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Abstract

In recent years, various interesting nonequilibrium phenomena are observed in solids and gath-
ering great attention. For example, it has been reported that applying strong laser fields induces
transient superconductivity above the equilibrium critical temperature [1]. Topological states
of matter can also be changed with laser light. This has been theoretically proposed [2] and
already experimentally observed [3–5]. It has been revealed that not only the laser light (AC
field), but also the DC-field induces quite interesting phenomena recently. For instance, it has
been reported that DC electric field induces a finite current in Mott insulators, giving rise to
very strong diamagnetism in the nonequilibrium steady states [6]. Furthermore, based on the
study of these nonequilibrium phenomena, the possibility of controlling states of matter with
nonequilibrium phenomena has also been investigated. It is expected that some important
controls which are impossible or difficult in equilibrium become available in nonequilibrium. In
fact, a control using periodic driving with external fields is called “Floquet engineering” and
this has been established as one of the useful experimental techniques to realize desired quan-
tum states in the field of cold atomic systems [7]. As shown above, nonequilibrium phenomena
and controls with them in condensed matter systems are forming a rapidly growing research
field in recent years.

On the other hand, theoretical understanding of these nonequilibrium phenomena still has
been a challenging problem. In particular, nonequilibrium phenomena in strongly correlated
systems are difficult to treat theoretically and proposing nonequilibrium control in strongly
correlated systems is more tough problem because we have to treat the effect of interaction
and nonequilibrium dynamics at the same time. However, various interesting and exotic phases
of matter (e.g. unconventional superconductivity and quantum spin liquid) mostly appear in
strongly correlated materials and thus it is an important task to investigate strongly correlated
systems.

Motivated by this situation, we have studied the nonequilibrium phenomena in strongly cor-
related systems and proposed possible schemes to control the states of matter using nonequilib-
rium phenomena. In this thesis, we present our recent studies in this direction. Brief summaries
of these studies are shown below.

1. Laser-induced topological superconductivity in d-wave superconductors (Chap. 2)

Topological superconductivity (TSC) has attracted much attention because it can host
Majorana fermions that are expected to be applied to quantum computation. However,
the experimental realization of TSC have been very limited and highly desired. In this
study, we proposed a possible scheme to realize TSC in laser-irradiated d-wave super-
conductors such as cuprate superconductors. Our calculation based on Floquet theory
revealed that the laser-induced effective Zeeman-field plays an important role in realizing
TSC.
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2. Control of quantum phases in heavy fermion systems with laser light (Chap. 3)

In heavy fermion systems, interplay between Kondo effect and RKKY interaction plays
an important role and realizes various quantum phase transitions. In this study, we
investigated how this interplay is affected by the application of laser fields and how
we can control the quantum phase transitions. We found that either enhancement or
suppression of Kondo effect occurs depending on crystalline structures and systematically
studied the effect on the phases of matter including topological phases (e.g. topological
Kondo insulators).

3. Control of insulating magnets with DC electric fields or terahertz laser fields (Chap. 4)

In this study, we considered the application of DC electric fields or slow AC fields (such as
terahertz fields) to insulating magnets and investigated how the exchange interaction is
modified with electric fields. We found that the coupling in the direction of electric fields
is enhanced and this is very useful to control the anisotropy of magnetic interactions.
Based on this idea, we proposed exotic phases of matter induced by electric fields, e.g.
electric-field-induced quantum spin liquids and electric-field-induced topological phases.
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Chapter 1

Introduction

In this thesis, we present our theoretical results related to nonequilibrium phenomena and
dynamical controls in strongly correlated systems under AC and DC electric fields. Before going
into the detail, we first explain the meaning of “nonequilibrium phenomena” and “dynamical
controls” in this thesis. In other words, we clarify the phenomena which we are interested
in. For this purpose, we explain what we call nonequilibrium phenomena in condensed matter
systems and give some typical examples of them in Sec. 1.1, and then explain the idea and the
examples of dynamical controls using electric fields in Sec. 1.2. In these sections, we mention
the recent experiments closely related to our studies. In contrast, we focus on the theoretical
aspect in Sec. 1.3. We explain the recent developments of theoretical tools for studying the
nonequilibrium phenomena. After that, we explain our motivation of studies in this thesis in
Sec. 1.4. Finally, we give an overview of this thesis in Sec. 1.5.

1.1 Nonequilibrium phenomena in condensed matter physics

In the last decades, condensed matter theory has been developed mainly based on quantum
mechanics 1 and statistical mechanics 2. To understand phenomena emerging in solids, most
theorists have constructed microscopic models and analyzed it. However, it is difficult to di-
rectly solve the models since it includes so many degrees of freedom. To overcome this point,
theorists have applied the techniques established in statistical mechanics to their models, and
then obtained the results which are able to be compared with experiments. To obtain the
thermodynamic properties, this works well, but we need the information out of equilibrium to
know the transport or optical properties. Fortunately, linear response theory, which enables
us to understand nonequilibrium phenomena occurring near equilibrium states from the infor-
mation of fluctuation already existing in equilibrium, was established by R. Kubo more than
sixty years ago [8] and has been applied to a wide range of systems successfully.

Based on this strategy, condensed matter physics has provided many results explaining
various macroscopic behaviors of solids and established the position as a fundamental theory for
modern engineering and technologies. For example, band theory based on Bloch’s theorem [9]
succeeded in explaining the physics of semiconductors and then engineering of semiconductors is
one of the most important fundamental technologies supporting the devices which we are using

1Strictly speaking, condensed matter physics includes the research subjects where quantum mechanics is not
so important (e.g. soft condensed matter), but in this thesis we focus on solid state physics where the quantum
mechanical description plays an important role.

2We remark that classical physics (e.g. classical mechanics, electromagnetism, and thermodynamics) has
played an important role in condensed matter physics.
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in the daily life (e.g. electronics). The other example is a high temperature superconductivity.
This was discovered almost thirty years ago by G. Bednorz and K. A. Müller [10]. At that time,
the reason why the critical temperature is so high is unclear, but the rapid developments of
many-body theories in condensed matter physics have resolved the many problems and clarified
the most part of its mechanism. Based on this development, high-temperature superconductors
have many different applications nowadays, ranging from levitating trains to ultra-efficient
power lines.

However, phenomena which cannot be explained within the conventional theoretical tools
have been reported and gathering great attention in recent years. Here, we mean the conven-
tional tools as quantum mechanics, statistical mechanics, and linear response theory. We call
the phenomena that cannot be explained by them “nonequilibrium phenomena” in this thesis.
Especially, we consider nonequilibrium phenomena which happen under laser light (AC electric
fields 3) or DC electric fields in this thesis. Electric fields couple to the electrons in solids
and strong fields can drive their motion and make the system go out of equilibrium states.
We remark that we are not mainly interested in the states of matter driven by weak electric
fields which can be captured only with the linear response theory. The interesting point of the
nonequilibrium phenomena is that applying electric fields can change quantum states of matter
and then it induces various phenomena and realizes diverse phases of matter uniquely existing
out of equilibrium. The scope of nonequilibrium phenomena widely spreads in the research
areas of modern condensed matter physics, e.g. superconductivity, magnetism, transport phe-
nomena and topological phenomena. The phenomena that cannot happen in equilibrium can
occur out of equilibrium. For example, nontrivial states which are unstable in equilibrium can
be meta-stable out of equilibrium. Therefore, the research field of nonequilibrium phenomena
can be regarded as a frontier for exploring new phenomena and exotic phases of matter that
cannot be realized in equilibrium.

We want to emphasize that the on-going growth of this research field is supported by recent
developments of experimental technologies. In other words, the studies of the nonequilibrium
phenomena had to wait for these developments. Thus, we think that this kind of studies are just
beginning and there are plenty of room to investigate. In this paragraph, we briefly explain the
developments of experimental techniques. From the experimental point of view, we need very
strong electric fields to induce nonequilibrium phenomena because weak electric fields just give
very weak perturbation to the states of matter and only work as a probe for states of matter.
Fortunately, the technologies of laser light sources are rapidly developed and sufficiently strong
laser fields are going to be realized. For example, 1-10 MV/cm electric fields are already realized
in many laboratories. In addition, most of nonequilibrium phenomena appear in an ultrafast
time scale, such as femtosecond (fs) or picosecond (ps) order, and then we need sophisticated
time-resolved measurements achieving a high resolution. They are also realized thanks to the
invention of very short light pulse and various spectroscopies. For example, we can see the real-
time dynamics of electrons in a momentum space via time- and angle-resolved photo emission
spectroscopy (Tr-ARPES).

In the rest of this section, we present typical examples of the nonequilibrium phenomena
induced with AC and DC electric fields and clarify its physics in solids below. Before explaining
the detail, we briefly mention several other interesting classes of nonequilibrium phenomena
which are intensively studied very recently but we do not treat in this thesis. One of the
important classes is the phenomena in the systems periodically driven with something other

3Of course, laser light has also the magnetic field component. However, it is much smaller than the electric
field component and thus we do not consider the effect of the magnetic field in this thesis. However, the recent
development of plasmonic devices realizes the enhancement of the magnetic field [11, 12] and this stimulates the
interesting theoretical study [13].
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Figure 1.1: Schematic picture of light-induced superconductivity.

than the laser light. For example, it is possible to switch the different static Hamiltonians in
various artificial quantum systems such as nitrogen–vacancy centres in diamonds [14], trapped
ions [15], and nuclear spins [16, 17]. Utilizing this scheme, the states of matter only existing
out of equilibrium, such as discrete time crystals [14–17] , are realized. Another class is the
phenomena in the systems including the effect of dissipation (e.g. particle loss and measure-
ment), i.e. open quantum systems. In cold atomic systems, it became possible recently to
introduce dissipation in a controlled and coherent way and its effect on many-body quantum
systems was already observed in experiments [18]. In such systems, it is known that dissipation
makes the Hamiltonian effectively non-Hermitian and then it is gathering great attention to
investigate the effect of non-Herminicity in condensed matter physics very recently [19–21].
Nonequilibrium phenomena in these two classes are very interesting and gathering attention
and we wrote the papers related to these topics [21, 22]. Since this thesis focuses on nonequi-
librium phenomena in solids, we do not treat these classes below and please refer to the original
papers cited above.

To clarify what happens under AC- and DC-electric fields, we give concrete examples re-
spectively. As an example of AC-field-induced phenomena, we present light-induced supercon-
ductivity below. After that, we explain dielectric breakdown as an example of DC-field-induced
phenomena.

Light-induced superconductivity

Light-induced superconductivity is very interesting and a recent hot topic [1, 23]. This is a
transient phenomenon observed in solids under strong laser fields. Applying laser fields to
solids originally being normal states (Fig. 1.1(a)), they show the optical response same as
superconducting states transiently (Fig. 1.1(b)). After a while, the system goes back to normal
states (Fig. 1.1(c)). The transient appearance of this superconducting-like state is called “light-
induced superconductivity”. In such a state, we can observe characteristic features in the
optical conductivity σ(ω) as the gap-opening near ω = 0 in Re[σ(ω)] and the divergence of
Im[σ(ω → 0)].

These signatures are observed in two materials. One is a stripe-ordered cuprate LE-
SCO 4 [1]. In this material, application of middle infrared (mid-IR) laser pulse makes a meta-
stable state, whose life time is longer than 100 ps. In this meta-stable state, the superconducting-
like state is realized for first 5 ps. The other material is a metallic K3C60 [23]. In this case,
the mid-IR laser pulse realizes the transient superconducting-like state for 2 ps. Surprisingly,

4The chemical copmposition is La0.1675Eu0.2Sr0.125CuO4.
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the light-induced superconducting state appears even above 100 K which is much larger than
the critical temperature in equilibrium Tc(= 20 K). This suggests that the light-induced su-
perconductivity can opens a way to realize room temperature superconductivity. In contrast,
the mechanisms of these phenomena are still under debate and it seems that the mechanisms
are different between these two materials because their mechanisms of superconductivity in
equilibrium are also considered to be different.

However, it is true that this phenomenon cannot be understood only within the conventional
tools in condensed matter physics because we cannot apply standard statistical mechanics to
phenomena in such an ultrafast time scale. This is the reason why we call them nonequilibrium
phenomena. To understand this phenomenon, we tackle a time-dependent problem in quan-
tum many-body systems and there are several theoretical calculations trying to explain these
experiments [24–31] but their discussions are still not conclusive.

In this thesis, we present our theoretical proposals related to AC-field-induced phenomena
in Chap. 2 and 3. In particular, we discuss the light-induced “topological” superconductivity
in Chap. 2. Our proposals are related to strongly correlated systems and thus we also treat
time-dependent quantum many-body problems. We solve them with help of Floquet theory,
which enables us to map time-dependent problems to time-independent problems effectively.
We explain this technique in Sec. 1.3.

Dielectric breakdown

A typical example of DC-field-induced nonequilibrium phenomena is “dielectric breakdown”.
We consider the application of a DC electric field to the insulators (Fig. 1.2(a)). A small
electric field makes almost nothing to the insulators, but applying a sufficiently strong electric
field induces a finite current and make the insulators conductive. This is called dielectric
breakdown. The characteristic features of this phenomenon are a threshold behavior and a
nonlinear I-V characteristic (Fig. 1.2(b)). This behavior is quite different from the linear
response behavior in metallic states and thus it is expected that it cannot be described within
conventional theoretical tools. It is the reason why we regard this phenomenon as one of
the typical nonequilibrium phenomena. Studies of dielectric breakdown start from C. Zener’s
work [32] in 1932 5. In this work, the author used the theory of non-adiabatic tunneling and
discussed the breakdown of band insulators. In recent years, breakdown phenomena in strongly
correlated insulators (e.g. Mott insulators) have also been investigated both experimentally [33,
34] and theoretically [35–38] 6.

Although the interesting and important points of light-induced superconductivity was clear
for most readers, we consider that those of dielectric breakdown may be more difficult to
understand. To clarify them, we explain what are of importance and interest. They are
summarized as four points below.

(i) Fundamental process of nonequilibrium phenomena.
There appears a charge carrier at the threshold field and the system is driven to a nonequi-
librium state. Thus, it is important to study this phenomenon for understanding of initial
process of nonequilibrium phenomena in solids.

5Surprisingly, it is much older than the proposal of linear response theory although the dielectric breakdown
is a nonlinear transport phenomenon.

6We note that one of the experiments of Mott breakdown cited here is done with terahertz (THz) laser
fields [34]. Because THz electric fields are slower than the typical time scale of electrons’ motion, it is expected
that the similar effects as DC-field-induced effects are observed.
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Figure 1.2: (a) Schematic picture of an insulator under a DC electric field E. (b) A typi-
cal I-V characteristic of dielectric breakdown phenomena. At the threshold voltage Vth, the
nonequilibrium insulator-metal transition occurs.

(ii) Nonlinear transport phenomena.
As seen from the I-V characteristic (Fig. 1.2(b)), the breakdown phenomenon is a nonlin-
ear transport phenomena which cannot be captured by linear response theory. Then, to
construct the alternative theory beyond linear response, the studies of dielectric break-
down phenomena can give a new insights about that. In addition, it is known that a
nontrivial nonlinear transport phenomenon called “negative differential resistance” ap-
pears at the voltage sufficiently stronger than the threshold. This is the phenomenon that
increasing the electric field reduces the amount of current. The mechanism is theoretically
unclear and clarifying it is a challenging problem [38–40].

(iii) Analog of Schwinger mechanism in high energy physics
Applying extremely strong electric fields to the vacuum, a pair of electron and positron
is created. In high energy physics, this is called “Schwinger mechanism” [41] and related
topics form a research field called “strong field physics”. To realize this phenomenon,
we need electric fields stronger than about 1016 V/cm which is impossible to achieve
within current experimental technologies. On the other hand, there appears a pair of
electron and hole as charge carriers in breakdown of Mott insulators and this is very
similar as Schwinger mechanism. Indeed, they share several common physical properties
and theoretical description, e.g. pair-production rate and threshold field. Since the Mott
breakdown is experimentally achievable, the breakdown in strongly correlated insulators
can be used as a “simulator” of Schwinger mechanism and help to investigate strong field
physics.

(iv) Current-carrying metallic state
Dielectric breakdown phenomena change insulators to current-carrying metallic states
and thus can be regarded as nonequilibrium insulator-to-metal transitions induced by
electric fields. Not only the breakdown phenomenon itself, but this metallic states are
also interesting. For example, it is reported recently that the current-carrying metallic
state appears in Cu2RuO4 after the Mott breakdown and this state shows very strong
diamagnetism [6]. Surprisingly, this current-induced diamagnetism is strongest among
non-superconducting materials. This current-carrying state is out of scope of linear re-
sponse theory and can be regarded as a nonequilibrium steady state. Although there
were several attempts to understand nonequilibrium steady states mainly in the field of
statistical physics [42], investigation of this kind of states in solids and current-induced
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phenomena beyond linear response theory has just started both experimentally and the-
oretically and thus further developments are desired in future.

From these reasons, the study of dielectric breakdown is meaningful. However, the study of
nonequilibrium phenomena induced with DC-fields has been less focused on than the phenom-
ena induced with AC-field. We think that this is because the most studies of DC-field-induced
phenomena are limited to mainly the linear response regime. However, the strong electric fields
are realized in recent years and then the number of this kind of studies is expected to increase.

In this thesis, we describe our proposal related to DC-field-induced phenomena in Chap. 4.
This proposal is closely related to the breakdown in Mott insulators for our setup in this
proposal are the same as the setup of dielectric breakdown. In our proposal, we consider the
Mott insulator with strong electric fields which do not induce the breakdown and find that the
electric fields enhance the magnetic correlation.

1.2 Dynamical controls of solid states

Needless to say, the most important goal of condensed matter physics is to completely under-
stand the physical properties of unknown matter. On the other hand, for the materials whose
properties are already well-understood, it is also very important to know how to control their
properties. To establish the technique for controlling states of matter is crucial not only for
engineering but also for fundamental physics. This is because new controlling schemes open a
way to explore new physics. For example, to investigate phase transitions in experiments, we
have to control the parameters of the systems systematically.

Experimental techniques for controlling various parameters have been established and ap-
plied to experiments and even to engineering. For example, temperature, pressure, chemical
doping, magnetic field are typical parameters which can be changed in experiments. The
change of these parameters induces the modification of microscopic parameters (e.g. hopping
amplitude, interaction strength, filling and so on) and then can realize the phase transitions
between equilibrium states. On the other hand, application of strong electric fields brings the
system out of equilibrium states and nonequilibrium states are realized transiently. If we can do
this in a controlled way, controlling states of matter is extended to nonequilibrium states. We
call the controls which are realized with utilizing nonequilibrium phenomena “dynamical con-
trols”. Of course, the nonequilibrium phenomena shown in the previous section, light-induced
superconductivity and dielectric breakdown, are used for dynamical controls. Light-induced
superconductivity can be used for controlling superconducting-like states even at high temper-
ature. Dielectric breakdown can be regarded as a field-induced switching from insulators to
metals. In this section, we show the other examples which are interesting from the viewpoint
of dynamical controls.

Before explaining the other examples, we mention the advantages of dynamical controls over
usual controls near equilibrium. One is that the controls difficult or impossible in equilibrium
can be made possible. For example, although the critical temperature in usual equilibrium
superconductors are limited to low temperature, light-induced superconductivity has a poten-
tial that it makes possible to switching the superconductivity even at room temperature. The
other is that the ultrafast controls are made possible. As we mentioned above, we cannot apply
standard statistical mechanics to the phenomena in the ultrafast timescale (e.g. fs or ps time
scale). Thus, it is inevitable to use nonequilibrium phenomena. The ultrafast controls enable
us to change a state of matter to the different state for very short time. It means that it is
easy to return to the original state with turning off the electric field. This is quite different
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Figure 1.3: Schematic picture of the modification of a band structure with AC electric fields.(a)
We consider the band structure in solids (massless Dirac cone) and application of laser light
(A(t) = A(cos Ωt, sin Ωt), i.e. circularly polarized laser) to the solids. (b) When the laser light
is irradiated to the solids, the band structure is effectively modified like this. This structure is
experimentally observed [3, 4].

from the control with chemical doping. Furthermore, this is considered to be used as a new
principle of ultrafast switching device from the engineering point of view.

To clarify what we mean by dynamical controls and their advantages explained above, we
give two types of dynamical controls. One is control of band structures and the other is control
of magnetism.

Controls of band structures

How are band structures modified under strong electric fields? Of course, weak electric fields
do not change band structures and thus we consider the effect of electric fields with original
band structures. However, when the intensity of electric fields becomes sufficiently strong,
the situation changes. Electronic states in solids (i.e. Bloch states) couple to the applied
AC electric fields (Fig. 1.3 (a)) and form the “dressed states” which are called Floquet states
or Floquet-Bloch states (Fig. 1.3 (b)). These names come from “Floquet theory” which is a
theoretical framework for time-periodic quantum systems and we explain its detail in Sec. 1.3.
The spectrum of the Floquet states are the eigenvalues of the effective Hamiltonian describing
the nonequilibrium steady states induced with AC driving (The definition of the effective
Hamiltonian is shown in Sec. 1.3).

As shown in the Fig. 1.3 (b), the Floquet states also form a band structure like usual
Bloch states, but there are significant differences. One is that Floquet states have a periodic
structure in the energy direction as shown in Fig. 1.3 (b) 7. This can be understood as an

7Strictly speaking, the eigenvalues of the effective Hamiltonian are different from the usual “energy” due to
this periodic structure in the energy direction. Thus, they are called “quasi-energy” in the studies with Floquet
theory.
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analog of the periodicity of Bloch states in the momentum space. Bloch states appear in
a periodic potential, and thus the periodicity related to the conjugate variables, which are
namely momentum, emerges. The other difference is that the effective band structure reflects
the symmetry of electric fields. For example, the appearance of the gap at the zero energy,
where the original band structure is gapless, reflects the time-reversal symmetry breaking of
circularly polarized laser light A(t) = A(cos Ωt, sin Ωt). Indeed, linearly polarized laser light,
e.g. A(t) = A(cos Ωt, cos Ωt), cannot open the gap at zero energy in this band structure.
This kind of the manifestation of symmetry is not limited to this specific case. It is shown
that the symmetry of the effective Hamiltonian is determined by the symmetry of the original
time-dependent Hamiltonian in general [43].

