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Absrtact

In this thesis, we discuss kinematic aspects of conformal field theory (CFT) and diagrams in

AdS space. The four-point function in CFT is expanded in terms of conformal blocks which are

eigenfunctions of the conformal Casimir equation. As an orthogonal basis for the eigenfunctions,

the conformal partial wave (CPW) is introduced. Thanks to the orthogonality, the CPW gives

us a systematic way to obtain the conformal block expansion of any four-point functions. This

procedure is packaged as the so-called OPE inversion formula. We introduce this formula and

give a simple example to see how the method works. This formula can also be applied to four-

point diagrams in (d + 1)-dimensional AdS space. Then CPW is lifted to AdS space and can be

interpreted as a bulk diagram. There, the AdS harmonic function plays an essential role, and

we can see that the orthogonality of CPW comes from properties of the harmonic function. This

application to AdS diagrams is useful not only to investigate the AdS/CFT correspondence, but

also as a technique to calculate CFT four-point functions. We also discuss the so-called geodesic

diagram in AdS space which is proposed as the bulk dual of a conformal block. In the geodesic

diagrams, the interaction points are integrated over geodesics connecting two boundary points.

Through the split representation of the propagator, we will see why this diagram corresponds to a

conformal block itself. The external fields in correlation functions or AdS diagrams can be easily

generalized to tensor fields by using differential operators, and we discuss the relation between bulk

interactions and CFT tensor structures. As another interesting concept related to CFT correlation

functions, we also discuss the Mellin representation. From the Mellin representation of CPW, we

derive the expansion form of the d-dimensional conformal block. We also propose an extension

of the Mellin representation of CPW involving external tensor fields. Finally, the crossing kernel

which is the inner product between CPWs in different channels is discussed. Through the crossing

kernel, for example, t-channel exchange diagrams and conformal blocks can be decomposed into

s-channel CPWs. We discuss the actual calculation of the crossing kernel and possible applications

to bootstrap approaches.
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Notation

Here, the notation is summarized we use in the main text. For the space time dimension d, h is

defined as half of d:

h =
d

2

Combinations of scaling dimension:

∆ij = ∆i −∆j , ∆+
ij = ∆i + ∆j , a = −∆12

2
, b =

∆34

2

Coordinates in the embedding space:

(X+, X−, Xµ) =
1

z
(1, x2 + z2, xµ) , (P+, P−, Pµ) = (1, x2, xµ)

Inner products of coordinates in Rd

Pij = −2Pi · Pj = x2
ij , where xµij = (xi − xj)µ

Cross ratios:

u = zz̄ =
x2

12x
2
34

x2
13x

2
24

, v = (1− z)(1− z̄) =
x2

14x
2
23

x2
13x

2
24

The one-dimensional conformal block:

k∆(z) = z∆
2F1(∆ + a,∆ + b; 2∆; z)

The kinematic factor for you-point function:

F(xi) =
1

(x2
12)

1
2

∆+
12(x2

34)
1
2

∆+
34

(
x2

14

x2
24

)a(
x2

14

x2
13

)b
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Conformal blocks in two and four dimensions:

g
(2d)
∆,l (z, z̄) =

1

1 + δl,0

[
k∆+l

2
(z)k∆−l

2
(z̄) + k∆−l

2
(z)k∆+l

2
(z̄)
]
,

g
(4d)
∆,l (z, z̄) =

zz̄

z − z̄

[
k∆+l

2
(z)k∆−l−2

2
(z̄)− k∆−l−2

2
(z)k∆+l

2
(z̄)
]

The box tensor structures for three-point function:
∆1 ∆2 ∆3

J1 J2 J3

n23 n13 n12

 =
V m1

1,23V
m2

2,31V
m3

3,12H
n12
12 Hn13

13 Hn23
23

(P12)
1
2

(τ1+τ2−τ3) (P13)
1
2

(τ1+τ3−τ2) (P23)
1
2

(τ2+τ3−τ1)

The elements of tensor structure:

Hij = −2 [(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)] = −Tr(Ci · Cj),

Vi,jk =
(Pj · Zi) (Pi · Pk)− (Pj · Pi) (Zi · Pk)

(Pj · Pk)
=

(Pj · Ci · Pk)
(Pj · Pk)

,

CABi = ZAi P
B
i − ZBi PAi i, j, k = 1, 2, 3

Mellin variables for four-point functions or diagrams:

t = −δ23 , s = −a+ δ23 + δ24

The remaining variables are determined as

δ12 =
1

2
∆+

12 − s , δ34 =
1

2
∆+

34 − s , δ13 = b+ s+ t , δ14 = −a− b− t .

The short-hand notation for a product of gamma functions:

Γ(a± b) = Γ(a+ b)Γ(a− b)
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Chapter 1

Introduction

Motivation to Conformal Field Theory

In theoretical physics, quantum field theory (QFT) is one of the most successful concepts which

appears in various fields, elementary particle, condensed matter, statistical physics, etc. The be-

havior of QFT at a long or short distance is understood by a renormalization group flow, and at

the fixed points of the flow, there are scaling invariant theories. It is known that in such theory,

combining the Poincaré symmetry, the scaling symmetry is enhanced to the conformal symmetry

which is described by SO(2, d) group in d-dimension [3–5]. Such a theory is called conformal field

theory (CFT), and we often encounter CFT in theoretical physics, world sheet of string theory, crit-

ical phenomena, etc. According to the enhanced symmetry, the dynamics of theories is restricted,

and the so-called bootstrap approach is an attempt to classify the possible physical theories only

by the constraints coming from the symmetry and some physical assumptions. Knowing that what

kind of theories appear in the renormalization group flow is important and leads to understanding

properties of QFT. In the below, we introduce some recent developments and topics relating CFT.

Conformal Block in Even Dimensions

As mentioned above, in CFT, the conformal symmetry gives some constraint on the dynamics.

For example, correlation functions in CFT are strongly restricted, and two- and three-point func-

tions are completely determined by the symmetry up to overall constants. The operator product

expansion is also highly restricted, and it is turned out that CFT is characterized completely by

the so-called CFT data which consists of three-point coefficients and the operator spectrum. The

strategy of the conformal bootstrap is classifying the possible CFT data by using some physical

assumptions, crossing symmetry, unitarity, etc., In two dimensional case, the conformal symmetry

is enhanced further into the Virasoro symmetry, and thanks to this infinite symmetry, this strat-

egy works well. As for theories including a finite number of operators, the possible CFT data are
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determined, which are known as minimal models [6]. In these decades, there are some develop-

ments also in d-dimensional CFT. Recently in [7, 8], it is found that conformal blocks which are

building blocks for four-point function in CFT are characterized by a differential equation which

is the so-called conformal Casimir equation, and especially in even dimensions, the closed forms of

conformal block are written in terms of hypergeometric functions. In two or four dimensions, they

have simple forms and this fact greatly contributes to the development of the numerical bootstrap

approach established recently [9, 10].

Diagrams in AdS Space

The explicit form of conformal blocks in even dimension is also applied to investigate the

AdS/CFT duality which is a conjecture claiming that a theory including gravity in the AdSd+1

space is dual to a CFT in the boundary of AdS, roughly speaking [11]. According to this conjec-

ture, in a specific parameter region, correlation functions in CFT are computed as summations of

diagrams in the dual AdS space [12, 13]. This conjecture has been under tests, especially taking

the most famous example, the correspondence between N = 4 super Yang-Mills (SYM) theory in

four-dimensional Minkowski space and the type IIB string theory in AdS5×S5, some correlation

functions in SYM are reproduced by diagrams of type IIB supergravity in AdS5×S5 [14–16]. On

the other hand, in [17], the correspondence of correlation function and AdS diagrams is investigated

from a kinematic aspect. They have searched what kind of conformal block expansion is obtained

from a particular diagram in AdS. In this analysis, the explicit form of conformal blocks also plays

an important role, and it is recently generalized to other diagrams [18, 19]. Another interesting

topic relating to AdS diagrams is the so-called geodesic diagram. As mentioned above, CFT cor-

relation functions are dual to diagrams in AdS, however, the dual of a conformal block was not

known. In [20], they proposed that a geodesic diagram in AdS whose bulk interaction is restricted

on geodesic is dual to a CFT conformal block. This statement has been generalized to some cases

including fields with spin [2, 21–25] .

Mellin Space

The correlation functions and diagram in AdS are usually represented as complicated functions,

and sometimes this fact makes it harder to analyze. In [26–28], it is pointed out that in Mellin

space, they can be described in relatively simple forms. Moreover, in the Mellin space, we can see

an analogy with QFT amplitudes in flat space. As an application of the Mellin representation,

recently, in [29, 30], they have revisited a bootstrap method proposed by Polyakov [31]. In this

approach, four-point functions are decomposed into a summation of building blocks in a crossing

symmetrical way. From the unitarity of theory, in [31], building blocks are determined, and these
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are mathematically equivalent tree exchange diagrams in AdS space. This decomposition naturally

includes some redundant contributions and we have to impose some conditions on CFT data so

that these contributions vanish. In the Mellin space, because the building blocks have relatively

simple form, we can partially solve the constraints. This method has been investigated further

in [32–34].

Conformal Partial Wave and Inversion Formula

Another important concept recently developed is the conformal partial wave (CPW) which is also

an eigenfunction of the conformal Casimir equation. CPW is a linear combination of conformal

blocks, and it has been turned out that CPW is an orthogonal function [35–37]. Through the

orthogonality and relation to conformal blocks, we can write down a formula which gives the three-

point coefficient from a given four-point function directly. It is called the OPE inversion formula.

This formula gives us a systematic way to obtain the conformal block expansion from four-point

functions, however, the actual calculation is difficult usually to obtain meaningful results. Recently,

as a calculation technique, it is pointed out that during the computation, once we perform the wick

rotation from the Euclidean space to the Lorentzian spacetime, the inner products with CPW

and four-point function can be reduced to a simple form, and there the calculation is relatively

easy [36, 37]. One of the most important applications of this formula is to derive the crossing

kernel which is the inner product of s- and t-channel CPWs. The crossing kernel tells us what kind

of contributions come from other channel CPWs or conformal blocks, and this question becomes

important in the conformal bootstrap approach. In [38], in two and four dimensions, the crossing

kernels are derived through the technique introduced above.

In this article, we discuss the kinematic aspects of d-dimensional CFT and diagrams in AdSd+1

space. In chapter 2, we give a brief review for d-dimensional conformal field theory and introduce

some recent topics including the conformal Casimir equation and CPW. Firstly we introduce the

embedding formalism where the coordinates of Rd are embedded in the d+2-dimensional Minkowski

space. In the embedding space, the conformal symmetry can be regarded as the Lorentz symmetry,

and when we consider correlation functions including spinning fields, the expressions are drastically

simplified in the embedding space. The inversion formula is also discussed and then we will see

how the inversion formula works using a simple theory, the so-called generalized free theory. In

chapter 3, we consider diagrams in AdS space. In AdS space, CPW can be described as a bulk

diagram using the AdS harmonic function. According to this fact, we are able to compute inner

product with CPW and an AdS diagram as a bubble diagram in AdS space. We will give some

example of this computation, and then we can see that the orthogonality of CPW is followed by

3



the property of the AdS harmonic function. This part is based on the recent discussion with my

collaborator [39]. In this chapter, we also discuss geodesic diagrams and its generalization including

fields with spin, which is related to my work [1]. In chapter 4, Mellin representations of CPW and

some diagrams are discussed. From the Mellin representation of CPW, we drive a closed form of

conformal block in d-dimension. Its extensions including external spins are also concerned which

is based on [2]. In chapter 5, we try to calculate the crossing kernel in d-dimension, and we will

see that it can be also regarded as a bubble diagram in AdS. In chapter 6, we give a summary and

discuss future directions.
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Chapter 2

Conformal Field Theory in

d-dimension

In this chapter, we will review generic ingredients of d-dimensional conformal field theory(CFT).

In physics, we may encounter CFT in many places. It is known that CFTs appear at fixed points

under the renormalization group for QFT. These fixed points are described by scaling invariant

theories, and it is believed that the scaling symmetry is enhanced to the conformal symmetry [3,4].

Because of the larger symmetry, the kinematics of theories is strongly restricted. Knowing what

kind of theories there are leads understanding of QFTs through the view of renormalization flow.

There are some attempts using the large symmetry to determine the dynamics of theories, which

is called the bootstrap approach. In two-dimension, the conformal symmetry is enhanced as the

Virasoro symmetry, and the bootstrap approach has been succeeded [6]. On the other hand, in

higher dimensions, recently the analytical expression for the conformal blocks is discovered [7].

Using the expression, numerical bootstrap approaches are developed [9]. Besides numerical ones,

some techniques like the so-called inversion formula [36, 37] are also developed recently. In the

below, we will see such analytical methods to investigate d-dimensional CFTs.

In section 2.1, we review some basic concepts in d-dimensional CFT. In section 2.2, the em-

bedding formalism is introduced, and in section 2.3, some correlation functions with tensor fields

are discussed by using the formalism. In section 2.4, an important concept, conformal block is

introduced. Section 2.5 is devoted for the review of the conformal Casimir equation which has

conformal blocks as its eigenfunctions. In section 2.6, a key ingredient called the conformal partial

wave which is an orthogonal basis in the space of four-point function is introduced. In section 2.7,

as a simple example of how to use the orthogonal basis, we will consider the generalized free theory

whose correlation functions are given as products of two-point function.
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2.1 Conformal Symmetry and Correlation Function

In this section, we will review the basic aspects of the d-dimensional Euclidean conformal field theory

mainly. For the reference of this section, there are some nice textbooks and review articles [40–44].

2.1.1 Conformal Symmetry

The conformal transformation is defined as the transformation which does not change the metric

up to a position dependent scaling factor. Under a conformal transformation: x → x′, the metric

gµν(x) changes in he following manner

gµν(x)→ g′µν(x′) = Ω2(x)gµν(x) , (2.1.1)

where Ω(x) is a position dependent function called the scaling factor and the index µ runs from

1 to d. When Ω(x) equals to 1, such transformations are noting but the Lorentz transformation

(or rotation in the Euclidean space) and translation. In this sense, the conformal transformation

includes the transformations in the Poincaré group. To see the detail of transformation, let us

consider an infinitesimal transformation: xµ → x′µ = xµ + εµ(x) . Under this transformation,

we suppose that the scaling factor also has the expansion: Ω2(x) = 1 − f(x) + O(ε2) . Under a

diffeomorphism, the metric is transformed as a tensor: g′µν(x′) = ∂xρ

∂x′µ
∂xσ

∂x′ν gρσ(x) . From (2.1.1), the

constraint for εµ(x) is obtained:

∂µεν(x) + ∂νεµ(x) = f(x)δµν , (2.1.2)

where we have set the metric gµν as the Euclidean metric δµν . 1 This condition is called the

conformal Killing equation. As we expect, the rotation and translation are solutions of this equation:

translation : εµ(x) = aµ (aµ = const.)

rotation : εµ(x) = mµν x
ν (mµν = −mνµ = const.) (2.1.3)

Aside from the Poincaré group, it contains the dilatation and special conformal transformation(SCT)2:

dilatation : εµ(x) = c xµ (c = const.)

SCT : εµ(x) = 2(x · b)xµ − x2 bµ (bµ = const.) (2.1.4)

1In the Minkowski spacetime, the condition is obtained by replacing δµν with ηµν = diag(−,+, ...,+) .
2 When d = 2, there are infinite independent transformations and the symmetry is enhanced to the Virasoro

symmetry.
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For the each transformation, we can find the corresponding generator as written below:

translation : Pµ = ∂µ

rotation : Mµν = xν∂µ − xµ∂ν xν

dilatation : D = xµ∂µ

SCT : Kµ = 2xµ(x · ∂)− x2 ∂µ (2.1.5)

These generators satisfies the following algebra called the conformal algebra:

[Kµ, Pν ] = 2(δµν D −Mµν) , [D,Pµ] = Pµ , [D,Kµ] = −Kµ ,

[Pµ,Mνρ] = δµν Pρ − δµρ Pν , [Kµ,Mνρ] = δµν Kρ − δµρKν ,

[Mµν ,Mρσ] = δµσMνρ + δνρMµσ − δµρMνσ − δνσMµρ . (2.1.6)

This algebra is isomorphic to the algebra of SO(1, d+1) .3 To see this correspondence, we introduce

LAB (A,B = −1, 0, 1, ..., d) as the following combination:

L−1 µ =
1

2
(Pµ −Kµ) , L0 µ = −1

2
(Pµ +Kµ) ,

Lµν = Mµν , L−1 0 = D . (2.1.7)

Then L is anti-symmetric and satisfies the commutation relation of SO(1, d+ 1):

[LAB, LCD] = ηAD LBC + ηBC LAD − ηAC LBD − ηBD LAC , (2.1.8)

where ηAB is a diagonal matrix whose elements are ηAB = diag(−,+, ...,+) .

So far we have seen the infinitesimal conformal transformations, and here we will exponenti-

ate these infinitesimal transformations. When εµ(x) satisfies the conformal Killing equation, the

derivatives of the new coordinate is given by:

∂x′µ

∂xν
= δµν + ∂νε

µ

=

(
1 +

∂ · ε
d

)(
δµν +

1

2
(∂νx

µ − ∂µxν)

)
. (2.1.9)

In the last line, the first factor is the infinitesimal form of the scaling factor Ω(x) = 1− 1
2f(x) 4, and

the second factor is the infinitesimal form of rotation. Thus these factors are easily exponentiated,

3In the Lorenzian signiture, the conformal group is SO(2, d)
4Here we have used the fact that f(x) = 2

d
(∂ · ε) . This relation is derived by taking the trace of (2.1.2).
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and we can rewrite it as a finite tranformation:

∂x′µ

∂xν
= Ω(x)−1Rµν(x) . (2.1.10)

Here Rµν(x) is a position dependent rotation, and this equation is consistent with (2.1.1) . By

taking the determinant in the both side, the scaling factor is represented as the derivatives:

Ω(x) =

∣∣∣∣∂x′∂x

∣∣∣∣− 1
d

. (2.1.11)

In the generators in (2.1.5), the finite transformations of translation, rotation and dilatation can

be easily derived. In order to obtain the exponentiation for SCT, it is convenient to introduce the

inversion transformation I:

I : xµ → xµ

x2
(2.1.12)

The inversion is included in the conformal transformation, but it is not connected to the identity

transformation continuously. Through the inversion, SCT can be regarded as Kµ = −I · Pµ ·

I . Kµ contains the inversion twice, and it is connected to the identity continuously. From this

interpretation of Kµ, we can derive the finite form of SCT:

xµ → x′µ =
xµ − bµ x2

1− 2(b · x) + b2 x2
. (2.1.13)

2.1.2 Primary Operator

Here let us consider the action of the generators on operators. We denote an operator at position

x in d-dimensional Euclidean or Minkowski space as O(x). Firstly, we focus on only an operator

at the origin O(0) . Using the action of the translation generator, we can see that operators at an

arbitrary position x can be created by applying the translation generator to O(0) .

O∆,r(x) = ex
µPµ O∆,r(0) e−x

µPµ . (2.1.14)

where the translation generator Pµ acts on an operator in the following way:

[Pµ,O∆,r(x)] = ∂µO∆,r(x) . (2.1.15)

Since the dilatation D commutes with the rotation generators Mµν , it is natural to diagonalize

O(0) as the eigenstate for the dilatation and rotation, and we will denote O(0) as O∆,r(0) . Here ∆
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is the eigenvalue for the dilatation and r means an irreducible representation of the rotation group

SO(d) . More explicitly, O∆,r(0) obeys the following commutation relation:

[D,O∆,r(0)] = ∆O∆,r(0) ,[
Mµν ,OI∆,r(0)

]
= (Rµν)IJOJ∆,r(0) , (2.1.16)

where Rµν are generators of the representation r, and I, J, ... are abstract indexes for the repre-

sentation r. Now because of the conformal algebra, we can regard Kµ as a lowering operator for

dimension,

[D,KµO∆,r(0)] = [D,Kµ]O∆,r(0) +Kµ[D,O∆,r(0)]

= (∆− 1)KµO∆,r(0) . (2.1.17)

Similarly, the translation is a raising operator as we can see as follows:

[D,PµO∆,r(0)] = (∆ + 1)PµO∆,r(0) . (2.1.18)

We can create any fields with arbitrary low dimension applying Kµ many times. However, in

physics, we are interested in fields with real and bounded dimensions. Thus, main targets in below

are operators which have the lowest states satisfying the vanishing commutation relation with Kµ:

[Kµ,O∆,r(0)] = 0 . (2.1.19)

This kind of operators is called primary operators. Once we know a primary operator, we can create

fields with arbitrary large dimensions applying the raising (translation) operator. Such operators

are derivatives of a primary operator and called its descendants.

