Fig. 2.7), the Gaussian approximation is appropriate as the specific-
heat result if T/TcR − 1 . 0.01 and the cutoff effect appears if T/TcR − 1 & 0.01. We note
that this kind of cutoff effect on diamagnetic susceptibility has been experimentally observed
in conventional superconductors [82].

In the BCS-BEC crossover regime (Fig. 2.8), the numerical value is larger than the
Gaussian-approximation value, which is caused by the strong mode coupling as in the case
of specific heat. The obtained feature is qualitatively consistent with the data [6] in FeSe.

It should be noted that, in a disordered superconductor, an effective granularity is not
negligible in the vicinity of the criticality of the zero-field transition [83]. Our main interest
in the present work consists in the fluctuation effects in a non-zero magnetic field where a
criticality is absent until reaching a vortex-glass transition at a much lower temperature.

2.3.4 Lowest-Landau-level scaling
In this subsection, we investigate whether the obtained temperature and field dependences
of the specific heat and the magnetization follow the so-called lowest-Landau-level (LLL)
scaling around Bc2R(T ), or the renormalized Bc2(T ) [see Eq. (2.2.37)]. Before moving on
to the results, we review the properties of SCF in high magnetic fields, including the LLL
scaling. In high magnetic fields, if the mode coupling between SCFs is moderately strong,
the LLL (N = 0) modes of the order parameter field ψ(r) in Eq. (2.2.39) have a dominant
impact on thermodynamic and transport properties [71] compared to other higher-LL modes
[N ≥ 1 modes of ψ(r)]. Such restriction of SCF to the LLL modes leads to the effective
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reduction of dimensionality (from 3D to 1D) [84], which changes the second-order Bc2 transi-
tion in the mean-field approximation to a crossover and creates the first-order vortex-melting
transition [85]. Moreover, the restriction to the LLL modes simplifies the dependences of
the free energy on temperature and magnetic field [86], so that temperature and field depen-
dences of thermodynamic quantities such as the specific heat and the magnetization are also
simplified [87] as follows:

cV
∆cV

= F1(t(scaled)), (2.3.5)

Mdia ×
( √

Gi

hR
2

)1/3

= F2(t(scaled)). (2.3.6)

Here, ∆cV is the mean-field specific-heat jump [see Eq. (2.2.26)], F1(x) and F2(x) are certain
scaling functions, the dimensionless temperature t(scaled) is given as

t(scaled) = εR + hR

(
√
GihR)2/3

, (2.3.7)

εR (= T/TcR − 1) is the dimensionless temperature, and hR [= 2πξ0R
2B/φ0 ≡ B/Bc2R(0)] is

the dimensionless magnetic field, where Bc2R(T ) is the renormalized counterpart of Bc2(T )
[see Eq. (2.2.37)]. The relations such as Eqs. (2.3.5) and (2.3.6), which are based on the
restriction of SCF to the LLL modes, are called the LLL scaling. Using the LLL-scaling plot,
we can check whether the LLL modes are dominant or not.

Figures 2.9 and 2.10 show the LLL-scaling plots of the specific heat in the BCS and BCS-
BEC crossover regimes, respectively. From Fig. 2.9, we see that the LLL scaling is satisfied,
which means that the LLL modes are dominant in the BCS regime. On the other hand,
Fig. 2.10 shows that the LLL scaling breaks down, which means that the higher-LL modes
are important as well as the LLL modes in the BCS-BEC crossover regime. This can be
understood as an effect of the strong mode coupling, which makes the contribution of the
LLL modes less dominant. In fact, the renormalized fluctuation theory for the weak-coupling
BCS regime has indicated that the higher-LL modes are not negligible in describing the SCF
in lower fields satisfying [81]

B < Bc2R(0)Gi. (2.3.8)

This expression implies that, as the mode coupling increases, the LLL scaling is expected to
break down.

Figures 2.11 and 2.12 show the LLL-scaling plots of the magnetization in the BCS and
BCS-BEC crossover regimes, respectively. The LLL scaling is satisfied in the BCS regime,
while it breaks down in the BCS-BEC crossover regime consistently with the result of the
specific heat (Figs. 2.9 and 2.10).
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2.3.5 Crossing of magnetization curves
In this subsection, the crossing behavior of the magnetization curves, which has been ex-
perimentally observed in FeSe [6], is investigated in both the BCS and BCS-BEC crossover
regimes. Figures 2.13 and 2.14 show the obtained SCF-induced magnetization curves in
the BCS and BCS-BEC crossover regimes, respectively. We note that the LLL-scaling plots
shown in Figs. 2.11 and 2.12 can be obtained respectively from Figs. 2.13 and 2.14 by using
t(scaled) instead of T as the horizontal axis and Mdia×(

√
Gi/hR

2)1/3 instead of Mdia as the ver-
tical axis. The curves in Fig. 2.13 show a crossing behavior in the field range 0.1 . hR . 0.5.
On the other hand, the curves in Fig. 2.14 show a crossing in 0.01 . hR . 0.5. Therefore, in
the BCS-BEC crossover regime, the field range where the crossing behavior appears is broad
compared to that in the BCS regime.

These results of the LLL-scaling plot and the crossing behavior are summarized as follows:
in an isotropic 3D system in the BCS regime, mainly the LLL modes (N = 0) of SCF create
the crossing behavior only in a high field range (0.1 . hR . 0.5). On the other hand,
in the BCS-BEC crossover regime with stronger SCF, the higher-LL modes (N ≥ 1) of
SCF in addition to the LLL modes create the crossing behavior in a broader field range
(0.01 . hR . 0.5).
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2.4 Discussion and summary
We discuss relevance of our results to the anomalous SCF-induced diamagnetic response ob-
served in FeSe. First, our numerical result in the BCS-BEC crossover regime (Fig. 2.8) is
qualitatively consistent with the large diamagnetic susceptibility observed in FeSe [6]. Sec-
ond, the experimentally observed crossing behavior of magnetization curves [6] may also be
explained based on our result in the BCS-BEC crossover regime (Fig. 2.14). Although we
have tried to quantitatively fit our numerical results to the experimental data, no quantitative
agreement has been obtained. This may be due to our neglect of the detailed band structure
of FeSe in the present theory, which starts from an isotropic 3D continuum model. Regarding
the zero-field temperature dependence of the specific heat, while our numerical results show
the broad behavior in the BCS-BEC crossover regime (Fig. 2.6), experiments on FeSe show
a relatively sharp jump at Tc [17, 18, 19] as mentioned in Sec. 1.2.2. It will be one of the
origins of this inconsistency that an artifact of the Hartree-Fock approximation applied in
this chapter is strongly reflected in the specific-heat behavior at the transition temperature
TcR (see the last paragraph of Sec. 2.2.5 and the fourth paragraph of Sec. 2.3.3). To treat the
critical phenomena occurring around TcR beyond the Hartree-Fock approximation, we may
need a more sophisticated formulation, e.g., the renormalization group method, to consider
the higher-order interactions between fluctuations. Another possible origin of the inconsis-
tency is the fact that our starting model is too simple, and thus we should go beyond our
simple continuum model and take into account the detailed band structure as explained in
the following.

FeSe is considered to be a two-band system consisting of hole and electron bands, and
these two bands are asymmetric. That is, roughly speaking, the hole and electron bands can
be in the BCS and BCS-BEC crossover regimes, respectively [5]. In our previous work [73],
we have studied the SCF-induced diamagnetic response in a symmetric two-band system in
the BCS regime and shown that the diamagnetic susceptibility can become larger due to
high-energy modes of SCF than that in a single-band system. This can naturally lead to
an expectation that the diamagnetic susceptibility in a symmetric two-band system where
both bands are in the BCS-BEC crossover regime is also enhanced compared with that in a
single-band system in the BCS-BEC crossover regime as explored in this chapter. However,
we cannot directly apply the scheme used in the previous study to a more general asymmetric
two-band system such as FeSe since the gradient expansion in the GL action might not be
justified [88] due to the difference in the coherence length between the two bands. Therefore,
in considering a general two-band system to describe FeSe in detail, it would be better to
treat the full momentum dependence of the SCF contribution by using a more microscopic
method such as the self-consistent T-matrix approximation [30]. As for the specific-heat
jump observed in FeSe, the sharp jump can be created dominantly by the weak-coupling
band in the BCS regime, which may be investigated also in the self-consistent T-matrix
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approximation.
According to very recent experiments [70], in the superconducting state of FeSe, one of

the two superconducting gaps due to the two-band structure can vanish when the external
magnetic field is sufficiently high (µ0H & 0.5T); therefore, FeSe can effectively behave as a
single-band system when the field is high enough to satisfy µ0H & 0.5T, while the two-band
nature can appear under low fields satisfying µ0H . 0.5T. This speculation is seemingly
consistent with the fact that our numerical results based on a single-band model are quali-
tatively consistent with the high-field diamagnetic response observed in FeSe [6], while they
are inconsistent with the zero-field specific-heat jump observed in FeSe [17, 18, 19].

Before ending this chapter, we add some remarks. We have shown in our previous [73]
and the present works that, as observed in the anisotropic 3D system FeSe with ξ0,c > s/

√
2

(s is the interlayer spacing), appearance of the crossing behavior of the magnetization curves
Mdia(T ) over some field range is not limited to 2D-like systems such as a lot of high-Tc

cuprates. Therefore, contrary to an argument given elsewhere [89], this crossing behavior has
nothing to do with the dimensional crossover present in quasi-2D systems with ξ0,c < s/

√
2.