Utilizing these differences, the controls of band structures with laser light have been pro-
posed by many researchers [2, 44–50]. A pioneering work in this direction is the work by T.
Oka and H. Aoki in 2009. They consider graphene irradiated by circularly polarized laser
light and show how the band structure and the transport properties are modified. The band
structure is modified like Fig. 1.3 (b) and the finite gap appears at the Dirac point. They show
that this gap-opening is the topological phase transition in the Haldane model defined on a
honeycomb lattice [51] and there appear the chiral edge modes corresponding to the topological
invariant called Chern number. This state is called “Floquet topological insulator” and simi-
lar phenomena are investigated related to various topological phases including Z2 topological
insulators [45], fractional Chern insulators [52] and Weyl semimetals [53].

From the experimental point of view, similar phenomena first observed in the Tr-ARPES
measurement at the surface of the topological insulator Bi2Se3 in 2013 [3]. After that, a similar
setup as the original proposal by Oka and Aoki is realized in the system of cold atoms in an
optical honeycomb lattice and the topological phase transitions are experimentally observed in
2014 [54]. Since atoms are charge neutral, they used a technique called “lattice shaking” to
induce the artificial gauge fields corresponding to laser light. They directly change the optical
lattice potential time-dependently and atoms feel the force which gives the similar effect as
the electric fields. This kind of technique, which is the design of the time-dependence in the
Hamiltonian to realize desired quantum states, is called “Floquet engineering” and this has
been developed in the field of cold atomic systems and established as one of the important
experimental techniques for preparing the experimental setup. For example, the other group
is also realized the Haldane model in a similar way to investigate the quantum dynamics
in topological systems [55]. In contrast, the experimental observations of Floquet states in
solids have been few and limited to the the surface of Bi2Se3 [3, 4] and there have been the
ARPES measurements until quite recently. However, a preprint about the observation of
anomalous Hall effect in graphene irradiated by circularly polarized laser light has been posted
on arXiv very recently in 2018 [5]. This anomalous Hall effect is expected to be an evidence of
Floquet topological insulators. It is important that the transport measurement, which provides
macroscopic observables, gives the evidence because this opens a way to control the macroscopic
properties of solids via engineering of band structure with laser light.

In summary, dynamical controls of band structures are theoretically proposed and already
experimentally realized even in solids. In these studies, topological phases, characterized by
band structures, play an important role. However, band structure can affect the various physical
properties of solids and thus the investigation should not be limited to topological phenomena.
Since the dynamical controls of band structures can realize new band structures different from
equilibrium states as explained above, we expect that the dynamical controls of band structures
are applied to a variety of materials and help to explore a new nonequilibrium phenomena in
solids.
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As described above, the dynamical controls of band structures are mainly considered in
weakly interacting systems (e.g. semiconductors, graphene). To extend these studies and find
new schemes for controls, we have investigate strongly correlated electron systems and explain
the results about them in this thesis. In Chap. 2, we discuss the control of the band structure
of the Bogoliubov quasi-particles in d-wave superconductors which are typically realized in
strongly correlated electron systems. In Chap 3, we consider the control of the band structure
strongly renormalized by electron correlation in heavy fermion materials.

Controls of magnetism

The control of magnetism with laser fields is one of the most important examples of dynamical
controls. It is because this control can be applied to spintronic devices. Spintronics is a
technology alternative to electronics and expected to realize efficient data storage and transfer.
The core process in spintronics is the control of spin degrees of freedom. Making shorter the
time for this process, it should be possible to achieve higher efficiency and faster processing. For
this purpose, dynamical controls of magnets with laser light are anticipated to be used because
applying strong laser light can induce nonequilibrium collective phenomena related spins and
then the spin states are changed in an ultrafast time scale (e.g. fs or ps time scale). To consider
the control in this time scale, equilibrium statistical mechanics cannot be used and we need
to consider nonequilibrium phenomena. In this sense, the dynamical control of magnets is a
promising way to utilize nonequilibrium states for engineering. Indeed, this direction has been
gathering great attention and the research field of “ultrafast spintronics” has been formed [56].

Studies of dynamical controls of magnetism start from the discovery of the ultrafast demag-
netization, which is a phenomenon that application of laser light to ferromagnets reduces the
magnetization in the ultrafast time scale. The first observation was reported by E. Beaurepaire
et al. in 1996 and they reported that application of 60 fs pulse to ferromagnetic nickel induces
the 40 % reduction of the magnetization for almost 5 ps [57]. This experiment stimulated
the other researchers and then the controls of magnetization with laser light have been inten-
sively investigated. For example, while the above experiment is understood as a thermal effect
induced by the rapid optical absorption, non-thermal effect inducing magnetization with circu-
larly polarized laser light is claimed to be observed in a multiferroic ferromagnet DyFeO3 [58].
In addition, the application of a similar non-thermal effect inducing magnetization to the all-
optical magnetic recording by femtosecond laser pulses was already discussed [59]. In summary,
the control of magnetization has been well-studied and is reaching to possible application to
spintronic devices.

While these are the manipulation of the magnetization, other kinds of controls in magnets
are also discussed in recent years. One is the control of quantities other than magnetization
itself. For example, it is discussed that application of spatially modulated laser light induces
the spin current in multiferroic magnets [60]. Spatial modulation of laser fields is expected to
be realized using plasmonic microstructures [61–63] and thus it should be useful for spintronic
devices. The other is the control of microscopic interaction between spins. In magnets based
on simple Mott insulators, antiferromagnetic Heisenberg interaction is known to be dominant.
With a second-order perturbative calculation in a single-band Hubbard model, we can calculate
the effective spin model as

Heff = JH
∑
rr′

Sr · Sr′ , (1.1)

where Sr is a spin-1/2 operator defined on a site r and JH = 4t2/U with a hopping amplitude
t and a Coulomb interaction U in the Hubbard model. Here, J is obviously positive. However,
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it is reported that the sign of the Heisenberg coupling can be changed with laser irradiation [64,
65]. They employ a second-order perturbative calculation with considering the virtual processes
via Floquet states induced with laser light and obtain the effective Heisenberg coupling as

Jeff =
∑
n

4t2|Jn(A)|2

U − nω
(1.2)

= JH

1 +
1

2
[
1−

(
ω
U

)2]A2

+O(A4), (1.3)

where A and ω are the amplitude and the frequency of the laser fields. From eq. (1.3), we
can see that laser field whose frequency ω is larger than U and intensity A is sufficently
strong makes the effective coupling Jeff negative. This mechanism is expected to be used for
antiferromagnetic-ferromagnetic switching in an ultrafast time scale, which should be difficult
in current techniques in spintronics. Besides the Heisenberg-type interactions existing even
without laser light, we can also discuss other interactions appearing only when applying laser
light. For example, it is theoretically shown that application of circularly polarized laser light
to Mott insulators breaks the time-reversal symmetry and then induces the scalar-chirality-type
interaction HChiral =

∑
ijk Si ·(Sj×Sk) which is not allowed when preserving the time-reversal

symmetry [66, 67]. This interaction is known to induce chiral spin liquids [68–70] and thus this
scheme is used for controlling such an exotic states of matter.

In this thesis, we present our results related to the dynamical control of microscopic inter-
action. We consider the application of DC electric fields or low-frequency AC fields (e.g. THz
fields) and show that the Heisenberg-type interaction is enhanced along the electric fields. In
Chap. 4, we show this argument and apply it to control the magnetic orders, spin liquids, and
topological phases in quantum spin systems.

1.3 Theoretical developments

As described above, fascinating nonequilibrium phenomena have been found and various schemes
for dynamical control utilizing them have also been proposed and are almost being realized in
experiments. However, the physics behind them cannot be described with conventional tools
in condensed matter theory. Then, we need new tools to tackle the nonequilibrium phenom-
ena. Fortunately, thanks to the recent developments in condensed matter theory and statistical
physics, our knowledge about theory for nonequilibrium phenomena in quantum many-body
systems is rapidly growing and several useful tools are being established. In this section, we
first briefly review such theoretical developments and then give an explanation focusing on one
of theoretical treatments called Floquet theory which is a main theoretical tool in Chap. 2 and
Chap. 3.

Overview of theoretical treatments

One of the most crucial problems is that we cannot apply standard statistical mechanics.
In the transient phenomena induced with strong laser pulse, the time scale is too short to
apply it. For nonequilibrium steady states, we need the information far from equilibrium in
the regime going beyond linear response. In such a situation, what we can safely use is just
quantum mechanics. Thus, we have to solve time-dependent quantum many-body problems
to investigate nonequilibrium phenomena in solids. Of course, it is impossible to solve these
problems in general and thus we have to take some approximations.
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There are various approaches with different approximations to tackle the nonequilibrium
phenomena and we can classify them. First, the approaches are divided into numerical and
analytical approaches. Numerical approaches make it possible to obtain the real-time dynamics
for a broad range of parameters and thus they are very strong when the numerical cost is
allowed. In contrast, numerical calculations for long-time and large-size are difficult in general
and it is difficult to qualitative understanding of phenomena via numerical results in many
cases. On the other hand, the analytical approaches are possible for very limited parameters
(i.e. integrable models) or some simplified models, but they can give a qualitative understanding
and sometimes provide universal properties not depending on the specific models.

There are many kinds of numerical approaches for nonequilibrium phenomena and the new
approaches are also being proposed intensively. It is difficult to give a systematic review and it is
out of scope of this thesis because our studies are mainly based on the analytic approach. Thus,
we only mention several well-known approaches here. For one-dimensional systems, there exists
a very powerful approach called time-dependent density matrix renormalization group (Time-
dependent DMRG) [71–74]. This approach is based on a variational method about a trial wave
function described with matrix product states and known to give a numerically exact results
even for intermediate system size. For two- or three-dimensional systems, nonequilibrium
dynamical mean-field theory (Nonequilibrium DMFT) is known to be a powerful methods
for calculating nonequilibrium dynamics [75]. This approach is based on the Keldysh’s Green
function formalism and an approximation of taking only spatially-local correlation into account
is used. This approximation corresponds to mapping the generic quantum many-body problems
to single-impurity problems, which are known to be relatively easy to solve. Thus, using
nonequilibrium DMFT with some solver of the impurity problem, we can calculate the many-
body quantum dynamics. Note that there does not exist a very strong solver like continuous-
time quantum Monte Carlo method [76] for equilibrium DMFT [77] and thus we have to rely
on some diagrammatic approach (e.g. non-crossing approximation). Thus, it is important task
to establish a strong solver for the nonequilibrium impurity problem.

When we use analytic approaches, we have two choices. One is to choose some exactly
solvable models whose dynamics can be calculated analytically or with easy numerics. In
this direction, nonequilibrium dynamics of conformal field theory (CFT) describing many one-
dimensional quantum many-body systems is actively studied [78]. Due to high symmetry of
the theory, we can use several analytical techniques and get analytical results. It is very useful
for discussing universal properties of nonequilibrium phenomena, but the applicable models are
limited. The other way is to use some simplified models, which make the problem easy enough
to solve analytically or with easy numerics. In this direction, the approach that we expected
to be promising is to use the effective Hamiltonian in Floquet theory. It is recently established
and very useful for discussing the nonequilibrium steady states under AC fields and thus we
explain this treatment below. Indeed, this treatment plays an important role in Chap. 2 and
Chap. 3.

Floquet theory for quantum many-body systems8

Floquet theory is a theoretical framework for time-periodic quantum systems based on Flo-
quet‘s theorem. Floquet‘s theorem is originally a theorem for differential equations including a
periodic parameter. In most cases for application to physics, this periodic parameter represents

8There are nice review papers on Floquet theory closely related to the contents in this subsection. They are
cited as [7, 79, 80].
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time. Thus, we here explain the Flqouet’s theorem for time-periodic Schrödinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (1.4)

where the Hamiltonian is time-periodic, i.e. H(t+T ) = H(t). Floquet’s theorem says that the
solution of the Schrödinger equation (1.4) is given as a product of exponential function of time
e−iεt and time-periodic states |φ(t)〉, i.e. ψ(t) = e−iεt |φ(t)〉 and |φ(t+ T )〉 = |φ(t)〉 9. ε is a
quantity called quasi-energy. Using the Floquet‘s theorem, we can expand |φ(t)〉 in a Fourier
series as |φ(t)〉 =

∑∞
n=−∞ e

inΩt |φn〉 with Ω = 2π/T . Substituting this series and the Fourier
series expansion of the Hamiltonian H(t) =

∑∞
n=−∞Hne

inΩt into eq.(1.4), we obtain equations
of the Fourier modes as

∞∑
m,n=−∞

(Hm−n + nΩδmn) |φn〉 = ε |φm〉, (1.5)

which is also written in a matrix form as

. . .

H0 + Ω H+1 H+2

H−1 H0 H+1

H−2 H−1 H0 − Ω
.. .





...
|φ+1〉
|φ0〉
|φ−1〉

...

 = ε



...
|φ+1〉
|φ0〉
|φ−1〉

...

 . (1.6)

Here, we just rewrite the original Schrödinger equation (1.4) into the equations for Fourier
modes (1.5). This equation is mathematically equivalent, but the form of eq. (1.5) is suggestive.
It is because this equation looks like an eigenvalue equation and does not include any time-
dependence explicitly. In other words, it means that the time-dependent problem is mapped
to the time-independent eigenvalue problem. This eigenvalue problem can be interpreted as
one of a static many-“bands” systems as shown in Fig. 1.4. The “band” corresponds to the
diagonal sectors represented by H0 +nω (n ∈ Z). Corresponding to the time-periodicity, there
appears the periodicity with Ω in the quasi-energy direction. The off-diagonal components,
i.e. Hn (n 6= 0), give hybridization between the “bands”. We can interpret Hn (H−n) as a
operator corresponding to the n-photon absorption (emission) process and understand in the
way that such absorption and emission processes connect the sectors with different photon
numbers H0 + nω 10.

It seems that the above mapping makes the problem easier because it is reduced to the
static problem. However, as we mentioned above, the equation (1.5) is equivalent to the
original Schrödinger equation and thus the difficulty of time-dependent problems still remains.
The reason why the problem is still difficult is that the matrix of the above eigenvalue problem
is infinite-dimensional. To go further, we have to reduce the dimension of matrix. One of
the ways to reduce it is just to truncate the matrix at a certain size. To obtain the reliable
results, we can check whether the results are unchanged or not and, if they are not changed, we
can believe them. This approach is usefully applicable to various systems, but it is needed to
diagonalize large matrices with numerical calculations. Thus, it is difficult to obtain qualitative

9Strictly speaking, the solution of the Schrödinger equation (1.4) is given as a superposition of this product
form.

10We here use the term “photon” just for interpretation and this does not mean the elementary quanta of
electromagnetic fields. We consider a generic time-dependent Hamiltonian up to here and we cannot determine
the physical meaning without specifying the physical systems.
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Figure 1.4: Schematic picture of a static many-“bands” system corresponding to the eigenvalue
problem (1.5). The “band” corresponds to the diagonal sectors represented by H0+nω (n ∈ Z).
The off-diagonal components Hn (n 6= 0) give hybridization between the “bands”.

understanding. For this purpose, the other way is much better. This is the approach to use an
effective Hamiltonian in the high frequency limit. Taking this limit, the sectors with different
photon numbers deviate from each other and the effect of absorption and emission of photons
are treated perturbatively. Thus, we focus on one sector and project out the other sectors with
including the effect from other sectors as a perturbation. Due to the projection, we can obtain
the effective Hamiltonian whose dimension is the same as that of the original Hamiltonian
H(t).

Several approaches for calculating the effective Hamiltonian are known, e.g. Flouqet-
Magnus expansion, van-Vleck expansion and Brillouin-Wigner expansion. These expansions
should be equivalent when taking a sufficient number of higher order terms into account, but
they can give different results for truncating at a certain order 11. In practice, we use the
truncated effective Hamiltonian and it can be a problem. Thus, we have to be careful about
that. However, these expansions give the same result up to the first order 12 as

Heff = H0 +

∞∑
n=1

[Hn, H−n]

nω
+O(ω−2). (1.7)

Thus, we use the above expansion (1.7) up to the first order in this thesis. Fortunately, all the
results in this thesis can be understood within the first order.

This effective Hamiltonian approach enables us to obtain a finite-dimensional and static
Hamiltonian (1.7) from the time-dependent problem (1.4). Because the effective Hamiltonian

11It is known that there is a relation among these three expansions. Mikami et al. give a comprehensive paper
about the relation between them [81]. For details, please see this paper.

12Strictly speaking, the first order terms of Floquet-Magnus expansion include the other terms depending
on the initial time of the dynamics, which do not exist in the other expansions. However, we focus on the
macroscopic quantity and phases of matter induced with laser light in this thesis and they do not depend on the
initial time which corresponds to the carrier envelope phase of laser light. Thus, we do not consider the terms
depending on the initial time.
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does not depend on time, theoretical techniques developed for equilibrium states are expected
to be applicable to it. However, the applicability is actually unclear only based on the above
discussion. It is because the original problem (1.4) is time-dependent and thus it is not clarified
when the description of the static effective Hamiltonian works. To answer this questions, we
have to consider the real-time dynamics of quantum many-body systems. In general, it is
difficult to know this dynamics, but we can know only when the effective Hamiltonian (1.7)
gives a valid description within the real-time dynamics. This is unveiled by the recent studies in
statistical physics about thermalization in closed and periodically-driven quantum systems. In
the following, we explain when the effective Hamiltonian is valid and whether the techniques
in equilibrium can be applicable to the effective Hamiltonian based on these studies. We
start from the case of closed quantum systems and introduce an important concept, “Floquet
prethermalization”. After that, we explain the realistic case in solids realized with laser pulse
having a finite width.

Let us consider the dynamics of periodically-driven quantum many-body systems. Naively
thinking, periodic driving (e.g. irradiation of laser light) supplies the energy to the system
and then the closed system is expected to heat up. Finally, the system is considered to reach
a completely randomized state corresponding to infinite temperature states in the long time
limit. Thanks to the recent numerical study [82], this intuitive argument is confirmed to be
correct. It is shown that the expectation value of an observable Ô reaches its thermal average
at the infinite temperature, i.e. O(t) = 〈ψ(t)|Ô|ψ(t)〉 → 〈Ô〉T=∞ in the long time limit where
〈Ô〉T=∞ = Tr[Ô] (see Fig. 1.5). This result suggests that we cannot see the signature of the
effective Hamiltonian in this real-time dynamics because no Hamiltonian appears in the thermal
average at the infinite temperature 〈Ô〉T=∞.

However, there is one possibility for the appearance of the effective Hamiltonian. It is
the possibility that there exists some “prethermalized state” and this state is described with
the effective Hamiltonian at finite temperature. Surprisingly, this statement is proved theoreti-
cally [83–85] and numerically confirmed in several concrete models [84, 86]. This prethermalized
state is called “Floquet prethermalized (FP) state” and it is realized in a transient time scale
before heating up as shown in Fig. 1.5. In the FP state, the expectation value O(t) is approxi-

mated with 〈Ô〉Heff ,βeff
= Tr[Ô exp(−βeffH

(n0)
eff )] where H

(n0)
eff is the high-frequency expansion of

the effective Hamiltonian truncated up to n0-the order and 1/βeff is the effective temperature
determined with the condition of the energy conservation 13. The remarkable feature of the
FP state is that its lifetime τFP becomes exponentially longer with increasing the frequency,
i.e. τFP = O(exp(ω/J)) where J is the typical energy scale of the original Hamiltonian H(t).
Because the thermalization time τth (the time for thermalizing from the initial state to the FP
state. Please see Fig. 1.5) is short in most systems, it means that we can definitely realize
the FP state if we choose the sufficiently high frequency. The reason why FP states appear is
intuitively understood as follows. The energy injection by periodic driving is determined by
the frequency of driving. If the frequency is sufficiently higher than the typical energy scale of
the original Hamiltonian, it takes exponentially long time to absorb the large energy. Thus, the
state where the system feels periodic-driving but absorbs the energy very slowly appears. This
is the FP state. The existence of FP states is very important because the physical meaning of
the effective Hamiltonian is clarified and then we can tackle the noequilibrium dynamics with
the effective Hamiltonian. Furthermore, it is also important that the expectation values in FP
states are calculated with thermal average. It means that we can apply the theory developed in

13This condition is written as 〈H(0)〉init = 〈Ô〉Heff , βeff . This equation means that the energy is effectively
conserved in the dynamics until the lifetime of the FP state τFP. Solving this equation for βeff , we can get the
effective temperature in the FP state.
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Figure 1.5: Typical real-time dynamics of closed quantum systems under the continuous peri-
odic driving. The expectation value Ô(t) starts from the initial value 〈Ô〉init = 〈ψ(0)|Ô|ψ(0)〉
and reaches 〈Ô〉T→∞ = Tr[Ô]. In the intermediate time scale between τth and τFP, the
Floquet prethermalized (FP) state appears and O(t) is approximated with 〈Ô〉Heff ,βeff

=

Tr[Ô exp(−βeffH
(n0)
eff )].

the study of equilibrium states. In this thesis, we apply the techniques for strongly correlated
electrons (e.g. slave boson methods in Chap. 3) based on this point.

As described above, the physical meaning of the effective Hamiltonian in the dynamics of
closed periodically-driven quantum many-body systems is clarified and it gives a significant
foundation of the Floquet theory for many-body systems. However, we have to modify several
points in the above discussion to apply the concept of the FP state to the realistic situation of
experiments in solids. There are two points to modify.

One is that strong laser light is expected to be realized as a finite-width pulse shown in
Fig. 1.6. It is different from the above discussion since we considered the continuous wave above.
This difference gives two modification in the real-time dynamics. One is the thermalization
time is expected to be longer because the strength of laser light becomes smaller. The other
point is that the application of laser light stops before heating up when the pulse width is
sufficiently short. From this point, the laser light should be shorter to avoid the heating, but
the laser light must be longer than the thermalization time. Therefore, we have to choose the
intermediate width of laser pulse.

The other point is that solids are not closed quantum systems and inevitably couple to
various environments, e.g. phonons. It is quite different from cold atomic systems. Thus,
we cannot naively apply the theory of closed systems to solids, but it is possible in our case
because the pulse width is typically very short and then the lifetime τFP is also short. Since
the dynamics of environments is typically much slower than that of electrons, the systems
are approximated to be a closed quantum systems only in an ultrafast time scale. Indeed, the
signature of Floquet states is observed in experiments where the short pulse whose width is 100
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Figure 1.6: Typical real-time dynamics of closed quantum systems under the pulse driv-
ing in solids. The expectation value Ô(t) starts from the thermal value 〈Ô〉H(0),β0

=

Tr[Ô exp(−β0H(0))]. Before O(t) reaches 〈Ô〉T→∞ = Tr[Ô], the driving is stopped and
O(t) goes back to the thermal value 〈Ô〉H(0),β0

. In the intermediate time scale between
τth and τFP, the Floquet prethermalized (FP) state appears and O(t) is approximated with

〈Ô〉Heff ,βeff
= Tr[Ô exp(−βeffH

(n0)
eff )].

fs is used [3, 4]. However, the condition of adequate pulse width is expected to depend on the
detail of the experimental setups. To clarify it, we need further studies both theoretically and
experimentally. In this thesis, we discuss the experimental conditions to confirm our proposals
using Floquet states in Chap. 2 and Chap. 3 respectively. In addition, the existence of the
environment makes the other subtle difference. It is that the system go back to the thermal
states after finishing the driving due to the environment. If we start from the thermal states, it
is expected that the system returns to the initial states. It is different from the closed quantum
systems.