Using the Campbell-Baker-Hausdorff formula;

e−AB eA = B + [B,A] +
1

2!
[[B,A], A] +

1

3!
[[[B,A], A], A] + ... , (2.1.20)

the action of the other generators on an operator O∆,r(x) can be obtained. For example, the action

of rotation on O∆,r(x) is computed as follows:

[Mµν ,O∆,r(x)] = ex·P [e−x·PMµνe
x·P ,O∆,r(0)]e−x·P

= ex·P [Mµν + xνPµ − xµPν ,O∆,r(0)]e−x·P

= (xν∂µ − xµ∂ν +Rµν)O∆,r(x) . (2.1.21)
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where O∆,r(0) is a primary operator. From the similar calculation, we can obtain the following

transformation rules:

[D,O∆,r(x)] = (∆ + xµ∂µ)O∆,r(x) ,

[Kµ,O∆,r(x)] =
(
2∆xµ − 2xνRµν + 2xµx

ν∂ν − x2∂µ
)
O∆,r(x) . (2.1.22)

We can summarize these commutation relation as for the generic generator Qε:

Qε = aµPµ +
1

2
mµνMµν + cD + bµKµ , (2.1.23)

where aµ , mµν , c and bµ are infinitesimal parameters whose orders are O(ε). According to (2.1.15),

(2.1.21) and (2.1.22), Qε satisfies the following commutation relation:

[Qε,O∆,r(x)] =

(
ε · ∂ +

∆

d
(∂ · ε)− 1

2
(∂µεν)Rµν

)
O∆,r(x) , (2.1.24)

where εµ = aµ +mµν x
ν + c xµ + 2(x · b)xµ − x2bµ . Now we can exponentiate the generator Qε as

U = eQε in the similar way as in (2.1.9) and (2.1.10);

UOI∆,r(x′)U−1 = Ω(x)∆D(R(x))IJOJ∆,r(x) . (2.1.25)

Especially, a primary scalar transforms under the conformal transformation in the following manner;

O∆(x)→ UO∆(x′)U−1 =

∣∣∣∣∂x′∂x

∣∣∣∣−∆
d

O∆(x) . (2.1.26)

2.1.3 Correlation Function

In CFT, according to the conformal symmetry, the form of correlation function is strongly restricted.

Here we will consider correlation functions with scalar fields for simplicity, and later discuss cases

containing fields with spin. Firstly, let us consider a two-point function. According to the rotation

and translation invariance, the two-point functions can depend on only the distance between two

points:

〈O1(x1)O2(x2)〉 = f (|x1 − x2|) , (2.1.27)
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where f is an arbitrary function. On the other side, because the vacuum is invariant under the

conformal trans formation, the following VEV of commutator should vanish5:

〈0| [D,O1(x1)O2(x2)] |0〉 = 0 . (2.1.29)

Using the commutation relation in (2.1.22), we can obtain the following differential equation for

two-point function:

((x1 − x2)µ∂µ + ∆1 + ∆2) 〈O1(x1)O2(x2)〉 = 0 . (2.1.30)

The solution under the ansatz in (2.1.27) has the following form with an overall constant:

〈O1(x1)O2(x2)〉 =
const.

|x1 − x2|∆1+∆2
. (2.1.31)

So far, we used translation, rotation and dilatation. Next, let us consider the full conformal

transformation. According to (2.1.25) and the fact that the vacuum does not change under the

conformal transformation, a two-point function transforms in the following way:

〈O∆1(x1)O∆2(x2)〉 = 〈UO∆1(x1)U−1UO∆2(x2)U〉

= Ω(x′1)∆1Ω(x′2)∆2〈O∆1(x′1)O∆2(x′2)〉 (2.1.32)

On the other hand, the distance (x1 − x2)2 in (2.1.31) transforms as

(x1 − x2)2 =
(x′1 − x′2)2

Ω(x′1)Ω(x′2)
. (2.1.33)

This means that under the general conformal transformation, the function in (2.1.31) transforms

in the following way:

〈O1(x1)O2(x2)〉 = Ω(x′1)
∆1+∆2

2 Ω(x′2)
∆1+∆2

2
const.

|x′1 − x′2|∆1+∆2
(2.1.34)

By comparing (2.1.32) with (2.1.34), in order to get a consistent result, the conditions that ∆1 = ∆2

or const. = 0 are demanded. This implies that a two-point function has the following form:

〈O∆1(x1)O∆2(x2)〉 =
δ∆1,∆2

x2∆1
12

, (2.1.35)

5 Similarly, n-point correlation function satisfy the following equation reflecting the conformal invariance of the
vacuum:

〈0| [LAB ,O1(x1)...On(xn)] |0〉 = 0 , (2.1.28)

where LAB is the combination of conformal generators as in (2.1.7) .
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where we used the notation that xij = |xi− xj | and the overall factor is absorbed by the definition

of operators.

As for a three-point function, the functional form is also determined up to an overall constant by

the conformal symmetry. By translation, rotation and dilatation, the possible from of three-point

function is restricted as follows:

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 =
∑
a,b,c

λ
(abc)
123

xa12x
b
23x

c
31

, (2.1.36)

where the summation is taken over all a, b and c which satisfy a + b + c = ∆1 + ∆2 + ∆3 . Using

the conformal transformation, we can fix a, b and c completely, and the the form of three-point

function is determined up to a constant factor:

〈O∆1(x1)O∆2(x2)O∆3(x3)〉 =
λ123

x∆1+∆2−∆3
12 x∆2+∆3−∆1

23 x∆3+∆1−∆2
31

(2.1.37)

Because operators are already re-defined in order to normalize two-point functions, the overall

factor in three-point function cannot be normalized, and it gives dynamical information.

When there are four points, there are two independent conformal invariant combinations:

u =
x2

12x
2
34

x2
13x

2
24

, v =
x2

14x
2
23

x2
13x

2
24

, (2.1.38)

and these are called cross ratios. Using the conformal transformation, we can fix four points on

a two-dimensional plane. For example, we can set them as x1 = (0, 0), x2 = (x, y), x3 = (1, 0)

and x4 = ∞. Here only x2 cannot be fixed in the two-dimensional plane. This is why we have

two independent scalar quantities which is invariant under the conformal transformation. In fact,

u and v are written in terms of (x, y) through a complex coordinate z ≡ x+ iy;

u = zz̄ , v = (1− z)(1− z̄) . (2.1.39)

This relation is described in Figure 2.1 . By the conformal symmetry, a four point function is

determined as a function of cross ratios. We can check that the following form transforms properly

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 = F(xi) G(u, v) (2.1.40)

where G(u, v) is an arbitrary function of cross ratios, and F(xi) is defined as

F(xi) =
1

(x2
12)

1
2

∆+
12(x2

34)
1
2

∆+
34

(
x2

14

x2
24

)a(
x2

14

x2
13

)b
. (2.1.41)
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Figure 2.1: By the conformal transformation, except x2, points are fixed in a two-dimensional plane as in the figure.
The cross ratio u and v correspond to the distances between x1 and x2 or x2 and x3 .

Here we introduced short-hand notations:

∆ij ≡ ∆i −∆j , ∆+
ij ≡ ∆i + ∆j , (2.1.42)

especially, a and b are:

a = −∆12

2
, b =

∆34

2
. (2.1.43)

Four point functions are not fully determined through the conformal symmetry, and the function

G(u, v) is a theory dependent function. In other words, G(u, v) contains dynamical information. It

becomes our main target to consider below.

2.2 Embedding Formalism

In this section, we review the essential details about the embedding space formalism for encoding

the tensors in the d-dimensional Euclidean space. It is introduced in [45], firstly. In this formalism,

the d-dimensional Euclidean space is embedded on a light-cone in the d+ 2-dimensional Minkowski

space which is called the embedding space, and the conformal group in the d-dimensional Euclidean

space SO(1, d+ 1) is interpreted as the Lorentz group in the embedding space. The essence of the

embedding formalism is that the non-linear conformal transformation of the lower dimensional

space corresponds to the linear Lorentz transformation which is much simpler. This formalism is
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especially convenient when dealing with tensors because tensor structures take simple forms by

introducing polarization vectors in the embedding space. In Section 3.1, we will also introduce this

formalism for Euclidean AdSd+1, and there we can deal with coordinates of AdSd+1 and CFTd on an

equal footing. For the reference, there are some articles including review of this formalism [46–48].

2.2.1 Embedding Space

Figure 2.2: Rd is embedded in d+ 2-dimensional Minkowski space M1,d+1 as the green line on light cone.

Supposing PA = (P+, P−, Pµ) is a point in M1,d+1 and xµ is a point in Rd, we consider the

following map between PA and xµ:

(P+, P−, Pµ) = λ (1, x2, xµ) λ ∈ R. (2.2.1)

where λ is a non-zero constant. Note that in this parametrization, the square of Pµ is zero:

P · P = 0. This means that the point xµ is mapped on the light cone in the Minkowski space.

The parametrization in (2.2.1) covers the entire surface of light cone, and a section which is given

for each fixed λ corresponds to Rd . Conventionally, we consider a section with λ = 1 . Under the

Lorentz transformation in the embedding space, a point on light cone is mapped to another point

on light cone. In order to interpret the Lorentz transformation as a map in Rd, the new point should

be rescaled. For example, under the Lorentz transformation, PA transforms PA → RABP
B . Then

because the + component is 1 in the section we consider, we rescale it as RABP
B/(RABP

B)+ .

The map PA → RABP
B/(RABP

B)+ moves a point on the section to another point on the same

section, and this transformation is just the action of the conformal group on Rd .
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2.2.2 Scalar Field

Here we consider embedding a scalar field in Rd into the embedding space. Let us start with a

scalar field in the embedding space which has the following homogeneous propaty:

Φ(λP ) = λ−∆ Φ(P ) . (2.2.2)

Under the Lorentz transformation in M1,d+1, Φ(P ) transforms as a scalar Φ(P )→ Φ(R · P ) where

the matrix RAB is an element of SO(1, d + 1). Now we define a scalar field φ(x) in Rd through

Φ(P ) by using the scaling property in (2.2.2):

Φ(P ) = Φ

(
P+ P

P+

)
= (P+)−∆Φ

(
P

P+

)
= (P+)−∆φ

(
P

P+

)
, (2.2.3)

and it transforms in the same way as in (2.1.26) ;

φ (P )→ ((R · P )+)−∆φ

(
R · P

(R · P )+

)
. (2.2.4)

In the above expression, the transformation can be understood as the conformal transformation.

2.2.3 Symmetric Traceless Tensor Field

Next, we consider embedding physical tensor fields Rd into embedding space M1,d+1. Explicitly,

given an arbitrary rank-J tensor field in Rd, it is related to its embedding space counterpart through

the pull-back operation:

F (R)
µ1...µJ

(y) =
∂PA1

∂xµ1
. . .

∂PAJ

∂xµJ
FA1...AJ (P ). (2.2.5)

In particular, the Rd Cartesian metric is given by:

δ(R)
µν =

∂PA

∂xµ
∂PB

∂xν
ηAB. (2.2.6)

However the pull-back operations defined in (2.2.5) are surjective but not injective, in other words

given a physical tensor in Rd, they do not have a unique representative in the embedding space

Md+1,1, but rather the embedding introduces redundant unphysical degrees of freedom. We can

see this from the orthogonal conditions:

PA
∂PA

∂xµ
P ·P=0 = 0, (2.2.7)
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we can see that any tensor components proportional to P(A1
H ′A2...AJ )(P ) contained in FA1...AJ (P )

vanish under the pull-back operation in (2.2.5), hence unphysical. Geometrically we can regard

these additional components as being normal to the hypersurface (2.2.1). We can thus eliminate

these unphysical redundant degrees of freedom in the embedding space tensors by further imposing

the transverse condition:

PA1FA1...AJ (P ) |P ·P=0= 0 (2.2.8)

such that FA1...AJ (P ) only contains the components which are tangent to Rd. This is the embedding

representative of the Rd tensor field.

Moreover, we would like to consider symmetric traceless Rd tensor fields. To construct their

representatives in embedding space Md+1,1 they need to be symmetric traceless also transverse

(STT) from the discussion above, let us first introduce the following generating polynomial:

F (P,Z) = ZA1 . . . ZAJFA1....AJ (P ), P · Z = Z · Z = 0. (2.2.9)

Here we have introduced the an auxiliary vector ZA and the conditions Z ·Z = 0 and P ·Z = 0 imply

FA1...AJ (P ) is defined up to equivalence ∼ P(A1
HA2...AJ )(P ) + η(A1A2

SA3...AJ )(P ), the contraction

with ZAs only picks up the symmetric, traceless and transverse components. It is worth noting

that under the rescaling FA1...AJ (λP ) = λ−∆FA1...AJ (P ), λ > 0, it is a homogenous polynomial of

degree −∆.

To recover embedding space STT tensors representing symmetric traceless Rd tensors directly

from (2.2.9), it is convenient to define the operator DA which acts on the symmetric products ZA

as:

1

J !
(
d−2

2

)
J

DA1 . . . DAJZ
B1 . . . ZBJ = Πµ1...µJ

ν1...νJ
∂PA1

∂yµ1

. . .
∂PAJ
∂yµJ

∂PB1

∂yν1
. . .

∂PBJ

∂yνJ
(2.2.10)

where Πa1...aJ
b1...bJ is the following symmetric traceless tensor and the matrix ∂PA

∂yν is given as:

Πµ1...µJ
ν1...νJ = δν1

(µ1
. . . δνJµJ ) − traces,

∂PA

∂yν
= (0, 2xν , δ

µ
ν ). (2.2.11)

In other words we obtain the manifestly symmetric, traceless and transverse tensorial projectors,

and the resultant embedding space tensor

F{A1...AJ}(P ) = Πµ1...µJ
ν1...νJ

∂PA1

∂yµ1

. . .
∂PAJ
∂yµJ

∂PB1

∂yν1
. . .

∂PBJ

∂yνJ
FB1...BJ (P ) (2.2.12)

is the desired STT representative of Rd tensor in the embedding space Md+1,1. For completeness,
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the explicit expression for the operator DA can be given in terms of the following differential

operator:

DA =

(
d− 2

2
+ Z · ∂

∂Z

)
∂

∂ZA
− 1

2
ZA

∂2

∂Z · ∂Z
. (2.2.13)

2.3 Correlation Function with Spins

Here we will discuss correlation functions again using the embedding formalism. This formalism

is a powerful tool to consider correlation function with tensor fields, where the tensor structures

become simple forms. This part is based on the previous works [47,49] .

Correlation Function in Embedding Space

Firstly, let us consider a two-point function again using the embedding formalism, and suppose

that O∆(P ) is a scalar field in the embedding space with dimension ∆. According to the Lorentz

invariance in the embedding space and the scaling property in (2.2.2), the possible functional form

is fixed as

〈O(P1)O(P2)〉 =
1

P∆
12

=
1

(x2
12)∆

, (2.3.1)

where P12 is defined as P12 ≡ −2P1 · P2 = x2
12. The rightmost expression is the same as the

conformal covariant two-point function in (2.1.35) . Similarly, the three-point function with scalar

fields is written as below:

〈O∆1(P1)O∆2(P2)O∆3(P2)〉 =
λ123

P
1
2

(∆1+∆2−∆3)

12 P
1
2

(∆2+∆3−∆1)

23 P
1
2

(∆3+∆1−∆2)

31

. (2.3.2)

In this way, using the Lorentz transformation and scaling in the embedding space, we can find the

correct kinematical from of correlation functions in CFT.

Two-Point Function with Spin

Next, we consider a two-point function with vector fields OA(P ) in the embedding space. Accord-

ing to the Lorentz covariance and the scaling property of the vector fields, the possible form of

correlation function is fixed again as below:

〈OA(P1)OB(P2)〉 =
ηAB + c

P2,AP1,B

P12

P∆
12

, (2.3.3)

where c is an undetermined constant Here the terms which contain P1,A or P2,B are discarded in

advance because of the transverse condition, and the ambiguity from the overall constant is already
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fixed by rescaling of fields. Imposing the transverse conditions for OA(P1) and OA(P2), we can

determine the coefficient c as c = −1 . Eventually, a two-point function with two vector fields in

the embedding space has the following form:

〈OA(P1)OB(P2)〉 =
ηAB −

P2,AP1,B

P12

P∆
12

. (2.3.4)

In the original physical space Rd, through the pull-bulk relation, we obtain the well-known result:

〈Oµ(x1)Oν(x2)〉 =
Iµν(x1 − x2)

x2∆
12

, (2.3.5)

where the tensor in the numerator Iµν(x1 − x2) is defined as:

Iµν(x) = δµν −
2xµxν

x2
. (2.3.6)

It is worthy noting that Iµν(x) satisfies the following relation:

Iµν(x)Iνρ(x) = δµρ , Iµν(x) =
∂x′µ
∂xν

, Iµν(x′12) = Iµρ(x1)Iρσ(x12)Iσν(x2) , (2.3.7)

where x′ is the inversion transformed coordinate x′µ = xµ/x2 . Under the conformal transformation,

a vector field transforms as

Oµ(x)→ O′µ(x′) = Ω(x)−∆ ∂x′ν

∂xµ
Oν(x) . (2.3.8)

Using this fact, we can check that the right hand side of (2.3.5) is transformed in the correct way6.

Furthermore, by using the polarization vector ZA, the two-point function can be represented as for

O(P,Z):

〈Ovec.
∆ (P1, Z1)Ovec.

∆ (P2, Z2)〉 =
H12

P∆+1
12

, (2.3.9)

where Ovec.
∆ (P,Z) is contracted with Zµ: Ovec.

∆ (P1, Z1) = ZAOvec.
∆,A(P1), and we defined H12 as the

following combination in Pi and Zi

H12 = Tr [C1 · C2] = 2 [(Z1 · P2)(Z2 · P1)− (Z1 · Z2)(P1 · P2)] ,

CABi = ZAi P
B
i − ZBi PAi . (2.3.10)

6 It is easy to check it for translation, rotation and dilatation. As for SCT, it is enough to see the inversion
transformation, and then the properties (2.3.5) would be useful.
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The original form of two-point function (2.3.4) can be recovered form (2.3.9) by removing the

polarization vectors with the differential operator DA in (2.2.13) . Similarly, a two-point function

with two tensor fields is also determined by the conformal symmetry. In general for symmetric

traceless tensor fields with spin J , a two-point function is given by the following form:

〈Oµ1...µJ (x1)Oν1...νJ (x2)〉 =
I(µ1

ν1(x12)...IµJ )
νJ (x12)

x2∆
12

− (traces) , (2.3.11)

where (µ1...µJ) means the complete symmetrization for indexes, and it is subtracted by all possible

terms proportional to δµiµj or δνiνj so that the result is symmetric and traceless in µ and ν respec-

tively. Similarly to the vector case, using the polarization vector, this expression can be expressed

simply as follows:

〈Oten.
∆,J(P1, Z1)Oten.

∆,J(P2, Z2)〉 =
(H12)J

P∆+J
12

, (2.3.12)

where again the field Oten.
∆,J(P1, Z1) is defined by contraction with ZA as in (2.2.9) . Note that if two

fields belong to different representations, which means that the dimensions are different ∆1 6= ∆2

or their spins are different J1 6= J2 , the two-point function vanishes according to the conformal

symmetry.

Three-Point Function with Scalar-Scalar-Tensor

Next, we will consider three-point functions in the embedding space. The simplest generalization of

the scalar three-point result is a correlation function with two scalar and one vector field. According

to the scaling property, the possible form is restricted as

〈O∆1(P1)O∆2(P2)Ovec.
∆3

(P3, Z3)〉 = λ123
(Z3 · P3) + α(Z3 · P2)

P
1
2

(∆1+∆2−∆3−J)

12 P
1
2

(∆2+∆3−∆1+J)

23 P
1
2

(∆3+∆1−∆2+J)

31

,

(2.3.13)

where due to the relations Z3 · Z3 = Z3 · P3 = 0, these terms are dropped already and α is an

arbitrary constant. Moreover, this function should be invariant under a shift of the polarization

vector ZA → ZA +βPA where β ∈ R which implies the transverse condition of the embedded field.

By imposing that the right hand side is invariant under the shit, the coefficient α is determined as

−1 .

〈O∆1(P1)O∆2(P2)Ovec.
∆3

(P3, Z3)〉 = λ123
V3,12

P
1
2

(∆1+∆2−∆3+J)

12 P
1
2

(∆2+∆3−∆1+J)

23 P
1
2

(∆3+∆1−∆2+J)

31

,

(2.3.14)
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where we introduced V3,12 as the following combination:

V3,12 =
P1 · C3 · P2

P1 · P2
=

(Z3 · P1)(P2 · P3)− (Z3 · P2)(P1 · P3)

P1 · P2
. (2.3.15)

As similar as the two-point function case, the tensor structure constructed by the tensor CAB .

Projecting the result, in the physical space we obtain the well known form for a three-point function

including a primary vector:

〈O∆1(x1)O∆2(x2)Ovec.,µ
∆3

(x3)〉 = λ123
xµ13/x

2
13 − x

µ
23/x

2
23

(x2
12)

1
2

(∆1+∆2−∆3−J)(x2
23)

1
2

(∆2+∆3−∆1+J)(x2
31)

1
2

(∆3+∆1−∆2+J)
.

(2.3.16)

In general, through the similar argument, we can determine the functional form os three-point

function with a symmetric traceless tensor whose spin is J as:

〈O∆1(P1)O∆2(P2)Oten.
∆3,J(P3, Z3)〉 = λ123

[V3,12]J

P
1
2

(∆1+∆2−∆3+J)

12 P
1
2

(∆2+∆3−∆1+J)

23 P
1
2

(∆3+∆1−∆2+J)

31

.