In this chapter, we have studied SCF effects on thermodynamic properties in the BCS-
BEC crossover regime by using a simple 3D electron model. As a consequence, we conclude
that the following three features can emerge due to the strong mode coupling between SCF,
which is characteristic of electron systems in the BCS-BEC crossover regime. First, the SCF-
induced specific heat and diamagnetic susceptibility can seemingly exceed the corresponding
values in the Gaussian approximation (Figs. 2.6 and 2.8). Second, the LLL scaling can
break down (Figs. 2.10 and 2.12), which means that the higher-LL modes (N ≥ 1) of SCF
are important in addition to the LLL modes (N = 0). Third, the crossing behavior of
magnetization curves can appear in a broad range of magnetic fields (Fig. 2.14), which is
caused by both the LLL and higher-LL modes.
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Chapter 3

Features of field-temperature phase
diagram

3.1 Introduction to this chapter
As mentioned in Sec. 1.2, recent experiments have suggested that a strong attractive in-
teraction can exist in FeSe and related superconductors [5, 7], which can pave the way for
material realization of the BCS-BEC crossover. In contrast to the electrically neutral ultra-
cold atoms, electrons in a superconductor are charged and thus naturally coupled with the
gauge field of an external magnetic field. Therefore, FeSe and related materials can provide
an opportunity to experimentally study unexplored effects of the magnetic gauge coupling
on superconductors with strong attractive interaction. In fact, superconducting fluctuation
effects on diamagnetic response observed in FeSe are unusually enhanced compared with
those in conventional superconductors [6], which may be understood as caused by the strong
attractive interaction [8] as explained in detail in Chapter 2. Recent NMR measurements
have proposed that a pseudogap caused by the preformed-pair formation can exist [64]. Ac-
cording to this NMR measurement, the onset temperature of the pseudogap depends on the
magnetic-field strength [64], which suggests that the pseudogap in FeSe should be related
to superconductivity. Though properties of a single vortex [90, 91] and zero-temperature
vortex formation in trapped Fermion gases [92] in the BCS-BEC crossover regime have been
investigated, a theoretical understanding of the field-temperature (H-T ) phase diagram with
strong attractive interaction is still incomplete.

The H-T phase diagram of a superconductor with strong fluctuation has been thoroughly
investigated in relation to high Tc cuprates [81, 93, 94] which are believed to belong to
superconductors with high particle density. There, it has been clarified by developing the
superconducting fluctuation theory [93, 95] that the so-called upper critical field Hc2(T ) in the
three-dimensional (3D) type-II superconductor is not a phase transition line but a crossover
one separating the vortex-liquid region from the normal phase affected by a weak fluctuation
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effect, and that, in clean 3D materials, the genuine superconducting ordering occurs as a
weak first-order transition corresponding to the vortex-lattice melting [96]. The vortex-lattice
melting curve Hmelt(T ) can alternatively be determined by examining the elastic energy of
the mean-field vortex-lattice state and invoking the Lindemann criterion [94]. In the so-called
lowest-Landau-level (LLL) approach to the GL theory, it is believed that Hmelt(T ) should
be found as a consequence of the superconducting fluctuation. In fact, the fluctuation effect
shows the scaling behavior of the form T −Tc(H) ∼ (TH)2/3 [95], while the field dependence
of the melting temperature also obeys this scaling behavior [97].

In this chapter, we theoretically investigate qualitative features of the H-T phase dia-
gram of superconductors with strong attractive interaction. To obtain a qualitative picture,
we start with a simple attractive Hubbard model. Using the T-matrix approximation com-
bined with analysis of the Ginzburg-Landau action, we estimate three types of characteristic
magnetic fields: the pair-formation field H∗, the vortex-liquid-formation field Hc2, and the
vortex-lattice-formation field Hmelt. The region between Hc2 and Hmelt, as well as that be-
tween H∗ and Hmelt, is found to become broader as the attractive interaction gets stronger.
Based on this result, we conclude that a strong attractive interaction can stabilize both the
vortex-liquid and the preformed-pair regions.

3.2 Preliminary analysis of zero-field phase diagram
To consider qualitative magnetic-field effects on electron systems with strong attractive in-
teraction, we begin with a simple attractive Hubbard model on a simple cubic lattice:

H = −t
∑
〈i,j〉,σ

(
c†iσcjσ + c†jσciσ

)
− U

∑
i

c†i↑c
†
i↓ci↓ci↑. (3.2.1)

Here, c(†)
iσ is the annihilation (creation) operator of an electron with spin σ at site i, and

〈i, j〉 means a nearest-neighbor pair of sites. There are two parameters in our model: the
nearest-neighbor hopping amplitude t(> 0) and the onsite attractive interaction U(> 0).
For simplicity, the magnetic-field term is introduced at the stage of analyzing our Ginzburg-
Landau functional (see Secs. 3.3 and 3.6.2). Basically, this simplification, equivalent to the
electronic semi-classical approximation, corresponds to neglecting the Landau quantization
of electron kinetic energy. In the following, the lattice constant is set to unity.

3.2.1 Zero-field pair-formation and pair-condensation temperatures
As a preliminary step to explore magnetic-field effects, we estimate the zero-field pair-
formation and pair-condensation temperatures. Though the results presented in this sec-
tion is well-known [21], we show them for completeness. As shown in the following, the
pair-formation temperature T ∗ is calculated within the mean-field approximation [26, 98],
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and the pair-condensation temperature Tc is calculated within the T-matrix approxima-
tion [1, 28, 29, 30]. As explained in Sec. 1.1, the T-matrix approximation can take into
account the shift of chemical potential due to superconducting fluctuation, which is impor-
tant when the attractive interaction is strong, and in addtion the particle density is not so
high [23].

To calculate T ∗, we apply to Eq. (3.2.1) the mean-field approximation, or equivalently,
combine the following two equations with each other: the condition for divergence of the
uniform superconducting susceptibility [see Eq. (3.2.4) for its definition]

χ
(SC)
0 =∞, (3.2.2)

and the particle-number conservation for non-interacting particles

n = 2
M

∑
k

1
exp[(εk − µ)/T ] + 1 . (3.2.3)

Here, we define several symbols: particle density (per site) n, chemical potential µ, tem-
perature T , the total number of lattice sites M = MxMyMz, the lattice momentum with
the periodic boundary condition kα = 2πnα/Mα (−Mα/2 ≤ nα < Mα/2 with nα ∈ Z), and
the energy dispersion of non-interacting particles εk = −2t(cos kx + cos ky + cos kz). The
superconducting susceptibility with pair (or center-of-mass) momentum q is defined as

χ(SC)
q =

χ(0)
q (0)

1− Uχ(0)
q (0)

, (3.2.4)

where
χ(0)

q (iωm) = T

M

∑
k,n

G
(0)
k+q(iεn + iωm)G(0)

−k(−iεn). (3.2.5)

Here, εn = 2π(n + 1/2)T (ωm = 2πmT ) is the Fermion (Boson) Matsubara frequency, and
G

(0)
k (iεn) = (iεn − εk + µ)−1 is the non-interacting Green’s function.

As for Tc, we apply the T-matrix approximation. This approximation combines the
divergence of the susceptibility χ(SC)

0 =∞, which is the same condition as defining T ∗, with
the particle-number conservation

n = 2T
M

∑
k,n

Gk(iεn)e+iεn0, (3.2.6)

in which superconducting fluctuation effects are taken into account. Here, Gk(iεn) is the
interacting-particle Green’s function, which is defined as

Gk(iεn)−1 = G
(0)
k (iεn)−1 − Σk(iεn), (3.2.7)
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and Σk(iεn) is the self energy defined within the T-matrix approximation as

Σk(iεn) = − T

M

∑
q,m

G
(0)
q−k(iωm − iεn)

U2χ(0)
q (iωm)

1− Uχ(0)
q (iωm)

e+i(ωm−εn)0. (3.2.8)

Here, the temperature-independent Hartree shift

Σ(H) = −U T

M

∑
k,n

Gk(iεn)e+iεn0 = −Un2 , (3.2.9)

is already taken into account by properly choosing the origin of energy; therefore we do not
explicitly consider Σ(H) [10, 30]. Regarding the diagrammatic representation of the T-matrix
approximation, see Fig. 4.5.

To explain physical meanings of the definitions of T ∗ and Tc, it is convenient to consider
the strong-coupling BEC limit (see also Sec. 1.1). In this strong-coupling limit (U/t→∞),
we can show that T ∗ ∝ |µ| ∝ U ∝ Eb, where Eb is the two-particle binding energy [10];
therefore, T ∗ can be interpreted as the pair-formation (or pair-breaking) temperature. As
for Tc, in the same limit, we obtain an asymptotic formula Tc ∝ t2/U , which represents the
BEC transition temperature of non-interacting Bosons (or preformed-pairs) with a nearest-
neighbor hopping amplitude tB ∝ t2/U [21]; accordingly, Tc can be understood as the pair-
condensation temperature.

Figure 3.1 shows an interaction strength v.s. temperature phase diagram obtained from
the equations listed above with the particle density fixed to n = 0.2. As seen from Fig. 3.1,
the preformed-pair region becomes broader as the interaction gets stronger. In Fig. 3.1, we
also show with a gray dotted line the threshold value U = U0 ' 8.14t for the formation of a
two-particle bound state [10, 29, 35]. Note that the BCS-BEC crossover occurs close to U0.

As shown in Fig. 3.2, the chemical potential µ is remarkably reduced when the attractive
interaction U approaches U0. When U is larger than U0, µ tends to become lower than the
band bottom.

In the following, we focus on systems where U < U0 is satisfied so that the decrease
in µ is not so large. More specifically, we consider two systems with different values of U :
U/t = 2.57 and U/t = 5.14 (see the green and yellow dotted lines in Figs. 3.1 and 3.2).

3.3 Theoretical approach to orbital magnetic-field ef-
fects

To understand qualitative features of the H-T phase diagram, we estimate three kinds of
magnetic field values: the pair-formation field H∗, the vortex-liquid-formation field Hc2, and
the vortex-lattice-formation field Hmelt. In the following, the direction of magnetic field
is fixed in parallel to the z axis, and we assume strongly type-II systems and neglect the
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Figure 3.1: Interaction strength v.s. temperature phase diagram for the particle density
n = 0.2 in zero field. The pair-formation temperature T ∗ (blue dashed line) roughly sepa-
rates the normal-state region (gray area) from the preformed-pair region (blue area). The
pair-condensation, or superconducting transition, temperature Tc (red solid line) separates
the preformed-pair region from the superconducting (SC) region (red area). The threshold
interaction value U = U0 ' 8.14t for the formation of a two-particle bound state (gray dotted
line) and the values of interaction used in the analysis in Sec. 3.4, U = 2.57t (green dotted
line) and 5.14t (yellow dotted line), are also shown.

difference between the applied magnetic field and the magnetic field in the system (B =
µ0H). As mentioned in Sec. 3.2, we neglect the Landau quantization of the electron kinetic
energy.