We have explained the theoretical description with Floquet theory for quantum many-body
systems. In recent years, the theoretical developments of Floquet theory is very rapid and thus
we have not explained some of the important developments related to Floquet theory in many-
body quantum systems. For example, the relation between Floquet states and many-body
localization (MBL) [87, 88], which is roughly speaking the many-body version of Anderson
localization [89, 90], is not mentioned above. As we discussed, periodic driving in closed
quantum systems induces heating in the long time limit, but MBL prevents the heating. Thus,
the periodically-driven many-body localized states reaches nontrivial steady states in the long
time limit and their properties are extensively investigated. In addition, we did not mention
the phases of matter only existing in periodically-driven systems. The typical examples are
anomalous Floquet topological states [49, 50] and discrete time crystals [91, 92] (the latter was
briefly mentioned in Sec. 1.1). The investigation of these states is also important and indeed
energetically done in recent years.
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1.4 Our motivation

In Sec. 1.1 and 1.2, we have explained the nonequilibrium phenomena in solids under AC and
DC electric fields and the dynamical controls realized with these nonequilibrium phenomena.
These phenomena are not described within the theoretical tools developed in conventional
condensed matter theory, but there are theoretical developments providing new theoretical
tools for treating nonequilibrium phenomena. We explained these developments in Sec. 1.3
and devoted most part of the section for explanation of Floquet theory for quantum many-
body systems which enables us to analyze solids under AC electric fields.

These situations excite us because interesting and unexplored phenomena are found in
experiments and the theoretical tools for them are being established recently. We think that
now is the time for theorists to apply new theoretical tools to cutting-edge experimental setups
and find new exciting phenomena as the application of linear response theory gave fruitful
results and developments in condensed matter physics. Furthermore, as explained in Sec. 1.2,
nonequilibrium phenomena enable us to control states of matter dynamically and can realize
controls which cannot be done in equilibrium. Then, such controlling schemes have a potential
to bring a breakthrough to a future technology or to be a new mechanism for future devices.
Therefore, we believe that studying nonequilibrium phenomena and dynamical controls in solids
is one of the most important future directions in condensed matter physics.

To contribute to the development in this direction, we have studied nonequilibrium phe-
nomena and proposed new schemes for controlling states of matte using them. In particular,
we have studied them in strongly correlated quantum systems. There are two reasons why we
focus on them.

One is that strongly correlated systems show various interesting phases of matter. The
most famous example is high-temperature superconductors in cuprates as briefly mentioned in
Sec. 1.1. The electron correlation is supposed to play an important role for realized d-wave
superconductivity in cuprates [10]. Magnetism is also crucially related to electron correla-
tion and magnetic spin systems can show exotic quantum states of matter like quantum spin
liquids [93, 94] or the Haldane-gap phase [95, 96] due to strong correlation between spins.
Furthermore, heavy fermion systems show rich phase diagrams including magnetic phases and
superconducting phases due to the competition between two correlation effects, Kondo effect
and Ruderman-Kittel-Kasuya-Yoshida (RKKY) interaction. All these are very important and
interesting topics having been investigated in condensed matter physics. To discuss the control
of such phases, we have to understand the interplay between laser light and strong correlation.
This is a difficult task, but it is worthy of being studied.

The other is that strongly-interacting systems become tractable recently. As explained in
Sec. 1.3, recent theoretical developments clarify the relation between the real-time dynamics and
the effective description via Floquet theory. It enables us to treat the nonequilibrium strongly
correlated quantum systems using the effective Hamiltonian. The strength of the approach with
the effective Hamiltonian is that we can use the technique developed in physics of equilibrium
systems. Although the effective Hamiltonian only gives the information in the high-frequency
limit, this approach can be a very powerful tool for exploring strongly correlated systems. From
these reasons, we have studied nonequilibrium phenomena and dynamical controls in them. In
the following chapters, we explain the results in our studies.
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1.5 Overview of this thesis

Finally, we explain the organization of this thesis. This thesis consists of five chapters, and
Chaps. 2, 3, and 4 present our results. In this chapter, we gave an introduction of “nonequi-
librium phenomena” and “dynamical controls” and explained recent theoretical developments
related them. Based on the contents in this chapter, we explain our recent results in the fol-
lowing chapters. In each chapter, we give different theoretical proposals in strongly correlated
materials. The proposals in Chap.2 and 3 are related to AC fields. The proposal in Chap.4 is
closely related to DC field, but also related to slow AC fields, e.g. THz fields.

In Chap. 2, we explain our proposal to realize laser-induced topological superconductiv-
ity in d-wave superconductors. Based on the effective Hamiltonian approach, we show that
the circularly polarized laser light modifies the Bogoliubov spectrum and realize a full-gap
superconductor effectively. We find that this full-gap superconducting state is topologically
nontrivial and characterized by Chern numer. The experimental realization of topological su-
perconductivity is quite limited, and thus our proposal is expected to be useful because our
proposal can be applicable to d-wave superconductors which are widely realized in strongly
correlated electron materials including cuprate supercondutors.

In Chap. 3, we study heavy fermion systems under AC fields. We derive a periodic-
Anderson-type generic effective model describing laser-irradiated heavy fermion systems with
Floquet theory. Using this model, we discuss the nature of Kondo effect and topological phases
under AC fields. We find that the behavior of Kondo effect depends on the lattice structure
and, in most cases, we can realize the laser-induced magnetic phase transition via controlling
Kondo effect with laser light. As for topological phases, we find that there appears a new phase
of weak topological insulator which does not appear without laser light and circularly polarized
laser light can induce a Weyl semimetal phase in heavy fermion systems.

In Chap. 4, we propose a new schemes to control insulating magnets with DC fields or
slow AC fields. We derive the effective model of Mott insulators under DC electric fields and
find that the spin-spin interaction strength in the direction parallel to the electric field are
generically enhanced. Using this scheme, we propose the control of magnetic and topological
orders in magnetic insulators. For this purpose, we demonstrate that several magnetic or
topological ordered phases such as quantum spin liquids and Haldane-gap states can be induced
if we apply a strong enough DC electric field to typical frustrated or low-dimensional magnets.
Our proposal is effective especially for magnets in the vicinity of magnetic phase transition
points, and would also be applicable for magnets under low-frequency AC electric fields such
as terahertz laser pulses.

Finally, we conclude this thesis and explain our future outlook in Chap. 5.
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Chapter 2

Laser-induced topological
superconductivity in d-wave
superconductors

2.1 Introduction

In this chapter, we explain our theoretical proposal for realizing topological superconductors
(TSCs) with laser light [97]. TSCs have attracted a great deal of interest from the viewpoint
of realization of Majorana fermions in solid states and a possible application to quantum
computation [60, 98]. However, it is the current situation that experimental realization of
TSCs is still limited. There are two main ways to search for topological superconductors. First
one is to engineer a TSC in artificial systems by proximity effect (artificial TSCs). In recent
studies, there are substantial developments in some artificial systems, such as a ferromagnetic
atomic chain on a superconductor [99] or a nanowire on a superconductor [100]. In these
artificial systems, the realization of TSCs is confirmed to a certain extent. Second way is
to find a material which is intrinsically a TSC (intrinsic TSC). Some candidate materials of
intrinsic TSCs have been proposed, for instance, a spin-triplet superconductor Sr2RuO4 [101]
and a doped topological insulator CuxBi2Se3 [102–104]. However, nodal excitations in nearly
gapless Sr2RuO4 [105, 106] are harmful for experimental detection of topological response, and
topological nontriviality in CuxBi2Se3 is still under debate [107]. Therefore, further search of
intrinsic TSCs is one of the important issues in the research field.

On the other hand, as explained in Chap. 1, tremendous developments have been achieved
in the controls of topological phases with laser light [2, 43, 45, 49, 52, 108–110]. A typical
example of the laser-induced topological state is a quantum Hall state in graphene [2, 43, 47].
This state is induced not by static magnetic field but by circularly polarized dynamical laser
light. In this case, laser light effectively induces the next-nearest hopping with complex phase,
which makes the system gapped, and thus the topologically non-trivial states similar to the
Haldane model [51] are realized. This phenomenon is confirmed experimentally in graphene
very recently [5]. In addition, a similar phenomenon is also observed on the surface of the laser-
irradiated topological insulators by Tr-ARPES experiments [3]. The ARPES image obtained
in the experiments shows that the surface Dirac cone becomes gapped when the laser light is
applied to the system.

Motivated by these situations, we propose a possible way to realize TSCs with application
of the laser light to well-known materials. We discover that the TSCs can be realized in d-wave
superconductors, such as cuprate, fabricated on a substrate irradiated by circularly polarized
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laser light. We consider a thin film of cuprate superconductors as a typical example of d-wave
superconductors and apply Floquet theory to the theoretical model of cuprate superconductor
and derive an effective model under the irradiation of the laser light. Based on this effective
model, we reveal that the system acquires the topologically nontrivial nature, which is char-
acterized by Chern numbers, and show that the laser-induced magnetic field in the effective
model plays a crucial role in realizing TSCs.

This Chapter is organized as follows. In Sec. 2.2, we introduce our model and methods.
Next we show the derivation of an effective model which describes laser-irradiated cuprate thin
films in Sec. 2.3. In Sec. 2.4, we discuss topological properties of the effective model. We also
show the topological phase diagram and clarify the nature of each phase. In Sec. 2.5, we discuss
the experimental conditions to realize TSCs. Finally, the summary of this chapter is presented
in Sec. 2.6.

2.2 Model and Methods

A setup of the system is schematically shown in Fig. 2.1. We consider a thin film of cuprate
superconductors fabricated on a substrate. Because of the asymmetric potential due to the sub-
strate, Rashba spin-orbit coupling appears. In order to describe such a situation, we introduce
a Rashba-Hubbard model as

H =
∑
kσ

ξ(k)c†kσckσ

+
∑
kσσ′

(αg(k) · σ)σσ′c
†
kσckσ′ + U

∑
i

ni↑ni↓, (2.1)

where

ξ(k) = −2t(cos kx + cos ky) + 4t′ cos kx cos ky − µ, (2.2)

g(k) = (− sin ky, sin kx, 0), (2.3)

with ckσ being the annihilation operator of electrons with momentum k and spin σ. We choose
the form of ξ(k), which includes the next-nearest neighbor hopping t′, in order to reproduce
the Fermi surface of typical high-Tc cuprates.

Next we consider the effect of laser light. We treat the laser light as time-dependent classical
electromagnetic fields A(t) and introduce them as Peierls phases. This treatment is equivalent
to substituting k with k−A(t). With this substitution, we obtain the time-dependent model,
which describes laser-illuminated cuprate thin films, as

H(t) =
∑
kσ

ξ(k −A(t))c†kσckσ

+
∑
kσσ′

(αg(k −A(t)) · σ)σσ′c
†
kσckσ′ + U

∑
i

ni↑ni↓ (2.4)

with A(t) = (Ax cosωt,Ay sinωt, 0), which corresponds to circularly (Ax = Ay) or elliptically
(Ax 6= Ay) polarized laser light.

Generally speaking, it is difficult to solve time-dependent quantum many-body problems.
However, as for time-periodic problems, we can analyze them with Floquet theory explained in
Sec. 1.3. The model Hamiltonian (2.4) is periodic in time and therefore we can apply Floquet
theory to it. As explained in Sec. 1.4, there appear nonequilibrium steady states, called Floquet
prethermalized states, which have finite life time when the frequency is sufficiently high[83–85].
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Cuprate thin film

Substrate

Circularly-polarized 
laser light

Figure 2.1: Schematic picture of the setup. A thin film of cuprate superconductors fabricated
on a substrate is irradiated by circularly polarized laser light in the z-direction.

The nonequilibrium steady states are known to be described with an effective Hamiltonian in
Floquet theory. Though it is difficult to directly calculate the effective Hamiltonian, there are
useful methods to derive the effective Hamiltonian with a perturbative expansion [81]. For this
purpose, we use the perturbative expansion eq. (1.7) shown in Sec. 1.4. For convenience, we
write down the formula again as

Heff = H0 +
∑
n>0

[Hn,H−n]

nω
+O

(
ω−2

)
, (2.5)

where Hn = 1
T

∫ T/2
−T/2 dtH(t)e−inωt. The second term in the case of the laser-irradiated systems

represents the second order perturbation process of the n-photon absorption Hn and n-photon
emission H−n in off-resonant light. If the laser intensity is sufficiently small, it is reduced to
virtual processes related to one-photon absorption H1 and emission H−1.

2.3 Derivation of the effective model

In this section, we calculate the effective Hamiltonian (3.7) up to the first order in 1/ω. The
effective model describes the nonequilibrium steady states of the irradiated thin film of cuprate
superconductors. The model is obtained as

Heff = H0 +
∑
n>0

[Hn,H−n]

nω

=
∑
kσ

ξ̃0(k)c†kσckσ

+
∑
kσσ′

(αg̃0(k) · σ)σσ′c
†
kσckσ′ + U

∑
i

ni↑ni↓

−
∑
kσσ′

µBH̃(k)σzc
†
kσckσ′ , (2.6)
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where

ξ̃0(k) = −2t(J0(Ax) cos kx + J0(Ay) cos ky)

+ 4t′J0

(√
A2
x +A2

y

)
cos kx cos ky − µ, (2.7)

g̃0(k) = (−J0(Ay) sin ky, J0(Ax) sin kx, 0), (2.8)

H̃(k) =
4α2J 2(Ax, Ay)

µBω
cos kx cos ky, (2.9)

J 2(Ax, Ay) =
∑
m=0

(−1)mJ2m+1(Ax)J2m+1(Ay)

2m+ 1
, (2.10)

and Jn(x) represents the n-th Bessel function. Note that the first three terms come from the
zero-th Fourier component (i.e. the time average of the original time-dependent Hamiltonian)
and the last term comes form the commutator part, which does not include the interaction term
because the original Hubbard interaction term does not depend on time. We see two effects
induced by the laser light. The first one is so-called “dynamical localization”[111]. With this
effect, the hopping amplitude t, t′ and the coupling constant α are renormalized by the 0-th
Bessel function. This effect induces the deformation of Fermi surface, resulting in topological
phase transitions as we mention below. The second one is “laser-induced magnetic field”. It
causes the Zeeman splitting of which splitting-width varies in momentum space. It plays a
crucial role in realizing TSC in this system.

Next we consider the Bogoliubov-de Gennes (BdG) Hamiltonian which describes supercon-
ducting states. The order parameter of cuprate superconductors is known to be d-wave [112].
However, in our system, the Rahba spin-orbit coupling breaks the inversion symmetry and
thus p-wave pairing may be admixed with d-wave pairing [113]. Therefore we investigate the
D+p-wave superconducting state by adopting a simple form ∆(k) = i[ψ(k) + d(k) ·σ]σy with
ψ(k) = ∆d(cos kx−cos ky) and d(k) = ∆p(sin ky, sin kx, 0). We assume that |∆d| is much larger
than |∆p|. With the D+p wave superconducting order parameter and the BCS-type decoupling

of the interaction term, we write down the BdG Hamiltonian as HBdG = 1/2
∑

k Ψ†kH(k)Ψk,
where

H(k) =

(
HN (k) ∆(k)
∆†(k) −HTN (−k)

)
, (2.11)

HN (k) = ξ̃0(k)σ0 + αg̃0(k) · σ − µBH̃(k)σz, (2.12)

and Ψ†k = (c†k↑, c
†
k↓, c−k↑, c−k↓). Without laser light (Ax = Ay = 0), this model represents the

original D+ p wave superconductor and thus it has point nodes (shown in Fig. 2.2 (a)). With
finite intensity of laser light (Ax, Ay > 0), the point nodes are gapped out (shown in Fig. 2.2
(b)). Later we show that the TSC is realized and the chiral Majorana edge modes appear in
the laser-induced gap (shown in Fig. 2.3). This gap opening is caused by the laser-induced
magnetic field (2.9). This term breaks the time-reversal symmetry and changes the symmetry
class of the BdG Hamiltonian to class D.

Before closing this section, we remark on differences from the case of usual magnetic field
applied to cuprate superconductors. When the orbital depairing effect is neglected, this case
is described by the model similar to ours, which has already been studied by Yoshida and
Yanase [114, 115]. However, there are two important differences from their studies. First, the
laser-induced magnetic fields do not induce vortices in superconductors. Usual magnetic fields
induce vortices and easily suppress the superconducting states. On the other hand, the syn-
thetic magnetic field induced by the laser light leads to only the Zeeman-type energy splitting
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Figure 2.2: Quasi-particle spectrum of the effective model (a) without laser-irradiation and (b)
with laser-irradiation. The data are obtained by diagonalizing the BdG Hamiltonian (2.11).
We choose the parameters as t = 1.0, t′ = 0.2, α = 0.3, ω = 0.4, ∆d = 0.4, and ∆p = 0.08.

(shown in Eq. (2.6) ) and oscillating gauge fields do not induce the vortices in superconductors.
This is an advantage in realizing the TSC. Second one is that the laser light induces hopping
renormalization (dynamical localization). As we mention below, the structure of supercon-
ducting gap is modified by the dynamical localization, and thus the topological states, which
cannot be stabilized by usual magnetic fields, are realized.

2.4 Topological phases

2.4.1 Chern number and Phase diagram

As we mentioned above, our BdG Hamiltonian belongs to the symmetry class D in two dimen-
sions. Therefore, the gapped state of this model is specified by the Chern number C[116] ,
which is defined by

C =
1

2πi

∫
dkεij

∑
n:filled

∂ki 〈un(k)|∂kjun(k)〉 . (2.13)

We calculate the Chern number by two methods. The first one is an analytical method,
which is proposed by Daido and Yanase [115]. Their derivation can be straightforwardly applied
to our model. The analytic form is obtained as

C =
∑

(±,k0)

1

2
sgn

[
(ẑ ×∇kE±) · ∇k(ψ ± d · ĝ)

µB(H̃ẑ) · (ĝ × d)/α

]
k=k0

, (2.14)

where ẑ is a unit vector in the z-direction, E± = ξ̃0(k) ± α|g̃(k)| and ĝ = g̃(k)/|g̃(k)|. The
summation is taken over all the gapped nodes k0 on Fermi surfaces of the E± bands. The
energy spectrum is written as [115]

E+ = ±
√
E2

+ + |(ψ + d · g̃) + i(µB(H̃ẑ) · (ĝ × d)/α|g̃|)|2, (2.15)

E− = ±
√
E2
− + |(ψ − d · g̃) + i(µB(H̃ẑ) · (ĝ × d)/α|g̃|)|2. (2.16)

Therefore, the gap nodes appear in the absence of the layer light at k0 satisfying

E±(k0) = ψ(k0)± d(k0) · g̃(k0) = 0. (2.17)
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Figure 2.3: Energy spectra in a ribbon-shaped system with open boundary conditions along the
x-axis and periodic boundary conditions along the y-axis. The orange dots and blue dots show
the Majorana mode localized at each side of edges, respectively. Four edge modes appear at
each edge, corresponding to the Chern number C = −4. We choose the parameters as t = 1.0,
t′ = 0.2, α = 0.3, ω = 0.4, ∆d = 0.4, and ∆p = 0.08. The filling n is 0.8 (n = 1 represents
half-filling).

The gapped nodes at k0 are intersections of a Fermi surface E±(k) = 0 and zeros of order
parameter ψ(k)± d(k) · ˜g(k) = 0.

Based on the analytic formula (2.14), we can evaluate the Chern number with counting the
contribution from gapped nodes. Each gapped node gives a contribution +1/2 or −1/2. Sign
of each contribution can be estimated as follows. First we define the direction parallel to the
Fermi surface of E±(k) bands as k̂± = ẑ × ∇kE±/|ẑ × ∇kE±|. Next we check the change of
the sign of ψ ± d · ĝ/(µB(H̃ẑ) · (ĝ × d)/α), which is in the argument of the function of Eq.
(2.14). When it changes from negative to positive along k̂± direction at gapped nodes, the
contribution is +1/2, and vice versa. Summing up all the contributions, we obtain the Chern
number of the total bands.

This analytic formula is very useful for understanding the origin of the Chern number. How-
ever, it is not convenient for systematic calculations in a broad range of parameters. Therefore,
for systematic calculation in a broad range of parameters, we use another method to calculate
the Chern number. This is called Fukui-Hatsugai-Suzuki method [117], which is an efficient
numerical method to calculate the Chern number of the model defined on discretized momen-
tum space. With this approach, we calculate the Chern number for each (Ax, Ay) point and
obtain the topological phase diagram which is shown in Fig. 2.4. In the phase diagram, the
number of electrons is fixed by tuning the chemical potential µ. In some regions, the Chern
number is finite, implying the TSCs. In the following subsections, Secs. IVB and IVC, we
clarify the nature of the superconducting phases in the low intensity region (Ax, Ay . 1.5) and
in the high intensity region (Ax, Ay & 1.5), respectively.
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C = - 4

Figure 2.4: Topological phase diagram of the laser-irradiated superconducting cuprate thin
films. Color plot shows numerically calculated Chern numbers for each (Ax, Ay) point. The
white region shows a topologically trivial phase (C = 0) and the blue region corresponds to
a topologically nontrivial phases (C = −4). We choose the parameters as t = 1.0, t′ = 0.2,
α = 0.3, ω = 36.0, ∆d = 0.05, and ∆p = 0.01.

2.4.2 Weak intensity region

In the weak intensity region, we find that a TSC specified by C = −4 is realized in a broad range
of parameters. Even with infinitesimally weak intensity of laser light, the TSC is realized in our
model, and thus it is possible to experimentally realize TSCs with relatively weak laser light.
This is one of the main results of this study. The energy spectrum of the ribbon-shaped system
is shown in Fig. 2.3. As expected from the bulk-edge correspondence, four chiral Majorana
modes appear near the edge of the system. The number of chiral Majorana modes corresponds
to the Chern number C = −4.