(2.3.17)

In the physical space, it is written in the following form:

〈O∆1(x1)O∆2(x2)Oµ1...µJ
∆3,J

(x3)〉 = λ123

Z
(µ1

3,12...Z
µJ )
3,12 − (traces)

(x2
12)

1
2

(∆1+∆2−∆3+J)(x2
23)

1
2

(∆2+∆3−∆1+J)(x2
31)

1
2

(∆3+∆1−∆2+J)
,

where Zµ3,12 is defined as:

Zµ3,12 =
xµ13

x2
13

− xµ23

x2
23

. (2.3.18)

In (2.3.18), as same as the two-point function case, for the tensor structure Zµ3,12, the indexes are

symmetrized, and the possible traces are subtracted.

General Three-Point Function

As a more general case, let us consider a three-point function with arbitrary three symmetric trace-

less primary tensors. The three-point correlation functions involving {O∆i,li(Pi, Zi)} are crucial

building blocks for higher point correlation functions, their form can also be completely fixed by

conformal symmetries manifest in the embedding space. According to the scaling transformation,

it should have the following form:

< O∆1,J1(P1, Z1)O∆2,J2(P2, Z2)O∆3,J3(P3, Z3) >=
Q({Pi, Zi})

P
1
2

(τ1+τ2−τ3)

12 P
1
2

(τ2+τ3−τ1)

23 P
1
2

(τ3+τ1−τ2)

31
(2.3.19)
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where τ = ∆i + Ji . Q is a polynomial of combinations Pi and Zi, and its degree is Ji in both of Zi

and Pi. Additionally, Q should satisfy the transverse condition, and this means that Q is invariant

under the shift Zi → Zi + βPi where β is an arbitrary constant. As a summary, Q is a polynomial

which satisfies:

Q({αiPi, γiZi + βiPi}) = Q({Pi, Zi})
3∏
i=1

(αiγi)
Ji . (2.3.20)

This kind of polynomials is constructed by a combinations of the tensor CABi because of the

transverse condition. However, some of the combinations among CABi are trivial. For example

C1 · C1 = 0 . Non-trivial combinations come from the contraction between different points like

C1 · C2 · C1, and these combination can be constructed by the following building blocks:

Hij = −2 [(Zi · Zj)(Pi · Pj)− (Zi · Pj)(Zj · Pi)] = −Tr(Ci · Cj),

Vi,jk =
(Pj · Zi) (Pi · Pk)− (Pj · Pi) (Zi · Pk)

(Pj · Pk)
=

(Pj · Ci · Pk)
(Pj · Pk)

, i, j, k = 1, 2, 3. (2.3.21)

These are generalizations of the tensor structures (2.3.10) and (2.3.15) we introduced before. Let

us show that the transverse polynomial Q(Pi, Zi) (i = 1, 2, 3) be built only from Hij and Vi,jk .

Because this polynomial Q do not have the Lorentz indices, Q can only consist of three scalar

products; Pi · Pj , Zi · Pj and Zi · Zj . The combination Zi · Zj can be replaced to Hij and other

scalar product through (2.3.21). Then Q can be represented as;

Q(Pi, Zi) =

(J1,J2,J3)∑
(m1,m2,m3)=(0,0,0)

Rm1,m2,m3((Pi · Pj) , (Zi · Pj), Hij) , (2.3.22)

where Rm1,m2,m3 is a polynomial inculing Pi · Pj , Zi · Pj and Hij and it is degree mi in Zi besides

Hij . We can decompose Rm1,m2,m3 further;

Rm1,m2,m3 =

m1∑
n=0

cn,m1−n (Z1 · P2)n (Z1 · P3)m1−n . (2.3.23)

Here we focused on the Z1 dependence. The coefficient cn,m1−n depends on Z1 only through H12

or H31 . By demanding the transverse condition, the following equation should be satisfied

∂

∂β

[
m1∑
n=0

cn,m1−n(Z1 · P2 + βP1 · P2)n(Z1 · P3 + βP1 · P3)m1−n

]
= 0 . (2.3.24)
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Because this condition should satisfied at each order of (Z1 · P2) or (Z1 · P2), we can obtain the

following recursion equation;

(m1 − n) cn,m1−n(P1 · P3) + (n+ 1) cn+1,m1−n−1(P1 · P2) = 0 . (2.3.25)

According to this relation, cn,m1−n is determined as

cn,m1−n = m1Cn

(
−P1 · P3

P1 · P2

)n
c 0,m1 . (2.3.26)

Then the decomposition in (2.3.23) is just a binomial expansion and Rm1,m2,m3 can be rewritten

as;

Rm1,m2,m3 = c 0,m1

(
−P2 · P3

P1 · P2
V1,23

)m1

. (2.3.27)

The discussions for Z2 and Z3 go through similarly. Therefore transverse polynomials Q should

depend on depends on Zi only through Hij and Vi,jk .

Note that Hij and Vi,jk has a symmetry in their indexes: Hij = Hji and Vi,jk = −Vi,kj , and

sometimes we will use a short notation for V as V1 = V1,23, V2 = V2,31 and V3 = V3,12 . Hij is degree

1 polynomial in Pi, Pj , Zi and Zj , and Vi,jk is degree 1 in Pi and Zi . The polynomial Q can be

decomposed into a sum of combination of the building blocks:

Q({Pi, Zi}) = λn12,n13,n23

3∏
i=1

V mi
i

3∏
i<j

H
nij
ij , (2.3.28)

where the exponents satisfy the following relation reflecting the homogeneous property in (2.3.20)

m1 = J1 − n12 − n13 ≥ 0, m2 = J2 − n12 − n23 ≥ 0 m3 = J3 − n13 − n23 ≥ 0. (2.3.29)

λ{nij} are theory dependent constant factors, and now because there are some possible tensor

structures, there are the same number of the three-point coupling constant as the number of tensor

structures. Here we introduce the elementary structures of the three-point correlation function,

which is called the box tensor basis is given by:
∆1 ∆2 ∆3

J1 J2 J3

n23 n13 n12

 =
V m1

1,23V
m2

2,31V
m3

3,12H
n12
12 Hn13

13 Hn23
23

(P12)
1
2

(τ1+τ2−τ3) (P13)
1
2

(τ1+τ3−τ2) (P23)
1
2

(τ2+τ3−τ1)
. (2.3.30)

Note that once Ji and nij are given, mi are determined through the relation (2.3.29), therefore the
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boxes are labeled by Ji and nij . Finally, we obtained the general form of three-point function with

symmetric traceless primary tensors:

< O∆1,l1(P1, Z1)O∆2,l2(P2, Z2)O∆3,l3(P3, Z3) >=
∑

n12,n13,n23≥0

λn12,n13,n23


∆1 ∆2 ∆3

l1 l2 l3

n23 n13 n12

 (2.3.31)

This expression is written in terms of the coordinates in the embedding space, and applying the

differential operators DZi , we can obtain the the result in the original physical space Rd. The

number of the set of non-negative integers satisfying (2.3.29) is the possible elementary structures

listed in (2.3.30), for J3 ≥ J2 ≥ J1 and p = max(0, J1 + J2 − J3), it is given by:

N(J1, J2, J3) =
(J1 + 1)(J1 + 2)(3J2 − J1 + 3)

6
− p(p+ 2)(2p+ 5)

24
− 1− (−1)p

16
. (2.3.32)

Note here that in three dimension or (3+2) dimension in the embedding space, there are further non-

trivial relations among tensor structures V and H because the polarization vectors and coordinates

are not linearly independent. In fact, for example, a tensor structure H12H13H23 can be written in

terms of a combination of V s7 .

Differensial Operators

Another very useful basis for expressing the structures of three-point functions involve the following

differential operators:

D11 =
(
(P1 · P2)ZA1 − (Z1 · P2)PA1

) ∂

∂PA2
+
(
(P1 · Z2)ZA1 − (Z1 · Z2)PA1

) ∂

∂ZA2
, (2.3.33)

D12 =
(
(P1 · P2)ZA1 − (Z1 · P2)PA1

) ∂

∂PA1
+
(
(P2 · Z1)ZA1

) ∂

∂ZA1
, (2.3.34)

D22 =
(
(P1 · P2)ZA2 − (Z2 · P1)PA2

) ∂

∂PA1
+
(
(P2 · Z1)ZA2 − (Z1 · Z2)PA2

) ∂

∂ZA1
, (2.3.35)

D21 =
(
(P1 · P2)ZA2 − (Z2 · P1)PA2

) ∂

∂PA2
+
(
(P1 · Z2)ZA2

) ∂

∂ZA2
, (2.3.36)

and they only have the following non-vanishing commutators:

[D11, D22] =
H12

2

(
Z1 ·

∂

∂Z1
− Z2 ·

∂

∂Z2
+ P1 ·

∂

∂P1
− P2 ·

∂

∂P2

)
, (2.3.37)

[D12, D21] =
H12

2

(
Z1 ·

∂

∂Z1
− Z2 ·

∂

∂Z2
− P1 ·

∂

∂P1
+ P2 ·

∂

∂P2

)
, (2.3.38)

7 For the detail of this part please see, [47,50].
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while all other commutators vanish, including [Dij , H12] = 0. We shall express such differential

basis using curly brackets, and they are defined through the following relations:


∆1 ∆2 ∆3

J1 J2 J3

n23 n13 n12

 = Hn12
12 Dn13

12 Dn23
21 Dm1

11 D
m2
22 Σl1+n23−n13,l2+n13−n23


∆1 ∆2 ∆3

0 0 J3

0 0 0

 ,

= Hn12
12 Dn13

12 Dn23
21 Dm1

11 D
m2
22


τ̃1 τ̃2 ∆3

0 0 J3

0 0 0

 , (2.3.39)

where the shift operators Σa,b which shifts the scaling dimensions (∆1,∆2) to (∆1 +a,∆2 +b), such

that τ̃1 = τ1 + (n23−n13) and τ̃2 = τ2 + (n13−n23). Notice that for given integer spins {J1, J2, J3},

(2.3.39) are also labeled by triplet of non-negative integers {n12, n13, n23} satisfying (2.3.29), we

therefore have equal number N(J1, J2, J3) of differential basis (2.3.39) as in the original box basis

(2.3.30), and they are related by linear transformation with constant coefficients. In contrast with

the box basis (2.3.30), where we can cyclicly permute the three primary operators involved, in the

differential basis we break this cyclicity such that the differential operators (2.3.33)-(2.3.36) only

act on (P1,2, Z1,2).

Four Point Function with External Spins

In the previous section, we have discussed conformal blocks or four-point functions with four scalar

operators. Here we also consider four point function with tensor fields as in below:

〈O∆1,J1(P1, Z1)O∆2,J2(P2, Z2)O∆3,J3(P3, Z3)O∆4,J4(P4, Z4)〉 , (2.3.40)

for convenience, it is written in the embedding space. The Lorentz invariance and scaling transfor-

mation restrict the function to the following form:

〈O∆1,J1(P1, Z1)O∆2,J2(P2, Z2)O∆3,J3(P3, Z3)O∆4,J4(P4, Z4)〉 (2.3.41)

=
1

P
1
2

(τ1+τ2)

12 P
1
2

(τ3+τ4)

34

(
P14

P24

) τ2−τ1
2
(
P14

P13

) τ3−τ4
2 ∑

k

Gk(u, v)Qk({Pi, Zi}) ,

where Gk(u, v) are arbitrary functions and Qk({Pi, Zi}) are polynomials of Pi and Zi which satisfy

the transverse condition and scaling property as in like (2.3.42)

Qk({αiPi, γiZi + βiPi}) = Qk({Pi, Zi})
4∏
i=1

(αiγi)
Ji . (2.3.42)
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Now there are some possible Qk({Pi, Zi}) functions, and this means the tensor structure of four

point function is not unique. Therefore, according to the number of tensor structure, the same

number of arbitrary functions of the cross ratios are introduced. In general, a four-point function

is a summation of such arbitrary functions with tensor structure. To construct the polynomial Qk,

again the elements of tensor structures Hij and Vi,jk are useful which are introduced in (2.3.21) .

Now the indexes sun over 1 to 4 because there are four points. Through a similar argument, we

can show that the polynomial Q is expressed as a product of Hij and Vi,jk . In this case, there are

6 Hijs and 12 Vi,jks naively because of their symmetry; Hij = Hji and Vi,jk = −Vi,kj . However the

Vi,jks are not independent, in fact these are related as follows:

P23P14V1,23 + P24P13V1,42 + P34P12V1,34 = 0 . (2.3.43)

These are also similar relations for V2,ij , V3,ij and V4,ij , hence there are 6 Hijs and 8 Vi,jks listed

in below:

H12 , H13 , H14 , H23 , H24 , H34 ,

V1,23 , V1,24 , V2,13 , V2,14 , V3,41 , V3,42 , V4,31 , V4,32 . (2.3.44)

These are the building blocks to construct tensor structure of four-point functions.

2.4 Operator Product Expansion and Conformal Block

Operator Product Expansion

A key relation in CFT is the operator product expansion(OPE) which implies a two product of

operator can be expanded as a series of primary and its descendant operator. This relation is

justified through the radial quantization formalism which is not explained in this thesis (for the

detail, for example, see the reference [20, 43]). OPE between two scalar primary operator Oi(xi)

are given as

O1(x1)O2(x2) =
∑
k

C12k(x12, ∂2)Ok(x2) . (2.4.1)

Here C12k(x12, ∂2) is an undermined polynomial in x12 and , ∂2 and the summation is taken over

all possible primary fields Ok . In below, we will see that the conformal symmetry strongly restricts

the expansion. For simplicity, we assume that the operators are scalar. Firstly, by applying the

25



dilation for both sides of the expansion, the expansion of C12k is given as

C12k(x, ∂) = #|x|∆k−∆1−∆2
(
1 + #xµ∂µ + #xµxν∂µ∂ν + #x2∂2 + ...

)
. (2.4.2)

where since C12k(x12, ∂2) is a scalar under the ration, the Lorentz indexes should be contracted,

and all #s are undermined coefficients. To restrict the expansion further, let us take the correlation

function with a operator Ok(x3) (|x12| < |x3|) in the OPE (2.4.1) . Then it becomes

〈O1(x1)O2(x2)Ok(x3)〉 =
∑
k′

C12k′(x12, ∂2) 〈Ok′(x2)Ok(x3)〉 . (2.4.3)

The two or three-point function is completely fixed by the conformal symmetry. If the two-point

function is diagonalized so that it is proportional to the Kronecker’s delta 〈Ok′(x2)Ok(x3)〉 ∼ δkk′ ,

the summation in the RHS is collapsed and it becomes

λ12k

x
1
2

(∆1+∆2−∆k)

12 x
1
2

(∆2+∆k−∆1)

23 x
1
2

(∆k+∆1−∆2)

31

= C12k(x12, ∂2)|x23|−2∆k . (2.4.4)

This equation means that C12k(x12, ∂2) is proportional to the three-point coefficient λ12k . Further-

more, by using this equation, C12k(x12, ∂2) is determined in principle. Firstly, we can rewrite C12k

as a derivatives in x3: C12k(x12,−∂3), and set x2 = 0 . Now the RHS is regarded as a expansion in

x1 around x1 = 0. Then comparing the expansion of the LHS, we can determine each coefficient

in the series expansion (2.4.2).

So far we consider scalar operators only, however, for other representations the same argument

holds. In general, some operators which have spins appear in RHS of (2.4.1), then the OPE is

given as

O1(x1)O2(x2) =
∑
k

C12k,I(x12, ∂2)OIk (x2) , (2.4.5)

where I is an index for an irreducible representation of SO(d) . However, from a product of two

scalar fields, there are only spin-J symmetric traceless tensor fields in the RHS of OPE.

Using OPE, we can reduce the number of operators in a correlation function. In (2.4.3), the

three-point function is expressed as a summation of two-point functions. Similarly, n point function

can be expressed as a summation of n− 1 point functions due to the OPE. Through iterating this

relation, an arbitrary n point function can be expressed as a summation of one point function which

is zero unless the operator O is identity operator. In this way, we can compute any point function

in principle.
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Conformal Block

Especially, for a four point function 〈O1(x1)O2(x2)O3(x3)O4(x4)〉 , if |x12| and |x34| are suficiently

small, we can take OPE for both of pairs O1(x1)O2(x2) and O3(x3)O4(x4), then it becomes

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑
k,k′

λ12kλ34k′C12k,I(x12, ∂2)C34k′,J (x34, ∂4)〈OIk (x2)OJk′(x4)〉

=
∑
k

λ12kλ34kC12k,I(x12, ∂2)C34k,J (x34, ∂4)
IIJ (x24)

x2∆
24

=
∑
∆,J

λ12kλ34k g∆,J(xi) . (2.4.6)

In the last line we defined the function g∆,J(xi) as

g∆,J(xi) = C12k,I(x12, ∂2)C34k,J (x34, ∂4)
IIJ (x24)

x2∆
24

. (2.4.7)

Here we rescaled the function C12k,I with the three-point coefficient λ12k, and IIJ (x24) is the tensor

structure of two-point function with two symmetric traceless tensors which is given in 2.3.11 . The

dimension ∆ is that of Ok . The functions g∆,J(xi) are called conformal blocks. It is a kinematical

object which depends on the external dimensions ∆i (i = 1, ..4) and the internal dimension ∆ and

spin J . In the last line of the above equation, the summation is taken over ∆ and J because

symmetric traceless tensors are characterized by them.

In order to see the property, let us consider another expression for conformal blocks. The

conformal block decomposition of a four point function can be understood as a projection to a

conformal multiplet of a primary operator O:

〈O1(x1)O2(x2)O3(x3)O4(x4)〉 =
∑
∆,J

〈O1(x1)O2(x2)|P∆,J |O3(x3)O4(x4)〉 , (2.4.8)

where P∆,J is a projection operator to the conformal family of O 8:

P∆,J =
∑

α,β=O,PO,P 2O,...

|α〉〈β|
〈α|β〉

, (2.4.9)

By the construction, conformal blocks is related to the projected four point function as follows:

λ12Oλ34O g∆,J(xi) = 〈O1(x1)O2(x2)|P∆,J |O3(x3)O4(x4)〉 , (2.4.10)

Because the projection P∆,J is invariant under the conformal transformation, projected correlation

8 Here the state |O〉 is defined as |O〉 ≡ O(0)|0〉, and also 〈O| ≡ limx→∞ x
2∆〈0|O(x) .
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functions transform in the same way as four point functions. Therefore the conformal block can

also be written as a function of cross ratio u and v:

g∆,J(xi) = F(xi) g∆,J(u, v) , (2.4.11)

where F(xi) is the kinematic factor defined in (2.1.41) .

According to OPE, a conformal block is regarded as a product of two three-point functions, and

as discussed in the previous section, a three-point function with three tensor fields is reproduced

by applying differential operators. Following these observations, a conformal block with tensor

operators is also constructed by applying differential operators to a scalar conformal block. We

will argue the detail of this structure later after introducing the conformal partial wave.

2.5 Conformal Casimir Equation

In the previous section, we have seen that a conformal block is obtained as a projected four point

function.

g∆,J(xi) ∼ 〈O1(x1)O2(x2)|P∆,J |O3(x3)O4(x4)〉 , (2.5.1)

where the projection P∆,J is defined in (2.4.9) . From this expression, let us drive a differential

equation which characterizes the conformal blocks, and it is called the conformal Casimir equation.

To drive the equation, we insert the conformal Casimir operator L2 ≡ 1
2LABL

AB in front of the

projection operator, where LAB are generators in SO(1, d+1) in (2.1.8) . Now we have the following

object:

〈O1(x1)O2(x2)L2|PnO〉 . (2.5.2)

Here the part depending on x3,4 is dropped. Considering the cases when L2 acts on the left and

right, and equating them, we can obtain the conformal Casimir equation. Firstly let us consider the

case that L2 acts on the right. Because L2 commutes with the conformal generators, it is enough

to compute L2|O〉 . After expanding L2, it becomes

L2|O〉 = −1

2

{
MµνM

µν +KµP
µ − 2D2

}
|O〉 , (2.5.3)
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Here some terms are dropped due to the property of property fields: Kµ|O〉 = 0 . After some

calculation, the result becomes:

L2|O〉 = C∆,J |O〉 , C∆,J ≡ ∆(∆− d) + J(J + d− 2) , (2.5.4)

On the other hand, in the case that L2 acts on the left, according to the relation [LAB,O1(x1)] =

L1,ABO1(x1) discussed in section 2.1, the conformal generator can be written as a differential

operator acting in the coordinate as follows:

〈O1(x1)O2(x2)LAB...〉 = − (L1,AB + L2,AB) 〈O1(x1)O2(x2)...〉 (2.5.5)

By using this relation twice and equating the previous result in (2.5.4), we obtain the following

equation:

(L1,AB + L2,AB)
(
LAB1 + LAB2

)
g∆,J(xi) = C∆,Jg∆,J(xi) (2.5.6)

This is called the conformal Casimir equation. In the above expression, the differential operator is

acting on the coordinates xi, and using the property in (2.4.11), we can rewrite the equation as a

differential equation of the cross ratios as below:

D g∆,J(z, z̄) = C∆,J g∆,J(z, z̄) (2.5.7)

where D is a differential operator acting on the cross ratios z and z̄which are related to u and v

through u = zz̄ and v = (1− z)(1− z̄) :

D = Dz +Dz̄ + 2(d− 2)
zz̄

z − z̄
[(1− z)∂z − (1− z̄)∂z̄] , (2.5.8)

and Dz and Dz̄ are defined as below:

Dz = z2(1− z)∂2
z − (a+ b+ 1)z2∂z − abz ,

Dz̄ = z̄2(1− z̄)∂2
z̄ − (a+ b+ 1)z̄2∂z̄ − abz̄ . (2.5.9)

By solving the differential equation under the proper boundary condition, in even dimensions, in

principle we can have the solution as a closed form. For example, the two-dimensional conformal

block is given by:

g
(2d)
∆,l (z, z̄) =

1

1 + δl,0

[
k∆+l

2
(z)k∆−l

2
(z̄) + k∆−l

2
(z)k∆+l

2
(z̄)
]
, (2.5.10)
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and in four dimension, it is given by:

g
(4d)
∆,l (z, z̄) =

zz̄

z − z̄

[
k∆+l

2
(z)k∆−l−2

2
(z̄)− k∆−l−2

2
(z)k∆+l

2
(z̄)
]
. (2.5.11)

Here we define the function k∆ as :

k∆(z) = z∆
2F1(∆ + a,∆ + b; 2∆; z) , (2.5.12)

and a and b are the combination of the external dimensions as in (2.1.43). Sometimes this function

is called the one-dimensional conformal block because it is an eigenfunction of the following one-

dimensional conformal Casimir equation:

Dz k∆(z) = ∆(∆− 1) k∆(z) , (2.5.13)

where the differential operator Dz is the same one defined in (2.5.9). In one dimension, there is

only one independent cross ratio z which take a real value.