The pair-formation field H∗ is calculated in a similar way to the calculation of T ∗. To
introduce the effect of magnetic field H, we only have to replace the condition for divergence
of the uniform superconducting susceptibility [Eq. (3.2.2)] with that for divergence of a finite-
momentum superconducting susceptibility [99]

χ(SC)
qH

=∞, (3.3.1)

where qH2 =
√

2πµ0H/φ0 and χ(SC)
q is given in Eq. (3.2.4). Here µ0 is the vacuum perme-

ability, and φ0 = π~/e is the flux quantum. χ(SC)
qH

approximately describes the susceptibility
for states with the lowest-Landau-level index and uniform in the z direction. As for a free-
particle number equation to determine the chemical potential, we adopt Eq. (3.2.3) since
we neglect the Landau quantization of the electron kinetic energy. Therefore, we combine
Eq. (3.3.1) with Eq. (3.2.3) to estimate H∗. The curve (T,H∗(T )) merges into (T ∗, 0) in the
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Figure 3.2: Chemical potential µ at the pair-condensation temperature Tc for the particle
density n = 0.2. The vertical axis is measured from the bottom of the non-interacting energy
band −6t in units of the Fermi energy EF. In the same way as Fig. 3.1, the threshold value
of interaction U = U0 ' 8.14t for the formation of a two-particle bound state (gray dotted
line) and the values of interaction used in the analysis in Sec. 3.4, U = 2.57t (green dotted
line) and 5.14t (yellow dotted line), are also shown.

low-field limit; thus H∗ can be regarded as a natural extension of T ∗ to the finite-field region.
The vortex-liquid formation field Hc2 is estimated in a similar way to the calculation of

Tc. Since we focus on systems with U < U0 (see the green and yellow dotted lines in Fig. 3.2),
where the decrease in µ is not so large and the T dependence of µ is not so important, we
simply approximate

µ(T,H) ∼ µ(Tc, 0), (3.3.2)

where µ(Tc, 0) is obtained within the T-matrix approximation (see Sec. 3.2.1 and Fig. 3.2).
This approximation is correct at least in the weak-coupling limit, and we believe that this
approximation is a first step to consider magnetic-field effects in the case with strong attrac-
tive interaction. After we replace µ(T,H) with µ(Tc, 0), we solve Eq. (3.3.1) to estimate Hc2.
Similar to the case of H∗, the curve (T,Hc2(T )) merges into (Tc, 0) in the low-field limit; thus
Hc2 can be understood as an extension of Tc to the finite-field region.

Regarding the vortex-lattice-formation field Hmelt, we apply an analysis based on the
Ginzburg-Landau analysis [100, 101] in the lowest-Landau-level approximation [97, 102],
which is valid closer to the Hc2 line [69, 97, 103]. First, as explained in Sec. 3.6.1, we derive
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the zero-field Ginzburg-Landau functional FGL:

FGL =
∑

q

T
(
1− Uχ(0)

q (0)
)
|aq|2 + β

2
∑
i

|ai|4. (3.3.3)

Here, ai = M−1/2∑
q exp(iq · ri)aq, and the coefficient β is given as

β = T 3U2

M

∑
k,n

∣∣∣G(0)
k (iεn)

∣∣∣4 . (3.3.4)

As shown in Sec. 3.6.2, by applying the lowest-Landau-level approximation to Eq. (3.3.3)
with replacement of the momentum in the x-y plane by qH consistently with Eq. (3.3.1) and
using the gradient expansion in the z direction, we obtain

FGL ∼
∫

d3r

[(
αqH
|ψ(r)|2 + γ|∂zψ(r)|2

)
+ β

2 |ψ(r)|4
]
, (3.3.5)

where the order-parameter field ψ(r) involves only the lowest-Landau-level modes in the x-y
plane. The coefficients are given as follows:

αqH
= T

[
1− Uχ(0)

qH
(0)
]
, (3.3.6)

and

γ = −T
2Ut

M

∑
k,n

[
G

(0)
k (iεn)

]2
G

(0)
−k(−iεn)

[
cos kz + 4tG(0)

k (iεn) sin2 kz
]2
. (3.3.7)

As shown in Sec. 3.6.3, based on Eq. (3.3.5), the vortex-lattice-formation field Hmelt is ap-
proximately calculated by solving the following equation:

T

4π√ρsc66
= c2

h
. (3.3.8)

Here, h = 2πµ0H/φ0 is a dimensionless magnetic field (note that the lattice constant is set
to unity), and c = O(10−1) is a phenomenological parameter [97]. Also, c66 and ρs represent
the shear modulus of the vortex lattice and the superfluid density defined along the magnetic
field, respectively (see Sec. 3.6.3):

c66 = 2γA|αqH
|2

βA
2β

, (3.3.9)

and
ρs = 2|αqH

|γ
βAβ

(3.3.10)

with numerical factors related to the triangular vortex-lattice structure: βA ' 1.16 and
γA ' 0.119. To obtain Hmelt, we solve Eq. (3.3.8) in combination with the approximated
chemical potential [Eq. (3.3.2)].
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Figure 3.3: Field-temperature (H-T ) phase diagrams. Figures (a) and (b) respectively show
the weak-interaction (U/t = 2.57) and strong-interaction (U/t = 5.14) cases with lower
density (n = 0.2). Figures (c) and (d) respectively show the weak-interaction (U/t = 2.57)
and strong-interaction (U/t = 5.14) cases with higher density (n = 0.5). In each figure, the
pair-formation field H∗ (blue dashed line) separates the normal-state region (gray area) from
the preformed-pair region (blue area), the vortex-liquid-formation field Hc2 (purple dashed
line) separates the preformed-pair region from the vortex-liquid region (purple area), and the
vortex-lattice-formation field Hmelt (red solid line) separates the vortex-liquid region from
the vortex-lattice region (red area). In all data, the phenomenological parameter to describe
Hmelt is fixed as c = 0.5 (see the main text).
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3.4 Field-temperature phase diagram
Based on numerically calculated H∗, Hc2, and Hmelt, we obtain typical H-T phase diagrams
(Fig. 3.3). Since our purpose is to investigate qualitative features of the H-T phase dia-
gram, we fix the phenomenological parameter to estimate Hmelt as c = 0.5 throughout our
calculation. A slight change in c does not affect the qualitative features. Figures 3.3(a) and
(b) respectively show the weak-interaction (U/t = 2.57) and strong-interaction (U/t = 5.14)
cases with lower density (n = 0.2). Comparing Figs. 3.3(a) and (b), we can see that the
vortex-liquid region between Hc2 and Hmelt, as well as the preformed-pair region between
Hc2 and H∗, becomes broader as the interaction becomes stronger; therefore, a strong at-
tractive interaction stabilizes both the vortex-liquid and the preformed-pair regions.

Let us consider physical reasons why both the vortex-liquid and preformed-pair states are
stabilized by a strong attractive interaction. First, the stabilization of the preformed-pair
state can be understood in the same way as the zero-field case: a strong attractive interaction
makes it easy to create non-condensed pairs, or preformed pairs [3]. Second, the stabiliza-
tion of the vortex-liquid region can be understood based on the superconducting fluctuation
strength: as the attractive interaction gets stronger toward the BCS-BEC crossover regime,
the fluctuation becomes more significant [8, 66], and thus the vortex-liquid region becomes
wider.

Figures 3.3(c) and (d) show the obtained phase diagrams with higher density (n = 0.5).
Similar to the case with lower density (n = 0.2), we can see that both the vortex-liquid and
the preformed-pair regions are stabilized when the interaction is strong. Moreover, comparing
the higher density case [Figs. 3.3(a) and (b)] with the lower density case [Figs. 3.3(c) and
(d)], we can see that the vortex-liquid region is broader while the preformed-pair region is
narrower when the density is higher. From this result, we conclude that the particle density,
in addition to interaction strength, is an important factor in determining the resultant H-T
phase diagram.

Here, we point out that keeping only the LLL modes among various order parameter’s
spatial variations is an approach from the weak fluctuation in the following sense: it is
clear that, in the weak-field limit, the LLL mode vanishes so that the fluctuation-induced
downward shift of Tc in zero field, ∆Tc(0), cannot be described within the present approach.
To describe ∆Tc(0), it is necessary to incorporate the higher-Landau-level (HLL) modes in
our calculation. In fact, the HLL modes incorporating the vortex-loop fluctuations [81, 104]
should lead to not only ∆Tc(0) and a shift of the Hc2(T ) line in low fields accompanying it
but also a downward shift of Hmelt(T ) and a change of its temperature dependence in low
enough fields. Although such effects have been omitted in the present LLL approach, this
simplification is not essential to our purpose here of understanding a qualitative picture of
the H-T phase diagram in superconductors with a strong pairing interaction.
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3.5 Discussion and summary
In this chapter, to obtain typical H-T phase diagrams in electron systems with strong at-
tractive interaction, we estimate the pair-formation field H∗, the vortex-liquid-formation field
Hc2, and the vortex-lattice-formation field Hmelt. Based on numerical calculations, we find
that a strong attractive interaction can stabilize both the vortex-liquid and the preformed-
pair regions. In addition, we point out that the particle density also influences the resultant
phase diagram.

In the preformed-pair and vortex-liquid regions stabilized by strong attractive interaction,
thermodynamic and transport properties are expected to be characteristic. In particular, the
Hall conductivity in the vortex-liquid region can be enhanced by superconducting fluctuation
effects [105, 106] since the dynamics of the superconducting order parameter can involve a
larger propagating part when the interaction is stronger [26].

In the end of this section, we discuss the H-T phase diagram in FeSe suggested by several
experiments [5, 6, 64]. We do not comment on the high-field low-temperature phase (“B-
phase”) proposed in Ref. [5] since in our calculation we do not take into account the Zeeman
coupling of magnetic field, which might be important in the high-field low-temperature region.
Let us consider other aspects of FeSe. First, a large pseudogap region above Hc2 in the
H-T plane is suggested in Ref. [64]. If we assume that the pseudogap is caused by the
preformed pair [1, 28], we can interpret the observed pseudogap region as the preformed-
pair region stabilized by a strong attractive interaction as in Fig. 3.3(b). Second, a crossing
of magnetization curves [68, 71] is observed in Ref. [6]. As explained in Chapter 2, this
crossing can be understood as caused by a strong attractive interaction [8] in the vortex-
liquid region. This vortex-liquid region can be understood as stabilized also by the strong
attractive interaction. Third, the Hall, Seebeck, and Nernst coefficients have shown their
maximum or minimum near a temperature T ∼ 2Tc with weak dependence on H [6]. Though
a strong attractive interaction might be related to this behavior, the detailed electronic
structure [5, 52, 107] should be taken into account to discuss such transport phenomena
since FeSe is an almost compensated semimetal [5] and compensation of electron and hole
carriers can make the sign of transport coefficients, such as the Hall coefficient, subtle.