The reason why the C = −4 phase is realized is understood with the analytic formula
(2.14). As we mentioned above, the Chern number is determined by the gapped nodes, which
are defined as intersections of a Fermi surface and zeros of order parameters (they are shown in
Fig. 2.5). Dividing the contributions from two Fermi surfaces of the E+(k) = 0 and E−(k) = 0
bands, we write as C = C+ + C−.

We here evaluate C±. In the case of circularly polarized laser (Ax = Ay), all of the four
nodes on each Fermi surface are crystallographically equivalent since they are transformed by
the four-fold rotation. Therefore, they give the same contributions [115] and thus C± must be
either 2 or -2. Moreover, the superconducting gaps of each Fermi surface can be adiabatically
deformed to each other without closing the gap, and thus the contributions to the Chern number
is equivalent. Therefore C+ = C− and we conclude that the Chern number is either 4 or -4.
With the procedure mentioned in Sec. 2.4.1, we find that the C = −4 phase is realized. In
the case of elliptically polarized laser(Ax 6= Ay), the superconducting gap can be adiabatically
deformed to that in the case of circularly polarized laser, and thus the Chern number is not
changed. Indeed, the C = −4 phase is realized in a broad parameter range of the laser light as
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Figure 2.5: Fermi surfaces (red lines) and zeros of superconducting gap (blue lines) with weak
intensity of laser light (Ax, Ay) = (0.1, 0.1). The E+(k) band is shown in the left panel and the
E−(k) band is shown in the right panel. The shaded region represents (ψ ± d · ĝ)/(µB(H̃ẑ) ·
(ĝ × d)/α) < 0. We use the same parameters as in the phase diagram, Fig.4 .

shown in Fig. 2.4.
At the end of this subsection, we discuss the effect of laser light on the superconducting

order parameter. Though the superconducting order parameter is assumed to be D + p wave
in this study, the nature of the superconducting order can be changed by laser light through
two effects, the paramagnetic effect and the deformation of the Fermi surface. However, the
laser-induced magnetic field is very small and its effect on the superconducting order parameter
is negligible. In the weak intensity region, deformation of Fermi surface is also small. Therefore
the assumption of the D + p-wave superconducting order is valid in this region.

2.4.3 Strong intensity region

Even with strong intensity of laser light, the system shows the topologically non-trivial phase
with C = −4. Furthermore, under elliptic light (Ax 6= Ay), different topological phases, such
as C = 0, 2 and −2 are realized (The phases of C = 2 and −2 appear out of the region of
Fig. 2.4). For example, the phase with C = −2 appear in a finite region around the point
(Ax, Ay) = (2.8, 2.1), which is shown in Fig. 2.6(b). The appearance of C = 0, 2 and −2 reflects
the fact that the rotation symmetry of the superconducting gap is reduced from four-fold to
two-fold under the elliptic light.

The reason why these non-trivial Chern numbers are realized can also be understood with
the analytic formula (2.14). Among them, we explain the phase of C = 0 and C = −2. In
Figs. 2.6 (a) and 2.6 (c), we show the case of C = 0. We can see that the symmetry of
superconducting gap is reduced due to the elliptic laser light, but the system still has two-fold
rotational symmetry. By this symmetry, C± is restricted to 2, 0 or −2. As we mentioned above,
the sign of each contribution can be estimated from the sign of ψ±d · ĝ/(µB(H̃ẑ) · (ĝ×d)/α),
which is shown in Fig. 2.6 (a) by shading. The change of the sign is opposite between the
E+(k) band and E−(k) band. Therefore C+ and C− have opposite signs and thus C = 0. It
is a topologically trivial state, which can be realized by strong laser irradiation.

Next we discuss the C = −2 phase in Fig. 2.6 (b). The figure shows twelve nodes (four
nodes in the left panel and eight nodes in the right panel). Due to two-fold rotational symmetry,
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C+ is limited to 2, 0 or −2 and C− must be 4, 0 or −4. Estimating the contribution from each
node, we obtain C+ = −2 and C− = 0 and thus the Chern number C is equal to −2. Owing
to numerical difficulties, the global phase diagram including the phases of C = 2 and −2 is not
shown. However, we have confirmed that the phases of C = 2 and −2 appear in a finite region
of the phase diagram as we mentioned above.

This strong intensity region includes the regime where the effective value of the hopping
t or t′ is renormalized to zero. In the case that the effective value of t is equal to zero,
there is only the next nearest neighbor hopping t′. For example, such a situation is realized
at (Ax, Ay) = (2.4, 0.3), where the nearest neighbor hopping t in the x-direction is almost
completely suppressed. The structure of the Fermi surfaces and the superconducting gap are
shown in Fig. 2.6(d). In this case, a quasi-one-dimensional band dispersion is achieved and it
corresponds to a topologically trivial state (C = 0). Due to the nesting structure of the Fermi
surfaces, a spin density wave order may be favored.

Finally, we remark on the effects of strong laser light on the superconducting order. As we
mentioned at the end of Sec. 2.4, there are two laser-induced effects, paramagnetic effect and
deformation of Fermi surfaces. Even in the strong intensity region, laser-induced magnetic field
is still small for cuprates. However, the Fermi surfaces are drastically deformed and thus it is
possible that the superconducting order is modified. However, the present system is very likely
to remain topologically-nontrivial as long as the nodal spin-singlet component is dominant[115].
Therefore, we expect TSCs even when the superconducting gap is more or less deformed from
the original D + p-wave one.

32



(a)

-π 0 π
-π

0

π
-π 0 π

-π

0

π

kx

k
y

-π 0 π
-π

0

π
-π 0 π

-π

0

π

kx

k
y

(b)

-π 0 π
-π

0

π
-π 0 π

-π

0

π

kx

k
y

-π 0 π
-π

0

π
-π 0 π

-π

0

π

kx

k
y

(c)

- 3π
4

- π

2
- π

4

π

4

π

2

3π
4

- 3π
4

- π

2
- π

4

π

4

π

2

3π
4

kx

k
y

π

4
π

2
3π
4

π

4

π

2

3π
4

π

4
π

2
3π
4

π

4

π

2

3π
4

kx

k
y

(d)

-π 0 π
-π

0

π
-π 0 π

-π

0

π

kx

k
y

-π 0 π
-π

0

π
-π 0 π

-π

0

π

kx

k
y

Figure 2.6: (a, b) Fermi surfaces (red lines) and zeros of superconducting gap (blue lines) with
strong intensity of laser light (a, c) (Ax, Ay) = (2.1, 1.8), (b) (Ax, Ay) = (2.8, 2.1), and (d)
(Ax, Ay) = (2.4, 0.3). The E+(k) band is shown in the left panel and the E−(k) band is shown
in the right panel. The shaded region represents (ψ±d · ĝ)/(µB(H̃ẑ) · (ĝ×d)/α) < 0. We use
the same parameters as in the phase diagram, Fig.4. (c) Enlarged figures of the right panel of
Fig. (6.a). The detail of the structure near the gapped nodal points is shown.
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2.5 Experimental setup

Our proposal has two advantages in experimentally realizing TSCs. First one is that the
topologically-non trivial states can be realized by infinitesimal intensity of laser light in our
model as we mentioned above. Indeed, any fine tuning of parameters is not required for
TSCs. Second one is that the laser-induced magnetic field gives rise to only the Zeeman effect
(paramagnetic effect) and thus does not induce vortices. Because of these advantages, a laser-
irradiated cuprate thin film is a promising candidate for TSCs. In the following, we discuss the
experimental conditions about materials and laser light as well as experimental methods.

Concerning candidate materials, a cuprate superconductor has advantages since its super-
conducting state is expected to be robust to the perturbations of laser light due to its high
critical temperature. With a slight modification (e.g. the form of ξ(k)), our calculation can
be applied to any d-wave superconductors with Rashba spin-orbit coupling. Thus some of
the heavy fermion superconductors, such as CeCoIn5 [118], are also a candidate material for
laser-induced topological superconductors.

In our model, the laser light is characterized by its frequency and intensity. Strictly speak-
ing, the frequency must be sufficiently high and off-resonant since our calculation is based on
the high-frequency expansion. Within the scope of our calculation, frequency must be higher
than the band width 8t. In solid state systems, there are so many unoccupied bands above
Fermi energy, then should choose an appropriate frequency so as to make it off-resonant. On
the other hand, if the frequency is small, the effective Hamiltonian is modified by the higher
order terms in 1/ω 1. However, we expect that the topological signatures of the effective
Hamiltonian may remain. For example, even by the low frequency laser light, a nodal point of
Dirac cone is gapped out [3], which is the behavior similar to the case of the off-resonant driv-
ing. Furthermore, it is reported that TSCs universally appear in noncentrosymmetric systems
without time-reversal symmetry [115], in which our model is included.

Regarding the intensity of the laser light, the topological superconducting gap is opened
by infinitesimal intensity. However weak-intensity laser opens only a small gap, which must be
larger than the energy scale of thermal excitations in order to detect it experimentally. Thus
there exists the minimum value of the required intensity to observe the TSC. Here we estimate
the minimum intensity from the formula which stands for the size of the energy gap (derived
from eqs. (2.15) and (2.16))∣∣∣∣∣µB(H̃(k)ẑ) · (ĝ(k)× d(k))

αg̃(k)

∣∣∣∣∣
k=k0

∼ 4α2

ω

∆p

α̃
J1(Ax)J1(Ay), (2.18)

where the renormalized coupling constant is α̃ = (J0(Ax)2 + J0(Ay)
2)1/2α. The amplitude of

admixed p-wave component ∆p is estimated as ∆p ∼ ∆dα̃/EF [119, 120]. When α = 0.1eV, ω =
10eV and ∆d/EF = 0.1 are adopted, in order to make the superconducting gap 0.1meV ∼ 1K,
we need Ax = Ay = 1.21, which corresponds to the electric field amplitude E ∼ 600MV/cm.
It is the minimum amplitude to observe TSC in the experiments at temperature T ∼ 1K. At
lower temperature than 1K, we can observe TSC with lower amplitude of laser light. Moreover,
the formula (2.18) implies the condition for the optimal laser intensity corresponding to the
maximum energy gap because the energy gap depends on the 1-st Bessel function J1(x) which
takes a maximum value(∼ 0.58) at x ∼ 1.84. This amplitude of the vector potential A ∼ 1.84
corresponds to the electric field amplitude E ∼ 1GV/cm. With this intensity, the energy gap

1For example, the 2nd order term 1/ω2 gives two effects. One is the modification of the parameters of the
effective Hamiltonian which have already appeared in the 1st order. Second is the creation of new interaction
terms which do not conserve the spins.
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is estimated as 0.4meV. In order to realize a large gap, we should prepare a system which has
large α and apply laser with intermediate frequency as long as the high-frequency expansion is
appropriate and the off-resonant condition is satisfied.

To experimentally probe the phenomena proposed here, we need to use a method suitable
for observing transient phenomena because we may use pulse laser in order to obtain strong
intensity of laser light. Then the TSC is realized only when laser light is applied. As for the
protocol of the application of laser light, we need to consider two conditions.(i) Too long laser
pulse leads the interacting systems to infinite temperature trivial states [82], and thus we have
to choose a short laser pulse. In other words, we have to quit the driving before the system
heats up [83]. (ii) It takes time to reach the states described by the effective Hamiltonian.
Moreover, to realize the ground states of the effective Hamiltonian we have to switch on the
driving adiabatically [44, 121]. Therefore we should use a long and slowly developing pulse.
Considering these two conditions, we choose intermediate time scale adequately to realize TSC.
The important point for our proposal is that such an intermediate time scale should exist.
Regarding the first condition, we can make the time for heating up longer by using higher
frequency of laser light [84] or contriving the substrate to release the energy in the system.
With respect to the second condition, although it is difficult to estimate the time scale, such
a relaxation can happen in the femtosecond time scale [122]. Therefore, we can choose some
appropriate time scale longer than the femtosecond scale and shorter than the time for heating
up to observe TSC.

Finally, the most promising experimental tool to detect TSC is Tr-ARPES. The nodal
structure of cuprate superconductors has been already observed in ARPES experiments[123].
Therefore, we believe that the gap-opening at the nodes will be detected with Tr-ARPES.

2.6 Summary of this chapter

In this chapter, we have suggested a possible way to realize TSCs with application of laser
light to thin films of d-wave superconductors, e.g. cuprate thin films [124, 125]. Using Floquet
theory, we have analyzed the model of laser-irradiated d-wave superconductors with a Rashba-
type spin-orbit coupling. We have derived an effective model and discussed its topological
nature. The effective model includes the laser-induced magnetic fields, which make the system
fully gapped and lead the system to the topologically non-trivial states characterized by Chern
numbers. The laser-induced magnetic fields do not create vortices in the superconductors, and
thus our proposal has an advantage in experimentally realizing TSCs.
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Chapter 3

Heavy fermion systems under AC
electric fields

3.1 Introduction

In this chapter, we discuss dynamical controls of heavy fermion systems with AC electric fields
(laser light). Heavy fermion systems are a typical example of the strongly correlated electron
systems [126]. Here, the interplay of conduction electrons and localized electrons induces the
Kondo effect and the RKKY interaction and their competiton provides rich phase diagrams
including various quantum phases. Moreover, perturbations to the system, e.g. pressure,
possibly drive the quantum phase transitions, which are indeed observed in various materials. In
addition, recent studies have revealed that there also appear topological phases, e.g. topological
Kondo insulators [127, 128], in the phase diagrams of heavy fermion systems. Therefore, heavy
fermion systems are considered to be a desirable platform for studying various quantum phases
in strongly correlated electron systems and the transitions among them.

To clarify how this rich structure of quantum phases is changed with AC electric fields out
of equilibrium, we study laser-irradiated heavy fermion systems [129, 130]. To be specific, we
theoretically investigate the periodic Anderson model with electric fields. The schematic picture
of the setup is shown in Fig. 4.1. The periodic Anderson model is a simple model of heavy
fermion systems. Using Floquet theory and slave boson approach, we derive a general effective
model which describes the laser-irradiated heavy fermion systems. We show that there are
two laser-induced effects in this model. One is dynamical localization [111], which suppresses
hopping and hybridization. The other is laser-induced hopping and hybridization. These
effects change the properties of the original heavy fermion systems. The first effect, dynamical
localization, modifies the behavior of the Kondo effect. Especially, we point out that the
Kondo effect can be enhanced or suppressed by laser light depending on the spatial structures
of hybridization. The second effect, laser-induced hopping and hybridization, drives topological
phase transitions. In three dimensional topological Kondo insulators, linearly polarized laser
light induces a phase transition between trivial, weak topological, and strong topological Kondo
insulators. Furthermore, with circularly polarized laser light, the system realizes strongly
correlated Weyl semimetals. We provide a first step for revealing the basic properties of laser-
irradiated heavy fermion systems and for controlling their properties by strong laser light.

This chapter is organized as follows. In Sec. 3.2, we introduce the periodic Anderson model
and two theoretical methods. The first method is slave boson technique to treat the interaction
effect. The second method is Floquet theory which is known as a versatile tool for time-periodic
quantum systems. In Sec. 3.3, we discuss our main results. We derive a genric effective model
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that describes laser-irradiated Kondo insulators and show that there are two effects induced
by laser light. To demonstrate how these effects change the nature of the original systems, we
discuss the impact of them on the Kondo effect in Sec. 3.4. We then discuss how the laser-
induced effects change the topological properties of the original systems in Sec. 3.5. We show
that these effects lead to topological phase transitions. Furthermore, we discuss experimental
setups to confirm our results in Sec. 3.6. Finally, we summarize our results in Sec. 3.7.

3.2 Setup and Model

3.2.1 Periodic Anderson model with slave boson approach

In order to study the effect of laser light on heavy fermion systems, we introduce a theoretical
model, which is a variant of the periodic Anderson model. The model Hamiltonian reads

H =
∑
ijσ

{tc,ij − µδij}c†iσcjσ +
∑
ijσ

{tf,ij + (εf − µ)δij}f †iσfjσ

+
∑
ijσσ′

{Vijσσ′c†iσfjσ′ + h.c.}+ U
∑
i

n
(f)
i↑ n

(f)
i↓ , (3.1)

with tc,ii = tf,ii = 0, tc,ij = (tc,ji)
∗ and tf,ij = (tf,ji)

∗. We assume tf,ij � tc,ij . σ, σ′(=↑, ↓)
stand for the (pseudo)spin. This model consists of conduction electrons specified by the annihi-

lation (creation) operator ciσ (c†iσ) and almost localized f -electrons specified by fiσ (f †iσ). The
term including Vijσσ′ represents the hybridization of the conduction and localized f -electrons.
Due to the localized orbit of f -electrons, the electron correlation among f -electrons is strong,
and thus we introduce a Hubbard-type interaction for them, as shown in the last term of the

Hamiltonian (3.1). n
(f)
iσ represents the number operator of the f -orbit at the i-th site and the

definition is n
(f)
iσ = f †iσfiσ.

To incorporate the correlation effect among f -electrons, we use a slave-boson mean field
treatment [131–134]. It assumes a renormalized band structure, which results in the mean-field
Hamiltonian,

HMF =
∑
ijσ

{tc,ij − µδij}c†iσcjσ

+
∑
ijσ

{|b|2tf,ij + (εf + λ− µ)δij}f †iσfjσ

+
∑
ijσσ′

{b∗Vijσσ′c†iσfjσ′ + h.c.}, (3.2)

where b is a renormalization factor and λ represents an energy shift of f-orbital level by the
interaction effect.

In this study, we numerically solve self-consistent equations for b and λ and determine
their values for each temperature. We show the derivation of the self-consistent equations in
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Appendix. A. The explicit form of the equations is

λ =
1

N

∑
i 6=jσ

tf,ij〈f †iσfjσ〉

+
1

Nb∗

∑
ijσσ′

V ∗jiσ′σ〈f
†
iσcjσ′〉, (3.3)

|b|2 = 1− 1

N

∑
iσ

〈f †iσfiσ〉, (3.4)

where N is the number of sites and 〈· · · 〉 stands for a thermal average with the mean-field
Lagrangian LMF (The definition is presented in Appendix A). Since we consider insulating
systems in this study, we solve simultaneously the equations (3.3), (3.4) and the condition of
half-filling,

nfill =
1

N

∑
iσ

(
〈c†iσciσ〉+ 〈f †iσfiσ〉

)
= 2, (3.5)

and determine the chemical potential µ for each temperature. Since there are two types of
electrons (c and f) and two (pseudo) spins (↑ and ↓) for each sites, nfill = 2 corresponds to
half-filling.

3.2.2 Floquet theory

Next we consider the effect of laser light. For this purpose, we first consider a time-dependent
model which describes laser-illuminated heavy fermion systems. We treat laser light as oscil-
lating electric fields, and thus introduce a Peierls phase. We obtain the time-dependent model
from (3.2) as

H(t) =
∑
ijσ

{eiA(t)·rij tc,ij − µδij}c†iσcjσ

+
∑
ijσ

{eiA(t)·rij |b|2tf,ij + (εf + λ− µ)δij}f †iσfjσ

+
∑
ijσσ′

{eiA(t)·rijb∗Vijσσ′c
†
iσfjσ′ + h.c.}, (3.6)

where A(t) = A cos θA cosωtex + A sin θA cos(ωt − ϕ)ey, ex = (1, 0, 0), ey = (0, 1, 0), and ϕ
is the polarization angle of the laser light. In general, it is difficult to solve a time-dependent
quantum many-body problem. However, in the case of time-periodic problem, we can use a
useful description with Floquet theory as explained in Sec. 1.4. The model Hamiltonian (3.6)
is time-periodic and thus we can apply Floquet theory. As explained in Sec. 1.4, there appear
nonequilibrium steady states, called Floquet prethermalized states, which have finite life time
when the frequency is sufficiently high [83–85]. The nonequilibrium steady states are known
to be described with an effective Hamiltonian in Floquet theory. Though it is difficult to
directly calculate the effective Hamiltonian, there are useful methods to derive the effective
Hamiltonian with a perturbative expansion [81]. For this purpose, we use the perturbative
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expansion eq. (1.7) shown in Sec. 1.4. For convenience, we write down the formula again 1 as

Heff = H0 +Hcom +O
(
ω−2

)
, (3.7)

H0 = H(0), (3.8)

Hcom =
∑
n>0

[H(+n),H(−n)]

nω
, (3.9)

where H(n) = 1
T
∫ T /2
−T /2 dtH(t)e−inωt with T = 2π/ω. The first term H0 is the time-average of

the original time-dependent Hamiltonian (3.6). The second term Hcom represents the second
order perturbation process of the n-photon absorption H(+n) and n-photon emission H(−n) in
off-resonant light.

3.3 Effective Hamiltonian

In this section, we derive an effective model of heavy fermion systems irradiated by the laser
light A(t) and show the laser-induced effects which are found in our effective model. First
we calculate the n-th Fourier component of the time-dependent Hamiltonian (3.6). For this
purpose, we introduce parameters ρij > 0 and θA ∈ [0, 2π) as

ρij(θA)eiφij(θA) := cos θAex · rij + sin θAe
−iϕey · rij , (3.10)

and use the Jacobi-Anger expansion

eiz cos θ =
∞∑

n=−∞
inJn(z)einθ, (3.11)

where Jn(z) represents the n-th Bessel function. Then we obtain the n-th Fourier component
H(n) as

H(n) =
∑
ijσ

{J (n)
ij (A, θA)tc,ij − µδijδn0}c†iσcjσ

+
∑
ijσ

{J (n)
ij (A, θA)|b|2tf,ij + (εf + λ− µ)δijδn0}f †iσfjσ

+
∑
ijσσ′

{J (n)
ij (A, θA)b∗Vijσσ′c

†
iσfjσ′

+ J (n)
ij (A, θA)bV ∗jiσ′σf

†
iσcjσ′}, (3.12)

with J (n)
ij (A, θA) = inJn(Aρij(θA))einφij(θA). We apply this result to the formula (3.7) and

then obtain the explicit form of the effective Hamiltonian as

Heff = H0 +Hcom, (3.13)

H0 =
∑
ijσ

(t̃c,ij − µδij)c†iσcjσ

+
∑
ijσ

{|b|2t̃f,ij + (εf + λ− µ)δij}f †iσfjσ

+
∑
ijσσ′

{b∗Ṽijσσ′c†iσfjσ′ + h.c.}, (3.14)

1Note that the notation of Fourier components is slightly different from that of the other chapters.
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Hcom =
∑
ijσσ′

τc,ijσσ′c
†
iσcjσ′ +

∑
ijσσ′

|b|2τf,ijσσ′f †iσfjσ′

+
∑
ijσσ′

{
b∗Υijσσ′c

†
iσfjσ′ + h.c.