In the end, we will show some useful property of conformal block using the conformal Casimir

equation. In terms of cross ratios u and v, the differential operator D takes the following form:

D = (1− u− v)
∂

∂v

(
v
∂

∂v
+ a+ b

)
+ u

∂

∂u

(
2u

∂

∂u
− d
)

(2.5.14)

−(1 + u− v)

(
u
∂

∂u
+ v

∂

∂v
+ a

)(
u
∂

∂u
+ v

∂

∂v
+ b

)
.

Here w e take a limit u → 0 and after the limit of u, take v → 1 . In this limit, if we assume that

the conformal block behaves as g∆,J ∼ up(1−v)q , the conformal Casimir equation (2.5.7) becomes:

D up(1− v)q =
[
2p2 − dp+ q2 + 2pq − q

]
up(1− v)q = C∆,J u

p(1− v)q (2.5.15)

This relation means that the conformal block should have the following asymptotic behavior:

g∆,J ∼ u
∆−J

2 (1− v)J + ... , u→ 0 and v → 1 , (2.5.16)

where ... denotes the higher order terms in the expansion.

Next, we regard zz̄ and (z + z̄)/2
√
zz̄ as independent new variables, and then in the small zz̄

limit, the conformal blocks may behaves as below:

g∆,J ∼ (zz̄)
∆
2 f(σ) + ... , with σ =

z + z̄

2
√
zz̄
. (2.5.17)
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Note that the power of the leading term is determined by the relation (2.5.16) . Substituting this

form to the conformal Casimir equation, we can obtain an equation for the arbitrary function f(σ):

[
(1− σ2) ∂2

σ − (2ε+ 1)σ ∂σ + J(J + 2ε)
]
f(σ) = 0 , (2.5.18)

where we define ε as ε = h− 1 = d−2
2 . The solution is given as the Gegenbaur polynomial C

(ε)
J (σ),

we conclude that in the limit: zz̄ → 0, the conformal block behaves as:

g∆,J ∼ (zz̄)
∆
2 C

(ε)
J (

z + z̄

2
√
zz̄

) + ... . (2.5.19)

2.6 Conformal Partial Wave

Here we introduce another nice basis to expand four-point functions which are called conformal

partial wave(CPW). CPWs are defined as an integral of a pair of three-point functions as below:

Ψ∆i
h+iν,J(xi) =

∫
Rd
ddx0 〈O∆1(x1)O∆2(x2)Oh+iν,J(x0)µ1...µJ 〉1〈Õh−iν,J(x0)µ1...µJO∆3(x3)O∆4(x4)〉1

(2.6.1)

In the three-point functions, there are operators whose dimensions are complex value. These

operators are not really included in the theory, and these three-point functions are defined through

the kinematic form of three-point function in (2.3.18). Here the three-point coefficient is 1, therefore

we denote a subscript 1 in this three-point function as 〈...〉1 . In this sense, the CPW is a purely

kinematical quantity which does not depend on three-point coefficient.

Ψ∆i
h+iν,J is transformed in the same manner as the scalar four-point function with scalar fields

O∆i . In the conformal transformation including the integrated point P0, the three-point functions

in the integrand in (2.6.1) transforms as:

〈O∆1(x1)O∆2(x2)Oh+iν,J(x0)µ1...µJ 〉1 (2.6.2)

→
∣∣∣∣∂x′∂x

∣∣∣∣−
∆1+∆2+h+iν

d

D(R(x))µ1...µJ
ν1...νJ 〈O∆1(x1)O∆2(x2)Oh+iν,J(x0)ν1...νJ 〉1 .

Here the rotation factor D(R(x)) is canceled with the same factor coming form another three-point

function, and the Jacobian coming form the integration measure is canceled with the determinant

factors coming from operators Oh+iν,J and Õh−iν,J . The remaining determinant factors are the

same as what a four-point function produces under the conformal transformation. Therefore by
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extracting the kinematic factor F(xi), Ψ can be written as a function of cross ratios:

Ψ∆i
h+iν,J(xi) = F(xi) Ψ∆i

h+iν,J(u, v) = F(xi) Ψ∆i
h+iν,J(z, z̄) . (2.6.3)

Here F(xi) is defined in (2.1.41) .

Another important property of CPW is that the CPWs are also eigenfunctions of the conformal

Casimir equation. We can show this fact easily in the same way as the case of conformal block

by inserting the conformal Casimir operator L2 before Oh+iν,J in the first three-point function.

Eventually, we can confirm that Ψ∆i
h+iν,J satisfies the following equation:

DΨ∆i
h+iν,J(z, z̄) =

[
h2 + ν2 + J(J + d− 2)

]
Ψ∆i
h+iν,J(z, z̄) . (2.6.4)

From the fact that CPW is also an eigenfunction of conformal Casimir equation, it is expected that

a CPW is written as a linear combination of conformal blocks, and in fact, it is true. Comparing

the asymptotic behavior of CPW and conformal blocks in the limits x12 → 0 or x34 → 0 , it is

shown that CPW is a linear combination of two conformal blocks:

Ψ∆i
h+iν,J(xi) = K∆3,∆4

h−iν,J g
∆i
h+iν,J(xi) +K∆1,∆2

h+iν,J g
∆i
h−iν,J(xi) . (2.6.5)

where the coefficient K is defined as:

K∆3,∆4

h−iν,J =
1

(−2)J
πh(h− iν − 1)JΓ(−iν)

Γ(h+ iν + J)

Γ
(
h+iν+J±∆34

2

)
Γ
(
h−iν+J±∆34

2

) (2.6.6)

Note here this K∆1,∆2

∆,J satisfies the following identities Kd−∆1,d−∆2

h+iν,J = K∆1,∆2

h+iν,J and:

K∆1,∆2

h+iν,JK
∆1,∆2

h−iν,J = K∆3,∆4

h+iν,JK
∆3,∆4

h−iν,J =
π2h

22J

Γ(±iν) (h± iν − 1)J
Γ(h± iν + J)

, (2.6.7)

and through this relation, it is shown that Ψ∆i
h+iν,J is almost symmetric under ν ↔ −ν:

Ψ∆i
h−iν,J =

K∆1,∆2

h−iν

K∆3,∆4

h−iν
Ψ∆i
h+iν,J . (2.6.8)

The most useful fact is that the CPWs satisfy the orthogonal relation:

(
Ψ∆i
h+iν,J ,Ψ

d−∆i
h−iν′,J ′

)
=

1

2
nν,J δJ,J ′

[
δ(ν − ν ′) +

K∆1,∆2

h+iν,J

K∆3,∆4

h+iν,J

δ(ν + ν ′)

]
(2.6.9)
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where nν,J is a normalization factor which is determined later in section 3.5. The inner product

(.., ...) is defined as:

(f∆i , gd−∆i) =

∫
Rd

∏4
i=1 d

dxi
vol(SO(1, d+ 1))

f∆i(xi)g
d−∆i(xi) . (2.6.10)

Here we assume that under the conformal transformation, the function f∆i(xi) changes in the same

way as a four-point function of scalar fields whose dimensions are ∆i , and gd−∆i(xi) also has the

same covariance as a four-point function with scalars whose dimensions are d−∆i. An operator with

dimension d −∆ is called the shadow operator of the original physical operator whose dimension

is ∆ . In the definition of the inner product, the function in the second argument should transform

as a four-point function with shadow operators, so that the inner product is conformally invariant.

Under the conformal transformation, the determinant factors which come from f∆i and gd−∆i are

canceled with the factor coming from the integration measure in the inner product. The inner

product is divided by the volume of the conformal group vol(SO(1, d+ 1)), so that this integration

has a finite value. According to the conformal symmetry, this integration has a redundant degree

of freedom, and to fix it, this volume factor is needed. A detail discussion of this inner product is

in [37] . In section 3.5, we will consider the bulk interpretation of CPW and this inner product, see

that the orthogonal relation for CPW follows from the orthogonality of the so-called AdS harmonic

function.

According to the orthogonality and completeness of CPW, we can easily obtain the conformal

block expansion of an arbitrary four-point function through the following formula:

〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉 (2.6.11)

=

∞∑
J=0

∫ ∞
−∞

dν

nν,J

(
〈O∆1(x1)O∆2(x2)O∆3(x3)O∆4(x4)〉,Ψd−∆i

h−iν,J

)
Ψ∆i
h+iν,J(xi) .

The inner product (..,...) is the same as defined in (2.6.10) . After calculating this inner product, the

resultant function in ν has poles in the ν-plane. Basically, these poles correspond to the dimension

of operators which appear in the conformal block expansion, and the residues give OPE coefficients.

Finally, for convenience, we give the definition of CPW in the embedding space:

Ψ∆i
h+iν,J(Pi)

=
1

J !(h− 1)J

∫
Rd
ddP0 〈O∆1(P1)O∆2(P2)Oh+iν,J(P0,DZ0)〉1〈Õh−iν,J(P0, Z0)O∆3(P3)O∆4(P4)〉1

=
1

P γ12
12 P γ34

34

∫
Rd
ddP0

1

J !(h− 1)J

(−2P2 · CD0 · P1)J(−2P4 · CZ0 · P3)J

Π4
i=1P

γ0i
0i

. (2.6.12)
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Here we substitute the kinematical form of three-point functions in the integrand. The powers γij

are defined as follows:

γ12 =
∆+

12 − h− iν + J

2
, γ01 =

h+ iν + J

2
− a , γ02 =

h+ iν + J

2
+ a ,

γ34 =
∆+

34 − h+ iν + J

2
, γ03 =

h− iν + J

2
+ b , γ04 =

h− iν + J

2
− b . (2.6.13)

In CD0 , the polarization vector Z0 is replaced with DZ0 defined in (2.2.13) to take contractions, and

CZ0 is the usual one CZ0 = C0 .

Fields with Spin

In section 2.3, we saw that by applying differential operators defined in (2.3.33)-(2.3.35) to a three-

point function with two scalars and one rank-J tensor field, the three-point functions with three

tensor fields can be constructed. The CPWs are defined as a product of three-point functions with

two scalars and one tensor field. Applying the differential operators to the left and right three-point

functions, we can obtain CPWs with four external tensors and an internal tensor field. In this case,

the internal operator can be a more general representation, however, here we consider symmetric

traceless tensor only9. When restricting to only the exchange of symmetric traceless operators,

we can construct it by fusing the differential basis for a pair of three-point correlation functions

involving primary operators O∆1,2,J1,2 ,O∆,J and O∆3,4,J3,4 , Õd−∆,J and the resultant conformal

partial wave schematically contains the following tensor structures:

Ψ
{n10,n20,n12};{n30,n40,n34}
∆,J (Pi, Zi) = Dn10,n20,n12

Left Dn30,n40,n34

Right Ψ∆,J(Pi). (2.6.14)

Here the composite operators are given by:

Dn10,n20,n12

Left = Hn12
12 Dn10

12 Dn20
21 Dm1

11 D
m2
22 Σl1+n20−n10,l2−n20+n10 , (2.6.15)

Dn30,n40,n34

Right = Hn34
34 Dn30

34 Dn40
43 Dm3

33 D
m4
44 Σl3+n40−n30,l4−n40+n30 . (2.6.16)

They should form a basis for four-point function with four tensors like:

< O∆1,J1(P1, Z1)O∆2,J2(P2, Z2)O∆3,J3(P3, Z3)O∆4,J4(P4, Z4) > . (2.6.17)

Unlike scalar case (2.6.1) whose conformal partial wave for a given exchanged operator O∆,J can

be packaged into a single scalar function of cross-ratios, the conformal partial wave for (2.6.17)

for a given exchange operator consists of multiple terms each with independent tensor structures.

9 The method to construct more general representations is given in [51].
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The basis Ψ are now labeled by two sets of triplet of integers {n10, n20, n12} and {n30, n40, n34}

satisfying (2.3.29), and we have denoted the exchanged operator as O∆0,l0 ≡ O∆,J . Now there are

N(J1, J2, J0) ×N(J3, J4, J0) possible tensor structures listed in (2.6.14), and we can express each

conformal partial wave as the same kinematical form as four-point functions in (2.3.41) .

2.7 Generalized Free Theory

Figure 2.3: A four point function in the generalized free theory is given by the three possible
combinations of two-point functions. Each line describes a two-point function.

In this section, as a simple example, we consider the so-called generalized free theory. The four

point function of scalar primary is simply given by products of two-point functions.

〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉GFT =
1

(x2
12)∆(x2

34)∆
+

1

(x2
13)∆(x2

24)∆
+

1

(x2
14)∆(x2

23)∆

=
1

(x2
12)∆(x2

34)∆

(
1 + (zz̄)∆ +

(
zz̄

(1− z)(1− z̄)

)∆
)
.(2.7.1)

This theory is a free theory in AdS space, and in CFT, it appears as a leading contributions in

the large N expansion. In below, we will consider the conformal block expansion of this four-point

function as an example. Firstly we will see it in 2 and 4 dimensions using the explicit form of

conformal blocks and later using the inversion formula, we will obtain the results for arbitrary

dimensions.

2.7.1 Two-Dimension

Here we rewrite the four-point function in (2.7.1) into a summation of the two-dimensional con-

formal blocks. The first term in the last line of (2.7.1) corresponds to the conformal block for the

identity operator, and we will rewrite the second and third terms. Firstly, there are useful identities
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to expand z and z̄ in terms of k-function:

z∆ =
∞∑
n=0

(−1)nC(∆)
n k∆+n(z) , (2.7.2)

(
z

1− z

)∆

=

∞∑
n=0

C(∆)
n k∆+n(z) .

(
C(∆)
n ≡ (∆)2

n

n!(2∆ + n− 1)n

)

We can explicitly show these identities through the Jacobi transformation discussed in appendix

C.1. The first identity is given in C.1.14, and the second identity is also given as a special case

of (C.1.17) . Substituting these expansion, we can obtain the expansion of the correlation function

AGFT(xi) ≡ 〈O∆(x1)O∆(x2)O∆(x3)O∆(x4)〉GFT:

AGFT(z, z̄) = 1 +

∞∑
n,m=0

C(∆)
n C(∆)

m

[
1 + (−1)n+m

]
k∆+n(z)k∆+m(z̄) . (2.7.3)

Here we used cross ratios z and z̄ extracting the kinematical factor cF (xi) . In order to obtain

two-dimensional conformal bock expansion, we split the n and m summation in the following way:

∞∑
n,m=0

(...) =
∞∑

n,l=0

1

1 + δl,0
(...)

∣∣∣∣∣∣
m=n+l

+
∞∑

m,l=0

1

1 + δl,0
(...)

∣∣∣∣∣∣
n=m+l

. (2.7.4)

After some calculation, this summation becomes the conformal block expansion of AGFT:

AGFT(u, v) = 1 +
∞∑

n,l=0

C
(∆)
n C

(∆)
n+l

1 + δl,0

[
1 + (−1)l

]
k∆+n(z)k∆+n+l(z̄) (2.7.5)

+
∞∑

m,l=0

C
(∆)
m C

(∆)
m+l

1 + δl,0

[
1 + (−1)l

]
k∆+m+l(z)k∆+m(z̄)

= 1 +

∞∑
n,l=0

[
1 + (−1)l

]
C(∆)
n C

(∆)
n+l g

(2d)
2∆+2n+l,l(z, z̄) .

In the last line, we used the definition of the two-dimensional conformal block given in (2.5.10).

Supposing the usual notation of the following conformal block expansion, we can write this result

as in:

AGFT(u, v) = 1 +
∑
O

p0(∆O, lO) g
(s;2d)
∆O,lO

(z, z̄) , (2.7.6)
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Now the summation is taken over the double trace operators which are parametrized integers n

and l . The OPE coefficient p0(n, l) is given by

p0(n, l) =
[

1 + (−1)l
]
C(∆)
n C

(∆)
n+l . (2.7.7)

This result is the same as obtained in [17].

2.7.2 Four dimension

Next, we consider the expansion of (2.7.1) into four-dimensional conformal blocks. Firstly, let us

try to expand the following factors ÃGFT into the k-function.

ÃGFT(z, z̄) ≡
(

1

z̄
− 1

z

)[
(zz̄)∆ +

(
zz̄

(1− z)(1− z̄)

)∆
]
. (2.7.8)

Once we could expansion this polynomial in the k-function, multiplying the factor (1/z̄ − 1/z) to

the both sides, we may obtain the four-dimensional conformal block expansion. Here in addition

to (2.7.2), the following formula is needed:

z∆−1

(1− z)∆
=
∞∑
n=0

[
C(∆−1)
n + C

(∆)
n−1

]
k∆+n−1(z) . (2.7.9)

This expansion can be also given as a special case of the general formula in (C.1.17) . Substituting

these formulae, ÃGFT is expanded as below:

ÃGFT =

∞∑
n,m=0

[
cn+mC

(∆)
n C(∆−1)

m k∆+n(z)k∆+m−1(z̄)− cn+mC
(∆−1)
n C(∆)

m k∆+n−1(z)k∆+m(z̄)

+C(∆)
n C

(∆)
m−1 k∆+n(z)k∆+m−1(z̄)− C(∆)

n−1C
(∆)
m k∆+n−1(z)k∆+m(z̄)

]
, (2.7.10)

where cn is defined as:

cn = 1 + (−1)n . (2.7.11)

After changing the way of summation as in the two-dimensional case, it is rewritten in the following

summations:

ÃGFT =

∞∑
n,l=0

[
cl C

(∆)
n+lC

(∆−1)
n

{
k∆+n+l(z)k∆+n−1(z̄)− k∆+n−1(z)k∆+n+l(z̄)

}]
(2.7.12)

+

∞∑
n=0,l=2

[
cl C

(∆)
n C

(∆−1)
n+l

{
k∆+n(z)k∆+n+l−1(z̄)− k∆+n(z)k∆+n+l−1(z̄)

}]
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Note here that in the second summation, it starts from l = 2 . By the shift of integers: n = n′ − 1

and l = l′ + 2 , the second summation rewritten as:

(the 2nd line) = −
∞∑

n,l=0

[
cl C

(∆)
n−1C

(∆−1)
n+l+1

{
k∆+n−1(z)k∆+n+l(z̄)− k∆+n−1(z)k∆+n+l(z̄)

}]
.

(2.7.13)

Now ÃGFT has a compact form:

ÃGFT(z, z̄) =

∞∑
n,l=0

p0(n, l)
{
k∆+n−1(z)k∆+n+l(z̄)− k∆+n−1(z)k∆+n+l(z̄)

}
, (2.7.14)

where the coefficient p0(n, l) is now defined as:

p0(n, l) = cl

(
C

(∆)
n+lC

(∆−1)
n − C(∆)

n−1C
(∆−1)
n+l+1

)
(2.7.15)

Multiplying the factor (1/z̄ − 1/z) to the both sides of (2.7.14), we obtain the four-dimensional

conformal block expansion:

AGFT(z, z̄) =

∞∑
n,l=0

p0(n, l) g
(4d)
2∆+2n+l,l(z, z̄) (2.7.16)

Again there are only the double trace operator in the spectrum, and the OPE coefficient is given

in (2.7.15) . This result is also consistent with that obtained in [17].

2.7.3 General Dimension through the inversion formula

Here we will demonstrate how we can obtain the conformal block expansions through the inversion

formula (2.6.11), using the simple example called generalized free theory. So far, the conformal

block decompositions for two or four dimension are derived through the formulae associated with

the Jacobi transformation. We will see that the inversion formula gives us a systematic method to

drive decomposition which is available in arbitrary d > 2-dimensions.