In addition, we discuss the resistive vanishing in FeSe in finite fields. As stressed in the
present work as well as Ref [10], a broad preformed-pair region is expected, as in Fig. 3.3(b), to
lie above the nominal Hc2(T ) curve in FeSe. If so, the fact [5, 6] that the vortex-liquid region
is relatively narrow in the experimental phase diagram of FeSe needs to be clarified. This
discrepancy may be due to the fact that the resistivity vanishes at a much higher temperature
than Hmelt(T ) defined in clean limit. This possibility occurs when the resistivity vanishes
through a vortex-glass transition due to the vortex pinnings to columnar defects or correlated
defects [108, 109]. Another possibility is that the vortex-liquid region has estimated to be
much narrower from the resistivity data than the actual one. This may occur when the
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quantum fluctuation neglected in the present study is not negligible [110]. If this scenario is
true, the resistivity is insensitive to the position of the actual Hc2 and, upon cooling, begins
to vanish close to a vortex-glass transition, which lies near Hmelt and much below the actual
Hc2.

As another possible scenario to explain why the vortex-liquid region is estimated to be
relatively narrow in FeSe, let us consider the two-band structure characteristic of FeSe [5,
52, 107]. If a strong attractive interaction is present in one of these bands while a weak
attractive interaction exists in another band, the vortices due to the former band can be
pinned by the vortex lattice generated by the latter band. If this is true, the vortex-liquid
region can become relatively narrow compared to the case considered in the present work
where only a single band with strong attractive interaction exists. This possibility will be
examined in details elsewhere.

3.6 Derivations of some formulas

3.6.1 Derivation of Ginzuburg-Landau functional
Here we derive the zero-field Ginzburg-Landau functional given by Eq. (3.3.3). By using the
functional integral representation [26, 66, 72], we can formally rewrite the grand-canonical
partition function Z as

Z =
∫  ∏

k,σ,n

dc∗kσ(εn)dckσ(εn)
 e−(S0+Sint), (3.6.1)

where
S0 = 1

T

∑
k,σ,n

[
−G(0)

k (iεn)−1
]
c∗kσ(εn)ckσ(εn), (3.6.2)

Sint = − U

TM

∑
q,m

φ∗q(ωm)φq(ωm), (3.6.3)

and
φq(ωm) =

∑
k,n

c−k↓(−εn)ck+q↑(εn + ωm). (3.6.4)

Here, ckσ(εn) and c∗kσ(εn) are the Grassmann numbers, and G
(0)
k (iεn) = (iεn − εk + µ)−1 is

the non-interacting Green’s function.
Introducing the order-parameter field aq(ωm) and a∗q(ωm) with the Hubbard-Stratonovich

transformation, we can obtain the following expression:

e−Sint =
∫ [∏

q,m

da∗q(ωm)daq(ωm)
π

]
e−
∑

q,m
|aq(ωm)|2e

√
U/(TM)

∑
q,m

[a∗q(ωm)φq(ωm)+c.c.]. (3.6.5)
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Using this expression, we can transform the partition function as

Z

Z0
=〈e−Sint〉0

=
∫ [∏

q,m

da∗q(ωm)daq(ωm)
π

]
e−
∑

q,m
|aq(ωm)|2

〈
e
√
U/(TM)

∑
q,m

[a∗q(ωm)φq(ωm)+c.c.]
〉

0
. (3.6.6)

Here, Z0 =
∫

[∏k,σ,n dc∗kσ(εn)dckσ(εn)]e−S0 is the non-interacting partition function, and 〈· · · 〉0
represents the grand-canonical ensemble average with respect to the non-interacting part S0.
Expanding the last term in Eq. (3.6.6) with respect to the order-parameter field aq(ωm) and
a∗q(ωm) up to the fourth order and neglecting Bosonic quantum fluctuation, we can finally
obtain the following form:

Z

Z0
∼
∫ [∏

q

da∗qdaq

π

]
e−FGL/T, (3.6.7)

where we write aq = aq(0) for simplicity. Here, FGL is the Ginzburg-Landau functional, the
explicit form of which is given as

FGL =
∑

q

T
[
1− Uχ(0)

q (0)
]
|aq|2 + β

2
∑
i

|ai|4, (3.6.8)

where ai = M−1/2∑
q exp(iq · ri)aq is the real-space order-parameter field,

χ(0)
q (iωm) = T

M

∑
k,n

G
(0)
k+q(iεn + iωm)G(0)

−k(−iεn), (3.6.9)

and
β = T 3U2

M

∑
k,n

∣∣∣G(0)
k (iεn)

∣∣∣4 . (3.6.10)

3.6.2 Lowest-Landau-level approximation of Ginzburg-Landau ac-
tion

In the following, we explain how we obtain the approximated expression of the Ginzburg-
Landau functional [Eq. (3.3.5)]. Neglecting the Landau quantization of electrons, the external
magnetic field affects the energy eigenstate of the order-parameter field ai. At large length
scales, the lattice structure is not important so that we can focus on the long-wavelength
parts of ai and can replace ai defined on lattice with ψ(r) defined in continuum space (note
that the lattice constant is set to unity). Then, to perform our calculation in a finite magnetic
field parallel to the z axis, we can rewrite Eq. (3.3.3) as

FGL '
∫

d3r

(
ψ∗αQψ + γ|∂zψ|2 + β

2 |ψ|
4
)
, (3.6.11)
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where
αQ = T

[
1− Uχ(0)

Q (0)
]

(3.6.12)

with Q = −i∇⊥+ 2πA/φ0 is the gauge-invariant gradient in the directions perpendicular to
the field, and

γ = −T
2Ut

M

∑
k,n

[
G

(0)
k (iεn)

]2
G

(0)
−k(−iεn)

[
cos kz + 4tG(0)

k (iεn) sin2 kz
]2
. (3.6.13)

Here we introduce magnetic-field effects through a minimal coupling of the vector potential
A(r) to the order-parameter field ψ(r).

To diagonalize the second-order terms of Eq. (3.6.11), we expand the order-parameter
field as

ψ(r) =
∑

N,nd,qz

bNndqzfNnd(x, y) eiqzz

√
Lz
, (3.6.14)

where N is the Landau-level index, nd is the degeneracy index for each Landau level with
(µ0HLxLy/φ0)-fold degeneracy, qz is the z-directional momentum, and fNnd(x, y) is the Nth
Landau-level eigenfunction [note that the lattice constant is unity so that Li = Mi (i =
x, y, z)]. Though, in general, it is not clear whether the second-order terms of Eq. (3.6.11)
are diagonalized with the bases appearing in Eq. (3.6.14), at least the lowest-order Q2 terms
are exactly diagonalized with these bases. Respecting this fact and substituting Eq. (3.6.14)
into Eq. (3.6.11), we obtain the diagonalized second-order terms:

FGL '
∑

N,nd,qz

(
α√2N+1qH

+ γqz
2
)
|bNndqz |2 +

∫
d3r

β

2 |ψ|
4, (3.6.15)

where qH2 = l−1 =
√

2πµ0H/φ0. Therefore, through the Landau quantization of the order-
parameter field, we basically replace squared gauge-invariant gradient Q2 defined in the x-y
plane with discrete levels (2N + 1)/l2.

As far as we focus our attention on the region relatively near Hc2(T ), we just take into
account the contribution from the lowest Landau-level mode [69, 81, 97, 103]; then we can
obtain from Eq. (3.6.15) the following expression:

FGL '
∑
nd,qz

(
αqH

+ γqz
2
)
|b0ndqz |2 +

∫
d3r

β

2 |ψ|
4. (3.6.16)

Conversely using the expansion of the order-parameter field [Eq. (3.6.14)] as well as consid-
ering only N = 0 mode, we finally obtain

FGL '
∫

d3r

[(
αqH
|ψ|2 + γ|∂zψ|2

)
+ β

2 |ψ|
4
]
, (3.6.17)

where ψ(r) only involves the lowest Landau-level mode (N = 0).
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Figure 3.4: Schematic figure of a unit cell of the triangular vortex lattice (blue area). Prim-
itive lattice vectors (a and b) as well as the size of the unit cell are shown. Note that one
quantum flux penetrates one unit cell [(

√
3π/k) · (2π/k) = 2πl2 = φ0/(µ0H)].

3.6.3 Derivation of vortex-lattice-formation field
In the following, we explain how we estimate the vortex-lattice-formation field Hmelt and ob-
tain Eq. (3.3.8) starting with Eq. (3.3.5). Since the mean-field solution minimizing Eq. (3.3.5)
is given by the triangular vortex-lattice state, we consider the Gaussian fluctuation around the
triangular vortex-lattice state [100, 101] within the lowest-Landau-level approximation [97,
102] and then apply the Lindemann criterion to estimate Hmelt [97], at which the first-order
melting transition to the vortex-liquid state occurs. Since our formulation is basically based
on Refs. [97, 102], we here just present an overview. In the following, we assume the Landau
gauge A(r) = −µ0Hyx̂. In this subsection, r denotes a coordinate vector xx̂+ yŷ in the x-y
plane.