}
, (3.15)

where

t̃c,ij = J0(Aρij(θA))tc,ij , (3.16)

t̃f,ij = J0(Aρij(θA))tf,ij , (3.17)

Ṽijσσ′ = J0(Aρij(θA))Vijσσ′ , (3.18)

τc,ijσσ′ = 2i
∑
k

Jikj(A, θA)
tc,iktc,kj + |b|2VikσsV ∗jkσ′s

ω
, (3.19)

τf,ijσσ′ = 2i
∑
k

Jikj(A, θA)
|b|2tf,iktf,kj + V ∗kisσVkjsσ′

ω
, (3.20)

Υijσσ′ = 2i
∑
k

Jikj(A, θA)
tc,ikVkjσσ′ + |b|2Vikσσ′tf,kj

ω
, (3.21)

Jikj(A, θA) =
∑
n>0

(−1)nJn(Aρik(θA))Jn(Aρkj(θA))

n
sin [n(φik(θA)− φkj(θA))] . (3.22)

In this effective model, we find two types of effect induced by the laser light.

(i) Dynamical localization
Looking at the zero-th order term H0, we find that the amplitudes of hopping in (3.16),
(3.17) and hybridization in (3.18) are renormalized by zero-th Bessel function. Thus the
amplitudes decrease with increasing the laser intensity. This effect corresponds to the
phenomenon called dynamical localization [111], which causes freezing of the motion of
electrons when the system is irradiated by a strong electric field [122]. The important
point in our study is that this affects only off-site terms (i 6= j) since the Peierls phase is
equal to zero in on-site terms (i = j).

(ii) Laser-induced hopping and hybridization
In the commutator term Hcom, we find the new hopping terms (3.19), (3.20) and hy-
bridization term (3.21) which do not exist in the original Hamiltonian (3.1). They de-
pend not only on the position but also on the spins of electrons. Thus these terms can
be regarded as an effective spin-orbit coupling. They give a drastic effect on the renor-
malized band structure, such as a level splitting. We note that these terms can break the
time-reversal symmetry depending on the polarization of the laser field. In such a case
they can be interpreted as an effective magnetic field.

The important point is that these two effects are derived from the quite general model
which describes heavy fermion systems. Thus these effects are expected to appear generically
in heavy fermion systems.

In the following sections, we demonstrate the physical consequences of these effects with
calculations of concrete models. In Sec. 3.4, we show that the dynamical localization affects the
Kondo effect in Kondo insulators. We find that the Kondo effects are enhanced or suppressed by
laser light depending on whether the hybridization is on-site or not. In Sec. 3.5, we demonstrate
that various laser-induced topological phase transitions are realized in a certain type of Kondo
insulators.
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(a)

(b)

Figure 3.1: Schematic picture of c-f hybridization. (a) on-site model: The c- and f - electrons
hybridize only at the same site (b) off-site model: The c- and f - electrons hybridize only at the
nearest-neighbor sites. There is no on-site hybridization. Note that, although this figure treats
one-dimensional systems for simplicity, we consider three-dimensional systems in our study,

3.4 Control of Kondo effect

In order to demonstrate the effect of laser light on the Kondo effect, we introduce two simple
models, which show the qualitatively opposite behavior under the laser light as we see below.
One is an on-site model Hon, which has only an on-site hybridization term. The other is an off-
site model Hoff , in which the localized electrons can hybridize to the conducting orbit only at
the nearest neighbor sites. The structures of hybridization are schematically shown in Fig. 3.1.
For simplicity, we assume cubic symmetry and then the Hamiltonian reads

Hon/off = H(c) +H(f) +H(hyb)
on/off +H(int), (3.23)

H(c) =
∑
kσ

(εc(k)− µ)c†kσckσ, (3.24)

H(f) =
∑
kσ

(εf (k)− µ)f †kσfkσ, (3.25)

H(int) = U
∑
i

n
(f)
i↑ n

(f)
i↓ , (3.26)

H(hyb)
on =

∑
kσ

{V c†kσfkσ + h.c.}, (3.27)

H(hyb)
off =

∑
kσ

{V (k)c†kσfkσ + h.c.}, (3.28)
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with

εc(k) = −2tc(cos kx + cos ky + cos kz), (3.29)

εf (k) = εf − 2tf (cos kx + cos ky + cos kz), (3.30)

V (k) = iV (sin kx + sin ky + sin kz). (3.31)

Here ckσ and fkσ are the momentum representations of the annihilation operators. Note that
the parity of the conduction electron is fixed in the models, i.e. the on-site (off-site) model
corresponds to odd (even) parity, since the parity of the localized electrons (f -orbit) is odd.
Therefore most of heavy fermion materials (s-f or d-f hybridization) are represented by Hoff

and the heavy fermion systems with p-f hybridization are represented by Hon.
These models correspond to the specific cases of the model discussed in Sec.III. Thus we

can apply the results in Sec. 3.3 to these models. With linearly polarized laser light (ϕ = 0),
we obtain the effective models as

H(lin)
eff,on/off = H̃(c) + H̃(f) + H̃(hyb,lin)

on/off , (3.32)

H̃(c) =
∑
kσ

(ε̃c(k)− µ)c†kσckσ, (3.33)

H̃(f) =
∑
kσ

(ε̃f (k, |b|) + λ− µ)f †kσfkσ, (3.34)

H̃(hyb,lin)
on =

∑
kσ

{V b∗c†kσfkσ + h.c.}, (3.35)

H̃(hyb,lin)
off =

∑
kσ

{Ṽ (k)b∗c†kσfkσ + h.c.}, (3.36)

with

ε̃c(k) = −2tc(J0(Ax) cos kx + J0(Ay) cos ky + cos kz), (3.37)

ε̃f (k) = εf − 2tf |b|2(J0(Ax) cos kx + J0(Ay) cos ky + cos kz), (3.38)

Ṽ (k) = iV (J0(Ax) sin kx + J0(Ay) sin ky + sin kz). (3.39)

Here we define Ax and Ay as (Ax, Ay) = A(cos θA, sin θA). The important difference between
the on-site and off-site models is the existence/absence of the dynamical localization effect in
the hybridization. Note that this effective Hamiltonian includes only the zero-th order term
H0. Namely, the commutator contribution, Hcom, vanishes. Thus there are only the effects of
the dynamical localization which can be seen in eqs. (3.37), (3.38), and (3.39). On the other
hand, in the case of the circularly polarized laser light (ϕ = −π/2), the effective Hamiltonian
includes the commutator contribution, Hcom, as

H(cir)
eff,on/off = H̃(c) + H̃(f) + H̃(hyb,cir)

on/off , (3.40)

with

H̃(hyb,cir)
on = H̃(hyb,lin)

on =
∑
kσ

{V b∗c†kσfkσ + h.c.}, (3.41)

H̃(hyb,cir)
off =

∑
kσ

{(Ṽ (k) + Υ(k))b∗c†kσfkσ + h.c.}. (3.42)
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Here we have defined

Υ(k) = −
4(tc − |b|2tf )V

ω
J (Ax, Ay) sin(kx − ky), (3.43)

J (Ax, Ay) =
∑
m=0

(−1)mJ2m+1(Ax)J2m+1(Ay)

2m+ 1
. (3.44)

Υ(k) in H̃(hyb,cir)
on/off comes from Hcom. This term corresponds to the laser-induced hybridization

which does not exist in the original model and connects a site with its next-nearest-neighboring
sites. Moreover, this term gives rise to the breaking of time-reversal symmetry, which is inherent
in the circularly polarized laser light. As we see below, this effect only gives a small contribution
to the Kondo effect. However, this kind of laser-induced hopping and hybridization plays a
crucial role for the topological properties. This point is discussed in Sec. 3.5.

3.4.1 Numerical results

Linearly polarized laser light

Following the methods shown in Sec. 3.2, we numerically calculate the renormalization factor
b and the energy shift of the f -electron level λ self-consistently for the effective models (3.32)
and (3.40). Then, based on the results, we discuss the effect of laser light on the Kondo effect.
We note here that in the slave boson approach, the fomation of Kondo singlets is well described
in terms of the renormalization factor b, although the crossover behavior at finite temperatures
appears as a phase transition with the order parameter b. Although this transition is artificial,
it is known that the transition temperature corresponds to the Kondo temperature [131–133],
which is a characteristic temperature where the Kondo effect takes place. Below the Kondo
temperature, we can correctly describe the formation of the Kondo singlets and the resulting
insulating behavior characteristic of the Kondo insulator.

First we consider the case of the linearly polarized laser light. The results for the on-site
model are shown in Fig. 3.2(a). From Fig. 3.2(a), we find that the Kondo temperature is
enhanced with increasing the intensity of laser light. Thus the Kondo effect is enhanced in
the on-site model. On the other hand, we find that the Kondo temperature decreases as we
increase the intensity of laser light in Fig. 3.2(b) for the off-site model. This means that the
Kondo effect is suppressed in the off-site model. These results suggest that whether the Kondo
effect is enhanced or suppressed depends on the spatial structure of the hybridization. Only
in the off-site model, the hybridization terms couple to the electromagnetic fields and then the
dynamical localization takes place in eq. (3.28). As seen in eq. (3.27), the on-site model does
not show the dynamical localization in the hybridization. This difference plays a crucial role
in generating the opposite behavior of the Kondo effect in those models. The origin of this
behavior is discussed in Sec. 3.4.2.

Circularly polarized laser light

Next we consider the circularly polarized laser light. For the on-site model, the effective model
with circularly polarized laser light is the same as the one with linearly polarized laser light,
shown in eq. (3.41). Thus we study only the off-site model in this subsection.

The results for the circularly polarized laser are shown in Fig. 3.3. From Fig 3.3 (a), we
find that the Kondo temperature is suppressed by increasing the laser intensity in the same
manner as in the case of the linearly polarized laser. The behavior is quite similar to that
in Fig. 3.2 (b.1) and thus the effect of the laser-induced hybridization, which appears only
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Figure 3.2: Numerical solutions of the self-consistent equations for (a) the on-site model and (b)
the off-site model with the linearly polarized laser light. We show the temperature dependence
of (a.1) the renormalization factor b and (a.2) the energy shift λ for the on-site model. The same
things for the off-site model are shown in Fig. (b.1) and (b.2) respectively. Here Ax = Ay = A
and we use the parameters as tc = 1, tf = −0.2, V = 3, εf = −4 and ω = 12.5.
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Figure 3.3: Numerical solutions of the self-consistent equations for the off-site model with
the circularly polarized laser light. In Fig. (a), we show the temperature dependence of the
renormalization factor b. Here Ax = Ay = A and we use the parameters as tc = 1, tf = −0.2,
V = 3, εf = −4 and ω = 12.5. In Fig.(b), to clarify the effect of laser-induced hybridization,
we compare the results of ω = 3.0 and ω = 12.5 at the same intensity (A = 2.0). All the
parameters except for the frequency are set same as Fig. (a).

when the laser is circularly polarized, is difficult to find out. To clarify the reason, we examine
the low-frequency regime (ω = 3.0), in which our high frequency expansion could still predict
the qualitative tendency. The results are shown in Fig. 3.3(b). We find that the Kondo
temperature in the low frequency regime (ω = 3.0) is higher than the one in the high frequency
regime (ω = 12.5) and thus confirm that the laser-induced hybridization indeed enhances the
Kondo effect. Therefore, the reason why this effect is difficult to find out in the high frequency
regime (ω = 12.5) is that the extra hybridization Υ(k) is much smaller than the zero-th order
term H0 in the high frequency expansion and then does not give an important effect on the
Kondo effect.

3.4.2 Enhancement/Suppression of Kondo effect

In order to understand the origin of the qualitatively opposite behavior of the Kondo effect in
the on-site and off-site model, we give a rough estimation of the Kondo temperature in this
subsection. In the strong coupling limit U → ∞, it is known that the Kondo temperature is
approximately given as [131]

TK ' D exp

(
εf − µ
2ρ0V 2

)
. (3.45)

Here D is the band width of the conduction electrons and ρ0 is the density of states at the
Fermi energy. We incorporate the effect of the laser light in this formula. The effective form of

45



(a)
DOS

E E0 0

ρ0

ρ0

(b)

AFM

Jcf ρ0

T

TK

TRKKY

Figure 3.4: (a) The schematic picture of the enhancement of the density of states near the
Fermi energy ρ0. It is the origin of the enhancement of the Kondo effect in the on-site model.
(b) Schematic Doniach phase diagram. Changing the Kondo coupling Jcf or the density of
states ρ0 by some perturbations, e.g. pressure, we can induces the quantum phase transition.
AFM represents an antiferromagnetic phase.

the conduction band (3.29) shows that the hopping amplitude is renormalized by the zero-th
Bessel function, and then we treat this effect by replacing tc with t̃c = J0(A)tc. Here A is
the amplitude of the laser light. Considering D ∼ t and ρ0 ∼ D−1, we obtain the Kondo
temperature of the laser-irradiated model as

T̃
(on)
K (A) ' J0(A)D exp

(
J0(A)

εf − µ
2ρ0V 2

)
. (3.46)

Since εf − µ is negative and thus this formula implies that the Kondo temperature increases
in the low intensity region (i.e. small A). This estimation shows a qualitative agreement with
the numerical results in Sec. IV B. This agreement suggests that the dynamical localization
plays the key role in this enhancement of Kondo effect. The dynamical localization makes the
band width narrower, thereby enhancing the density of states near the Fermi surface (see Fig.
3.4(a)). This enhancement of the density of states helps the formation of Kondo singlet.

On the other hand, in the off-site model, we have to additionally consider the dynamical
localization of hybridization and thus we treat this effect by replacing V with Ṽ = J0(A)V .
Then we obtain

T̃
(off)
K (A) ' J0(A)D exp

(
(J0(A))−1 εf − µ

2ρ0V 2

)
. (3.47)
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This formula shows that the Kondo temperature of the laser-irradiated off-site model decreases
in the low intensity region. This is a qualitatively different behavior from the on-site model.
The origin of th suppression is the dynamical localization effect in the c-f hybridization.

Before closing this section, we mention possible laser-induced quantum phase transitions
via controlling Kondo effect with laser light. As we mentioned above, the interplay of the
Kondo effect and the RKKY interaction plays a crucial role in heavy fermion systems and their
competition gives various quantum phases, including the magnetically ordered phases, and the
resulting phases are well described by the Doniach phase diagram [126] shown in Fig.3.4(b).
We have shown that the Kondo effect can be enhanced or suppressed by laser light. Therefore,
we can make either the Kondo effect or the RKKY interaction dominant. In the case that
the Kondo effect is suppressed, the RKKY interaction becomes dominant and the system can
realize a magnetically ordered phase. Applying the laser light effectively changes the Kondo
coupling Jcf and the density of states ρ0. Then the system goes beyond the quantum critical
point 2 and shows a transition to a magnetic phase (typically, an antiferromagnetic phase) in
Doniach phase diagram in Fig.3.4(b). This laser-induced quantum phase transition opens a
new way to dynamically control the magnetic phases by laser light.

3.5 Control of topological phases

3.5.1 Model of topological Kondo insulators

Several Kondo insulators are known to show topologically nontrivial phases thanks to their
peculiar hybridization structures. They are called topological Kondo insulators [127, 128],
which are gathering great attention as analogue of topological insulators in strongly correlated
electron systems. In this section, we demonstrate that the laser light changes the topological
properties of the topological Kondo insulators. We use a variant of the periodic Anderson
model which has off-site and (pseudo)spin-dependent hybridization terms, which is already
introduced as a model of topological Kondo insulators in the previous works [135, 136]. The
model Hamiltonian reads

H =
∑
kσ

(εc(k)− µ)c†kσckσ +
∑
kσ

(εf (k)− µ)f †kσfkσ

+
∑
kσσ′

{(V (k) · σ)σσ′c
†
kσfkσ′ + h.c.}+ U

∑
i

n
(f)
i↑ n

(f)
i↓ , (3.48)

with

V (k) = V (a1 sin kx, a2 sin ky, a3 sin kz). (3.49)

Here σ, σ′(=↑, ↓) stands for the (pseudo)spin and σ are Pauli matrices. In this study, the
parameters are set as a1 = 2, a2 = −2 and a3 = 4. εc(k) and εf (k) have already been defined
in eqs. (3.29) and (3.30). Since εc(k) and εf (k) are parity even and V (k) is parity odd,
this model has time-reversal symmetry, and thus topological states are characterized by a Z2

topological invariant [127, 137, 138]. With slave boson mean-fields b and λ, we can write down
the topological invariants νSTI and ναWTI (α = x, y, z) for the renormalized band structure in a

2Near the quantum critical point, the quantum fluctuation should be dominant and thus we may need another
approach to treat quantum fluctuation beyond the slave-boson mean-field treatment (e.g. DMFT).
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simplified form [139] as

(−1)νSTI =
∏
m

δm, (3.50)

(−1)ν
α
WTI =

∏
m

δm

∣∣∣
(k∗m)α=0

, (3.51)

where km represents the time-reversal invariant momenta (TRIM) in three dimensional Bril-
louin zone, δm = sgn(εc(km) − ε̄f (km, |b|2) − λ) is the parity eigenvalue on each TRIM, and
ε̄f (k) = εf − 2tf |b|2(cos kx + cos ky + cos kz). Note that νSTI = 1 (ναWTI = 1) means the system
is a strong (weak) topological insulator.

3.5.2 Linearly polarized laser light

First we consider the application of linearly polarized light. The model introduced above
corresponds to a specific case of the model which we discussed in Sec. 3.3. Thus we can apply
the results in Sec. 3.3 to this model. With linearly polarized laser light (ϕ = 0), we obtain the
effective model as

Heff =
∑
kσ

{ε̃c(k)− µ}c†kσckσ

+
∑
kσ

{ε̃f (k) + λ− µ}f †kσfkσ

+
∑
kσσ′

{b∗(Ṽ (k) · σ)σσ′c
†
kσfkσ′ + h.c.}, (3.52)

with

Ṽ (k) = V (a1J0(Ax) sin kx, a2J0(Ay) sin ky, a3 sin kz). (3.53)

ε̃c(k) and ε̃f (k) have already been defined in eqs. (3.37) and (3.38). As with the case of
on/off-site model in Sec. 3.4, this effective Hamiltonian includes only the contributions coming
from the zero-th order term H0. Thus there is only the effect of the dynamical localization
of hopping and hybridization. We discuss how these dynamical localization effects change the
topological nature of the original system.

To discuss the topological properties, we use the topological invariants. In the effective
model (3.52), the time-reversal symmetry of the original model is preserved, and thus we
can use the Z2 topological invariants for the effective model. The topological invariants are
represented by eqs. (3.50) and (3.51) in which εc(k) and ε̄f (k) are replaced by ε̃c(k) and ε̃f (k).
The topological invariants include b and λ, which are calculated for each temperature T and
laser intensity A. We calculate numerically b = b(T,A) and λ = λ(T,A) (Here we assume Ax =
Ay = A) and use them to obtain νSTI(b(T,A), λ(T,A)) and ναWTI(b(T,A), λ(T,A)). Note that
we here apply the formula of the topological invariants at zero temperature to the mean-field
Hamiltonian. This means that we calculate the topological invariants for the renormalized band
structure determined at finite temperature. In the low temperature regime sufficiently below
the Kondo temperature, which roughly corresponds to the gap size, the renormalized band
structure is well defined and thus our treatment should appropriately describe the topological
phases even at finite temperatures.

First we show the numerical results of the temperature dependence of b and λ in Fig. 3.5
(a) and (b) respectively. They show that the Kondo temperature decreases with increasing
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Figure 3.5: Numerical solutions of the self-consistent equations for the model of topological
Kondo insulator with the linearly polarized laser light. In Fig. (a) and Fig. (b), we show the
temperature dependence of the renormalization factor b and the energy shift λ respectively.
Here Ax = Ay = A and we use the parameters as tc = 1, tf = −0.2, V = 3, εf = −6 and
ω = 12.5.

the intensity of laser light. This behavior is similar to the off-site model discussed in Sec. 3.4
because the model (3.48) also has only off-site hybridizations.

Using these results, we calculate the topological invariants (3.50) and (3.51) and present the
results in Fig. 3.6. The topological invariants indeed change with temperature and laser inten-
sity, implying that there exist the topological phase transitions induced by linearly polarized
laser light.

Next we calculate the topological invariants in a broad range of (T,A) systematically and
obtain the topological phase diagram shown in Fig.3.7. Note that all the boundaries located
next to the trivial metal (tMetal) phase denote the crossover induced by Kondo effect. The
other phase boundaries represent the topological phase transition which is well-defined by the
renormalized band structure though it looks like a crossover in the high temperature region
due to thermal fluctuations.
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Figure 3.6: Topological invariants (a) νSTI, (b) νx,yWTI and, (c) νzWTI. Above the Kondo tem-
perature, the topological invariants are not defined since the system is a paramagnetic metal.
Here we use the parameters as tc = 1, tf = −0.2, V = 3, εf = −4 and ω = 12.5.
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Figure 3.7: The phase diagram of the topological Kondo insulators irradiated by linearly po-
larized laser light. There are two topologically trivial phases and three topologically non-
trivial phases: the trivial Kondo insulator phase (tKI, b 6= 0, all the topological invariants
are zero), the trivial metal phase (tMetal, b = 0), the strong topological insulator (STI,
b 6= 0, νSTI = 1) phase and two kinds of the weak topological insulator (WTI) phases, WTI1

(ν = (νxWTI, ν
y
WTI, ν

z
WTI) = (1, 1, 1)) and WTI2 (ν = (1, 1, 0)). Here we use the parameters as

tc = 1, tf = −0.2, V = 3, εf = −4 and ω = 12.5.
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Figure 3.8: Laser-induced topological phase transition of the topological Kondo insulators with
linearly polarized laser light. We show the calculated band structure for kx (Both ky and kz
are fixed to π). (a) Without laser light (A = 0.0), the system is in the STI phase. (b) Applying
the laser light (A = 0.54), the band gap closes at the topological phase transition point. (c)
Applying the strong laser light (A = 0.8), the system is changed to WTI2 phase. Here we use
the parameters as T = 6.2, tc = 1, tf = −0.2, V = 3, εf = −4 and ω = 12.5.