Firstly, we focus on the t-channel diagram which is a product of two-point functions; (x2
13)∆

and (x2
24)∆ . The inner product with the corresponding conformal partial wave is given as:(

1

P∆
13P

∆
24

, Ψd−∆
h−iν,J

)
(2.7.17)

=
1

J !(h− 1)J

∫
dP0 Π4

i=1dPi
vol(SO(d+ 1, 1))

1

P∆
13P

∆
24

(−2P2 · CD0 · P1)J(−2P4 · CZ0 · P3)J

P γ12
12 P γ34

34 Π4
i=1P

γ0i
0i

Here we used the expression of CPW in the embedding space given in (2.6.12) . Now we consider
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identical scalars, namely the dimensions of external operators are the same: ∆i = ∆ . According to

this reason, the external operators of CPW are also identical, and such CPWs can be regarded as

the basis. The powers γij are defined in (2.6.13), however, in this case ∆i are replaced with d−∆,

and the sign of ν is flipped ν → −ν . Now the P1 integration has the following form:

I1 ≡
∫
dP1

(−2P2 · CD0 · P1)J

P
1
2

(h−iν+J)

01 P
d−∆+ 1

2
(−h+iν+J)

12 P∆
13

(2.7.18)

According to the generalized Symanzik formula given in appendix B, this type of integration can

be evaluated for arbitrary ai as follows:∫
dP1

(−2P2 · C0 · P1)J

P a0
01 P

a2
12 P

a3
13

= πh
Γ(δ02)Γ(δ03)Γ(δ23)

Γ(a0)Γ(a2)Γ(a3)

(2P2 · CD0 · P3)J

P δ02
02 P

δ03
03 P

δ23
23

(2.7.19)

where δ0i are defined by:

δ02 =
1

2
(a0 + a2 − a3 − J) , δ03 =

1

2
(a0 + a3 − a2 + J) , δ23 =

1

2
(a2 + a3 − a0 + J) .

Applying this formula we can evaluate the P1-integration:

I1 = N1
(−2P2 · CD0 · P3)J

P
1
2

(h+iν+J)

23 P h−∆
02 P

1
2

(2∆−h−iν+J)

03

, N1 = πh
Γ (h−∆) Γ

(
h+iν+J

2

)
Γ
(

2∆−h−iν+J
2

)
Γ(∆)Γ

(
h−iν+J

2

)
Γ
(

3h+iν+J−2∆
2

) .

(2.7.20)

Now the inner product becomes:

(
1

P∆
13P

∆
24

, Ψd−∆
h−iν,J

)
=

(−1)JN1

J !(h− 1)J

∫
dP0

∏4
i=2 dPi

vol(SO(d+ 1, 1))
(2.7.21)

× (−2P3 · CD0 · P2)J(−2P4 · CZ0 · P3)J

P∆
24P

1
2

(h+iν+J)

23 P
1
2

(3h−iν+J−2∆)

02 P
1
2

(3h−iν+J−2∆)

34 P∆+J
03 P

1
2

(h+iν+J)

04

Next, the P2 integration has the same form as the P1 integration, and it is also easily evaluated

through the formula again and the result is given by:

I2 =

∫
dP2

(−2P3 · CD0 · P2)J

P∆
24P

1
2

(h+iν+J)

23 P
1
2

(3h−iν+J−2∆)

02

= πh
Γ (h−∆) Γ

(−h+iν+J+2∆
2

)
Γ
(
h−iν+J

2

)
Γ(∆)Γ

(
h+iν+J

2

)
Γ
(

3h−iν+J−2∆
2

) (−2P3 · CD0 · P4)J

P h−∆
03 P

1
2

(h−iν+J)

04 P
1
2

(−h+iν+J+2∆)

34

(2.7.22)
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After P1 and P2 integration, the inner product becomes the following form:(
1

P∆
13P

∆
24

, Ψd−∆
h−iν,J

)
(2.7.23)

=
π2h

J !(h− 1)J

Γ(h−∆)2Γ
(

2∆+J−h±iν
2

)
Γ(∆)2Γ

(
2d−2∆+J−h±iν

2

) ∫ dP0dP3dP4

vol(SO(d+ 1, 1))

(−2P4 · CD0 · P3)J(−2P4 · CZ0 · P3)J

P h+J
34 P h+J

03 P h+J
04

The remaining integrations produce only constant factors because this part dose not depend on ν ,

and now we are interested in the pole structure in the ν plane. As for the contraction of C0, it can

be evaluated as the following way:

1

J !(h− 1)J
(−2P4 · CD0 · P3)J(−2P4 · CZ0 · P3)J =

[J/2]∑
r=0

(−1)r
J !(J + h− 1)−r
22rr!(J − 2r)!

(−4P0 · P34 · P34 · P0)J

=
(2h− 2)J
2J(h− 1)J

(P03P04P34)J . (2.7.24)

Now the integrals becomes: ∫
dP0dP3dP4

vol(SO(d+ 1, 1))

1

P h34P
h
03P

h
04

, (2.7.25)

and it is evaluated by ”gauge fixing” . This integral is conformal invariant because we can regard

it as an integration of products of three-point function and its shadow:∫
dP0dP3dP4

vol(SO(d+ 1, 1))
〈O0(P0)O3(P3)O4(P4)〉1〈Õ0(P0)Õ3(P3)Õ4(P4)〉1 , (2.7.26)

here the operators Oi have dimensions ∆i and the shadow operators Õi have dimensions d −∆i .

In this expression, manifestly the integral is conformally invariant. Now we can fix the points at

special values (x0, x3, x4) = (0, 1,∞) , this integral is evaluated:∫
dP0dP3dP4

vol(SO(d+ 1, 1))

1

P h34P
h
03P

h
04

=
1

vol(SO(d− 1))
. (2.7.27)

Here SO(d− 1) is the stabilizer group of the fixed three-points. Therefore the integral in (2.7.24)

is evaluated as follows:

1

J !(h− 1)J

∫
dP0dP3dP4

vol(SO(d+ 1, 1))

(−2P4 · CD0 · P3)J(−2P4 · CZ0 · P3)J

P h+J
34 P h+J

03 P h+J
04

=
(2h− 2)J
2J(h− 1)J

1

vol(SO(d− 1))
.

(2.7.28)

Substituting the result into the inversion formula (2.6.11), we have the following expansion:

1

P∆
13P

∆
24

=
∞∑
J=0

∫ ∞
−∞

dν

nν,J

(2h− 2)J
2J(h− 1)J

πh

vol(SO(d− 1))

Γ(h−∆)2Γ
(

2∆+J−h±iν
2

)
Γ(∆)2Γ

(
2d−2∆+J−h±iν

2

) Ψ∆
h+iν(Pi)(2.7.29)
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Note here that the normalization factor nν,J and the resultant inner product are invariant under

ν ↔ −ν . By using this property and (2.6.5), the above equation is written as the following form:

1

P∆
13P

∆
24

=
(2h− 2)JΓ(h−∆)2

2J(h− 1)JΓ(∆)2

πh

vol(SO(d− 1))

∞∑
J=0

∫ ∞
−∞

dν
K∆,∆
h−iν
nν,J

Γ
(

2∆+J−h±iν
2

)
Γ
(

2d−2∆+J−h±iν
2

)g∆
h+iν(Pi) .

(2.7.30)

Here g∆
h+iν is the conformal block. Now the integration contour can be closed in the lower half

plane, and then the integration picks up poles at h + iν = 2∆ + J + 2n (n = 0, 1, 2, ...) which

come from the gamma function in the numerator. This pole values precisely are the dimensions of

the double trace operators we observed in two or four dimensions. And the residue becomes the

coefficient of the conformal block expansion.

In the u-channel calculation, the corresponding two-point functions are P−∆
14 P−∆

23 . This diagram

produces the same I1 and I2 with an exchange 3↔ 4. Then we have (−2P3 ·CD0 · P4)J in stead of

(−2P4 · CD0 · P3)J in (2.7.24). This difference gives the additional factor (−1)J .

In this way, through the inversion formula, we can obtain the conformal decomposition of four-

point correlation function systematically.
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Chapter 3

Diagrams in AdS Space

In this chapter, we will consider some Feynman diagrams in AdS space whose legs are on the

boundary of the AdS space. It is known that such diagrams have the same symmetry as CFT

correlation functions, for example, a three-point diagram is proportional to the kinematical form

of CFT three-point function as we show in the below. Especially, in the context of the AdS/CFT

correspondence, it is conjectured that a summation of such diagrams in a bulk theory gives a

correlation function of the dual conformal field theory. In the previous chapter, we have discussed

that a four-point function has a conformal block decomposition. Now the question we are interested

in is what kind of conformal block appears from a given AdS diagram. The conformal partial wave

we introduced in the previous chapter is a useful tool to answer this question. According to the

correspondence between three-point diagrams and correlation functions, CPW naturally has its

bulk interpretation. Then the inversion formula provides a systematic way to see the conformal

block decomposition of bulk diagrams. We will see some simple examples of conformal block

decomposition of tree diagrams. Not only to obtain the conformal block decomposition of AdS

diagram, but the bulk interpretation is also useful as a calculation tool. The orthogonality of CPW

can be seen clearly in bulk, thanks to properties of the AdS harmonic functions.

Another interesting concept we discuss in this chapter is the so-called geodesic diagram. In

the geodesic diagram, the interaction points are restricted on geodesics which are connecting two

boundary points. This diagram is proposed as the bulk dual of conformal block [20]. We will show

that the three-point geodesic diagram has a different coefficient form the usual AdS three-point

diagram, due to the difference, the four-point geodesic diagram is proportional to the conformal

block while the usual diagrams are not. We will also discuss extensions to the case including

external tensor fields. Parametrizing the bulk interaction properly, we can reproduce the CFT

tensor structures discussed in the previous chapter from the bulk diagram with tensor fields.
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Figure 3.1: A diagram in AdS space. The external legs which is expressed as blue lines have the edges on the
boundary of AdS space.

3.1 Embedding Formalism for AdS

In section 2.2, the embedding formalism for d-dimensional euclidean space is discussed. Here we

will briefly review the embedding formalism for AdS space (for the detail, see [46, 52–54]). d + 1-

dimensional AdS is also embedded into M1,d+1 which is the same embedding space before. It is

convenient to see the relation between AdS diagrams and CFT correlation functions because the

coordinates of AdS and CFT are dealt with on an equal footing in the embedding space. The

following argument is almost parallel to the previous Euclidean case.

In d+ 2 dimensional embedding space Md+1,1, the euclidean AdSd+1 space is defined by the set

of future directed unit vectors satisfying:

X ·X = ηABX
AXB = −1, ηAB = diag(−1, 1, . . . , 1), X0 > 1 (3.1.1)

which can also be viewed as a d+1 dimensional hyperboloid, and we have set the radius of curvature

to be 1. We can parametrize the solutions to (3.1.1) explicitly in the light cone coordinates:

(X+, X−, Xa) =
1

z
(1, x2 + z2, xµ), X ·X = −X+X− + δµνX

µXν , µ, ν = 0, . . . , d (3.1.2)

in terms of the Poincare coordinates ya = (z, xµ) of AdSd+1 space. Towards the boundary AdSd+1:

z → 0, the hyperboloid asymptotes to the light cone X ·X = 0 by dropping a divergent factor, i.

e. the conformal boundary Rd is identified with the projective cone of light rays in the embedding
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Figure 3.2: d+ 1 dimensional Euclidean AdS space is embedded in M1,d+1 as a hyperboloid.

space which corresponds to the Rd we discussed in section 2.2.

As similar as the Euclid space case, we consider embedding tensor fields in AdSd+1 into the

embedding space M1,d+1. Again, an arbitrary rank-J tensor field in AdSd+1 is related to its

embedding space counterpart through the pull-back operation:

T (AdS)
a1...aJ

(y) =
∂XA1

∂ya1
. . .

∂XAJ

∂yaJ
TA1...AJ (X), (3.1.3)

In particular, the AdSd+1 metrics are also given by:

g
(AdS)
ab =

∂XA

∂ya
∂XB

∂yb
ηAB. (3.1.4)

However this pull-back operations defined is not injective as same as the previous Rd case, because

the following matrix in the pull-back relation has a zero vector:

XA
∂XA

∂ya
X·X=−1 = 0. (3.1.5)

This means that there are redundant unphysical degrees of freedom which correspond to components

proportional to X(A1
HA2...AJ )(X) contained in a tensor field TA1...AJ (X) . Geometrically, these

additional components regarded as being normal to the hypersurface (3.1.1). To eliminate these

unphysical redundant degrees of freedom in the embedding space tensors, the transverse condition
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is imposed:

XA1TA1...AJ (X) |X·X=−1= 0, (3.1.6)

such that TA1...AJ (X) only contains the components which are tangent to AdSd+1.

In the below, again we mainly consider symmetric traceless AdSd+1 tensor fields. In embedding

space Md+1,1, they need to be symmetric traceless also transverse (STT). For the convenience, we

introduce the polarization vectors WA and consider the following generating polynomial:

T (X,W ) = WA1 . . .WAJTA1...AJ (X), X ·W = W ·W = 0. (3.1.7)

Here we have introduced the auxiliary vectors WA, X ·W = 0 and W ·W = 0 imply TA1...AJ (X)

is defined up to equivalence ∼ X(A1
HA2...AJ )(X) + η(A1A2

SA3...AJ )(X), the contraction with WAs

only picks up the symmetric, traceless and transverse components.

To recover embedding space STT tensors representing symmetric traceless AdSd+1 tensors di-

rectly from (3.1.7), it is convenient to define the operators KA which act on the symmetric products

of WA as:

1

J !
(
d−1

2

)
J

KA1 . . .KAJW
B1 . . .WBJ = GB1

{A1
. . . GBJAJ} = GB1

(A1
. . . GBJAJ ) − traces, (3.1.8)

where (. . . ) in the above implies total symmetrization of indices, and GAB ≡ ηAB + XAXB is the

induced AdS metric. This differential operator is the AdS counterpart of operator DA defined in

2.2.13. The explicit expression for the operator KA can be given in terms of the following differential

operator:

KA =
d− 1

2

(
∂

∂WA
+XA

(
X · ∂

∂W

))
+

(
W · ∂

∂W

)
∂

∂WA

+ XA

(
W · ∂

∂W

)(
X · ∂

∂W

)
− 1

2

(
∂2

∂W · ∂W
+

(
X · ∂

∂W

)(
X · ∂

∂W

))
, (3.1.9)

however we mostly will not use these somewhat lengthy expressions in the main text, only the

formal operation (3.1.8) will be sufficient. When the contracted embedding space tensor in the

generating polynomial is already traceless and transverse, the action of KA simplifies to

KA =

(
d− 1

2
+W · ∂

∂W

)
∂

∂WA
(3.1.10)

Finally, we can consider AdSd+1 covariant derivatives in the embedding space, it acts on the

embedding space tensor satisfying the transverse condition (3.1.6), and the resultant tensor should
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remain so after its action. The following differential operator in M1,d+1 satisfies such requirement:

∇A =
∂

∂XA
+XA

(
X · ∂

∂X

)
+WA

(
X · ∂

∂W

)
= GA

B ∂

∂XB
+WA

(
X · ∂

∂W

)
(3.1.11)

we can clearly see that XA∇A = 0, and moreover if the contracted tensor in (3.1.7) already satisfies

the transverse condition, the action of the last term is trivial. We can express the action of ∇A on

such a tensor which is the representative of an AdSd+1 tensor as:

∇BTA1...AJ (X) = GB
CGA1

C1 . . . GAJ
CJ

∂

∂XC
TC1...CJ (X). (3.1.12)

In particular, it is worth noting that induced AdSd+1 metric GAB itself also satisfies transverse

condition XAGAB = GABX
B = 0, we have

∇CGAB = GC
C′GA

A′GB
B′ ∂

∂XC′
GA′B′ = 0 (3.1.13)

as required for ∇A to be the metric covariant derivative in the embedding space.

3.2 Propagator in AdS Space

In this section, we review some basics of propagator in the d+1-dimensional AdS space. Firstly, we

will discuss scalar fields and derive its bulk-to-bulk and bulk-to-boundary propagator, after that,

consider propagators of tensor fields. We can see that the embedding formalism introduced the

previous section is a powerful tool to deal with tensor fields again.

3.2.1 Scalar Field

Let us consider a massive scalar field in AdS. The action with a scalar source J (y) is given as

below: ∫
AdSd+1

dd+1y
√
g

[
1

2
gab ∂aφ∂bφ+

1

2
m2φ2 − φJ

]
, (3.2.1)

where the metric gµν is written in terms of the usual Poincaré coordinate:

ds2 = gab dy
adyb =

1

z2

(
dz2 + ηµν dx

µdxν
)
. (3.2.2)
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Here the AdS radius is set as R = 1, and we follow the notation for AdS coordinate yai = (zi, x
µ
i ) .

Then the field φ(y) can be written as response to the source by using the Green function Π∆(y, y′):

φ(y) =

∫
AdSd+1

dd+1y′
√
g Π∆(y, y′)J (y′) , (3.2.3)

where Π∆(y, y′) is the Green function for the Klein-Gordon operator:

(
�AdS,1 −m2

)
Π∆(y1, y2) = − 1

√
g
δ(z1 − z2) δ(d)(x1 − x2) . (3.2.4)

Π∆(y, y′) is characterized a parameter ∆ which is related to the mass m2 through the relation

m2 = ∆(∆− d)1 . �AdS,1 is the Laplacian operator acting on y1, and it is given as:

�AdS =
1
√
g
∂a

(√
g gab ∂b φ

)
= z2∂2

z − (d− 1) z ∂z + z2 ηµν∂µ∂ν . (3.2.5)

The solution of (3.2.4) is known, and it is given by the following hypergeometric function:

Π∆(y1, y2) = C̃∆ ξ
∆

2F1

(
∆

2
,
∆ + 1

2
; ∆− h+ 1; ξ2

)
, (3.2.6)

where ξ is defined as:

ξ =
2z1z2

z2
1 + z2

2 + |x1 − x2|2
, (3.2.7)

and C̃∆ is a normalization factor:

C̃∆ =
Γ(∆)

2∆+1 πh Γ(∆− h+ 1)
. (3.2.8)

The propagator in (3.2.6) is called the bulk-to-bulk propagator which connecting two bulk points.

The bulk-to-boundary propagator can be obtained by pulling one point in bulk to the boundary of

AdS. Then the answer becomes simple because the hypergeometric function is reduced to 1 in the

limit:

Π∆(y1, x2) = C∆

(
z1

z2
1 + (x1 − x2)2

)∆

(3.2.9)

and the normalization factor is given by:

C∆ =
Γ(∆)

2πhΓ(∆− h+ 1)
. (3.2.10)

1 This convention comes the dictionary for the AdS/CFT correspondence. There are two solutions for ∆, however,
due to the unitary bound ∆ > d/2, we always pick up the grater solution.
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3.2.2 Field with Spin

Next we will consider bulk-to-bulk propagators for fields with spin. It is a difficult problem to write

a consistent action in the Euclidean AdS space for general massive tensor fields. For example, in the

case of massive spin-2 tensor fields, the action in Euclidean AdS is given in [55] as the linearization

of the Einstein-Hilbert action with a negative cosmological constant and the Fierz-Pauli mass term.

The equations which the field satisfies are given by:

(
�AdS −m2

)
hab = 0 , Da h

a
b = 0 , haa = 0 (3.2.11)

In the case of general spins, it is hard to write the action in AdS space, however, the equations

which the on-shell fields satisfy are given by

(
�AdS −m2

)
Ta1...aJ = 0 , DaTaa2...aJ = 0 , T aaa3...aJ = 0 . (3.2.12)

According to these equations, the bulk-to-bulk propagator should satisfy the following equations:

(�AdS,1 −m2) Π∆,J(X1, X2;W1,W2) = (W12)Jδ(X1, X2) ,

(K1 · ∇1) Π(X1, X2;W1,W2) = 0 . (3.2.13)

where the mass is taken as m2 = ∆(∆ − d) − J , so that ∆ corresponds to the dimension of the

dual operator. Some concrete examples of solution of these equations for J = 1, 2 are given in [54],

and the general solution is also discussed which is written by using the AdS harmonic function we

will introduce in the next section. We postpone giving a form of the bulk-to-bulk propagator with

spin J to the next section. As for bulk-to-boundary propagators, they can be determined by the

transverse condition and scaling property in below:

Π∆,J(X,αP ;βW, γZ + δP ) = α−∆(β γ)J Π∆,J(X,P ;W,Z) (3.2.14)

The solution has the following form:

Π∆,J(X,P ;W,Z) = C∆,J
(−2W · C ·X)J

(−2P ·X)∆+J
, (3.2.15)

where C∆,J is a constant which cannot be determined by symmetry. The coefficient is determined

by taking the limit to bring one of the bulk points of bulk-to-bulk propagator to the boundary. It

is given by [54]:

C∆,J =
(J + ∆− 1)Γ(∆)

2πh(∆− 1)Γ(∆− h+ 1)
. (3.2.16)
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3.3 AdS Harmonic Function

Here we introduce the AdS harmonic function. This function has some nice properties, especially it

has orthogonality, and it plays a crucial role in later calculations. The definition of AdS harmonic

function is given by the boundary integration of two bulk-to-boundary propagators:

Ων,J(X1, X2;W1,W2) ≡ ν2

π J !(h− 1)J

∫
∂AdS

ddP0 Πh+iν,J(X1, P0;W1,DZ0)Πh−iν,J(X2, P0;W2, Z0)

(3.3.1)

and diagrammatically it can be written as in Fig: 3.3. It is known that the AdS harmonic function

Figure 3.3: The definition of AdS harmonic function. It is given as a boundary integration with two bulk-to-
boundary propagators which share a same boundary point. The mass (dimension) of the propagators are h± iν .

has a different expression as a linear combination of bulk-to-bulk propagators [54,56]:

Ων,J(X1, X2;W1,W2) =
iν

2π
(Πh+iν,J(X1, X2;W1,W2)−Πh−iν,J(X1, X2;W1,W2)) (3.3.2)

According to this relation, we can show that the AdS harmonic function satisfies the following

equations:

(
�AdS,1 + h2 + ν2 + J

)
Ων,J(X1, X2;W1,W2) = 0 ,

(∇AdS,1 ·K1) Ων,J(X1, X2;W1,W2) = 0 (3.3.3)

Another important property of the harmonic function is the orthogonal relation. The AdS harmonic

satisfies the following relation:

1

J !
(
h− 1

2

)
J

∫
AdS

dX0 Ων,J(X1, X0;W1,K0) Ων′,J ′(X0, X2;W0,W2)

=
1

2
δJ,J ′

[
δ(ν − ν ′) + δ(ν + ν ′)

]
Ων,J(X1, X2;W1,W2) (3.3.4)
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This relation means that two harmonic functions which are connected can be combined into one

harmonic function with a delta function. A proof of this relation is given in [54]. The AdS harmonic

function has also the completeness relation:

(W12)J δ(X1, X2) =

J∑
l=0

∫ +∞

−∞
dν cJ,l(ν) ((W1 · ∇1)(W2 · ∇2))l Ων,J−l(X1, X2;W1,W2) (3.3.5)

where cJ,l is given by:

cJ,l(ν) =
2l(J − l + 1)l(h+ J − l − 1

2)l

l! (2h+ 2J − 2l − 1)l(h+ J − l − iν)l
. (3.3.6)

This coefficients are determined recursively by using the equations (3.3.3) and setting cJ,0(ν) = 1 .