As a complete orthonormal set of bases diagonalizing the second-order terms of Eq. (3.3.5),
we consider a set of triangular vortex-lattice states with z-directional modulation:{

ϕ(r|r0) eiqzz

√
Lz

}
r0,qz

, (3.6.18)

where {ϕ(r|r0)} represents a two-dimensional triangular vortex lattice with a unit cell shown
in Fig. 3.4, and the position of the vortices is related to r0:

r0 = x0x̂+ y0ŷ =
(

2πl2
Ly

nx + 2πl2√
3Lx

ny

)
x̂+ 2πl2

Lx
nyŷ. (3.6.19)

53



Here l =
√
φ0/(2πµ0H) is the magnetic length. The degeneracy indices of the lowest Landau

level, nx and ny, satisfy

nx ∈
[
− Ly

2kl2 ,
Ly

2kl2
)
, ny ∈

[
−
√

3Lx
4kl2 ,

√
3Lx

4kl2

)
(3.6.20)

with k =
√√

3π/l. We note that the degeneracy of the lowest Landau level can be calculated
as [Ly/(kl2)] · [

√
3Ly/(2kl2)] = LxLy/(2πl2) = µ0HLxLy/φ0. The domain of r0 is equivalent

to the unit cell shown in Fig. 3.4. As shown in the following, functions {ϕ(r|r0)}r0 with r0

out of the unit cell are linearly dependent on those with r0 within the unit cell.
The specific form of the eigenfunctions {ϕ(r|r0)} is given as

ϕ(r|r0) = e−iy0x/l2ϕ(r + r0|0), (3.6.21)

and
ϕ(r|0) = 31/8√

LxLy

∞∑
n=−∞

eiknx−iπn2/2−(y−kl2n)2/(2l2). (3.6.22)

Defining primitive lattice vectors a = (2π/k)x̂ and b = (π/k)x̂ + (
√

3π/k)ŷ as shown in
Fig. 3.4, we obtain from Eq. (3.6.22) the following (quasi)periodicity of ϕ(r|0):ϕ(r + a|0) = ϕ(r|0)

ϕ(r + b|0) = ieikxϕ(r|0),
(3.6.23)

As for a general lattice vector R = maa +mbb, we can show from Eq. (3.6.23) the following
quasiperiodicity:

ϕ(r + R|0) = ei(πmb
2/2+mbkx)ϕ(r|0). (3.6.24)

Combining Eqs. (3.6.21) and (3.6.24), we can obtain

ϕ(r|r0 + R) = ei(πmb
2/2+mbkx0)ϕ(r|r0), (3.6.25)

which shows that ϕ(r|r0) and ϕ(r|r0 + R) are not independent; therefore, we only have
to consider a set {ϕ(r|r0)}r0 where r0 is in a unit cell of the vortex lattice. Moreover,
Eqs. (3.6.22) and (3.6.21) lead to the following orthonormal relation:∫

S
d2rϕ∗(r|r0)ϕ(r|r′0) = δr0,r′0

, (3.6.26)

where S means the entire x-y plane.
From Eqs. (3.6.21) and (3.6.24), we can show another relation:

ϕ(r + R|r0) = ei[πmb
2/2+mbkx−(r0×ẑ)·R/l2]ϕ(r|r0). (3.6.27)
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Defining a momentum vector corresponding to r0 as

k0 = −r0 × ẑ
l2

(
⇔ r0 = l2k0 × ẑ

)
, (3.6.28)

we can rewrite Eq. (3.6.27) as

ϕ(r + R|r0) = ei(πmb
2/2+mbkx+k0·R)ϕ(r|r0). (3.6.29)

Combination of Eqs. (3.6.24) with (3.6.27) leads to

ϕ∗(r + R|0)ϕ(r + R|r0) = eik0·Rϕ∗(r|0)ϕ(r|r0), (3.6.30)

which means that ϕ∗(r|0)ϕ(r|r0) is a Bloch function with a lattice momentum vector k0;
therefore, we can expand this function as [100, 101]

ϕ∗(r|0)ϕ(r|r0) = 1
LxLy

∑
K

ei(k0+K)·rFK(k0), (3.6.31)

where K is a reciprocal lattice vector, which can be written with a certain lattice vector
R = maa +mbb, as

K = −R× ẑ
l2

. (3.6.32)

Applying the Fourier transformation to Eq. (3.6.31), we obtain

FK(k0) =
∫
S

d2r e−i(k0+K)·rϕ∗(r|0)ϕ(r|r0). (3.6.33)

Using the definition of ϕ(r|r0) [Eqs. (3.6.21) and (3.6.22)] in Eq. (3.6.33), we can derive the
specific form of FK(k0),

FK(k0) = exp
{
l2
[
−(K + k0)2

4 − i
2

(
Kx

2
√

3
+KxKy + k0,xk0,y − (K × k0)z

)]}
(3.6.34)

Let us divide the order-parameter field ψ(r, z) (note that in this subsection r represents a
coordinate vector in the x-y plane) into the mean-field vortex-lattice state ϕ(r|0)/

√
Lz and

the fluctuation around it:

ψ(r, z) = aϕ(r|0) 1√
Lz

+
∑

k0,qz

ak0qzϕ(r|r0) eiqzz

√
Lz
. (3.6.35)

Here we choose the vortex-lattice state with r0 = 0 as a spontaneously translational-
symmetry broken state. Also, a and ak0qz represent the mean-field and fluctuation amplitudes,
respectively.
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The mean-field amplitude a is determined by minimizing the Ginzburg-Landau functional
FGL [Eq. (3.3.5)], leading to the following expression:

a =
√
LxLyLz

|αqH
|

βAβ
, (3.6.36)

where we assume that αqH
< 0, or H < Hc2(T ), so that the mean-field approximation

leads to the vortex-lattice solution. Here we choose the vortex-lattice state with arg(a) = 0
as a spontaneously U(1)-symmetry broken state. Here βA is the Abrikosov factor, which
characterizes the triangular lattice structure: βA = 〈|ϕ(r|0)|4〉S/[〈|ϕ(r|0)|2〉S]2, with a spatial
average in the x-y plane 〈· · · 〉S = (LxLy)−1 ∫

S d2r(· · · ).
Using the expanded form of the order-parameter field [Eq. (3.6.35)] in the Ginzburg-

Landau functional [Eq. (3.3.5)] and diagonalizing the Gaussian-fluctuation (second-order with
respect to {ar0qz}) terms, we obtain

FGL = FMF
GL + FGauss

GL + FnonGauss
GL , (3.6.37)

where
FMF

GL = −LxLyLz
|αqH
|2

2βAβ
, (3.6.38)

FGauss
GL =

∑
k0,qz>0,m=±

(
E

(m)
k0 + γqz

2
) ∣∣∣a(m)

k0qz

∣∣∣2 , (3.6.39)

and FnonGauss
GL involves other terms corresponding to non-Gaussian fluctuation. In the fol-

lowing, we neglect the non-Gaussian fluctuation FnonGauss
GL and concentrate on the Gaussian

fluctuation FGauss
GL . The fluctuation amplitude a(m)

k0qz
is defined as

a
(±)
k0qz

= 1√
2

(ak0qz ± a−k0,−qz) , (3.6.40)

and the fluctuation energy of each mode E(m)
r0 is obtained as

E
(±)
k0 = |αqH

|
βA

[
2
∑
K

|FK(k0)|2 −
∑
K

|FK(0)|2 ±
∣∣∣∣∣∑

K

FK(k0)2
∣∣∣∣∣
]
, (3.6.41)

where FK(k0) is given in Eq. (3.6.34). We can show that FK(0) ∈ R, so that E(−)
0 = 0,

which shows that the fluctuation mode represented as a(−)
k0qz

is massless (corresponding to
the incompressible shear mode of the vortex lattice [97, 100]). Since the massless mode is
expected to be dominant in considering the melting transition [97], we take into account the
contribution of the massless mode a(−)

k0qz
and neglect that of the massive mode a(+)

k0qz
. Moreover,

to consider the long-wavelength and low-energy contribution of the massless mode, we expand
the fluctuation energy E(−)

k0 with respect to k0:

E
(−)
k0 = γA|αqH

|
βA

l4k0
4 +O(k0

6). (3.6.42)
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Here γA is a numerical factor related to the triangular-lattice structure:

γA =
∑
K

e−l2K2/2
{ 1

12

[3
8 l

4K4 − 3l2K2 + 3
]
− 1

8

}
' 0.119. (3.6.43)

To derive Eq. (3.6.42), we use the following properties with an arbitrary function f(K) =
f(|K|) due to a six-fold rotational symmetry of the reciprocal lattice space:

∑
K

(K · k0)2f(K) =
∑
K

1
2K

2k0
2

∑
K

(K · k0)4f(K) =
∑
K

3
8K

4k0
4.

(3.6.44)

In the following, therefore, we focus on the following functional:

FGauss(−)
GL =

∑
k0,qz>0

(
γA|αqH

|
βA

l4k0
4 + γqz

2
) ∣∣∣a(−)

k0qz

∣∣∣2 . (3.6.45)

It has been proved [100, 101] that this form of the dispersion relation of the massless mode of
the vortex lattice in type-II limit remains valid when the higher Landau-level modes (N ≥ 1)
are included.

Since the relative fluctuation 2−1/2a
(−)
k0qz

/|a| can be regarded as an angular change of the
vortex lattice θk0qz [97], we can rewrite FGauss(−)

GL [Eq. (3.6.45)] as

FGauss(−)
GL = LxLyLz

∑
k0,qz>0

(
c66l

4k0
4 + ρsqz

2
)
|θk0qz |

2

= 1
2

∫
S

d2r
∫ Lz

0
dz

[
c66l

4(∇⊥2θ)2 + ρs(∂zθ)2
]
. (3.6.46)

Here, θ(r, z) = ∑
k0,qz

ei(k0·r+qzz)θk0qz is a real-space phase field related to the vortex-lattice
displacement field u(r, z) [97] as ux = l2∂yθ

uy = −l2∂xθ.
(3.6.47)

This relation indicates that the vortex-lattice deformation corresponding to the massless
mode a(−)

k0qz
represents an incompressible shear mode: ∇⊥ · u(r, z) = 0 [97]. Also, c66 and ρs

represent the shear modulus of the vortex lattice and the superfluid density defined as the
response quantity in the z direction, respectively:

c66 = 2γA|αqH
|2

βA
2β

, (3.6.48)

and
ρs = 2|αqH

|γ
βAβ

. (3.6.49)
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The mean square displacement of the vortex lattice d2 = 〈|u(r)|2〉 is calculated as

d2 = 〈|u|2〉 = l4
〈
(∇⊥θ)2

〉
= 2l4

∑
k0,qz>0

k0
2〈|θk0qz |2〉. (3.6.50)

Here, 〈· · · 〉 means the ensemble average with respect to the low-energy Ginzburg-Landau
functional FGauss(−)

GL [Eq. (3.6.46)], and thus we can obtain the following formula:

d2 = l4

LxLyLz

∑
k0,qz

Tk0
2

c66l4k0
4 + ρsqz2 . (3.6.51)

Since the summation about qz is convergent, we take Lz−1∑
qz

(· · · ) → (2π)−1 ∫∞
−∞ dqz(· · · ).