In Fig. 3.7, we find three topologically non-trivial phases: one strong topological insulator
(STI) and two types of weak topological insulators (WTIs). These WTIs have different values of
the weak topological invariant of z-direction. Especially the WTI2(νxWTI = νyWTI = 1, νzWTI = 0)
is the phase which appears only with a finite value of the laser intensity A, because the laser
light breaks the cubic symmetry to the tetragonal symmetry and the appearance of WTI2 is
permitted. In the low intensity regime (A . 1.0), we find a laser-induced topological phase
transition to the WTI2 phase near the temperature T ∼ 6.5, which corresponds to the boundary

51



of the topological phases without laser light. To clarify how the phase transition occurs, we
show the calculated band structure for each laser intensity in Fig. 3.8. From the figure, we find
that the renormalized f -electron level εf + λ shifts due to the suppression of Kondo effect by
laser light. According to this shift of energy level, the band touching occurs at the A = 0.54
shown in Fig. 3.8 (b). After the band touching, the energy gap opens and the topological
invariant changes.

In the strong intensity region, we find the interesting behavior that the region of the topo-
logically non-trivial phases shrinks to the point (T,A) = (4.2, 2.4) and after that it becomes
broad again with increasing the laser intensity. The value of the laser intensity A = 2.4 cor-
responds to the minimal zero of the zero-th Bessel function. At that point, the hopping and
hybridization in x- and y-direction vanish due to the dynamical localization and thus the sys-
tem can be regarded as a one-dimensional system in z-direction. Therefore the topological
invariants related to x- and y-direction, i.e. νSTI, ν

x
WTI, and νyWTI, must be zero and then the

system becomes topologically trivial.

3.5.3 Circularly polarized laser light

Next we consider the case of the circularly polarized laser (ϕ = −π/2). Using the results in
Sec. 3.3, we obtain the effective model as

Heff =
∑
kσ

{ε̃c(k)− µ+ |b|2ΦB(k)sgn(σ)}c†kσckσ

+
∑
kσ

{ε̃f (k) + λ− µ+ |b|2ΦB(k)sgn(σ)}f †kσfkσ

+
∑
kσσ′

{b∗((Ṽ (k) + Φ(k)) · σ)σσ′c
†
kσfkσ′ + h.c.}, (3.54)

with

Φ(k) = −
4i(tc − |b|2tf )V

ω
J (Ax, Ay)(a1 cos kx sin ky,−a2 sin kx cos ky, 0), (3.55)

ΦB(k) = −2V 2

ω
J (Ax, Ay)(a1a

∗
2 + a∗1a2) cos kx cos ky. (3.56)

J (Ax, Ay) has already been defined in eq. (3.44). In this effective model, we obtain two terms
that come from the commutator contribution Hcom. These terms break the time-reversal
symmetry, as the circularly polarized laser does. One is the laser-induced hybridization (LH)
term Φ(k) stemming from the commutator of the kinetic term and the hybridization term.
From the commutator between the x and y components of hybridization term, we obtain the
other term ΦB(k), which plays a role of the laser-induced Zeeman coupling to (pseudo)spins.
Then we regard them as a laser-induced “magnetic” field (LM). This term behaves in a similar
way to a usual magnetic field, but there are two differences from the usual magnetic field.
One is that the LM depends on momenta, namely, it behaves like a Zeeman-type spin-orbit
coupling. The other is that the LM is proportional to a square of the mean field, |b|2. The mean
field |b| is finite only below the Kondo temperature and becomes larger in the low temperature
regime. Namely, this magnetic field grows with decreasing temperature. Especially the second
difference is a quite unique feature because this behavior reflects the Kondo effect and thus it
only can appear in many-body Floquet systems.

As we mentioned above, the time-reversal symmetry is broken in this effective model (3.54).
Therefore we cannot define the original topological numbers (3.50) and (3.51). On the other
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hand, it is known that time-reversal symmetry or inversion symmetry broken topological insu-
lators can be Weyl semimetals [140], which are topological gapless phases of matter recently
gathering great attention because they have the exotic Fermi-arc surface states and show the
exotic transport phenomena related to Chiral anormaly [141]. Weyl semimetals are charac-
terized by the existence of pairs of topologically non-trivial point nodes, which correspond to
the monopole and anti-monopole of Berry curvature. The texture of the Berry curvature can
be detected by the Chern number for the two-dimensional subspace of the three-dimensional
Brillouin zone. To detect the Weyl semimetallic phase, we calculate the Chern numbers for
the kx-ky plane (fixing kz) for several values of kz. The Chern number for each kz is defined
as follows:

C(kz) =
1

2πi

∫
B.Z.

dkxdkyε
αβ

∑
n:filled

∂kα 〈un(k)|∂kβun(k)〉 , (3.57)

where α and β run over x and y. |un(k)〉 is the Bloch wave function defined by the eigenfunction
of the effective Hamiltonian with numerically calculated b and λ for each (T,A). If we find
the change of the Chern number C(kz) at k∗z , i.e. C(kz > k∗z) 6= C(kz < k∗z), we conclude
that there is a Weyl node in the kz = k∗z plane. The change of the Chern number at k∗z
corresponds to the monopole charge of the Weyl nodes. Here we numerically calculate the
Chern numbers with Fukui-Hatsugai-Suzuki method by discretizing the Brillouin zone [117].
Note that we apply the formula of the topological number at zero temperature to the mean-field
model which can describe even the finite temperature regime. As mentioned in the previous
subsection, this treatment is reasonable in the low temperature regime sufficiently below the
Kondo temperature.

Before evaluating the Chern number, we calculate b and λ for each (T,A) to obtain the
renormalized band structure. We show the numerically calculated b and λ in Fig. 3.9 (a)
and (b). From the figures, we find that the Kondo temperature decreases with increasing the
intensity of the laser light. This behavior is qualitatively same as the linearly polarized case
explained in the previous subsections. The difference from the linearly polarized laser is only
the existence of the LH and LM. However the effect of them on the Kondo effect is very small
and difficult to find out in the high frequency regime because they are the first-order correction
in the 1/ω expansion. To clarify their effect, in Fig. 3.9 (c), we show the results in the case
of ω = 3, in which the 1/ω expansion could not be used for quantitative arguments, but it is
useful to find the qualitative effect of LH and LM. From Fig. 3.9 (c), it is seen that the LH
enhances the Kondo effect in all the regime below the Kondo temperature since it enlarges the
amplitude of the hybridization. On the other hand, the effect of LM is different depending on
the temperature regime. Very near the Kondo temperature, it seems that LM does not affect
the original model. It is because the value of b becomes small there, and thus the amplitude
of LM ∼ |b|2V 2/ω also becomes small. In the temperature below the Kondo temperature, LM
slightly enhances the value of b, i.e. the size of the Kondo gap. This is quite different from
the usual magnetic field, which is known to suppress the Kondo effect. The key difference of
the LM from the usual magnetic field is the existence of the renormalization factor |b|2. This
factor is considered to play an important role at low temperature and realize the enhancement
of the value of b.
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Figure 3.9: Numerical solutions of the self-consistent equations for the model of the topological
Kondo insulator with the circularly polarized laser light. In Fig. (a) and Fig. (b), we show the
temperature dependence of the renormalization factor b and the energy shift λ respectively.
Here Ax = Ay = A and we use the parameters as tc = 1, tf = −0.2, V = 1.5, εf = −4 and
ω = 12.5. In Fig. (c), to clarify the effect which appears only in the case of circularly polarized
laser, we compare the results of ω = 3.0 and ω = 12.5 at the same intensity (A = 2.0). LH
and LM represents the case that only includes the effect of laser-induced hybridization and
laser-induced magnetic field respectively. The other parameters than the frequency are the
same as Fig. (a) and Fig. (b).

Using the calculated b and λ, we obtain the renormalized band structure and find the
phase transition to Weyl semimetallic phases. To clarify this point, we show the deformation
of the band structure by laser light in Fig. 3.10. Before applying the laser light, we prepare
the system in the STI phase (A = 0.0, T = 0.1). With a finite laser intensity, the bands
show the Zeeman-type splitting due to the LM. Increasing the laser intensity, the bands touch
and cross each other. The crossing point can be Weyl nodes, which characterize the Weyl
semimetal. We calculate the change of the Chern number when we go over the crossing point
in the kx-ky plane, and find that the change is two, which corresponds to the two Weyl nodes
at (kx, ky, kz) = (0, π, π), (π, 0, π) and . This evidences the topological non-triviality of the
crossing points and the appearance of Weyl semimetallic phases.
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Figure 3.10: Laser-induced topological phase transition of the topological Kondo insulators with
circularly polarized laser light. We show the calculated band structure for kz ((kx, ky) = (0, π))
near the kz = ±π. (a) Without laser light (A = 0.0), the system is in the STI phase. (b)
Applying the laser light (A = 0.1), the Kramers degeneracy is lifted and the bands are split
by the LM. (c) Making the laser light stronger (A=0.2), the crossing points (Weyl nodes)
appear near kz = ±π and the system is changed to Weyl semimetallic phase Here we use the
parameters as T = 0.1, tc = 1, tf = −0.2, V = 1.5, εf = −4 and ω = 12.5.

Next we calculate the Chern number for a broad range of (T,A) plane and obtain the
phase diagram shown in Fig. 3.11 (a). We find four Weyl semimetallic phases, which have the
Weyl nodes in different positions respectively. They are summarized in Fig. 3.11 (b). We can
control the appearance of these Weyl semimetallic phases by changing the temperature and
the intensity of the laser light.
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Figure 3.11: (a) The phase diagram of the topological Kondo insulators irradiated by circularly
polarized laser light. There are two topologically trivial phases and four topologically non-
trivial phases: the trivial Kondo insulator phase (tKI, b 6= 0, all the topological invariants
are zero), the trivial metal phase (tMetal, b = 0), and four kinds of Weyl semimetallic phases
(WSM1, WSM2, WSM3 and WSM4) shown in below. Here we use the parameters as tc = 1,
tf = −0.2, V = 1.5, εf = −4 and ω = 12.5. (b) The four kinds of Weyl semimetallic phases.
We show the position of the Weyl nodes (red points) in the three-dimensional Brillouin zone.
The white (orange) regions represents the Chern number C(kz) is zero (finite).

We remark on two points about this phase diagram. One is that Weyl semimetallic phases
are realized by relatively low intensity of laser light at the temperature near T ∼ 0.3. The
temperature T ∼ 0.3 corresponds to the transition temperature from STI phase to WTI2

phase in this model. Therefore, to find laser-induced Weyl semimetallic phase, the system near
the topological phase transition is suitable. The other is that the Weyl semimetallic phases are
extended with decreasing the temperature. It is because the LM, which is proportional to |b|2,
is enhanced in the low temperature region. This implies that the low temperature is better for
observing Weyl semimetallic phases.
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Finally we remark on the difference of our work from the previous ones that proposed the
realization of Weyl semimetallic phases by laser light. There are several studies discussing the
Weyl semimetallic phase realized by laser light using Floquet theory [53, 142–144]. However
they are limited to the free electron systems. In our study, we consider the Kondo insulator,
which is the strongly correlated insulator, and discuss the stability of the Kondo effect under
laser light. We find that the Kondo effect is suppressed by laser light but there still exists the
regime where the Kondo effect survives and the Weyl semimetallic phases can be stabilized.
The application of laser light to the topological Kondo insulators is a promising way to realize
the Weyl semimetals in heavy fermion systems [145].

3.6 Experimental setup

In the above sections, we have discussed the possibility to control the Kondo effect and the
topological properties in Kondo insulators by laser light. In this section, we discuss the exper-
imental setups to observe the phenomena proposed in this paper.

As for candidate materials, all the Kondo insulators are applicable to our proposal since
our calculation is based on a simple model and the main results do not depend on the detail
of models and approximations. There are several materials known as Kondo insulators, e.g.
SmB6 and CeNiSn [146]. They are our main targets. Moreover we expect that our results
can be applicable to most of heavy fermion systems because the periodic Anderson model is a
fundamental model of heavy fermion systems. The key ingredient for our proposal is that the
system is at low temperature and the Kondo effect occurs. In this sense, other materials in
heavy fermion systems, e.g. CeCu6 and CeCoIn5 [126], are also in the scope of our study. Note
that, as for the results about topological properties discussed in Sec. 3.5, the system should be
a topological Kondo insulator having the spin-dependent and off-site hybridization. Therefore,
the candidate materials for topological Kondo insulators, e.g. SmB6 [128] and YbB12 [147], are
suitable to observe the laser-induced topological phase transitions. Regarding the sample, it
should be a sufficiently thin slab, because laser light only penetrates into the thin region from
the surface. How deep the laser light penetrates into the sample depends on materials and laser
intensity, and thus we have to prepare an adequate sample to confirm our proposal. Moreover,
the sample must be at low temperature below the Kondo temperature TK , and therefore the
application of laser light should be done in such low temperature regime.

The laser light is characterized by its frequency and intensity. Since our calculation is based
on the high-frequency expansion, the frequency must be sufficiently high and off-resonant.
Considering the energy scale in our models, frequency must be higher than the band width
12t. Thus the ultraviolet light is suitable for our systems. In addition, in solid state systems,
there are many unoccupied bands above Fermi energy, then we have to choose an appropriate
frequency so as to make it off-resonant to any bands. If the frequency is not so high or the
effect of resonance is crucial, the description by the effective Hamiltonian becomes worse. To
access such a regime of frequency, we have to use different methods with which we can treat
both the effect of low frequency and the interaction. In regard to the intensity of the laser
light, we need a reasonably strong intensity according to the experimental accuracy and the
phenomena which we want to observe. For example, looking at the phase diagram of the
topological Kondo insulators with circularly polarized laser light in Fig. 3.11 (a), we can say
that the laser intensity A higher than 0.1 is necessary to realized the Weyl semimetallic phase
(WSM1). The intensity A ∼ 0.1 corresponds to the intensity of the electric field E ∼ 30
MV/cm.

In experiments, we should use pulse laser with a finite width in time direction in order to
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obtain strong intensity of laser light. In terms of the protocol of the application of laser light,
we have to consider the following two conditions. (i) Too long laser pulse drives the interacting
systems to infinite-temperature trivial states [82], and thus we need to choose a short laser
pulse. In other words, we have to stop the driving before the system completely heats up
[83]. (ii) It takes time to reach the states described by the effective Hamiltonian. Moreover,
to realize the ground states of the effective Hamiltonian we have to switch on the driving
adiabatically [44, 121]. Therefore we should use a long and slowly developing pulse. Taking
into account these two conditions, we have to choose intermediate time scale adequately. In
fact, it is possible to take such an intermediate time scale. Regarding the first condition, we can
make the time before heating up longer using higher frequency of laser light [84]. Concerning
the second condition, such a relaxation can happen in the femtosecond time scale in strongly
correlated electron systems [122]. We should choose the pulse with sufficiently high frequency
and with a longer width than the femtosecond time scale.

Finally, we address the experimental methods to confirm our proposal. As mentioned
above, we should use the pulse laser and thus have to choose a method suitable for observing
transient phenomena. Therefore transport or optical measurement is suitable. We explain how
to observe the control of the Kondo effect and the topological phases respectively. As for the
Kondo effect, discussed in Sec. 3.4, we have shown that laser light can enhance or suppress
the Kondo temperature, resulting in the shift of the temperature where the Kondo crossover
occurs. However, it is difficult to detect the shift itself since there is no singularity in the Kondo
crossover. To observe this phenomenon clearly, we can utilize the quantum phase transition
in terms of the Doniach phase diagram. As mentioned in the end of Sec. 3.4, the suppression
or enhancement of Kondo effect changes the Kondo coupling and then the quantum phase
transition occurs due to the competition between Kondo effect and RKKY interaction. The
signature of this phase transition should be much more clear than the Kondo crossover. To find
the signature of the phase transition by optical measurement, the pump-probe photoemission
spectroscopy (PES) is the most promising way. We measure the system irradiated by the
appropriate pump pulse, and then we can find the Kondo peak near the Fermi surface in the
photoemission spectrum when the Kondo effect is dominant. On the other hand, the Kondo
peak vanishes when the RKKY interaction is dominant. Therefore, performing the pump-
probe PES with changing the laser intensity, we should find the appearance or vanishment of
the Kondo peak when the system goes over the quantum critical point, which is the signature of
the phase transition. Concerning the topological phases, the time-resolved and angle-resolved
PES is the most promising experiment tool. If we find the change of the topological surface
states, it evidences the topological phase transitions. The closing of the bulk gap is also
a signature of the topological phase transitions. Applying linearly polarized laser light, we
find the phase transitions from STI to WTI2. In this phase transition, we should find the
disappearance of the surface states on the (0,0,1) surface since νzWTI changes from one to zero.
In the case of the Weyl semimetallic phases realized by circularly polarized laser light, different
Fermi-arc surface states are observed depending on which the Weyl semimetallic phases appear.

3.7 Summary of this chapter

In this chapter, we have derived the effective model of heavy fermion systems under high
frequency laser fields with slave boson approach and Floquet theory. In the effective model, we
have found two generic effects induced by laser light, dynamical localization and laser-induced
hopping and hybridization. These effects change the original system and enable us to control
its Kondo effect and topological properties. Regarding Kondo effect, we have found that we
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can enhance or suppress the Kondo effect depending on the structure of the hybridization. As
we discussed in the end of the Sec. 3.4, the enhancement and suppression of Kondo effect open
a way to realize laser-induced quantum phase transitions. As for topological properties, we
have found various topological phase transitions realizable in the topological Kondo insulators.
With linearly polarized laser, the suppression of Kondo effect shifts the f -electron level and
then induces the WTI phase which does not appear in the original model. Applying the
circularly polarized laser light breaks the time-reversal symmetry and gives rise to the laser-
induced synthetic magnetic fields, which creates the Weyl nodes in the band structure and
realizes the Weyl semimetallic phases. Finally we have discussed the experimental setups to
confirm our results. We have discussed the physics in the laser-irradiated heavy fermion systems
and found several basic effects which change the original nature of the heavy fermion systems
drastically. Our results opens a new possibility of dynamical controls in strongly correlated
electron systems.
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Chapter 4

Control of insulating magnets with
DC electric fields

4.1 Introduction

In this chapter, we present our theoretical proposal for controlling insulating magnets with DC
electric fields. As explained in Chap. 1, dynamical controls with AC and DC electric fields have
been gathering great attention in recent years. Particularly, plenty of interesting scenarios with
AC electric fields or laser light have been proposed (e.g. light-induced superconductivity [1, 23],
Floquet topological insulator [2, 45, 80], ultrafast spintronics [56, 58]). The control with low-
frequency or DC (static) electric fields has been also studied (e.g. electric-field-controlled
magnetism in multiferroics [148–153] and dielectric breakdown in Mott insulators [6, 34, 35,
38, 154, 155]), but varieties of DC-field driven phenomena have been still limited compared
with AC-field studies. DC fields usually do not make the system heated, while it is difficult to
avoid heating effects in AC-field driven systems. This is a significant advantage of the DC-field
study. Moreover, in recent years, experimental ways of generating strong DC electric fields
(e.g., order of 1-10 MV/cm) have been developed by using several techniques based on, for
example, field-effect transistors [156, 157] and nano-scale needles [158]. The technology of low-
frequency AC fields has also been developed and for instance we can use terahertz (THz) laser
pulses whose intensity is of the order of 1-10 MV/cm [159, 160]. Novel proposals for DC-field
and low-frequency AC-field driven phenomena thereby are being anticipated.

Stimulated by this situation, we propose a new scheme to control magnetic or topologi-
cal orders in Mott insulators by DC electric fields. We consider quantum magnets of Mott
insulators in the presence of DC electric fields as shown in Fig. 4.1 (a). In this setup, we
derive the low-energy effective spin models by applying the strong-coupling expansion, and
show that exchange interactions along the DC-field direction are generally increased with the
growth of the field strength. A strong electric field comparable to Mott gap is usually neces-
sary for realizing Mott breakdown, while our proposal indicates that quantum magnetic nature
can be changed with smaller DC fields in Mott insulators 1. We show that various quantum
states such as quantum spin liquids (QSLs) [93, 94, 161] and Haldane-gap states [95, 162] can
be created/annihilated by applying strong DC electric fields to representative frustrated or
quasi-one-dimensional (quasi-1D) magnets.

1In other words, there are no macroscopic current. Thus, strictly speaking, this phenomenon happens in
equilibrium. However, enhancement of the exchange coupling, which is a key idea in this proposal, occurs with
slow AC fields (e.g. THz fields) as shown in Ref. [167]. Thus, our proposal can be realized in a time-dependent
way (i.e. nonequilibrium) and should be useful for dynamical controls of magnetism.
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Figure 4.1: (a) Our setup of a Mott insulator under DC electric fields E along the x-direction.
(b) Spatial energy level structure of the DC-field driven Mott insulator. Arrows denote the
second-order virtual hopping process in the Mott state. (c) Electric-field dependence of the
exchange coupling along the x-direction in the Mott system (b) [see Eq. (4.2)].

This chapter is organized as follows. In Sec. 4.2, we show that DC electric fields enhance
the exchange interaction between spins based on the perturbation theory. Utilizing this en-
hancement, it is possible to control various phases of matter with changing spatial structure of
magnetic interactions. To demonstrate the usefulness of this scheme, we explain the controls
in two classes of spin systems, frustrated spin systems and quasi-1D spin systems, where our
scheme works quite well. Controls of frustrated spin systems and quasi-1D spin systems are
explained in Sec. 4.3 and Sec. 4.4 respectively. Finally, we summarize our results in Sec. 4.5.

4.2 Enhancement of the exchange coupling

To show how the exchange interaction is modified by DC electric fields, we first consider a
generic half-filled, single-band Hubbard model subject to static electric fields E. The effect of
electric fields is introduced as an on-site potential and the Hamiltonian is given by

H =
∑
rr′σ

trr′c
†
rσcr′σ + U

∑
r

nr↑nr↓ +
∑
rσ

Vrnrσ, (4.1)

where crσ is a spin-σ electron annihilation operator (σ =↑, ↓) on a site r = (i, j, k), and

nrσ = c†rσcrσ (the lattice constant is set to be unity). The first and second terms respectively
stand for hopping and on-site Coulomb repulsion, and the on-site potential Vr represents the
effect of the applied electric field. For example, Vr is reduced to Vi = i|E| = iE when the
electric field is parallel to the x-axis 2. If the Coulomb repulsion U > 0 is strong enough at
half filling, a Mott insulator is realized and we can derive its low-energy effective spin model
by treating the kinetic term as a perturbation (large U expansion). The point is that the
second-order virtual hopping amplitude becomes direction-dependent due to the field-driven

2Strictly speaking, we should take into account the dielectric constant ε defined for each material. In other
words, the electric field E used here is D = εE.
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potential Vr as shown in Fig. 4.1 (b). As a result, the exchange interaction becomes spatially
anisotropic and the effective Hamiltonian in the second-order perturbation is given by

Heff =
∑
〈r,r′〉

Jrr′

1−
(

∆Vrr′
U

)2Sr · Sr′ , (4.2)

where Sr is the electron spin operator on a site r, Jrr′ = 4|trr′ |2/U and ∆Vrr′ = Vr − Vr′ .
The summation is taken over all the bonds 〈r, r′〉. The perturbation expansion would be
valid if the on-site potential energy is smaller than the Mott gap 3. If a similar strategy of
the perturbation theory is applied to a half-filled two-orbital Hubbard model, we obtain the
following spin-1 AFM Heisenberg model

Heff =
∑
〈r,r′〉

J ′rr′

1−
(

∆Vrr′
U+JH

)2Sr · Sr′ , (4.3)

where Sr is the spin-1 operator on a site r, J ′rr′ = 2|trr′ |2/(U + JH) and JH is the strength of
the Hund’s coupling. The derivations of the above effective models (4.2) and (4.3) are given in
Appendix B.