This completeness relation means that the AdS harmonic function forms a basis for symmetric

traceless tensors in AdS space. By using the AdS harmonic function, the bulk-to-bulk propagator

can be expanded as

Π∆,J(X1, X2;W1,W2) =

J∑
l=0

∫ +∞

−∞
dν aJ,l(ν) ((W1 · ∇1)(W2 · ∇2))l Ων,J−l(X1, X2;W1,W2) .

(3.3.7)

The coefficients aJ,l(ν) are determined by the equations of motions in 3.2.13 :

aJ,J(ν) =
1

ν2 + (∆− h)2
,

aJ,l(ν) =
J−l∑
q=1

(l + q)!

l!q!

(−1)q+1

2q−1(q − 1)!(h+ l)q−1

al+q(i(h− 1 + l))

ν2 + (h+ l + q − 1)2
. (3.3.8)

The details of (3.3.5) and (3.3.7) are also given in [54].

3.4 Tree Diagram

In this section, we will calculate some tree diagrams in AdS space.

3.4.1 Three-point scalar diagram

Firstly, we consider a three-point tree diagram with three scalar fields. In this case the bulk

interaction is unique, and it is just the φ3 interaction. This diagram is given by the following

integration with three scalar bulk-to-boundary propagators:

A3-pt
scalar(Pi) =

∫
dX Π∆1(P1, X) Π∆2(P2, X) Π∆3(P3, X)
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Figure 3.4: A three point scalar diagram with a φ3 interaction in bulk. Each blue line is a bulk-to-
boundary propagator.

=

∫
dX

C∆1

(−2P1 ·X)∆1

C∆2

(−2P2 ·X)∆2

C∆3

(−2P3 ·X)∆3
. (3.4.1)

This integration can be done by applying the Symanzik formula given in appendix B for the n = 3

case. Usually, the Symanzik formula provides some Mellin integration. However, in the three-

point case, the Mellin integration does not appear, and the result is proportional to a three-point

correlation function in CFT as we will see in the below. Using the Schwinger parameterization,

1

(−Pi ·X)∆i
=

1

Γ(∆i)

∫ ∞
0

dti
ti

t∆ie−(−2Pi·X)ti , (3.4.2)

we can rewrite the integration as

A3-pt
scalar(Pi) =

1

Γ(∆1)Γ(∆2)Γ(∆3)

∫ ∞
0

dt1
t1

dt2
t2

dt3
t3
t∆1
1 t∆2

2 t∆3
3

∫
dXe2Q·X , (3.4.3)

where Q is defined as Q ≡
∑3

i=1 tiPi . Because Q ·X is a scalar under the Lorentz transformation

in the embedding space M1,d+1 , we can choose Q as |Q|(1, 1, 0) where |Q|2 =
∑

i>j titjPij . Now

the coordinate X is parametrized as (1, z2 + y2, yµ)/z, we can evaluate the AdS integration

∫
dXe2Q·X =

∫ ∞
0

dz

z

∫
Rd

ddy

zd
e−
|Q|
z

(z2+y2+1)

= πh
∫ ∞

0

dz

z

1

(z|Q|)h
e−
|Q|
z

(z2+1)

= πh
∫ ∞

0

dz

z

1

zh
e
−
(
z+
|Q|2
z

)
, (3.4.4)

51



in the last line, z is scaled as z → |Q|−1z . Scaling ti as ti → ti
√
z, we can perform the z integration

A3-pt
scalar(Pi) = πh

(
3∏
i=1

C∆i

Γ(∆i)

)∫ ∞
0

dt1
t1

dt2
t2

dt3
t3

∫ ∞
0

dz

z
z

∆1+∆2+∆3−d
2 e−z−|Q|

2

= πh

(
3∏
i=1

C∆i

Γ(∆i)

)
Γ

(∑3
i=1 ∆i − d

2

)∫ ∞
0

dt1
t1

dt2
t2

dt3
t3
t∆1
1 t∆2

2 t∆3
3 e−

∑
i>j titjPij .(3.4.5)

By utilizing the following parameterization:

t1 =

√
m1m3

m2
, t2 =

√
m1m2

m3
, t3 =

√
m2m3

m1
, (3.4.6)

the ti integration can be calculated as∫ ∞
0

dt1
t1

dt2
t2

dt3
t3
t∆1
1 t∆2

2 t∆3
3 e−

∑
i>j titjPij

=
1

2

∫ ∞
0

dm1

m1

dm2

m2

dm3

m3
m

∆1+∆2−∆3
2

1 m
∆2+∆3−∆1

2
2 m

∆3+∆1−∆2
2

3 e−m1P12−m2P23−m3P31

=
1

2
Γ

(
∆1 + ∆2 −∆3

2

)
Γ

(
∆1 −∆2 + ∆3

2

)
Γ

(
∆2 −∆1 + ∆3

2

)
×P−

1
2

(∆1+∆2−∆3)

12 P
− 1

2
(∆2+∆3−∆1)

23 P
− 1

2
(∆3+∆1−∆2)

31 . (3.4.7)

Therefore the three point scalar diagram (3.4.1) can be evaluated as

A3-pt
scalar(Pi) = B3-pt

scalar

1

P
1
2

(∆1+∆2−∆3)

12 P
1
2

(∆2+∆3−∆1)

23 P
1
2

(∆3+∆1−∆2)

31

, (3.4.8)

where the coefficient B3-pt
scalar is

B3-pt
scalar ≡ π

h

(
3∏
i=1

C∆i

Γ(∆i)

)
Γ

(∑3
i=1 ∆i − d

2

)

×Γ

(
∆1 + ∆2 −∆3

2

)
Γ

(
∆1 −∆2 + ∆3

2

)
Γ

(
∆2 −∆1 + ∆3

2

)
. (3.4.9)

The result in (3.4.8) is precisely proportional to the CFT three-point function with scalar primary

operators whose dimensions are ∆i.

3.4.2 Three-Point Diagram with Two Scalars and One Tensor

Next, for a later purpose, we will consider a three-point function with two scalars and one symmetric

tensor field. This diagram plays an important role when considering the bulk interpretation of the

conformal partial wave. In this case, the bulk interaction contains covariant derivatives because the
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Figure 3.5: A three point diagram with two scalars and one spin-J tensor. The bulk interaction is
given as φ1∇Ja1...aJ

φ2 T a1..aJ .

third field has spin indexes and it is needed to contract with some differential operators to obtain

a Lorentz invariant vertex. The diagram is given by the following integral:

A3-pt
0,0,J(Pi) ≡

1

J !
(
h− 1

2

)
J

∫
AdS

dX Π∆1,0(P1, X) (K · ∇)J Π∆2,0(P2, X) Π∆3,J(P3, X;Z3,W )

(3.4.10)

The factor 1/J !
(
h− 1

2

)
J

in front of the integral is the same factor in (3.1.8), it is put to contract

the Lorentz indexes in the embedding space. Now the covariant derivatives are acting on the second

propagator, and this diagram gives the same result from the diagram with covariant derivatives

acting on the first field. These diagrams are equivalent up to the integral by part. Note here that

if a covariant derivative acts on the third field, it vanishes because of its equations of motion. This

diagram is evaluated as follows:

A3-pt
0,0,J(Pi) (3.4.11)

= C∆1C∆2C∆3,J

∫
AdS

dX
1

(−2P1 ·X)∆1
∇A1...AJ

1

(−2P2 ·X)∆2

(−2C3 ·X)JA1...AJ

(−2P3 ·X)∆3+J
. (3.4.12)

Here ∇A1...AJ means ∇A1 ...∇AJ and (−2C3 ·X)JA1...AJ
is also defined in the same manner. We have

used the relation (3.1.8) to take the contraction and the trace subtraction can be dropped because

X · C3 · C3 ·X = 0 . The contraction part is computed as follows:

∇A1...AJ
1

(−2P2 ·X)∆2

(−2C3 ·X)JA1...AJ

(−2P3 ·X)∆3+J
= 2J(∆2)J

(P2 ·G)A1...AJ

(−2P2 ·X)∆2+J

(−2C3 ·X)JA1...AJ

(−2P3 ·X)∆3+J
(3.4.13)
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= 2J(∆2)J
1

(−2P2 ·X)∆2+J

(−2P2 · C3 ·X)J

(−2P3 ·X)∆3+J
.

In the last line, because X ·C3 ·X = 0 , the contraction becomes simple: P2 ·G ·C3 ·X = P2 ·C3 ·X .

Now the integral can be computed as the scalar diagram using a differential operator introduced

below:

A3-pt
0,0,J(Pi) = C∆1C∆2C∆3,J

2J(∆2)J
(∆3)J

(D32)J
∫

AdS
dX

1

(−2P1 ·X)∆1

1

(−2P2 ·X)∆2+J

1

(−2P3 ·X)∆3
,

where the differential operator D32 is introduced as a combination of derivative for P3 and Z3:

D32 ≡ (Z3 · P2)

(
Z3 ·

∂

∂Z3
− P3 ·

∂

∂P3

)
+ (P3 · P2)

(
Z3 ·

∂

∂P3

)
. (3.4.14)

As a basis property of D32, when it acts on the scalar bulk-to-boundary operator, it produces the

tensor C3 in the numerator:

(D32)J
1

(−2P3 · Y )∆
= (∆)J

(−2P2 · C3 · Y )J

(−2P3 · Y )∆+J
, (3.4.15)

where Y is an arbitrary vector in the embedding space. Using this property of D32, the diagram

is reduced to the scalar diagram as in the last line of (3.4.11), where note that D32 acts on the

boundary point, and it commutes with the bulk integral. Substituting the result in (3.4.8), and

using (3.4.15) again, we can confirm that the diagram is proportional to the CFT three-point

function with two scalar and one spin-J tensor field. Note that here D32 acts on P13 only because

D32P23 = 0 . The result can be packaged in the following expression:

A3-pt
0,0,J(Pi) = B∆1,∆2,∆3

0,0,J


∆1 ∆2 ∆3

0 0 J

0 0 0

 , (3.4.16)

where the coefficient B∆1,∆2,∆3

0,0,J is defined as:

B∆1,∆2,∆3

0,0,J =
πh

2
(−2)JC∆1C∆2C∆3,J

×
Γ
(∑3

i=1 ∆i+J−d
2

)
Γ(∆1)Γ(∆2)Γ(∆3 + J)

Γ

(
∆3 ±∆12 + J

2

)
Γ

(
∆+

12 −∆3 + J

2

)
.(3.4.17)

Here, we used the following short-hand notation:

Γ(a± b) ≡ Γ(a+ b)Γ(a− b) , (3.4.18)
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and the box notation to represent the spinning conformal correlation function which is introduced

in section 2.3.

3.4.3 Four-point Contact Diagram

Figure 3.6: Four-point contact diagram with the φ4 interaction.

Here we consider a tree four-point diagram with φ4 interaction which is given in Fig. 3.6 . This

diagram is known as the so-called D-function D∆i(xi) which depends on four external points xi

and dimensions ∆i. The diagram is given by the following integral:

Aφ4
(Pi) = D∆i(xi) =

∫
dX

4∏
i=1

Π∆i(Pi, X) (3.4.19)

Applying the Symanzik formula, we can easily obtain the Mellin representation for this diagram:

Aφ4
(Pi) = N φ4

∫
CM

dsdt

(2πi)2
us vt Γ

(
∆+

12

2
− s
)

Γ

(
∆+

34

2
− s
)

×Γ (−t) Γ (−a− b− t) Γ (a+ s+ t) Γ (b+ s+ t) . (3.4.20)

Here we define the Mellin variables s and t through the following relation:

δ23 = −t, , δ24 = a+ s+ t . (3.4.21)

The other Mellin variables are determined by the condition
∑

j( 6=i) δij = ∆i . The coefficient N φ4

is given by:

N φ4
=
πh

2
Γ

(∑4
i=1 ∆i − d

2

)
4∏
i=1

1

Γ(∆i)
. (3.4.22)

55



The integration contour is taken as usual as Mellin integration like in Fig. A.1. By picking up

poles in gamma functions, we can perform the Mellin integrations and obtain the expansion form

of the D-function. In the following section, we will consider the conformal block expansion of this

diagram, and in the next chapter, more details about the Mellin representation are discussed. In

3.5.3, using the orthogonality of CPW, we will discuss the conformal block decomposition of this

diagram.

3.4.4 Four-point Exchange Diagram

Figure 3.7: Four-point spin J tensor exchange diagram with two three point bulk interactions
φ∇Jµ1...µJ

φT µ1...µJ .

Next as another four-point tree diagram, we consider exchange diagram as in Fig.3.7. The

internal line is a spin J symmetric traceless tensor and external fields are scalars. In this case, the

three point interactions are uniquely determined up to integration by part as φ∇Jµ1...µJ
φT µ1...µJ . In

order to calculate this diagram, the expression of spin J bulk-to-bulk propagator is needed, which is

expanded in terms of AdS harmonic functions. Substituting the expansion form of the propagator,

we can evaluate the exchange diagram in principle, however, it becomes so complicated. In the

next section, we will introduce the bulk interpretation of CPWs, and see it is an analog of the AdS

harmonic function. According to this fact, we can immediately obtain the expansion of exchange

diagram in terms of CPW through the split representation. In 3.5.4 and 4.2.2, we will discuss more

exchange diagrams and obtain its conformal block expansion.
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3.5 Conformal Block Decomposition of AdS Diagrams

Here we discuss how bulk four-point diagram can be decomposed into conformal blocks. The basic

idea is to use the conformal partial wave as a basis for four-point diagrams. Through the relationship

between the three-point diagram in AdS and three-point function in CFT, the conformal partial

wave is naturally lifted up as a bulk diagram. Then according to the orthogonality of conformal

partial wave, we can obtain the conformal block expansion of the desire four-point diagram.

3.5.1 Bulk Interpretation of Conformal Partial Wave

Figure 3.8: CPW can be expressed as a bulk exchange diagram, where the internal dashed line is
the AdS harmonic function.

Firstly, we will see that a CPW is regarded as a product of three-point diagrams. In the

definition of CPW (2.6.1), there are two three-point functions. Using the previous result, we can

replace the three-point functions with three-point diagrams. Then CPW can be described as the

following integral:

Ψ∆i
h+iν,J(Pi) =

1

B∆1,∆2

h+iν,JB
∆3,∆4

h−iν,J

1

J !(h− 1)J

[
1

J !(h− 1
2)J

]2 ∫
Rd
dP0 (3.5.1)

×
∫

AdSd+1

dX1 Π∆1(X1, P1) (K1 · ∇1)JΠ∆2(X1, P2) Πh+iν,J(X1, P0;W1,DZ0)

×
∫

AdSd+1

dX2 Π∆3(X2, P3) (K2 · ∇2)JΠ∆4(X2, P4) Πh−iν,J(X2, P0;W2, Z0) .

Here the coefficient B∆1,∆2

h+iν,J ≡ B
∆1,∆2,h+iν
0,0,J is given in (3.4.17). In this expression, the P0 integration

is nothing but the definition of the AdS harmonic function. By substituting the definition (3.3.1),

we obtain the bulk representation of CPW:

Ψ∆i
h+iν,J(Pi) =

π

ν2 B∆1,∆2

h+iν,JB
∆3,∆4

h−iν,J

[
1

J !(h− 1
2)J

]2 ∫
AdSd+1

dX1 dX2 Π∆1(X1, P1) (K1 · ∇1)JΠ∆2(X1, P2)
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×Π∆3(X2, P3) (K2 · ∇2)JΠ∆4(X2, P4) Ων,J(X1, X2;W1,W2) . (3.5.2)

Diagrammatically, this expression can be described as in Fig. 3.8 .

In the following sections, using this expression, we will consider conformal block decompositions

of some AdS diagrams. By applying the inversion formula in (2.6.11), an arbitrary four-point AdS

diagram A(Pi) is also decomposed by CPWs as follows:

A(Pi) =

∞∑
J=0

∫ ∞
−∞

dν

nν,J

(
A,Ψd−∆i

h−iν,J

)
Ψ∆i
h+iν,J(Pi) , (3.5.3)

where the parenthesis in the integrand denotes the inner product given in (2.6.10). Computing the

inner product of a diagram A and Ψ, we can obtain the spectrum function for the diagram A .

After performing the ν-integral by picking up poles in the spectral function , we can obtain the

conformal block decomposition of the diagram A .

3.5.2 Orthogonality of Conformal Partial Wave

Inner Product as a Bubble Diagram

Before considering conformal block decompositions, we will demonstrate how the orthogonality of

CPW works in bulk. In fact, we will see that the orthogonality relation can be identified as the

orthogonality of the AdS harmonic function. Let us consider, the inner product of two Ψs which

appears in the LHS of the orthogonality relation:

(
Ψ∆i
h+iν,J ,Ψ

d−∆i
h−iν′,J ′

)
=

∫
Rd

ddP1...d
dP4

vol (SO(1, d+ 1))
Ψ∆i
h+iν,J(Pi) Ψd−∆i

h−iν′,J ′(Pi), (3.5.4)

Here for two Ψs, by substituting the bulk integral form (3.5.2), the inner product (3.5.4) can be

represented as follows:

(
Ψ∆i
h+iν,J ,Ψ

d−∆i
h−iν′,J ′

)
=

∫
Rd

ddP1...d
dP4

vol (SO(1, d+ 1))

1

B∆1,∆2

h+iν,JB
∆3,∆4

h−iν,J B
d−∆1,d−∆2

h−iν′,J ′ Bd−∆3,d−∆4

h+iν′,J ′

× π2

ν2 ν ′2

[
1

J ! (h− 1
2)J

]4 ∫
AdSd+1

dX12dX34dX̃12dX̃34

×Π∆1(P1, X
12) Πd−∆1(P1, X̃

12) (K12 · ∇12)JΠ∆2(P2, X
12) (K̃12 · ∇̃12)JΠd−∆2(P2, X̃

12)

×Π∆3(P3, X
34) Πd−∆3(P3, X̃

34) (K34 · ∇34)JΠ∆4(P4, X
34) (K̃34 · ∇̃34)JΠd−∆4(P4, X̃

34)

×Ων,J(X12, X̃12;W 12, W̃ 12) Ων,J(X34, X̃34;W 34, W̃ 34) (3.5.5)

Here X12, X34, X̃12 and X̃34 are bulk points to be integrated over AdS. In each bulk point,
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Figure 3.9: The diagrammatic expression of (3.5.5). The white circles are bulk points and the
black circles are boundary points.

we have chosen particular interactions with covariant derivatives. Although we can choose another

type of integrations, the final result would not be changed. In the above expression, each boundary

integral has the same form of the definition of the AdS harmonic function (3.3.1) again, and the

pairs of bulk-to-boundary propagator are combined into AdS harmonic functions. Finally, the inner

product becomes the following bulk integral:

(
Ψ∆i
h+iν,J ,Ψ

d−∆i
h−iν′,J ′

)
= N∆i

ν,ν′;J,J ′

[
1

J ! (h− 1
2)J

]4 ∫
dX12dX34dX̃12dX̃34

vol (SO(1, d+ 1))
(3.5.6)

×Ωα1(X12, X̃12)(K̃12 · ∇̃12)J(K12 · ∇12)JΩα2(X12, X̃12)

×Ωα3(X34, X̃34)(K̃34 · ∇̃34)J(K34 · ∇34)JΩα4(X34, X̃34)

×Ων,J(X12, X34;W 12,W 34)Ων′,J(X̃12, X̃34; W̃ 12, W̃ 34)

Here in the indexes of harmonic functions, we have introduced αi through the relation ∆i = h+iαi.

The coefficients are combined as N∆i
ν,ν′;J,J ′ which is given as:

N∆i
ν,ν′;J,J ′ =

1

B∆1,∆2

h+iν,JB
∆3,∆4

h−iν,J B
d−∆1,d−∆2

h−iν′,J ′ Bd−∆3,d−∆4

h+iν′,J ′

(
4∏
i=1

π

α2
i

)
π2

ν2 ν ′2
. (3.5.7)

Diagrammatically, the inner product can be expressed as in Fig.3.10. Each dashed line in the bulk

is an AdS harmonic function, not usual propagator. The blue dashed lines are the scalar functions

and the red dashed lines are the functions with spin.