On the other hand, since the summation about k0 is not convergent if k0 → ∞, we simply
replace the summation with an integration over an area corresponding to the first Brillouin
zone: (LxLy)−1∑

k0(· · · ) → (2π)−1 ∫ √2/l
0 dk0 k0(· · · ). These replacements lead to the follow-

ing simple expression:
d2 = T

4π√ρsc66
. (3.6.52)

Using the Lindemann criterion [97], we can expect that the vortex lattice can melt into
the vortex liquid when a condition d = c × l is satisfied [note that the magnetic length l

corresponds to the unit-cell size (see Fig. 3.4)], where c = O(0.1) is a phenomenological
parameter. Introducing a dimensionless magnetic field h = 2πµ0H/φ0 = l−2 (note that the
lattice constant is set to unity), we obtain the equation [Eq. (3.3.8)] describing the melting-
transition field, or the vortex-lattice-formation field, Hmelt:

T

4π√ρsc66
= c2

h
. (3.6.53)
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Chapter 4

Effects of change in dimensionality

4.1 Introduction to this chapter
As explained in Sec. 1.1, in many-Fermion systems with strong attractive interaction, it
is expected that the BCS-BEC crossover can be experimentally induced by tuning the in-
teraction strength. Actually, the Feshbach resonance has made it possible to realize the
BCS-BEC crossover in ultracold Fermi gases [13]. On the other hand, material realization
of the BCS-BEC crossover will open up another opportunity to study unexplored physical
properties in systems with strong attractive interaction: for example, transport properties
and orbital magnetic-field effects (see Chapters 2 and 3), which are generally difficult to
explore in trapped and neutral ultracold Fermi gases. In contrast to the ultracold Fermi
gases, however, it is difficult to control the strength of the attractive interaction in super-
conductors. Therefore, another idea is required to induce the BCS-BEC crossover in such a
superconductor with strong attractive interaction as FeSe (see Sec. 1.2.2).

In this chapter, we propose an idea that the BCS-BEC crossover may be caused by chang-
ing the dimensionality, for example, by inserting additional insulating layers or applying
pressure uniaxially. Using a simple model of a layered superconductor with strong attractive
interaction, we calculate the pair-condensation temperature Tc and the pair-formation tem-
perature T ∗ based on the T-matrix approximation [1, 28, 29, 30]. We find that Tc and T ∗

become more distant from each other as the dimensionality gets lower. In addition, on the ba-
sis of the same approximation, we show that the pseudogap appears in the electronic density
of states when the interlayer hopping is small enough. These behaviors can be understood
as the BCS-BEC crossover induced by the change in dimensionality.
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4.2 Preliminary analysis of two-particle system
We consider an attractive Hubbard model to describe many electrons moving on a simple
tetragonal lattice:

H = −t‖
∑
〈i,j〉‖,σ

(
c†iσcjσ + c†jσciσ

)
− t⊥

∑
〈i,j〉⊥,σ

(
c†iσcjσ + c†jσciσ

)
− U

∑
i

c†i↑c
†
i↓ci↓ci↑, (4.2.1)

where 〈i, j〉‖(⊥) means intralayer (interlayer) nearest-neighbor bonds in the a-b plane (along
the c axis), and correspondingly, t‖(> 0) and t⊥(> 0) are the intralayer- and the interlayer-
hopping amplitudes, respectively. U(> 0) is the strength of the attractive interaction, and
c

(†)
iσ represents the annihilation (creation) operator of an electron with spin σ at the site i.

There are two kinds of independent dimensionless parameters in our Hamiltonian. One
is the anisotropy ratio r = t⊥/t‖ (≤ 1), which controls the dimensionality. In the limit of
r → 1 (r → 0), the system is purely three (two) dimensional. The other is the dimensionless
attractive-interaction strength u = U/t‖.

In the two-dimensional limit (r → 0), the pair condensation at a finite temperature is
expected to be replaced by the Berezinskii-Kosterlitz-Thouless (BKT) transition [98, 111,
112, 113, 114, 115, 116]. In this chapter, we focus on a finite-r regime (r & 0.05) and do not
discuss the BKT transition.

Though quasi-two-dimensional models [98] and anisotropic lattice models [34, 35, 117]
similar to Eq. (4.2.1) have been considered so far, the significant roles of the change in
dimensionality has not been clarified. In addition, we stress that effects of the dimensionality
change due to variation in the anisotropy ratio r are different from finite-size effects caused by
confinement in the xy plane, which have been recently discussed in the context of ultracold
Fermi gases [118, 119].

4.2.1 Formation of two-particle bound state
Let us consider a two-particle system described by Eq. (4.2.1). If the attractive interaction is
controlled in a many-particle system, the BCS-BEC crossover will take place when the inter-
action becomes strong enough to form a two-particle bound state [3]. Thus, by solving the
Schrödinger equation of the corresponding two-particle system and calculating the threshold
interaction strength for the bound-state formation, we can roughly estimate the characteris-
tic interaction strength, at which the BCS-BEC crossover occurs in the many-particle system
[note that the threshold interaction strength is given in Eq. (2.2.3) as U0 = 4π/(mk0) in
Chapter 2 and given as U0 ' 8.14t in Chapter 3].

As shown in Sec. 4.5.1, a bound state exists in the two-particle system described by
Eq. (4.2.1) when the equation for the binding energy Eb,

U

M

∑
k

1
2εk +W + Eb

= 1, (4.2.2)
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Figure 4.1: The region where the two-particle bound state exists (Eb > 0) in the r-u plane
(red area). The boundary satisfying Eb = 0 (black line) and the region where no bound
states exist (gray area) are also shown.

has a positive solution Eb > 0. Here, we use the symbols M = MxMyMz as the number of
lattice sites, kα = 2πnα/Mα (α = x, y, z) as the lattice momentum under the periodic bound-
ary condition, εk = −2t‖(cos kx + cos ky) − 2t⊥ cos kz as the free-particle energy dispersion,
and W = 8t‖+ 4t⊥ as the free-particle band width. The binding energy Eb is measured from
the bottom of the free-particle energy band.

In Fig. 4.1, we show in the r-u plane the red region where the two-particle bound state
exists (Eb > 0). The black line represents the boundary where the bound-state energy
vanishes (Eb = 0). If u is changed under a fixed r, we obtain from Fig. 4.1 a certain value
u = u0, at which a bound state starts to appear (e.g., u0 = 6.58 for r = 0.5). In the
corresponding many-particle system, the BCS-BEC crossover is expected to occur when the
interaction u is tuned through u0. On the other hand, if r is changed under a fixed u, we find
a certain value r = r0, at which a bound state starts to appear (e.g., r0 = 0.356 for u = 6). In
the corresponding many-particle system, in the same way as the u-tuned case, we expect the
BCS-BEC crossover to occur when the anisotropy ratio r is changed, or the dimensionality
is tuned, through r0. This is our basic idea. In the following, we show that this scenario can
be actually realized on the basis of the separation between the pair-formation temperature
T ∗ and the pair-condensation temperature Tc as well as the emergence of the pseudogap in
the electronic density of states.
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4.3 Dimensionality effects on phase diagram

4.3.1 Separation between pair-formation and pair-condensation tem-
peratures

To show that the BCS-BEC crossover can occur through the change in dimensionality, we
present the calculated results of the two characteristic temperatures, the pair-formation tem-
perature T ∗ and the pair-condensation temperature Tc.

The pair formation is not a transition but a crossover phenomenon, and here we estimate
T ∗ based on the divergence of the uniform superconducting susceptibility χSC within the
mean-field approximation [26, 98]. Introducing the free-particle Green’s function G(0)

k (iεn) =
(iεn − εk + µ)−1, the uniform superconducting susceptibility is written as χSC = χ

(0)
0 (0)[1 −

Uχ
(0)
0 (0)]−1, where

χ(0)
q (iωm) = T

M

∑
k,n

G
(0)
k+q(iεn + iωm)G(0)

−k(−iεn). (4.3.1)

Here, we use the symbols T as the temperature and εn = 2π(n+ 1/2)T (ωm = 2πmT ) as the
Fermion (Boson) Matsubara frequency. We estimate T ∗ by combining Uχ(0)

0 (0) = 1 and the
mean-field-level equation for the particle density n, n = (2/M)∑k{exp[(εk − µ)/T ] + 1}−1.
In the strong-coupling BEC limit (u → ∞), we can easily show from the definitions that
T ∗ ∝ |µ| ∝ U ∝ Eb. Therefore, we can interpret T ∗ as a temperature where the pair
formation (or pair breaking) occurs even when the attractive interaction is strong.

The pair-condensation, or the superconducting-transition, temperature Tc is calculated
within the T-matrix approximation [1, 28, 29, 30]. This approximation is qualitatively correct
as long as the density n is not so close to unity, and the chemical-potential shift is important.
If n is close to unity, and the filling is about one-half, the chemical-potential shift is not
so important, and the interaction between the superconducting fluctuations is crucial. In
this case, the self energy should be estimated within a more sophisticated method, e.g., the
self-consistent T-matrix approximation [1, 30, 31]. In the following, therefore, we consider a
relatively low-density system with n = 0.2. Though the T-matrix approximation is already
explained in detail in Chapter 3, we mention it again here for completeness of this chapter.

Within the T-matrix approximation, as we explain in Sec. 4.5.2, the pair-condensation
temperature Tc is calculated by solving both the equation Uχ(0)

0 (0) = 1 and the equation for
the particle density n,

n = 2T
M

∑
k,n

Gk(iεn)e+iεn0. (4.3.2)

Here, the interacting-particle Green’s function Gk(iεn) is given as

Gk(iεn)−1 = G
(0)
k (iεn)−1 − Σk(iεn), (4.3.3)
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Figure 4.2: The pair-formation temperature T ∗ (blue dashed line) and the pair-condensation
temperature Tc (red solid line) for systems with (a) weak interaction (u = 3.5) and (b) strong
interaction (u = 6). At r = r0 (black dotted line), the bound state starts to appear or vanish
in the corresponding two-particle system. The colored points in (b) show 1.05Tc for each
value of r, where the density of states are evaluated as shown in Fig. 4.4 below. In (c), the
ratio of the pair-formation temperature T ∗ to the pair-condensation temperature Tc is shown.

and the self energy Σk(iεn) satisfies the following equation:

Σk(iεn) = − T

M

∑
q,m

G
(0)
q−k(iωm − iεn)

U2χ(0)
q (iωm)

1− Uχ(0)
q (iωm)

e+i(ωm−εn)0. (4.3.4)

To consider the physical meaning of Tc estimated in the above formulas, let us consider
the strong-coupling BEC limit (u → ∞) with t‖ = t⊥ = t. In this limit, we can obtain
Tc ∝ t2/U , which corresponds to the BEC transition temperature of a non-interacting Bose
system with a nearest-neighbor hopping tB ∝ t2/U [21] (see also Sec. 1.1). Therefore, Tc can
be interpreted as the pair-condensation temperature even when the attractive interaction is
strong.