The above results and the physical picture in Fig. 4.1 (b) clearly indicate that antifer-
romagnetic (AFM) exchange couplings are generally enhanced by the DC electric field in a
quite wide class of Mott insulators 4. For example, if we focus on a bond 〈r1, r2〉 parallel to
the electric-field direction, the potential difference ∆Vr1r2 is given by E|r1 − r2|. Thereby
in the spin-1

2 case, the exchange coupling on the nearest-neighboring bond is computed as
J/(1 − (E/U)2) with J = 4t2/U being the exchange coupling in the original Hubbard model
without the potential Vr. This effective exchange coupling is shown in Fig. 4.1 (c).

On the basis of the above perturbation theory, we show how magnetic properties of Mott
insulators can be controlled by DC electric fields. For instance, Mott insulators whose U is
relatively large but still t/U � 1 (e.g. organic Mott insulators) are expected to be relevant since
E/U becomes relatively large. In addition, magnets residing near a transition point between two
magnetic phases are also expected to be quite relevant since their phases are unstable against
small changes of magnetic interactions. In the following sections, we demonstrate below that
several magnetic or topological orders can be created/annihilated in typical frustrated magnets
(Sec. 4.3) and quasi-1D magnets (Sec. 4.4), by tuning the strength and direction of DC fields.

Before closing this section, we give several remarks on the above results.

(i) Higher-order spin interactions
The higher-order corrections such as ring exchange terms and biquadratic terms [164–166]
should appear approaching the weak coupling regime, i.e. t/U is large. They can also
be straightforwardly computed based on our approach shown in Appendix B. In general,
they are much smaller than the exchange coupling, but can give significant effects on
magnetic orders in some specific cases. We leave the calculation of the higher order
correction to the exchange interaction as an interesting future work.

(ii) Low-frequency AC fields
We stress that both the effective models (4.2) and (4.3) could be relevant even in a short
time period when a sufficiently low frequency AC electric field (e.g. THz laser pulse) is

3About detailed conditions needed for our perturbation expansion, see Sec. B.3 in Appendix B.
4DC-field driven modifications of exchange couplings have been pointed out in a few specific systems [163].

However, we stress that our present results could be applied in a generic class of Mott insulators
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applied to the Mott insulators instead of DC fields 5. Note that the heating effect by
THz laser would be much smaller than those of high-frequency AC fields since electrical
dipole transitions beyond the Mott gap are negligible in the application of THz laser [12].

(iii) Effect on spin-orbit (SO) couplings
Here we do not consider the effect of breaking inversion symmetry by applying electric
fields. Due to this effect, SO couplings can be changed by DC electric fields on top of
exchange couplings [170–172]. However, their strength would strongly depend on the
details of atomic wave functions and lattice structures. The main purpose of this study
is to propose new schemes applicable to a wide range of insulating magnets. Therefore,
we leave the study of this effect as a future study.

(iv) Application to cold atomic systems
The scope of our theory is not limited to solid state systems. Our results are also applica-
ble to Mott insulators in ultracold atoms on optical lattices [173]. Tilting optical-lattice
potentials, which is already realized in experiments, plays the same role as the DC field in
solid systems [174–180]. For instance, the tilt enhances the exchange interaction and thus
would be useful for realizing/controlling an AFM long range order in cold atoms [173, 181].

4.3 Control of frustrated magnets

In frustrated magnets, spatial structures of magnetic interactions determine their magnetic
orders, and the modification of the spatial structures with DC electric fields enables us to
change the orders. Namely, frustrated magnets are expected to give one of the best stages for
electric-field control of magnetism.

First, we consider a spin-1
2 AFM Heisenberg model on a triangular lattice as a typical

frustrated magnet. If we apply DC fields to a spatially-isotropic Mott insulating triangular
magnet, the spin Hamiltonian is given as

Htri =
∑
r

3∑
k=1

Jk(E, θE)Sr · Sr+ak . (4.4)

Here the vector r denotes a site on the triangular lattice, and primitive translation vectors
a1,2,3 are given by a1 = (1, 0), a2 = (−1/2,

√
3/2) and a3 = a1 + a2 (shown in Fig. 4.2 (b)).

The direction of the applied DC field E is controlled with the angle θE as in Fig. 4.2 (a).
The parameter Jk represents the strength of the exchange coupling parallel to ak (k = 1, 2, 3)
and their E dependence is computed as J1(E, θE) = J/[1 − {E cos θE/U}2], J2(E, θE) =
J/[1−{E cos(θE−2π/3)/U}2], and J3(E, θE) = J/[1−{E cos(θE−π/3)/U}2] with J = 4t2/U .
E-dependence of them are shown in Fig. 4.2 (g). Without electric fields (E = 0), the ground
state of this model is a commensurate 120◦ structure (shown in Fig. 4.2 (b)) [182–184]. When
a field E is applied, the exchange coupling becomes anisotropic, and an incommensurate spiral
order would emerge. From the simple calculation of the classical ground state energy, we
can determine the pitch angle of the incommensurate state as a function of E(= |E|) and
θE . Figure 4.2 (b) depicts the pitch angle θ1(2) that is defined as the difference between two
neighboring spins’ angle on the bond along the a1(2) direction. As shown in Fig. 4.2 (d) and
(e), if θE is locked to zero (π/2), the one dimensionality is enhanced (the system is gradually

5AC-field control of the exchange coupling has been discussed [64, 66, 67, 167–169] and the DC limit of
Ref. [167] is consistent with one of our results (4.2). We however stress that our results are more generic and
our approach can be straightforwardly extended to a generic class of Mott insulators.
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Figure 4.2: (a) Exchange couplings J1,2,3 in a triangular lattice and the angle θE of the DC
electric field E. (b) 120◦ structure, which is the ground state of the triangular AFM Heisnberg
model. (c) E dependence of pitch angles θ1 and θ2 in the spiral ordered phase of the triangular
AFM model (4.4) in a DC electric field. (d, e) Typical spin configurations in the E-driven
spiral ordered phases for (d) θE = 0 and (e) π/2. (f) Ground-state phase diagram of the
triangular spin-1

2 AFM Heisenberg model in a DC electric filed (θE = 0). (g) E dependence
of the exchange couplings J1,2,3 in the model (4.4). (h) Exchange couplings J1,2,3 in a Kagomé
lattice magnet with a DC electric field E.

changed into a square lattice system). These results clearly indicate that the spiral order pattern
can be controlled by electric fields smaller than the critical value of the Mott breakdown.

If we focus on the case of θE = 0, the system is a spin-1
2 anisotropic triangular lattice model

with J2 = J3, and it has been well studied both theoretically and experimentally [94]. Some
previous studies [185–189] show that the spiral order is preserved at least up to J2/J1 ∼ 0.6
when J1 is increased with E. On the other hand, a reliable approach based on 1D quantum
field theory shows that a Néel order should appear near the anisotropic limit (J2/J1 → 0)
[190]. At the point of J2 = 0, the system is reduced to decoupled 1D Heisenberg chains and
a Tomonaga-Luttinger liquid (TLL) phase appears. The quantum phases between spiral and
Néel orders are still under debate, but it is predicted to be a QSL [186–189]. Combining these
results with the E dependence of J2/J1, we obtain the ground-state phase diagram under the
electric field E with θE = 0, as shown in Fig. 4.2 (f). Note that the end point of the Néel order
has never been theoretically determined.
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Figure 4.3: (a, c) Exchange couplings in DC-field driven J1-J2 square-lattice magnets for (a)
θE = π/4 and (c) θE = 0. In the case of θE = π/4 (0), J2 (J1) is changed into J2‖ and J2⊥
(J1x and J1y). (b, d) E dependence of the exchange couplings in the case of (b) θE = π/4 and
(d) θE = 0. (e) Ground-state phase diagram of the AFM spin-1

2 Heisenberg model on a J1-J2

square lattice in DC electric fields (θE = 0). In Panels (b), (d), and (e), we set J2/J1 = 0.3 at
E = 0.

Our approach indicates that a sufficiently strong electric field E/U ∼ 0.6 = Ec/U is nec-
essary for the phase transiton to a QSL state if we start from the isotropic point J1,2,3 = J
at E = 0. The value of Ec is estimated as ∼ 5 MV/cm if we consider a typical organic tri-
angular magnet with lattice constant 10 Å and U = 0.8 eV, e.g. (ET)2Cu(NCS)2 [191, 192]
and (ET)2Cu2(CN)3 [192–194]. However, many of organic triangular Mott insulators deviate
from the isotropic point and thus smaller field is enough to realize the field-induced transition.
For instance, we have Ec ∼ 0.9 MV/cm for a spatially anisotropic triangular magnet with
J2,3/J1 = (J2/J1)c × 1.01.

In addition to the triangular lattice system, here we give a few remarks on the Kagomé
lattice magnets. One sees from Fig. 4.2 (h) that if we apply an electric field to a spatially
isotropic Kagomé Mott insulator, three kinds of exchange couplings J1,2,3 appear. The E
dependence of J1,2,3 is completely same as that of the triangular lattice. Our method provides
a way of generating anisotropic Kagomé lattices.

Next, we turn to the spin-1
2 J1-J2 magnet on a square lattice. This model is another

representative of 2D frustrated systems and has been long studied [195–201]. We calculate how
the exchange couplings are modified by an electric field parallel to a J1 (J2) bond, as shown
in Fig. 4.3 (a)-(d). In the case of E parallel to the J1x bond (θE = 0), one dimensionality is
enhanced along the J1x bond direction, and the system approaches to a quasi-1D magnet with
frustrated inter-chain interactions J1y and J2. This system has been theoretically studied and it
is known that a dimer order or (Z2) QSL state appears when the frustration between two inter-
chain couplings J1y and J2 is quite strong [195, 200, 201]. Therefore, we can draw the ground-
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Figure 4.4: (a) Lattice structure of the quasi-one-dimensional AFM Heisenberg magnet consist-
ing of weakly coupled 1D Heisenberg chain. Yellow arrows denote the direction of the applied
DC electric field. (b-e) Phase diagrams of quasi-1D AFM Heisenberg model subject to DC
electric fields. Panels (b, c) and (d, e) respectively correspond to the spin-1

2 and spin-1 results.
The electric field E is parallel to the chain (E ‖ ax) in the cases (b,d), while E is perpendicular
to the chain (E ‖ ay) in the cases (c,e).

state phase diagram under an electric field as in Fig. 4.3 (e). Namely, a sufficiently strong
electric field is expected to create a QSL state as in the case of the triangular lattice. In the case
of θE = π/4, the system approaches to a triangular AFM Heisenberg model with an additional
interaction J2⊥. Layered vanadium oxides such as PbVO2 [198, 199] or VOMoO4 [196] and
double perovskite oxides such as Sr2CuTeO6 [202] are good candidate materials for the J1-J2

magnet. They have a relatively large value of J2/J1 and thus a small electric field can make
the Néel state change into dimer or QSL states.

4.4 Control of quasi-one-dimensional magnets

Purely 1D magnets do not show any magnetic orders even at low temperature due to strong
fluctuation effects [203–206]. However, in a broad class of quasi-1D magnets, a magnetically
ordered phase generally appears due to a weak but finite three dimensionality if temperature
is sufficiently low.

When the electric field is parallel to the chain direction, the one dimensionality is further
enhanced and an exotic quantum phase should appear. On the other hand, an electric field
perpendicular to the chain makes the inter-chain coupling stronger and the system is expected
to show a magnetic long-range order. To demonstrate our proposal, we analyze an AFM
Heisenberg model on a cubic lattice consisting of weakly coupled spin chains, which is depicted
in Fig. 4.4 (a). In this model, the spin chains are parallel to the x direction, a DC electric field
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E is in the x-y plane, and the direction of E is defined by the angle θE . In this setup, the spin
Hamiltonian is written as

H =
∑
r

[Jx(E, θE)Sr · Sr+ax + Jy(E, θE)Sr · Sr+ay ]

+
∑
r

JzSr · Sr+az . (4.5)

For the spin-1
2 case, the exchange couplings in the x and y directions are respectively given by

Jx(E, θE) = Jx0/[1 − {E cos θE/U}2], Jy(E, θE) = Jy0/[1 − {E cos(θE − π/2)/U}2], and Jz is
that in the z direction. For the spin-1 case, the above formulas of the exchange couplings are
modified by the replacement U → U + JH .

In the spin-1
2 system, if temperature becomes low enough (typically, order of inter-chain

couplings), a Néel ordered phase emerges. In general, various sorts of finite-temperature phase
transition points in quasi-1D systems can be determined by applying the chain mean field
theory (MFT) [207–213]. In fact, the transition points predicted by chain MFT agree well
with experimental results of some quasi-1D magnets [211, 212]. We apply the chain MFT
to the present spin-1

2 system and the resultant phase diagrams on the plane (kBT,E) are
summarized in Fig. 4.4 (b) and (c). The detail of the chain MFT is explained in Appendix C.
The phase diagrams show that when E is parallel to the x (y) direction, the one dimensionality
is enhanced (inter-chain interaction becomes stronger) and the transition temperature decreases
(grows) with increasing E.

For the spin-1 case, the so-called Haldane phase, a typical symmetry-protected-topological
phase, is realized in each spin-1 AFM chain in a parameter range with small inter-chain cou-
plings, while a Néel ordered phase takes place when inter-chain couplings are strong enough.
The low-energy properties of the quasi-1D spin-1 system have been accurately investigated [214–
216] and a quantum Monte Carlo simulation [214] shows the quantum phase transition between
Haldane and Néel phases is located at Jy(E, θE) ' 0.043Jx(E, θE) for the 2D limit with Jz = 0.
Using this relation, we can generally determine the ground-state phase diagram of the spatially
anisotropic 2D spin-1 magnets under an electirc field E. Figure 4.4 (d) and (e) are respectively
the phase diagrams for E ‖ ax (θE = 0) and E ‖ ay (θE = π/2). The results of Fig. 4.4 clearly
indicate that we can create/annihilate ordered or topological phases of quasi-1D magnets with
a sufficiently strong DC electric field.

Our predictions of Fig. 4.4 are generally relevant to a wide class of quasi-1D magnets. For
example, Sr2CuO3 [217], Cs2CuCl4 [218, 219], KCuF3 [220] and NMP-TCNQ [221] (NENP [222,
223] , TMNIN [224] and Y2BaNiO5 [225, 226]) are well known as typical quasi-1D spin-1

2
(spin-1) magnets. Particularly, the Coulomb interaction of NMP-TCNQ has been estimated
as a rather small U ∼ 0.17eV [221]. For this magnet, Fig. 4.4(c) predicts that the critical
temperature can increase by about 50% if we apply DC fields E‖ ∼ 0.8MV/cm along the
interchain direction with a lattice constant ∼ 15Å.

4.5 Summary of this chapter

In this chapter, we have shown that DC electric fields can enhance the AFM Heisenberg coupling
in general Mott insulators (See Eqs. (4.2) and (4.3)). Then we have illustrated that this
enhancement is very useful for controlling the phases of magnets, and given rich phase diagrams
(See Figs. 4.2-4.4). We emphasize that a weaker DC field than that for the Mott breakdown
is sufficient to control the magnetism, and our method is basically free from heating issues in
contrast with the AC-field control.
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Chapter 5

Conclusion and Future Perspectives

In this thesis, we have shown our theoretical proposals for controlling states of matter with
electric fields. In Chap. 2 and 3, we have presented proposals related to AC electric fields
(laser light). In Chap. 2, it has been shown that circularly polarized laser light can induce
topological superconductivity whose realization in solids is still limited. In Chap. 3, we have
discussed the behavior of heavy fermion systems under laser light and shown that we can
control magnetic orders and topological phases. In contrast, we have discussed the control via
DC electric fields in Chap. 4. We have considered insulating magnets under DC-fields and
shown that interaction between spins can be enhanced with applying electric fields. Utilizing
this enhancement, we have proposed experimental schemes for controlling frustrated magnets
and quasi-one-dimensional magnets. In each chapter, we have discussed parameters and setups
for experimental realizations respectively.

Finally, we explain our possible future perspectives. We have given several proposals as
presented in this thesis, but the scope of our proposals are still limited to very simple cases.
Therefore, there are many possibilities to extend our studies. We mention three possibilities
below.

(i) Low frequency regime

Our calculations in Chap. 2 and 3 are based on the high-frequency expansion of the
effective Hamiltonian. Therefore, our results are limited to the high frequency regime.
Although several findings in our studies are expected to be unchanged even in the different
frequency regime, our calculations cannot be applied to the low-frequency regime directly.
However, many experiments have been done with relatively low-frequency laser light, e.g.
(mid-)IR or THz laser. Therefore, it is important to explore the low-frequency regime
for comparing theoretical results with experiments. For this purpose, we think that
Floquet DMFT approach [227] is most promising. In this approach, combination of
nonequilibirum DMFT and Floquet theory enables us to analyze nonequilibrium steady
states realized in driven-dissipative systems. One of the advantages of this approach is
that the frequency is not limited to high-frequency since we do not use a perturbative
expansion in 1/ω. Using this approach, we can extend our results in Chap. 2 and 3 to the
low-frequency regime and expect to observe different behaviors. The other advantage is
that we can treat the effect of dissipation (e.g. phonon bath) in a natural way since we
have to consider the model with thermal bath for realizing the steady state. This effect
is also omitted in our treatment in Chap. 2 and 3. Thus, the extension in this direction
is an important future task.
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(ii) Current-carrying states

In Chap. 4, we have discussed the behavior of magnets under DC electric fields. However,
the magnets are still macroscopically insulating. On the other hand, recent experiments
suggest that there can emerge interesting phenomena in current-carrying nonequilibrium
steady states under DC-fields, e.g. current-induced diamagnetism [6]. Thus, studies
of current-carrying states are highly desired, but theoretical treatments of such states
are difficult in general. One possible way to tackle this problem is to use strong nu-
merical approaches such as nonequilibrium DMFT or time-dependent DMRG menitoned
in Sec. 1.4. Using them, several authors have tried to understand the current-carrying
states [35, 155, 228, 229], but their results are not conclusive. The other way is to use
some effective models. There are in-coming and out-going electrons in this nonequili-
brum steady states, and thus it may be possible to use non-Hermitian Hamiltonians used
as effective models of open quantum systems. Indeed, a non-Hermitian variant of the
Hubbard model is proposed as an effective model for dielectric breakdown in Mott insu-
lators [154]. Application of this model to current-carrying states is one of the promising
approaches.

(iii) Combination with ab initio calculations

Through this thesis, we have used simplified models because they are sufficient for our
purpose to demonstrate new scenarios never discussed. However, it is very important
to use more complicated models containing the information of specific materials for the
purpose of experimental realizations. To obtain such models, one of the most promising
ways is to use first-principle (ab initio) calculations. Applying Floquet theory to models
based on such calculations, it should be possible to discuss the nature of laser-illuminated
specific materials. The studies in this direction is still limited [230], but we expect that it
will become important in future when the experimental techniques are more developed.
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Appendix A

Derivation of the self-consistent
equations with slave boson approach

In this Appendix, we show how to obtain the self-consistent equations (3.3) and (3.4) in Chap. 3.
These equations which determine b and λ are derived with slave boson approach. In this
approach, to treat the correlation effect in f -orbit, the slave particle operator bi is introduced
as

f †iσ → f †iσbi, (A.1)

fiσ → fiσb
†
i , (A.2)

with the constraint,

f †i↑fi↑ + f †i↓fi↓ + b†ibi = 1. (A.3)

bi (b†i ) is an annihilation (creation) operator of slave bosons, which corresponds to the creation
(annihilation) of the holon, i.e. vacancy. The constraint (A.3) represents the strong coupling
limit U →∞, in which the double occupancy is completely suppressed.

With these expressions, we write down the Lagrangian corresponding to the periodic An-
derson model. The constraint is taken into account with the method of Lagrange multiplier.
The Lagrangian reads

L =
∑
ijσ

{δij(∂τ − µ) + tc,ij}c†iσ(τ)cjσ(τ)

+
∑
iσ

{∂τ − µ+ εf + iλi(τ)}f †iσ(τ)fiσ(τ) +
∑
ijσ

tf,ijf
†
iσ(τ)bi(τ)b†j(τ)fjσ(τ)

+
1√
N

∑
ijσσ′

{Vijσσ′c†iσ(τ)b†j(τ)fjσ′(τ) + h.c.}+ i
∑
i

λi(τ){b†i (τ)bi(τ)− 1}, (A.4)

where λi(τ) is the Lagrange multiplier field. Next we take mean-field approximation i.e. bi(τ)→
b(τ), iλi(τ)→ λ(τ) and then we obtain the mean-field Lagrangian LMF as

LMF =
∑
ijσ

{δij(∂τ − µ) + tc,ij}c†iσ(τ)cjσ(τ)

+
∑
iσ

{∂τ − µ+ εf + λ(τ)}f †iσ(τ)fiσ(τ) +
∑
ijσ

tf,ij |b(τ)|2f †iσ(τ)fjσ(τ)

+
1√
N

∑
ijσσ′

{Vijσσ′b∗(τ)c†iσ(τ)fjσ′(τ) + h.c.}+
∑
i

λ(τ)(|b(τ)|2 − 1). (A.5)
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To derive the self-consistent equations for b and λ, we integrate out the fermionic degrees of
freedom c and f and derive the effective action for bosonic fields b(τ) and scalar fields λ(τ).
The effective action Seff is defined as

e−Seff [b†,b,λ] ≡
∫
D[c†, c, f †, f ]e−SMF[c†,c,f†,f,b†,b,λ],

where

SMF =

∫ β

0
dτLMF[c†(τ), c(τ), f †(τ), f(τ), b†(τ), b(τ), λ(τ)]. (A.6)

The self-consistent equations are given by the saddle point conditions for the effective action:

δSeff

δb(τ)
= 0,

δSeff

δλ(τ)
= 0. (A.7)

These conditions can be rewritten using SMF as〈
δSMF

δb(τ)

〉
= 0,

〈
δSMF

δλ(τ)

〉
= 0, (A.8)

where 〈· · · 〉 is the thermal average defined as

〈· · · 〉 =

∫
D[c†(τ), c(τ), f †(τ), f(τ)] · · · e−SMF∫
D[c†(τ), c(τ), f †(τ), f(τ)]e−SMF

. (A.9)

Using eqs. (A.5) and (A.8), we can derive the self-consistent equations (3.3) and (3.4).
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Appendix B

Derivation of effective spin models
from Hubbard models under DC
electric fields

In this Appendix, we present the derivations of the effective spin models discussed in Chap. 4.
In Sec. B.1 and Sec. B.2, we derive spin-1

2 and spin-1 model respectively. In addition, to clarify
to what extent our effective models are valid, we explain the parameter regime of the original
models in Sec. B.3.