To compute the diagram in Fig.3.10, we need to evaluate the following bulk integrals with three
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Figure 3.10: The inner product of two Ψs can interpreted as a bubble diagram in bulk. The bulk
points are integrated over AdS.

harmonic functions.

Ξα1,α2

ν,J (X1, X2;W1,W2) = (3.5.8)

1

J !(h− 1
2)J

∫
AdSd+1

dY Ωα1(X1, Y ) (W1 · ∇1)J(KY · ∇Y )JΩα2(X1, Y ) Ων,J(Y,X2;WY ,W2) .

Each bulk point in Fig. 3.10 has the same form as Ξ , and it is the building block of the bubble

diagram.

Computation of Ξ

Here we will show the detail of computation of Ξ introduced in (3.5.8), and the result is simple as

given in the following:

Ξα1,α2

ν,J (X1, X2;W1,W2) = F (α1, α2, ν) Ων,J(X1, X2;W1,W2) , (3.5.9)

where the coefficient F (α1, α2, ν) is given as:

F (α1, α2, ν) =
J !πh

2J−1 Γ(h+ J)

(
2∏
i=1

α2
i

π

)
ν2

π

1

Ch±iν,J
B∆1,∆2

h+iν;J B
d−∆1,d−∆2

h−iν;J . (3.5.10)

Because of the completeness of the AdS harmonic function, the function Ξ which depends on two

bulk points can also be expanded in terms of the harmonic functions. This equation (3.5.9) means

that Ξ is actually just proportional to one harmonic function.

Basically Ξ contains one bulk integral and three boundary integral which comes from the defi-

nition of the AdS harmonic function. Using the definition of AdS harmonic function, Ξ is expanded
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as the following integration:

Ξα1,α2

ν,J (X1, X2;W1,W2) =
N0

J !(h− 1
2)J

∫
dP0dP1dP2

∫
dY

1

(−2X1 · P1)h+iα1

1

(−2Y · P1)h−iα1

×(W1 · ∇1)J
1

(−2X1 · P2)h+iα2
(KY · ∇Y )J

1

(−2Y · P2)h−iα2

× 1

J !(h− 1)J

(−2W2 · CD0 ·X2)J

(−2X2 · P0)h+iν+J

(−2WY · CZ0 · Y )J

(−2Y · P0)h−iν+J
. (3.5.11)

N0 =
α2

1 α
2
2 ν

2

π3
Ch±iα1Ch±iα2Ch±iν,J , (3.5.12)

where in CD0 , Z0 is replaced with the differential operator DZ0 to take a contraction. Firstly, we

focus on the bulk integral.

IY ≡
1

J !(h− 1
2)J

∫
dY

1

(−2P1 · Y )h−iα1
(KY · ∇Y )J

1

(−2P2 · Y )h−iα2

(−2WY · CZ0 · Y )J

(−2P0 · Y )h−iν+J
.(3.5.13)

This integral is a usual three-point diagram with two scalars and one tensor, and easily evaluated

in the same way as in 3.4.2, and the result is given by:

IY = NY
(−2P1 · C0 · P2)J

P γ
−+−

01 P γ
+−−

02 P γ
−−+

12

, (3.5.14)

NY =
(−2)JπhΓ (γ−−+) Γ (γ−+−) Γ (γ+−−) Γ (γ−−−)

2 Γ(h− iα1)Γ(h− iα2)Γ(h− iν + J)
,

where γ−−+, ... are defined as

γσ1σ2σ0 ≡ 1

2
(h+ J + i(σ1 α1 + σ2 α2 + σ0 ν)) . (3.5.15)

Here each σi is a signature which takes + or − . Next, we focus on the boundary P1 integral:

I1 =

∫
dP1

1

(−2P1 ·X1)h+iα1

(−2P1 · CZ0 · P2)J

(−2P0 · P1)γ−+−(−2P2 · P1)γ−−+ . (3.5.16)

Using the generalized Symanzik formula which is given in appendix B, and introducing a Mellin

integral for t, it can be evaluated as:

I1 = N1

∫ i∞

−i∞

dt

2πi
µ(t)

(2P2 · CZ0 ·X1)J

(−2P0 ·X1)γ++−+t(−2P2 ·X1)γ+−++t(−2P0 · P2)−t−iα1

N1 =
πh

Γ(h+ iα1)Γ(γ−+−)Γ(γ−−+)
, µ(t) = Γ(−t)Γ(−iα1 − t)Γ(γ++− + t)Γ(γ+−+ + t) .
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Now the original bulk integration has the following form:

Ξα1,α2

ν,J (X1, X2;W1,W2) (3.5.17)

= N0NY N1

∫
dP0 dP2

[
(W1 · ∇1)J

1

(−2X1 · P2)h+iα2

]
(−2W2 · CD0 ·X2)J

(−2X2 · P0)h+iν+J

× 1

J !(h− 1)J

∫
dt

2πi
µ(t)

(2P2 · CZ0 ·X1)J

(−2P0 ·X1)γ++−+t(−2P0 · P2)γ+−−−iα1−t(−2P2 ·X1)γ+−++t

The remaining P2 integration is also evaluated by the Symanzik formula:

I2 = 2J (h+ iα2)J

∫
dP2

(W1 · P2)J(2X1 · C0 · P2)J

(−2X1 · P2)h+J+γ++++t(−2P0 · P2)γ−−−−t
(3.5.18)

= N2(t)
(−2W1 · C0 ·X1)J

(−2P0 ·X1)γ−−−−t

N2(t) = (−1)J(h+ iα2)J
J !πh Γ(γ+++ + t)

Γ(h+ J + γ+++ + t)
.

Eventually, Ξ becomes a boundary P0 integral and a Mellin integration, however, the boundary

integration is the same integral in the definition of the AdS harmonic function with spin J . Thanks

to this fact, the integral is replaced with a harmonic function, and Ξ becomes

Ξα1,α2

ν,J (X1, X2;W1,W2) = N0NY N1

∫ i∞

−i∞

dt

2πi
µ(t)N2(t)

π

ν2Ch±iν,J
Ων,J(X1, X2;W1,W2) .

(3.5.19)

The remaining t integration gives the following gamma functions through the Barnes’s second

formula (see appendix A):

∫ i∞

−i∞

dt

2πi
µ(t)

Γ(γ+++ + t)

Γ(h+ J + γ+++ + t)
=

Γ(γ+++)Γ(γ++−)Γ(γ+−+)Γ(γ−+−)Γ(γ−−+)Γ(γ−++)

Γ(h+ J)Γ(h+ iα2 + J)Γ(h+ iν + J)
(3.5.20)

Finally we can conclude that the boundary integration Ξ is proportional to a AdS harmonic function

and the coefficient is given as the following expression:

Ξα1,α2

ν,J (X1, X2;W1,W2) = F (α1, α2, ν) Ων,J(X1, X2;W1,W2)

F (α1, α2, ν) =
J !πh

2J−1 Γ(h+ J)

(
2∏
i=1

α2
i

π

)
1

Ch±iν,J
B∆1,∆2

h+iν;J B
d−∆1,d−∆2

h−iν;J . (3.5.21)

Note here the AdS function is a even function in ν, which means it is invariant under ν → −ν, and

the function F (α1, α2, α3) is also even in each αi. The result of this calculation is summarized in

Fig. 3.11
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Figure 3.11: The summary of the calculation of Ξ. According to the completeness of the AdS
harmonic functions, a loop of harmonic functions can be expanded as a series of harmonic functions
and due to the orthogonality, finally, it is proportional to a single harmonic function.

Orthogonality from the AdS harmonic function

Applying the above result to X12 and X̃34 integral in 3.5.6, the inner product can be simplified as:

(
Ψ∆i
h+iν,J ,Ψ

d−∆i
h−iν′,J

)
= N∆i

ν,ν′;J

[
1

J ! (h− 1
2)J

]2 ∫
AdSd+1

dX34dX̃12

vol (SO(1, d+ 1))
(3.5.22)

×F (α1, α2, ν) Ων,J(X̃12, X34; K̃12,W 34)F (α3, α4, ν
′) Ων′,J(X̃12, X34; W̃ 12, K̃34) .

Now we can use the orthogonality of the AdS harmonic function which is given in (3.3.4) for one of

bulk integrals. Finally, we can conclude that the inner product of two Ψs is given in the following

form:

(
Ψ∆i
h+iν,J ,Ψ

d−∆i
h−iν′,J

)
= N∆i

ν,ν′;J F (α1, α2, ν)F (α3, α4, ν
′)

1

2

[
δ(ν − ν ′) + δ(ν + ν ′)

]
× 1

J ! (h− 1
2)J

Ων,J(X,X;K,W )

∫
AdSd+1

dX

vol (SO(1, d+ 1))

=
1

2
nν,J

[
δ(ν − ν ′) +

K∆1,∆2

h+iν,J

K∆3,∆4

h+iν,J

δ(ν + ν ′)

]
(3.5.23)

where the normalization factor nν,J is given as:

nν,J = N∆i
ν,ν;J F (α1, α2, ν)F (α3, α4, ν) (3.5.24)

× 1

J ! (h− 1
2)J

Ων,J(X,X;K,W )

∫
AdSd+1

dX

vol (SO(1, d+ 1))

=

(
π

ν2

πhΓ(J + 1)

2J−1 Γ(h+ J)

)2
1

J ! (h− 1
2)J

Ων,J(X,X;K,W )

(Ch±iν,J)2

∫
AdSd+1

dX

vol (SO(1, d+ 1))
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Here we can evaluate the normalization factor of AdS harmonic function as:

1

J ! (h− 1
2)J

Ων,J(X,X;K,W )

(Ch±iν,J)2
=
πhΓ(2h+ J)Γ(h)

Γ(J + 1)Γ(2h)2

ν2

π

1

Ch±iν,J
, (3.5.25)

and the bulk integration is evaluated as well:∫
AdSd+1

dX = vol(AdSd+1) =
vol (SO(1, d+ 1))

vol (SO(d+ 1))
. (3.5.26)

The volume of SO(1, d + 1) is infinite because it is a non-compact group, however, this factor

precisely cancelled with the regularization factor in the definition of the inner product.

3.5.3 Contact Diagram

Next we consider the conformal block decomposition of a contact diagram with φ4 interaction:

Aφ4
(Pi) =

∫
AdS

dX
4∏
i=1

C∆i

(−2Pi ·X)∆i
. (3.5.27)

The spectral integral for this diagram is given through the inversion formula:

Aφ4
(Pi) =

∞∑
J=0

∫ ∞
−∞

dν

nν,J

(
Aφ4

,Ψd−∆i
h−iν,J

)
Ψ∆i
h+iν,J(Pi) . (3.5.28)

In the following, we will compute the inner product in the above integration. After the computation,

the poles in the spectral function tell us what kind operators are contained in the contact diagram.

Using the bulk representation of Ψ and gluing the bulk-to-boundary propagators through the AdS

harmonic function, the inner product is evaluated as the following bulk diagram:

(
Aφ

4

1 ,Ψd−∆i
h−iν,J

)
=

(
4∏
i=1

π

α2
i

)
π

ν2

1

Bd−∆1,d−∆2

h−iν,J Bd−∆3,d−∆4

h+iν,J

[
1

J !(h− 1
2)J

]2 ∫
AdS

dXdXLdXR

vol (SO(1, d+ 1))

×Ωα1(X,XL) (KL · ∇L)JΩα2(X,XL)Ωα3(X,XR) (KR · ∇R)JΩα4(X,XR)

×Ων,J(XL, XR;WL,WR) . (3.5.29)

Next, we will focus on the XL integration. This integration has the almost same structure as

Ξα1,α2

ν,J which is defined in (3.5.8) except for differentiations at the bulk point X . Due to luck of

differentiations, only Ξα1,α2

ν,J with J = 0 can have non-zero value, and it is easily evaluated as:

Ξα1,α2
ν,0 =

∫
dXL Ωα1(X,XL)Ωα2(X,XL)Ων(XL, XR)

= F (α1, α2, ν)Ων(X,XR) . (3.5.30)
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Figure 3.12: The inner product
(
Aφ4

,Ψd−∆i
h−iν,J

)
as a bulk diagram.

Now the XR integration is also easily computed using the previous formula, and we obtain the

following result:

(
Aφ4

,Ψd−∆i
h−iν,J

)
=

(
4∏
i=1

π

α2
i

)
π

ν2

F (α1, α2, ν)F (α3, α4, ν)

Bd−∆1,d−∆2

h−iν,J Bd−∆3,d−∆4

h+iν,J

(3.5.31)

×δJ,0 Ων(X,X)

∫
AdS

dX

vol (SO(1, d+ 1))
.

The result is proportional to a Kronecker’s delta δJ,0 according to the reason argued above. Sub-

stituting this result into (3.5.28), we obtain the spectral representation for the contact diagram:

Aφ4
(Pi) = Nφ4

∫ ∞
−∞

dν

2π
ωφ

4

0 (ν) Ψ∆i
h+iν,J(xi) ,

ωφ
4

0 (ν) = Γ

(
∆+

12 − h± iν
2

)
Γ

(
∆+

34 − h± iν
2

) Γ
(
h+iν±∆12

2

)
Γ
(
h−iν±∆34

2

)
8 Γ(±iν)

. (3.5.32)

Now the function omega is called the spectral function because this function is regarded as the

integration kernel and its pole structure determines the spectrum of operators in the conformal

block decomposition. It is obvious that the spectral function contains the double trace poles at

h± iν = ∆+
12 +n (n = 0, 1, 2, ...) . The remaining poles are unphysical, and these are canceled with

the coefficient K∆3,∆4

h−iν,0 when we use the relation (2.6.5) . Through the same procedure discussed

in section 2.7, we can perform the ν-integration and obtain the conformal block decomposition

of the contact diagram. This result is consistent with the fact that the contact diagram can be

decomposed into conformal blocks of scalar double trace operator.

Even when the interaction contains differentiations, we can discuss the decomposition the dia-

gram, applying the same method in the previous calculation. In such case, the diagram is decom-

posed into conformal blocks with spinning internal operator.
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3.5.4 Exchange Diagram

As the next example, we consider exchange diagrams. According to the fact that the bulk-to-bulk

propagator is expressed using the AdS harmonic function, and through the bulk interpretation of

the CPW, the exchange diagram is expressed by using CPWs. Substituting the split representation

(3.3.7), an exchange diagram is expressed as:

Aexch.
∆,J (Pi) =

J∑
l=0

∫ +∞

−∞
dν aJ,l(ν)

∫
AdS

dX1dX2 Π∆1(P1, X1)(K1 · ∇1)JΠ∆2(P2, X1) (3.5.33)

×Π∆3(P3, X2)(K4 · ∇4)JΠ∆4(P4, X2) ((W1 · ∇1)(W2 · ∇2))l Ων,J−l(X1, X2;W1,W2) .

Here the bulk integral is nothing but the bulk interpretation of CPW2. For example, for the highest

contribution l = J in the summation of bulk-to-bulk propagator, it has the following form:

Aexch
∆,J (Pi) 3 N exch

∫ ∞
−∞

dν

2π
ωexch
J (ν) Ψ∆i

h+iν,J(Pi) (3.5.34)

Here ωexch
J and N exch are defined as:

ωexch
J (ν) =

Γ
(

∆+
12+J−h±iν

2

)
Γ
(

∆+
34+J−h±iν

2

)
(∆− h± iν)

Γ
(
h+iν+J±∆12

2

)
Γ
(
h−iν+J±∆34

2

)
8 Γ(±iν)(h± iν − 1)J

,

N exch = 22J

(
4∏
i=1

C∆i,0

Γ(∆i)

)
. (3.5.35)

Now it is already written as the spectral integration form. We can also obtain the conformal

block expansion of exchange diagram in the same way as the contact diagram case. In this case,

the spectrum function contains not only the double trace poles but also the so-called the single

trace pole at h ± iν = ∆ . Here ∆ is the dimension associated with the internal field of this

exchange diagram. From this expression, we can conclude that exchange diagram is decomposed

into conformal blocks for the single trace operator and series of the double trace operators. This

result is consistent with the analysis in [20].

3.6 Geodesic Diagram

Recently, in the previous work [20], the so-called four-point geodesic Witten diagram is proposed

as a bulk dual of conformal block. In this diagram, the integration points are integrated along

geodesics, not over the entire AdS space. We will calculate a three-point geodesic diagram firstly,

and see that this diagram is also proportional to a CFT three-point function. The point is that a

2 It is explicitly seen when l = J and as for other contributions, we can check it after integration by part.
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three-point geodesic diagram has a different coefficient from the case of a usual three-point AdS

diagram case. According to the difference, through the inversion formula, we can see that the

four-point geodesic diagrams have a different spectral functions from exchange diagrams and there

is no pole corresponding the double-trace operators.

3.6.1 Three-Point Geodesic Diagram

Here we consider a 3-point geodesic diagram given in Fig.3.13 . The interaction point is restricted

on the geodesic line whose legs on the boundary points P1 and P2 . Firstly, we consider a diagram

with three scalar fields, and next, using the differential operators we compute a diagram with two

scalar and one tensor as similar to the previous usual diagram case.

Figure 3.13: Geodesic 3-point diagram. The orange dashed line is the geodesic connecting boundary points P1 and
P2 . The bulk interaction point X(λ) is integrated along the geodesic.

Three-Point Scalar Diagram

The diagram A3-pt, geo
scalar with three scalar fields is calculated by the following integral:

A3-pt, geo
scalar (Pi) ≡

∫ ∞
−∞

dλ
C∆1

(−2P1 ·X(λ))∆1

C∆2

(−2P2 ·X(λ))∆2

C∆3

(−2P3 ·X(λ))∆3
. (3.6.1)

Here the geodesic is taken between points P1 and P2
3, and the interaction point X depends on

λ which is the parameter of the geodesic. In the Poincare coordinate ya = (z, xµ), the geodesic is

parametrized as below:

z(λ) =
|x1 − x2|
2 coshλ

, (3.6.2)

3There are three choices to take the geodesic, and the associated diagrams give a same result up to an overall
coefficients.
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xµ(λ) =
xµ1 + xµ2

2
− xµ1 − x

µ
2

2
tanhλ , where λ ∈ (−∞,∞) .

Here when λ = −∞, it corresponds to the boundary point x1, and when λ =∞, it corresponds to

the boundary point x2 . In the embedding space, the geodesic is described as a compact form as

follows:

X(λ) =
e−λP1 + eλP2

P12
, where λ ∈ (−∞,∞) (3.6.3)

Substituting this expression, the integral A3-pt, geo
scalar can be evaluated as below:

A3-pt, geo
scalar (Pi) =

(
3∏
i=1

C∆i

)
P
− 1

2
(∆1+∆2−∆3)

12 P−∆3
13

∫ ∞
−∞

dλ e(−∆1+∆2+∆3)λ

(
P23

P13
e2λ + 1

)−∆3

(3.6.4)

=

(
3∏
i=1

C∆i

)
P
− 1

2
(∆1+∆2−∆3)

12 P−∆3
13

(
P13

P23

) 1
2

(−∆1+∆2+∆3) ∫ ∞
0

dt̃

2t̃
t̃

1
2

(−∆1+∆2+∆3)
(
t̃+ 1

)−∆3

In the second line in (3.6.4), the integration variable λ is replaced with t as below:

e2λ −→ P13

P23
t . (3.6.5)

The integration in the second line is just the beta function:

B(x, y) =

∫ ∞
0
ds sx−1(s+ 1)−(x+y) =

Γ(x)Γ(y)

Γ(x+ y)
. (3.6.6)

Through this relation, the scalar geodesic diagram becomes

A3-pt, geo
scalar (Pi) = B3pt, geo

scalar P
− 1

2
(∆1+∆2−∆3)

12 P
− 1

2
(∆2+∆3−∆1)

23 P
− 1

2
(∆3+∆1−∆2)

31 , (3.6.7)

where the coefficient B3pt, geo
scalar is given as

B3pt, geo
scalar =

(
3∏
i=1

C∆i

)
Γ
(

∆1−∆2+∆3
2

)
Γ
(−∆1+∆2+∆3

2

)
2Γ(∆3)

(3.6.8)

Note that as in the result in (3.6.4), the diagram is proportional to the CFT kinematical form.

Three-Point Diagram with a Tensor Field

Next, as similar to the case of a standard diagram, we will consider a geodesic diagram with a

symmetric traceless field. In this case, the bulk interaction is not unique, now we consider a certain
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interaction like:φ1∇a1...aJφ2 T a1...aJ . The diagram is evaluated by the following integral:

A3-pt, geo
0,0,J (Pi) ≡

C∆1

J
(
h− 1

2

)
J

∫ ∞
−∞

dλ
C∆2

(−2P1 ·X(λ))∆1
(K · ∇)J

1

(−2P2 ·X(λ))∆2
C∆3,J

(−2W · C3 ·X(λ))

(−2P3 · X̃(λ)J)∆3
.