The numerically calculated results of T ∗ and Tc are summarized in Figs. 4.2(a) and (b),
which correspond to a system with weak interaction (u = 3.5) and a system with strong
interaction (u = 6), respectively. The black dotted line shows the value of r0, where the
corresponding two-particle system begins to have a bound state.

In the case of u = 3.5 shown in Fig. 4.2(a), where r0 ∼ 0, the separation between T ∗ and
Tc is small and does not change so much in a broad range of r. In fact, Fig. 4.2(c) shows
that the ratio of T ∗ to Tc changes little for u = 3.5. This means that the pair formation and
the pair condensation occur essentially at the same temperature as long as r & r0, and thus
the BCS picture is applicable.

In the case of u = 6 shown in Fig. 4.2(b), the separation between T ∗ and Tc becomes
more remarkable as r gets smaller through r0. Actually, Fig. 4.2(c) shows that for u = 6

63



0 0.2 0.4 0.6 0.8 1
r= t /t

−1

−0.5

0

0.5

1

(µ
+
W
/
2)
/
E

F

r= r0

Figure 4.3: The r dependence of the chemical potential µ at the pair-condensation temper-
ature Tc in the system with strong attractive interaction (u = 6). W and EF represent the
band width and the free-particle Fermi energy measured from the band bottom, respectively.
The black dotted line shows r = r0 as in Fig. 4.2(b).

the ratio of T ∗ to Tc increases as r decreases through r0. The separation between T ∗ and Tc

indicates that the BCS-BEC crossover takes place along with the change in r, or the change
in dimensionality.

We also present the r dependence of the chemical potential µ at Tc for u = 6. As shown
in Fig. 4.3, µ becomes lower than the bottom of the free-particle energy band (µ < −W/2)
when r is small enough. Since it is known that the chemical potential becomes lower than
the band bottom through the BCS-BEC crossover [23], our result reinforces the scenario of
the dimensionality-induced BCS-BEC crossover in the system with strong interaction.

4.3.2 Pseudogap in electronic density of states
To elucidate the effect of the dimensionality-induced BCS-BEC crossover on the one-particle
excitation, we numerically calculate the electronic density of states D(E) per spin per site.
The calculation is based on the relation

D(E) = − 1
π

lim
γ→+0

ImGk(E + iγ), (4.3.5)

where Gk(iεn) is given in Eq. (4.3.3). The Padé approximation is used for the analytic
continuation from Gk(iεn) to Gk(E + iγ), and a finite energy width γ = 0.1W is introduced
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Figure 4.4: The electronic density of states for the systems with strong attractive interaction
(u = 6) and around the pair-condensation temperature (T = 1.05Tc). Each colored line
corresponds to the colored point shown in Fig. 4.2(b): r = 0.211 (purple solid line), r = 0.421
(green dashed line), and r = 0.737 (brown dotted line).

in the numerical calculation.
Figure 4.4 shows the obtained density of states D(E) for the systems with u = 6. As

shown with the colored points in Fig. 4.2(b), we fix the temperature to 1.05Tc and change
the anisotropy ratio r . Figure 4.4 shows that the low-energy density of states becomes more
depleted as r gets smaller. The depletion of the density of states can be understood as the
emergence of the pseudogap caused by the preformed-pair formation [28]. Therefore, the
behavior of the density of states is consistent with our picture of the dimensionality-induced
BCS-BEC crossover. We note that the enhancement of the peak of D(E) around E/t‖ = 5
in Fig. 4.4 basically originates from r dependence of the non-interacting density of states
in our model with U = 0 and thus is not always expected when the dimensionality-induced
BCS-BEC crossover occurs.

According to studies on ultracold Fermi gases, theoretically as well as experimentally it
is still controversial how a pseudogap is reflected in observables such as specific heat and
magnetic susceptibility [120, 121].
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4.4 Discussion and summary
We present the idea of the dimensionality-induced BCS-BEC crossover on the basis of a
simple many-particle system described by Eq. (4.2.1). We find that the separation between
T ∗ and Tc, as well as the depletion of the low-energy density of states, becomes prominent
when the anisotropy ratio r decreases through r0. Here, r0 is defined as a value of r, at which
a bound state starts to appear in the corresponding two-particle system described by the
same model [Eq. (4.2.1)].

In more general classes of layered two-particle systems with s-wave attractive interaction,
it is known that a two-particle bound state always exists in the two-dimensional limit, or
the strong-anisotropy limit, regardless of the interaction strength [122]. Therefore, in such
two-particle systems, the bound state is expected to appear when the anisotropy becomes
sufficiently strong (as r < r0 in our model). Accordingly, the idea of the dimensionality-
induced BCS-BEC crossover can be naturally extended to the corresponding more general
classes of layered many-particle system.

Regarding layered superconductors with strong attractive interaction such as FeSe, tuning
the anisotropy may trigger the BCS-BEC crossover as discussed in this chapter. As possible
ways to control the anisotropy, we propose inserting additional insulating layers or applying
uniaxial pressure/strain.

Before ending this section, we add some comments on recent experiments on FeSe-related
materials. The dependence of Tc on the c-axis length c has been experimentally studied in
metal-doped FeSe [e.g., (NH3)yNaxFeSe or (ethylenediamine)yLixFeSe] and similarly metal-
doped Fe(Se0.5Te0.5) [123, 124]. Here, c can naturally have a negative correlation with the
c-axis hopping amplitude (t⊥ in our model). The Tc data show a sharp peak as a function of
c [123, 124]. Our simple Hamiltonian [Eq. (4.2.1)] cannot describe such sharp increase and
decrease in Tc as a function of c, and the origin of the sharp increase in Tc may be an increase
in attractive interaction strength due to enhanced Fermi-surface nesting caused by decrease
in dimensionality as speculated in Refs. [123, 124]. If this speculation is correct, it will be
expected in these systems that as c increases (or the dimensionality decreases), a crossover
from the BCS side to the BEC side can occur owing both to the decrease in dimensionality
itself (r = t⊥/t‖ in our model) and accompanying increase in attractive interaction strength
(U in our model).
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4.5 Derivations of some formulas

4.5.1 Equation for binding energy
Let us consider the two-particle system described by the following Hamiltonian [Eq. (1) in
the main text]:

H = −t‖
∑
〈i,j〉‖,σ

(
c†iσcjσ + c†jσciσ

)
− t⊥

∑
〈i,j〉⊥,σ

(
c†iσcjσ + c†jσciσ

)
− U

∑
i

c†i↑c
†
i↓ci↓ci↑. (4.5.1)

As explained in the main text, 〈i, j〉‖(⊥) means intralayer (interlayer) nearest-neighbor bonds
in the a-b plane (along the c axis). In the same way, t‖(> 0) and t⊥(> 0) are the intralayer-
and the interlayer-hopping amplitudes, respectively. U(> 0) is the strength of the attractive
interaction, and c

(†)
iσ represents the annihilation (creation) operator of an electron with spin

σ at the site i.
To find the equation for the binding energy of a two-particle bound state, we start with

the general two-particle state as a candidate for the eigenstate of Eq. (4.5.1):

|ψ〉 =
∑
k,k′

∑
σ,σ′

fkσ,k′σ′ |kσ,k′σ′〉 =
∑
k,k′

∑
σ,σ′

fkσ,k′σ′ c
†
kσc
†
k′σ′ |0〉 . (4.5.2)

Here, |0〉 is the vacuum state, and the eigenfunction fkσ,k′σ′ satisfies the antisymmetric rela-
tion

fk′σ′,kσ = −fkσ,k′σ′ . (4.5.3)

The Schrödinger equation H |ψ〉 = E |ψ〉, where E is the eigenenergy, leads to the following
equation:

∑
k,k′

∑
σ,σ′

(εk + εk′)fkσ,k′σ′ c
†
kσc
†
k′σ′ |0〉 −

2U
M

∑
k,k′,k′′

fk′′+k+k′↑,−k′′↓ c
†
k↑c
†
k′↓ |0〉

= E
∑
k,k′

∑
σ,σ′

fkσ,k′σ′ c
†
kσc
†
k′σ′ |0〉 . (4.5.4)

Here, εk = −2t‖(cos kx + cos ky)− 2t⊥ cos kz is the free-particle energy dispersion.
For convenience, we split fk↑,k′↓ into the symmetric part f s

k,k′ and the antisymmetric part
f a

k,k′ as

fk↑,k′↓ = f s
k,k′ + f a

k,k′ = fk↑,k′↓ + fk′↑,k↓

2 + fk↑,k′↓ − fk′↑,k↓

2
= fk↑,k′↓ − fk↓,k′↑

2 + fk↑,k′↓ + fk↓,k′↑

2 . (4.5.5)

In the last equality, Eq. (4.5.3) is used. Comparing the coefficients of c†kσc
†
k′σ |0〉 (σ =↑, ↓) in

Eq. (4.5.4) with one another, we obtain

(εk + εk′)fkσ,k′σ = Efkσ,k′σ (σ =↑, ↓). (4.5.6)
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On the other hand, comparing the coefficients of c†k↑c
†
k′↓ |0〉 in Eq. (4.5.4) with one another,

we obtain
(εk + εk′)f a

k,k′ = Ef a
k,k′ (4.5.7)

and
(εk + εk′)f s

k,k′ −
U

M

∑
k′′
f s

k′′+k+k′,−k′′ = Ef s
k,k′ . (4.5.8)

First, we focus on fkσ,k′σ (σ =↑, ↓) and f a
k,k′ . Since they represent the eigenfunctions of

the spin-triplet two-particle states, the singlet-channel attractive interaction U does not work
as seen in eq4S. (4.5.6) and (4.5.7), so that there are no bound states. Second, we focus on
f s

k,k′ . This eigenfunction corresponds to the spin-singlet two-particle state and is affected by
the attractive interaction U as seen in Eq. (4.5.8), and thus a bound state may appear in
f s

k,k′ . Therefore, we discuss Eq. (4.5.8) in the following.
Let us assume that a bound state exists, so that the eigenenergy E is below the free-

particle ground-state energy −W , where W = 8t‖+ 4t⊥ is the free-particle band width. The
binding energy Eb(> 0) is defined as E = −W − Eb. Defining Aq = M−1∑

k f
s
k+q,−k, we

obtain from Eq. (4.5.8)
f s

k+q,−k = UAq

εk+q + ε−k +W + Eb
. (4.5.9)