B.1 Spin-1
2 effective model from a single-band Hubbard model

This section is devoted to the derivation of the spin-1
2 effective model (4.2) in Chap.4. We start

from a half-filled, repulsive Hubbard model (U > 0) with an arbitrary on-site potential term.
The Hamiltonian reads

H =
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ +
∑
iσ

Viniσ

= Ht +HU +HV , (B.1)

where Ht, HU , and Ht denote the electron hopping, the on-site Coulomb interaction, and the
on-site potential, respectively. We assume that all the on-site potential energies are smaller
than the Coulomb interaction energy, i.e., |Vi| < U .

In order to perform perturbative calculations for any quantum system, it is generally useful
to introduce projection operators onto Hilbert subspaces. Let us divide the full Hilbert space
into a low- and high-energy states, {|Ψg〉} and {|Ψe〉}, and define the projection operator onto
the low-energy (high-energy) state Pe (Pg). Using these instruments, we can arrive at the
effective Hamiltonian for the low-energy subspace in the second-order perturbation theory:

Heff = Hgg +Hge
1

Eg −Hee
Heg, (B.2)

where Hαβ = PαHPβ (α, β = g, e) and Eg is defined by Hgg |Ψg〉 = Eg |Ψg〉.
We apply the above formula (B.2) to the Mott insulating state of the Hubbard model (B.1)

in the strong-coupling limit, i.e. U → ∞. In this limit, the ground states of the unperturbed
Hamiltonian HU + HV are states where all sites are singly occupied. We treat the hopping
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Figure B.1: Spin configuration of states relevant to the second-order perturbative calculation:
(a) A ground state and (b) an intermediate state.

term Ht as the perturbation, and define the low-energy (high-energy) subspace as the ground
states (states with doubly occupied sites).

First we consider Heg in the Mott insulating state of the Hubbard model (B.1). In the
three terms Ht, HU and HV of the Hamiltonian H, only the hopping Ht has a matrix element
between high and low-energy states, {|Ψg〉} and {|Ψe〉}. Therefore Heg is written as

Heg = Pe

∑
ijσ

tijc
†
iσcjσ

Pg. (B.3)

From the Pauli’s exclusion principle and the half-filled condition, we see that Heg survives only
when the spin indices σ on the i-th and j-th sites are different, i.e., (Szi , S

z
j ) = (↑, ↓), (↓, ↑), as

shown in Fig. B.1 (a). We may thus rewrite Heg as

Heg =
∑
ijσ

tijc
†
iσcjσ(Szi − Szj )2. (B.4)

Next we compute the energy difference between the ground and the intermediate high-energy
states depicted in Fig. B.1. To this end, we may focus on two neighboring i-th and j-th sites. In
the ground states, both the sites are singly occupied and thus their energy is given by Vi + Vj .
In contrast, the i-th site is doubly occupied and the j-th site is vacant in the intermediate
states. Thus the energy is U + 2Vi. These results lead to

1

Eg −Hee
Heg =

∑
ijσ

1

(Vi + Vj)− (U + 2Vi)
tijc
†
iσcjσ(Szi − Szj )2

= −
∑
ijσ

1

U −∆Vij
tijc
†
iσcjσ(Szi − Szj )2. (B.5)

Here we define ∆Vij = Vi − Vj .
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Finally, we operate the Hge to Eq. (B.5) and then the second-order perturbation term is
calculated as follows:

Hge
1

Eg −Hee
Heg = −Pg

∑
i′j′σ′

tj′i′c
†
j′σ′ci′σ′

∑
ijσ

1

U −∆Vij
tijc
†
iσcjσ(Szi − Szj )2

= −
∑
ijσ

|tij |2

U −∆Vij
c†jσciσc

†
iσcjσ(Szi − Szj )2 −

∑
ijσ

|tij |2

U −∆Vij
c†jσ̄ciσ̄c

†
iσcjσ(Szi − Szj )2

= −
∑
ijσ

|tij |2

U −∆Vij
njσ(1− niσ)(Szi − Szj )2 +

∑
ijσ

|tij |2

U −∆Vij
c†jσ̄cjσc

†
iσciσ̄(Szi − Szj )2

= −
∑
ij

|tij |2

U −∆Vij
(Szi − Szj )2 +

∑
ij

|tij |2

U −∆Vij
(S−j S

+
i + S+

j S
−
i )(Szi − Szj )2

= −
∑
ij

|tij |2

U −∆Vij
(Szi − Szj )2 +

∑
ij

|tij |2

U −∆Vij
(S−j S

+
i + S+

j S
−
i )

=
∑
ij

|tij |2

U −∆Vij

(
−1

2
+ 2Szi S

z
j + S+

i S
−
j + S−i S

+
j

)

=
∑
ij

2|tij |2

U −∆Vij
Si · Sj + const., (B.6)

where we have defined σ̄ = −σ. The first-order term Hgg gives only a constant term, and
therefore the effective Hamiltonian up to the second-order perturbation theory is given by

Heff =
∑
ij

2|tij |2

U −∆Vij
Si · Sj + const.

=
∑
〈ij〉

4|tij |2

U

1

1−
(

∆Vij
U

)2Si · Sj + const., (B.7)

where the summation is taken over every bond 〈i, j〉 in the last line. This is the effective model
(4.2) in Chap. 4.
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B.2 Spin-1 effective model from a two-band Hubbard model

In this section, we show the derivation of the effective spin-1 model (4.3) in Chap. 4. We
start from a half-filled, two-orbital Hubbard model with an additional on-site potential. The
Hamiltonian consists of three parts of hopping, interaction, and potential terms:

H = Ht +HV +Hint. (B.8)

These terms are given by

Ht =
∑
ij

∑
α

∑
σ

tijc
†
iασcjασ, (B.9)

HV =
∑
iσ

Viniασ, (B.10)

Hint = U
∑
i

∑
α

niα↑niα↓ + U ′
∑
i

∑
σσ′

ni1σni2σ′

− J
∑
i

∑
σσ′

c†i1σci1σ′c
†
i2σ′ci2σ − JP

∑
i

(
c†i1↑c

†
i1↓ci2↓ci2↑ + h.c.

)
. (B.11)

Here α(= 1, 2) is orbital index and σ̄ denotes the opposite spin −σ. In the interaction Hint,
U , U ′, J , and JP terms denote an intra-orbital interaction, an inter-orbital interaction, a
Hund’s coupling and a pair hopping respectively. Due to the rotational symmetry of Coulomb
interaction, JP = J is required. For convenience, we transform the interaction Hint (B.11) as
follows:

Hint = U
∑
i

∑
α

niα↑niα↓ +

(
U ′ − J

2

)∑
i

∑
σσ′

ni1σni2σ′

− 2J
∑
i

Si1 · Si2 − J
∑
i

(
c†i1↑c

†
i1↓ci2↓ci2↑ + h.c.

)
, (B.12)

where we have used the identity∑
σ

c†i1σci1σ̄c
†
i2σ̄ci2σ = 2Si1 · Si2 −

1

2

∑
σ

ni1σni2σ +
1

2

∑
σ

ni1σni2σ̄, (B.13)

and Siα is the spin operator for an α-orbital electron on i-th site.
First we discuss the ground state under the condition of both the half-filling and the strong-

coupling limit U > U ′ > J � t. In this condition, all the orbits are singly occupied and there
are two electrons per one site in the ground states. We here introduce local bases |ψ〉i to
represent the spin state on each site i. They are classified into the spin-triplet sector Ti and
the spin-singlet sector Si :

Ti = {|+〉i , |◦〉i , |−〉i}, (B.14)

Si = {|s〉i}. (B.15)

Four kinds of |ψ〉i are defined as

|+〉i = c†i1↑c
†
i2↑ |0〉 , (B.16)

|−〉i = c†i1↓c
†
i2↓ |0〉 , (B.17)

|◦〉i =
1√
2

(
c†i1↑c

†
i2↓ |0〉+ c†i1↓c

†
i2↑ |0〉

)
, (B.18)

|s〉i =
1√
2

(
c†i1↑c

†
i2↓ |0〉 − c

†
i1↓c
†
i2↑ |0〉

)
, (B.19)
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where |+〉i, |−〉i, and |◦〉i are respectively the Sz = +1, −1, and 0 state on i-th site. Within
this localized spin subspace, the correlation function of two-orbital spins on a given site is
computed as

〈ψ|i Si1 · Si2 |ψ〉i =

{
1
4 (|ψ〉i ∈ Ti)
−3

4 (|ψ〉i ∈ Si).
(B.20)

This result and Hund’s coupling in Eq. (B.12) clearly show that the ground state on each site
is in the spin-triplet sector, namely, localized spin-1 system is realized in Eq. (B.8).

Next, we focus on the zero-potential case of Vi = 0. As one will see soon later, the effective
model for Vi 6= 0 can be easily derived by simply extending the result of the Vi = 0 case.
Using the formula (B.2), let us derive the effective spin model for the Vi = 0 case with the
hopping Ht being the perturbation. To this end, we introduce the nine local bases |ψi〉i |ψj〉j
which represent neighboring i-th and j-th spin states (ψi,j ∈ {+, ◦,−}). In the matrix form,
the bases are expressed as

|Ψij〉 =



|+〉i |+〉j
|+〉i |◦〉j
|+〉i |−〉j
|◦〉i |+〉j
|◦〉i |◦〉j
|◦〉i |−〉j
|−〉i |+〉j
|−〉i |◦〉j
|−〉i |−〉j


. (B.21)

Through straightforward calculation, we obtain

HgeHeg |+〉i |−〉j = − |◦〉i |◦〉j + 2 |+〉i |−〉j , (B.22)

HgeHeg |+〉i |0〉j = − |0〉i |+〉j + |+〉i |0〉j , (B.23)

HgeHeg |0〉i |0〉j = − |+〉i |−〉j − |−〉i |+〉j + |◦〉i |◦〉j , (B.24)

and

Hge
1

Eg −Hee
Heg |+〉i |−〉j =

|tij |2

∆Eij

(
− |◦〉i |◦〉j + 2 |+〉i |−〉j

)
, (B.25)

Hge
1

Eg −Hee
Heg |+〉i |0〉j =

|tij |2

∆Eij

(
− |0〉i |+〉j + |+〉i |0〉j

)
, (B.26)

Hge
1

Eg −Hee
Heg |0〉i |0〉j =

|tij |2

∆Eij

(
− |+〉i |−〉j − |−〉i |+〉j + |◦〉i |◦〉j

)
, (B.27)

where

∆Eij =

{
2×

(
U ′ − J

2

)
− 2× 2J · 1

4

}
−
{
U + 2×

(
U ′ − J

2

)}
= −(U + J). (B.28)
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From these results, the effective Hamiltonian in the i-th and j-th sites is given by

〈Ψij |Heff |Ψij〉 = EgI +
|tij |2

U + J



0 0 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0
0 0 −2 0 1 0 0 0 0
0 1 0 −1 0 0 0 0 0
0 0 1 0 −1 0 1 0 0
0 0 0 0 0 −1 0 1 0
0 0 0 0 1 0 −2 0 0
0 0 0 0 0 1 0 −1 0
0 0 0 0 0 0 0 0 0


. (B.29)

For spin-1 systems, SU(2)-symmetric interactions between two neighboring spins are limited to
a bilinear term Si ·Sj and a biquadratic term (Si ·Sj)2. In our notation, the matrix elements
of the bilinear term are given by

〈Ψij |Si · Sj |Ψij〉 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 −1 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 1 0 −1 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


, (B.30)

and those of the biquadratic term are computed as

〈Ψij | (Si · Sj)2 |Ψij〉 =



1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0
0 0 2 0 −1 0 1 0 0
0 1 0 1 0 0 0 0 0
0 0 −1 0 2 0 −1 0 0
0 0 0 0 0 1 0 1 0
0 0 1 0 −1 0 2 0 0
0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 1


. (B.31)

Comparing Eqs. (B.29) with (B.30) and (B.31), we can find the following relation

〈Ψij |Heff |Ψij〉 = EgI +
|tij |2

U − J
(〈Ψij |Si · Sj |Ψij〉 − I) . (B.32)

From these results, the effective spin model for the zero-potential system is written as

Heff =
∑
ij

|tij |2

U + J
Si · Sj

=
∑
〈ij〉

2|tij |2

U + J
Si · Sj

= JS=1
ij

∑
〈ij〉

Si · Sj , (B.33)
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where we have defined JS=1
ij = 2|tij |2/(U + J).

Finally, let us turn to a generic case with Vi 6= 0. In this case, most of the perturbative
calculations are the same as those of the Vi = 0 case. However, ∆Eij of Eq. (B.28) should be
changed into

∆Eij =

{
2×

(
U ′ − J

2

)
− 2× 2J · 1

4

)
+ 2Vi + 2Vj} −

{
U + 2×

(
U ′ − J

2

)
+ 3Vi + Vj

}
= −(U + J + ∆Vij), (B.34)

where ∆Vij = Vi − Vj . Thus the effective spin model for the two-orbital Hubbard model with
an on-site potential is written as

Heff =
∑
ij

|tij |2

U + J + ∆Vij
Si · Sj

=
∑
〈ij〉

JS=1
ij

1−
(

∆Vij
U+J

)2Si · Sj . (B.35)

This is the effective model (4.3) in Chap. 4.

B.3 Parameter regime for our effective models

Here, we clearly mention the parameter range where our strong-coupling approach in Secs. B.1
and B.2 is valid. There are three conditions below must be satisfied.

Condition 1: U � W (Strong coupling)

Our study is based on the perturbative expansion in terms of |tij |/U , where tij is the hopping
amplitude and U(> 0) is the interaction strength, as illustrated in the previous Secs. B.1 and
B.2. This perturbation theory is valid for U �W where W = O(|tij |) is the band width.

Condition 2: U − |e|aE � W (No “Mott breakdown”)

In this paper, we consider the Mott insulating state under a spatially dependent potential
Vij driven by a DC field. The voltage between the neighboring sites ∆Vij is given by |e|aE
where e, a, and E are the electron charge, the lattice constant, and the strength of the DC
field, respectively. If the voltage becomes too large, the Mott insulating state is broken (Mott
breakdown) and a large electric current appears. The accurate condition for the occurrence of
Mott breakdown is still under debate, but we can say that the Mott insulator survives if the
condition U−|e|aE �W is satisfied. We note that this condition is hold even if |e|aE becomes
comparable to U and the hopping |tij | is sufficiently small. We also note that the Condition 2
restricts the parameter range of the system much stronger than the Condition 1 (Condition 2
⊂ Condition 1).

When the applied DC field becomes strong so that U−|e|aE is comparable to W , the higher-
order perturbation terms cannot be negligible in our strong-coupling calculation of Secs. B.1
and B.2. Namely, our Heisenberg type models including only the lowest-order perturbation
term become invalid. In such a case, ring-exchange, biquadratic interactions, etc. should be
considered and there is the possibility that these higher-order interactions drastically change
our phase diagrams of Figs. 4.2-4.4 in Chap. 4.
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Condition 3: U −W � kBT (Low temperature)

When the energy scale of temperature kBT becomes comparable to the Mott gap ∆Mott ∼ U ,
many electrons are thermally excited to the upper Hubbard band and they behave as thermal
carriers (see Fig. B.2) under the application of a DC electric field. This carriers yield a finite
current and crucially affect the magnetism. Such a system can not be regarded as a localized
spin system and thus this case is out of scope of our study. Therefore, we need the condition
U −W � kBT . Of course, this is the same as the condition that generic quantum spin models
are reliable to describe magnetism of the target systems. Usually, U −W is much larger than
room temperature in Mott insulators. Therefore, our strong-coupling approach can be applied
in a wide low-temperature range.

Figure B.2: Schematic picture of the density of states of half-filled Hubbard models. There are
the lower Hubbard band (occupied) and the upper Hubbard band (empty) separated by the
Mott gap ∆Mott ∼ U . Each band has a finite band width W = O(|tij |) where tij is the hopping
amplitude.
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Appendix C

Bosonization and chain mean-field
approach

In this Appendix, we shortly explain the computation process of the critical temperature be-
tween Néel ordered and paramagnetic phases in our quasi-1D spin-1

2 model (4.5) in Chap. 4.
First we summarize some results of the bosonization for spin-1

2 chains [96, 203–205]. Then,
by combining the chain mean-field theory (MFT) with the bosonization results [207–213], we
determine the critical temperature of the quasi-1D model (4.5).

We start from the definition of the 1D spin-1
2 XXZ chain model. The Hamiltonian is given

by

Hxxz = J
∑
j

[
Sxj S

x
j+1 + Syj S

y
j+1 + ∆zS

z
jS

z
j+1

]
−H

∑
j

Szj , (C.1)

where Sj is the spin-1
2 operator on j-th site, J > 0 is the strength of the exchange interaction,

∆z is the XXZ anisotropy parameter, and H is the external magnetic field. The point of
∆z = 1 and H = 0 corresponds to the SU(2)-symmetric antiferromagnetic Heisenberg model.
The XXZ model is a typical integrable system and the TL-liquid phase with gapless spinon
excitations widely exists in the range −1 < ∆z ≤ 1 at zero field H = 0. The TL liquid
phase survives from zero field to the saturation field. The bosonization can accurately describe
the low-energy properties in/around the TL-liquid phase. Through the standard bosonization
process, the XXZ model in/around the TL-liquid phase is mapped to a low-energy gapless
scalar-field theory, whose Hamiltonian is

Heff =

∫
dx

v

2

[ 1

K
(∂xφ)2 +K(∂xθ)

2
]
, (C.2)

where x = ja0 is the continuous coordinate (a0 : lattice constant), and φ(x, t) and θ(x, t) are
the canonical pair of real scalar fields satisfying the commutation relation [φ(x, t), ∂yθ(y, t)] =
iδ(x − y). Two symbols v and K respectively denote the spinon group velocity and the TL-
liquid parameter. For instance, K = 1 and v = πJa0/2 at the SU(2) point. Spin operators are
also bosonized as

Szj ≈ M +
a0√
2π
∂xφ+ (−1)jA1 cos

(√
2πφ+ 2πMj

)
+ · · · ,

S+
j ≈ ei

√
2πθ
[
(−1)jB0 +B1 cos

(√
2πφ+ 2πMj

)
+ · · ·

]
. (C.3)

where M = 〈Szj 〉 is the H-induced uniform magnetization per site, and An and Bn are non-
universal constants depending on the model parameters J , ∆z and H. The accurate values of
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v, K, An and Bn have been computed by using Bethe ansatz and numerical methods [231–
236]. On the basis of the formulas (C.2) and (C.3), one can correctly calculate the long-
distance or long-time behavior of correlation functions in the TL-liquid phase. Let us define
the dynamical spin susceptibility with the wave number k and frequency ω as χabR (k, ω) =

−
∫ β

0 dτ
∑

k e
−ikja0+iωnτ 〈TτSaj (τ)Sb0(0)〉|iωn=ω+iη, where τ is imaginary time, β = 1/(kBT ) is

inverse temperature, ωn = 2πn/β (n: integer), and η is an infinitesimal positive constant.
Through the bosonization technique with Eqs. (C.2) and (C.3), one can calculate the transverse
dynamical susceptibility around k = π + δk in the TL-liquid phase:

χ−+
R (π + δk, ω) ≈ −B2

0

a0

v
sin
( π

2K

) (2πa0

βv

)1/K−2

×B
(
− iβ(ω − vδk)

4π
+

1

4K
, 1− 1

2K

)
×B

(
− iβ(ω + vδk)

4π
+

1

4K
, 1− 1

2K

)
, (C.4)

where S±j = Sxj ± iSyj and B(x, y) is Beta function. This formula is quite reliable in the

range of |δk| � a−1
0 and |ω| � J, kBT . In the TL-liquid phase of the XXZ chain, the relation

χxxR (k, ω) = χyyR (k, ω) = 1
2χ
−+
R (k, ω) holds.

Next, we apply the chain MFT to our quasi-1D spin-1
2 magnet (4.5) in Chap. 4 with the

above bosonization results. In the chain MFT, we accurately take into account quantum and
thermal fluctuation effects in the strong coupled 1D direction, while an inter-chain interaction
is treated within the standard MFT. On the basis of this approach, the Sx component of
the dynamical spin susceptibility in the quasi-1D system (4.5) is calculated as the following
RPA-like form:

χxx3D(kx, ky, kz, ω) =
χxxR (kx, ω)

1− 2(Jy cos ky + Jz cos kz)χxxR (kx, ω)
, (C.5)

where the wave number kx corresponds to the 1D-chain direction, and ky,z are the wave numbers
along the inter-chain direction. This result is quantitatively valid in the sufficiently weak inter-
chain regime |Jy,z| � J . The phase transition between the Néel and paramagnetic phases is
determined as the point where χxx3D(π, π, π, ω → 0) diverges. This point is equivalent to the
condition that the denominator of Eq. (C.5) becomes zero at k = (π, π, π) and ω → 0:

−2(Jy + Jz)χ
xx
R (π, ω → 0) = 1 (C.6)

Substituting the bosonization result (C.4) into this condition, we arrive at the formula of
determining the phase transition temperature:

B2
0

(Jy + Jz)a0

v
sin
( π

2K

) (2πa0

βv

)1/K−2
B
( 1

4K
, 1− 1

2K

)2
= 1. (C.7)

Using this result, we have drawn the phase boundary of Fig. 4.4 (b) and (c) in Chap. 4. We
finally note a technical issue that since the parameter B0 is ill-defined just on the SU(2) point
of ∆z = 1 and H = M = 0, we have used its value for a nearly SU(2)-symmetric model with
an infinitesimal small magnetization M = 0.01 in Fig. 4.4 in Chap. 4.
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