Summation over k in both sides of this equation leads to

U

M

∑
k

1
εk+q + ε−k +W + Eb

= 1. (4.5.10)

Since we are interested in the bound state with zero total momentum, we set q = 0 and
obtain the final expression for the binding energy Eb [Eq. (2) in the main text]:

U

M

∑
k

1
2εk +W + Eb

= 1. (4.5.11)

4.5.2 T-matrix approximation
For the sake of completeness, we explain the T-matrix approximation used to calculate the
pair-condensation temperature Tc. We introduce the free-particle Green’s function

G
(0)
k (iεn) = 1

iεn − εk + µ
, (4.5.12)

where εn = 2π(n + 1/2)T is the Fermion Matsubara frequency with temperature T , and µ

is the chemical potential. The interacting-particle Green’s function satisfies the following
Dyson’s equation:

Gk(iεn)−1 = G
(0)
k (iεn)−1 − Σk(iεn), (4.5.13)
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Figure 4.5: The diagrammatic representation of Eqs. (4.5.13), (4.5.15), and (4.5.17). (a) The
upper diagram shows the Dyson’s equation, which gives the relation among the interacting-
particle Green’s function Gk(iεn) (black bold line), the free-particle Green’s function G(0)

k (iεn)
(black thin line), the T matrix Tq(iωm) (blue wavy line), and the bare attractive interaction
U (red point). (b) The lower diagram expresses the recursive definition of the T matrix
Tq(iωm).

where Σk(iεn) is the self energy, which is estimated within the T-matrix approximation as
explained in the following.

We define χ(0)
q (iωm) as

χ(0)
q (iωm) = T

M

∑
k,n

G
(0)
k+q(iεn + iωm)G(0)

−k(−iεn), (4.5.14)

where ωm = 2πmT is the Boson Matsubara frequency. We also define the T matrix Tq(iωm)
as

Tq(iωm) = U

1− Uχ(0)
q (iωm)

. (4.5.15)

Before discussing the T-matrix approximation, we consider the Hartree term:

Σ(H) = −U T

M

∑
k,n

Gk(iεn)e+iεn0 = −Un2 , (4.5.16)

where n is the particle density. The contribution of this term to the self energy is constant
if U and n are fixed. Thus, we take into account the Hartree term by properly choosing the
origin of energy; in other words, we do not explicitly treat Σ(H) in the expression of the self
energy.
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Within the T-matrix approximation, the self energy is expressed as

Σk(iεn) = − T

M

∑
q,m

G
(0)
q−k(iωm − iεn)Tq(iωm)e+i(ωm−εn)0 − Σ(1), (4.5.17)

where Σ(1) = −U(T/M)∑k,nG
(0)
k (iεn)e+iεn0 is the first-order perturbation term, which is

implicitly taken into account in the Hartree term. Putting together the two terms in the
right-hand side of Eq. (4.5.17), we obtain the explicit representation of the self energy [Eq. (6)
in the main text]:

Σk(iεn) = − T

M

∑
q,m

G
(0)
q−k(iωm − iεn)

U2χ(0)
q (iωm)

1− Uχ(0)
q (iωm)

e+i(ωm−εn)0. (4.5.18)

Equations (4.5.13), (4.5.15), and (4.5.17) are illustrated in Fig. 4.5 with the diagrammatic
representation.

To consider the pair-condensation temperature Tc within the T-matrix approximation,
we define the uniform superconducting susceptibility χSC as

χSC = χ
(0)
0 (0)

1− Uχ(0)
0 (0)

. (4.5.19)

Tc is determined based on the divergence of χSC; in other words, we calculate Tc by solving
the following equation:

Uχ
(0)
0 (0) = 1. (4.5.20)

From Eq. (4.5.20), we can obtain Tc as a function of the chemical potential µ. Since we fix
not the chemical potential µ but the number density n, we have to solve the following number
equation [Eq. (4) in the main text] together with Eq. (4.5.20) to determine the value of µ:

n = T

M

∑
k,σ,n

Gk(iεn)e+iεn0 = 2T
M

∑
k,n

Gk(iεn)e+iεn0. (4.5.21)
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Chapter 5

Conclusion

In this thesis, we have investigated physical properties of superconductivity in the BCS-BEC
crossover regime, focusing especially on fluctuation and dimensionality effects.

In Chapter 2, based on a simple model of a three-dimensional electron system, we con-
sider superconducting fluctuation (SCF) effects on thermodynamic quantities such as the
specific heat and magnetization [8]. Comparing the temperature and field dependences of
thermodynamic quantities in the BCS-BEC crossover regime with those in the BCS regime,
we find the following three features specific to the BCS-BEC crossover regime. First, due
to the strong mode coupling between SCFs, the SCF-induced specific heat and diamagnetic
susceptibility can seemingly exceed the corresponding values estimated within the Gaussian
approximation. Second, the lowest-Landau-level (LLL) scaling can break down because of
the important contribution of the higher-LL modes (N ≥ 1) in addition to the LLL modes
(N = 0). Third, both the LLL modes and the higher-LL modes can lead to the crossing
behavior of magnetization curves in a broad range of magnetic fields. Our numerical results
of diamagnetic susceptibility and magnetization curves are qualitatively consistent with the
recent magnetic-torque and magnetization measurements in FeSe. To consider quantitative
details of the diamagnetic response in FeSe and the qualitative difference in the zero-field
specific-heat behavior between our numerical results and the experimental results in FeSe,
we need to take into account the two-band nature of FeSe within a more sophisticated ap-
proximation.

In Chapter 3, starting from a simple attractive Hubbard model, we consider qualitative
features of the field-temperature (H-T ) phase diagram [9]. Applying the T-matrix theory
combined with an analysis of the Ginzburg-Landau action, we estimate the three character-
istic field strengths: the pair-formation field H∗, the vortex-liquid-formation field Hc2, and
the vortex-lattice-formation field Hmelt. Interestingly, our numerical results suggest that the
vortex-liquid and preformed-pair regions are broaden in the H-T plane in the BCS-BEC
crossover regime compared with those in the BCS regime. This feature can be understood
as caused by the enhanced SCF effects in the BCS-BEC crossover regime. We also point out
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the importance of the particle density in determining the H-T phase diagram. The obtained
features of the H-T phase diagram in the BCS-BEC crossover regime can be consistent with
the experimentally suggested strong SCF effects and pseudogap formation in FeSe though
they are inconsistent with the experimentally estimated narrow vortex-liquid region. To con-
sider this inconsistency, we suggest a possibility that vortices in a stronger-coupling band in
FeSe can be pinned by vortices in another weaker-coupling band.

In Chapter 4, we consider effects of the change in dimensionality by analyzing a simple
anisotropic attractive Hubbard model within the T-matrix approximation. Our numerical
calculations show that the separation between the pair-formation temperature T ∗ and the
pair-condensation temperature Tc, in addition to the depletion of the low-energy density
of states, becomes more prominent as the system becomes more two-dimensional like due
to an increase in the anisotropy. Based on this result, we conclude that the change in
dimensionality can induce the BCS-BEC crossover in layered superconductors. As possible
ways to realize this dimensionality-induced BCS-BEC crossover in layered superconductors
with strong attractive interaction such as FeSe, we propose inserting insulating layers between
superconducting layers and applying uniaxial pressure or strain.

In this thesis, we concentrate on characteristic properties emerging in single-band systems
with strong attractive interaction. As mentioned several times, however, the candidate mate-
rial in the BCS-BEC crossover regime, FeSe, is actually a multiband system. Therefore, FeSe
provides an opportunity to investigate intertwined effects between the multiband nature and
the BCS-BEC crossover. In multiband systems, the character of each band and the interband
interactions can have some impacts on the whole system’s behavior, for instance, thermo-
dynamic or transport properties. Theoretical consideration of systems with the multiband
structure in addition to the strong attractive interaction will improve understanding of FeSe
and potentially lead to finding new physical phenomena unique to such an unprecedented
situation.
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[104] Z. Tešanović, Phys. Rev. B 59, 6449 (1999).

[105] H. Fukuyama, H. Ebisawa, and T. Tsuzuki, Prog. Theor. Phys. 46, 1028 (1971).

[106] A. G. Aronov, S. Hikami, and A. I. Larkin, Phys. Rev. B 51, 3880 (1995).

78

http://dx.doi.org/10.1143/JPSJ.58.1377
http://dx.doi.org/10.1080/000187300412257
http://stacks.iop.org/0305-4608/6/i=11/a=006
http://dx.doi.org/10.1103/PhysRevLett.67.3180
http://stacks.iop.org/0953-2048/27/i=12/a=124001
http://dx.doi.org/ 10.1103/PhysRevB.96.224509
https://link.aps.org/doi/10.1103/PhysRevLett.94.140401
https://link.aps.org/doi/10.1103/PhysRevLett.96.090403
https://link.aps.org/doi/10.1103/PhysRevA.84.023609
http://dx.doi.org/10.1103/PhysRevB.43.130
http://dx.doi.org/10.1143/JPSJ.59.1397
http://dx.doi.org/10.1103/PhysRevB.31.7124
http://dx.doi.org/10.1103/PhysRevB.39.136
http://dx.doi.org/10.1103/PhysRevLett.103.165301
http://dx.doi.org/10.1134/S1063776117120159
http://dx.doi.org/10.1134/S1063776117120159
http://dx.doi.org/10.1143/JPSJ.59.1740
http://dx.doi.org/10.1143/JPSJ.61.254
http://dx.doi.org/10.1103/PhysRev.164.628
http://dx.doi.org/10.1103/PhysRevB.44.12635
http://dx.doi.org/10.1103/PhysRevB.59.6449
http://dx.doi.org/10.1143/PTP.46.1028
http://dx.doi.org/10.1103/PhysRevB.51.3880


[107] P. O. Sprau, A. Kostin, A. Kreisel, A. E. Böhmer, V. Taufour, P. C. Canfield,
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