(3.6.9)

In this case, we do not have to use the differential operator to reduced this diagram into scalar one,

because of the following useful relation on X(λ):

− P2 · C3 ·X(λ) = −(−P2 ·X(λ))V3,12 , (3.6.10)

where V3,12 is an element of tensor structures introduced in (2.3.15) . Thanks to the above relation,

the diagram is already reduced to a scalar diagram:

A3-pt, geo
0,0,J (Pi) = (−2)J(∆2)JC∆1C∆2C∆3,JV

J
3,12 (3.6.11)

×
∫ ∞
−∞

dλ
1

(−2P1 ·X(λ))∆1

1

(−2P2 ·X(λ))∆2

1

(−2P3 ·X(λ))∆3+J

Using the result of the previous calculation, we obtain the following result:

A3-pt, geo
0,0,J (Pi) = B∆1,∆2,∆3

geo;0,0,J


∆1 ∆2 ∆3

0 0 J

0 0 0

 , (3.6.12)

where the coefficient is given as:

B∆1,∆2,∆3

geo;0,0,J = (−2)J(∆2)JC∆1C∆2C∆3,J
Γ
(±∆12+∆3+J

2

)
2Γ(∆3 + J)

(3.6.13)

Note that by comparing the case of normal diagram, the geodesic diagram gives a different coeffi-

cient, and it becomes important when considering four-point diagram.

3.6.2 Four-Point Geodesic Diagram

In the section 3.5, we lift up CPWs using the relation of three-point diagram and correlation

function in (3.4.16). However we can use the relationship for three-point geodesic diagram (3.6.12)

instead of (3.4.16) . The point is that the coefficients are different between (3.4.16) and (3.6.12) .

From (3.6.12), we obtain the following form:

Ageo
∆,J(Pi) 3 Ngeo

∫ ∞
−∞

dν

2π
ωgeo
J (ν) Ψ∆i

h+iν,J(Pi) . (3.6.14)
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Here ωgeo
J and Ngeo are defined as:

ωgeo
J (ν) =

1

(∆− h± iν)

Γ
(
h+iν+J±∆12

2

)
Γ
(
h−iν+J±∆34

2

)
8 Γ(±iν)(h± iν − 1)J

(3.6.15)

Ngeo =
22J(∆2)J(∆4)J

π2h

(
4∏
i=1

C∆i,0

)
. (3.6.16)

Again we focus on only the highest contribution when l = J . In this case, the diagram is already

written in terms of the Ψ basis. By substituting (2.6.5), it becomes

Ageo
1 (Pi) = Ngeo

∫ ∞
−∞

dν

2π

 1

(∆− h± iν)

πh

(−2)J

Γ
(
h+iν+J±∆12

2

)
Γ
(
h+iν+J±∆34

2

)
8 Γ(iν)Γ(h+ iν + J)(h+ iν − 1)J

1

cJ
G∆i
h+iν(Pi)

+
1

(∆− h± iν)

πh

(−2)J

Γ
(
h−iν+J±∆12

2

)
Γ
(
h−iν+J±∆34

2

)
8 Γ(−iν)Γ(h− iν + J)(h− iν − 1)J

1

cJ
G∆i
h−iν(Pi)

 . (3.6.17)

For the first term, the integral contour should be closed in the lower half plane, and for the second

term, it should be closed on the upper half plane. Only the pole at ν = ∓i(∆− h) can contribute

to the first (second) term, the result becomes:

Ageo
1 (Pi) =

(−2)J

8πh
(∆2)J(∆4)J

(
4∏
i=1

C∆i,0

)
Γ
(

∆+J±∆12
2

)
Γ
(

∆+J±∆34
2

)
Γ(∆− h+ 1)Γ(∆ + J)(∆− 1)J

1

cJ
G∆i

∆ (Pi) . (3.6.18)

This relation implies the highest contribution of a geodesic diagram is proportional to a conformal

block4.

3.7 AdS Diagram with External Spinning Fields

In this section, we will consider more general diagrams which contain some spinning fields. In such

case, in general, the bulk interactions are not unique, namely, when an interaction contains tensor

fields, there are several ways to contract the Lorentz indexes. In the below, firstly we focus on

three-point diagrams. If the interaction vertexes are characterized properly, we can see that the

one-to-one correspondence between the three-point interaction vertex and the resulting the three-

point tensor structures. In other wards, there is an invertible matrix between the interaction basis

and the basis for CFT tensor structures [57–59]. As for geodesic three-point diagrams, basically

through the same method, we can see the relation to the CFT three-point function [1,22,23]. Gluing

three-point diagrams, we can also discuss the conformal partial wave and four-point diagrams with

4 In other contributions l < J , there are the so-called spurious poles which come from the coefficient aJ,l(ν) in
(3.3.8).
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spinning fields.

3.7.1 Three-Point Diagram

Normal Diagram

Firstly, let us consider normal (not geodesic) three-point diagrams with three tensor fields. In

general the bulk interaction is not unique, and it can be parametrized in the following way:

In1,n2,n3

J1,J2,J3
(X) = YJ1−n2−n3

1 YJ2−n3−n1
2 YJ3−n1−n2

3 Hn1
1 H

n2
2 H

n3
3 T1(X1,W1)T2(X2,W2)T3(X3,W3)

∣∣∣
Xi=X

,

(3.7.1)

where Ti are symmetric traceless tensor fields with spin Ji which depends on a bulk point Xi and

a polarization vector Wi, and the differential operators Yi and Hi are defined as follows:

Y1 = ∂W1 · ∂X2 , Y2 = ∂W2 · ∂X3 , Y3 = ∂W3 · ∂X1 ,

H1 = ∂W2 · ∂W3 , H2 = ∂W3 · ∂W1 , H3 = ∂W1 · ∂W2 . (3.7.2)

Basically each Yi corresponds to a contraction with a differentiation and a tensor field like T ai ∂a... ,

and Hi creates a contraction between two tensors like T ai−1Ti+1,a . In (3.7.1), after acting the

differential operators, the points Xi are taken as Xi → X in order to separate the action of Yi .

This parameterization covers the possible interactions by changing the parameter {n1, n2, n3} which

satisfies the following relation5 :

J1 − n2 − n3 ≥ 0, J2 − n1 − n3 ≥ 0, J3 − n1 − n2 ≥ 0. (3.7.3)

This condition is needed to keep the powers of Yi are positive. An arbitrary three-point interaction

vertex can be written as a linear combination of the vertex in (3.7.1).̇ The interactions which are

equivalent through integration by part are not included in the parametrization, in this sense, these

are independent. In [59], the three-point diagram with the general interaction (3.7.1) is computed

and it is shown that the result is proportional to a CFT tensor structure. The resulting tensor

structures are also parametrized by ni, and in this way, we can see the one-to-one correspondence

between the bulk interactions and the CFT tensor structures. As a brief explanation why the result

becomes again the CFT tensor structures, after the contractions, the interaction the the three-point

5 Notice that while {n1, n2, n0} satisfy the same conditions of {n10, n20, n12} as in (2.3.29).
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diagram becomes the following form:∫
dX

Q({Pi, Zi, X})
(P1 ·X)#(P2 ·X)#(P3 ·X)#

, (3.7.4)

where Q is a polynomial which scales properly under rescaling Pi and Zi and it is invariant under

the shift Zi → Zi + αPi . As discussed in section 2.3, this type of polynomial depends on Zi only

through Ci defined in (2.3.10) , and even after the integration, due to this property, the result can

be written by using only Vi,jk and Hij defined in (2.3.21) . Because the actual computations are

a bit complicated, we skip the detail (please see [58, 59]), however, we conclude that the general

three-point diagram is related to the box tensor structures:

Ak
J1,J2,J3

(xi) =
∑
n

b(k,n)


∆1 ∆2 ∆3

J1 J2 J3

n23 n31 n12

 . (3.7.5)

Here k = (n1, n2, n3) is the parameter for the three-point interaction, and n = (n23, n31, n12) is the

parameter for the tensor structures. b(k,n) is the coefficient which determined through the bulk

integration. In the next subsection, we will see the geodesic diagram case.

Geodesic Diagram

As for three-point geodesic diagrams, we can parametrize the general interaction on a geodesic

and compute a diagram with general tensor fields. The complete three point interaction vertices

involving three symmetric traceless fields on a geodesic in AdSd+1 can be succinctly written in the

following form:

VJ1,J2,J3 =
∑

0≤ni≤li

gn1,n2,n3

J1,J2,J3
J n1,n2,n3

J1,J2,J3
(X(λ)), i = 1, 2, 3. (3.7.6)

Here {gn1,n2,n3

J1,J2,J3
} are the theory dependent bulk coupling constants which can be eventually related

the CFT OPE coefficients, and the integers {n1, n2, n3} need to satisfy the same conditions in

(3.7.3). While the interaction vertices J n1,n2,n3

J1,J2,J3
(X(λ)) along the geodesic between points P1 and

P2 which is denoted as γ12 are parameterized by:

J n1,n2,n3

J1,J2,J3
(X(λ)) = ỸJ1−n2−n3

1 YJ2−n3−n1
2 YJ3−n1−n2

3 Hn1
1 H

n2
2 H

n3
3 T1(X1,W1)T2(X2,W2)T3(X3,W3) |Xi=X(λ) .

(3.7.7)

where T {A1...Alr}
i (X) is a STT embedding space tensor field which is projected to symmetric trace-

less tensor field in AdSd+1 . Here we have almost adopted the general parameterizations found
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in (3.7.2) with an essential modification on the choice of operator Ỹ1, which is changed from

Y1 = ∂W1 · ∂X2 → Ỹ1 = ∂W1 · ∂X3 , we shall now explain the need for this modification. Notice

that in original parameterization, which integrates over the entire AdS space, such a change is

equivalent up to the equation of motion and a boundary term which we can safely discard. How-

ever restricting along the geodesic γ12, we have made an explicit choice of external legs, i.e. the

curves connecting X(λ) and P1,2 and the third leg connecting X(λ) and P3 which is not relevant

to the geodesic, such a cyclic symmetry permuting the three tensor fields is explicitly broken. If we

use the original parameterization, certain tensor structures appearing in the corresponding CFT

three-point function become missing.

Let us work out a simple example of spin-scalar-scalar (J, 0, 0) case to illustrate this. First we

consider the parameterization in (3.7.2)

I0,0,0
J,0,0 = (∂W1 · ∂X2) JT1 (X1,W1) T2 (X2,W2) T3 (X3,W3) |Xi=X , (3.7.8)

and when we apply this vertex to integrate over the entire AdS-space, we have:

∫
AdS

dX
(2P2 · C1 ·X)J

(−2P1 ·X) ∆1+J

1

(−2P2 ·X) ∆2+J

1

(−2P3 ·X) ∆3

∝ (P2 ·DP1)J A∆1,∆2,∆3
3 (P1, P2, P3) ∝ [V1,23]JA∆1+J,∆2,∆3

3 (P1, P2, P3) . (3.7.9)

Here DA
Pi

is given by:

DA
Pi = ZAi

(
Zi ·

∂

∂Zi
− Pi ·

∂

∂Pi

)
+ PAi

(
Zi ·

∂

∂Pi

)
(3.7.10)

and A∆1,∆2,∆3
3 is given by the scalar integral discussed in (3.4.1). This vertex (3.7.8) precisely re-

produces the only and correct corresponding tensor structure in CFT side as we expected. However

if we use the same interaction vertex as before but now restricted along geodesic γ12:

I0,0,0
J,0,0 = (∂W1 · ∂X2) JT1 (X1,W1) T2 (X2,W2) T3 (X0,W3) |Xi=X(λ), (3.7.11)

we now have∫ +∞

−∞
dλ

(2P2 · C1 ·X(λ))J

(−2P1 ·X(λ)) ∆1+J

1

(−2P2 ·X(λ)) ∆2+J

1

(−2P3 ·X(λ))∆3
= 0 (3.7.12)

due to the accidental orthogonality condition 2P2 ·C1 ·X(λ) = 0 which only occurs along γ12
6. Now

6Similar cancelation was also noted in [22].
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if use the new parametrization given in (3.7.7) instead, again we only have one type of interaction

given by:

J 0,0,0
J,0,0 = (∂W1 · ∂X3) JT1 (X1,W1) T2 (X2,W2) T3 (X3,W3) |Xi=X(λ) . (3.7.13)

The corresponding computation along the geodesic γ12 is given by (up overall constant):

∫ +∞

−∞
dλ

(2P3 · C1 ·X(λ)) J

(−2P1 ·X(λ)) ∆1+J

1

(−2P2 ·X(λ)) ∆2

1

(−2P3 ·X(λ)) ∆3+J
∝ [V1,23]JA∆1+J∆2∆3

3 (3.7.14)

where we have used 2P3 ·C1 ·X(λ) = P23 V1,23/(−2P2 ·X(λ)). We have now seen that the modified

parameterization instead gives the desired CFT tensor structure.

We shall adopt the minimally modified parameterization (3.7.7) in our computation of the three-

point geodesic Witten diagrams for symmetric traceless tensor fields. One important feature here

is that for given spins (J1, J2, J3), the allowed range of the non-negative integers {n1, n2, n3} imply

that we have the same number (2.3.32) of independent interaction vertices as the independent box

tensor structures given in (2.3.30), this implies that we should be able to express the resultant

three-point geodesic diagrams as linear combinations of these box tensor structures, echoing our

general argument at the beginning of this section. Moreover as shown in [58], the three-point

Witten diagrams produced by the original parameterization of three-point vertices can also be

expressed in terms of the same set of box tensor structures, this implies that we should also be able

to expand the ordinary three-point diagrams in terms of three-point geodesic diagrams. We will

explicitly do so in an example that follows. One further remark is that while the we have chosen

Y3 = ∂W3 · ∂X1 in (3.7.7), the possible choice is Y3 = ∂W3 · ∂X2 . But this choice is equivalent to

starting with cyclically permuted three-point vertices in [58], then make a similar modification of

the differential operator to switch the partial derivative to act on X3. We believe for this other

choice, and the story should go through the same.

The (J1, J2, 0) case

Let us first consider the case with two external symmetric tensor fields with spins J1,2 and one

internal scalar field. We have the counting:

J3 = 0, J1 − n3 ≥ 0, J2 − n3 ≥ 0, n1 = n2 = 0. (3.7.15)

The corresponding interaction vertices in this case are:

J 0,0,n3

J1,J2,0
= (∂W1 · ∂X3)J1−n3(∂W2 · ∂X3)J2−n3(∂W1 · ∂W2)n3T1(X1,W1)T2(X2,W2)T3(X3,W3) |Xi=X(λ)

(3.7.16)
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which yield the following integral:

AJ1,J2,0 = C
∫
γ12

ηA1B1 . . . ηAn3Bn3
(2X · C1)A1...Al1

(−2P1 ·X) τ1

(2X · C2)B1...Bl2

(−2P2 ·X) τ2
(3.7.17)

×
(
∂

∂X

)An3+1...AJ1
(
∂

∂X

)Bn3+1...BJ2 1

(−2P3 ·X) ∆3
,

where C =
∏3
r=1 C∆r,lr . This integral can be done, and the result is written in the box basis:

AJ1,J2,0 = C 2J1+J2−2n3(−1)J1−n3βτ12,∆3

(
τ12 + ∆3

2

)
J2−n3

(
∆3 − τ12

2

)
J1−n3


∆1 ∆2 ∆3

J1 J2 0

0 0 n3


In this case, happily we found exact one box tensor structure for each interaction vertex.

The (1, 1, 2) case

In the most general case involving three symmetric traceless fields with spins J1,2 and J3, as noted

in [57,58], the corresponding three point ordinary Witten diagrams can only be expressed in terms

of linear combination of box tensor basis (2.3.30). The same thing happens for the geodesic vertices

in (3.7.7) and the resultant three-point geodesic Witten diagrams, they can only be expressed in

terms of a linear combination of box basis.

As an illustrative example, we consider the case where (J1, J2, J3) = (1, 1, 2). First from the

corresponding CFT three-point correlation function, we expect there are five box tensor structures

arising, they are:

[I1] :=


∆1 ∆2 ∆3

1 1 2

0 0 0

 , [I2] :=


∆1 ∆2 ∆3

1 1 2

1 0 0

 , [I3] :=


∆1 ∆2 ∆3

1 1 2

0 1 0

 , [I4] :=


∆1 ∆2 ∆3

1 1 2

1 1 0

 , [I5] :=


∆1 ∆2 ∆3

1 1 2

0 0 1

 .

From the vertex parameterization (3.7.6), we now also have five independent interaction vertices.

Let us denote the integral for the resultant three point geodesic Witten diagram for each vertex by[
Jn1,n2,n3

1,1,2

]
. The order of {n1, n2, n3} we pick is

[J1] :=
[
J0,0,0

1,1,2

]
, [J2] :=

[
J1,0,0

1,1,2

]
, [J3] :=

[
J0,1,0

1,1,2

]
, [J4] :=

[
J1,1,0

1,1,2

]
, [J5] :=

[
J0,0,1

1,1,2

]
. (3.7.18)

The actual calculations producing them are complicated but somehow mechanical, however we can

keep using the recursive relations of for the anti-symmetric tensor CiAB to show that they can all

75



be expressed in terms of box tensor structures given in (3.7.18).

We can express the final results through the following matrix multiplication: [Ja] = Tab[Ib],

a, b = 1, . . . , 5 where the mixing matrices Tab for simplified case ∆2 = ∆1,∆3 = ∆ is given by:

Tab = 4 (1 + ∆1)β0,∆+2C×

−
(
−4 + ∆2

)
(2 + ∆1) 2(2+∆)(1+∆+∆1)

∆ 2(2 + ∆) (2 + ∆1) 2(2+∆)(1+∆+∆1)
∆ 0

−∆ −1−∆ −∆+∆2+2∆1
∆+∆∆1

− (1+∆)(∆+∆1)
∆(1+∆1) 0

−2 + ∆ −2 −1− 2
∆ + ∆ −1+∆

∆ 0

1
1+∆1

1+∆
∆+∆∆1

1+∆
∆+∆∆1

1+∆
∆+∆∆1

0

0 0 0 0 ∆1


. (3.7.19)

In particular, one can check that T is invertible such that:

Det[Tab] ∝
(−1 + ∆)3(2 + ∆)2∆2

1 (1 + ∆1) 3
(
2(1 + ∆)2 +

(
2 + 2∆ + ∆2

)
∆1

)
∆3

6= 0, (3.7.20)

This implies that we can equivalently express each three point function tensor structures listed

in (3.7.18) in terms of linear combination of three point GWDs for various vertices in (3.7.18).

This clearly illustrates that the holographic dual of three-point function for primary operators with

spins, as expressed in the box tensor basis, generally requires more than one type of interaction

vertices, and to find the ideal basis for two sets of quantities which give one to one correspondence,

this essentially becomes a matrix diagonalization problem 7. Moreover, recalling that we further

can connect the box tensor basis appearing in (3.7.18) with their corresponding differential tensor

basis (2.3.39):

{D1} :=


∆1 ∆2 ∆3

1 1 2

0 0 0

 , {D2} :=


∆1 ∆2 ∆3

1 1 2

1 0 0

 , {D3} :=


∆1 ∆2 ∆3

1 1 2

0 1 0

 ,

{D4} :=


∆1 ∆2 ∆3

1 1 2

1 1 0

 , {D5} :=


∆1 ∆2 ∆3

1 1 2

0 0 1

 . (3.7.21)

7Here we should, however, mention here that in [23], using the new CFT tensor basis constructed from linear com-
bination of (2.3.21), and suitably constructed AdS space differential operators, the progress for direct identifications
between CFT tensor structures and AdS interaction vertices has been made.
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Again for ∆1 = ∆2 and ∆3 = ∆, their mixing matrix is given by:

Aab =



1− 1
4∆(4 + ∆) −∆

2 −∆
2 −1

2
2−∆

4

−1
4(−2 + ∆)∆ ∆

2 1− ∆
2

1
2 −∆

4

−1
4(−2 + ∆)∆ 1− ∆

2
∆
2

1
2 −∆

4

−1
4(−2 + ∆)2 1

2(−2 + ∆) 1
2(−2 + ∆) −1

2
2−∆

4

0 0 0 0 1


(3.7.22)

such that {Da} = Aab[Ib], one can show that A−1
ab is again invertible and agrees with Example 3.3.3

in [49] for l = 2. It should now be clear that, through two successive matrix multiplications, we can

directly relate the differential tensor basis, which are somewhat more natural for constructing the

integral representation of spinning conformal partial waves as explained in the previous section, to

the three-point GWDs for different interaction vertices. We can succinctly summarize it as:

{Da} = (AT−1)ab[Jb], (3.7.23)

again it would be very interesting to find the new combination of interaction vertices which diag-

onalizes the matrix AT−1, such that we can have the simple one to one correspondence with the

CFT differential tensor basis.

Changing the parametrization for the three-point interactions, we can conclude that even in the

geodesic diagram case, the general three-point functions forms a basis for the three-point tensor

structures, and we have similar relation as in (3.7.5) with different coefficients b̃(k,n) :

Ageo.k
J1,J2,J3

(xi) =
∑
n

b̃(k,n)


∆1 ∆2 ∆3

J1 J2 J3

n23 n31 n12

 . (3.7.24)

3.7.2 Four-Point Diagram

So far, we have considered three-point normal and geodesic diagrams with a certain interaction.

As for four-point exchange diagrams, even if there are spinning fields in the external legs, the

intermediate bulk-to-bulk propagator is decomposed into the AdS harmonic functions through the

relation (3.3.7), and it is further decomposed into two bulk-to-boundary propagators . Finally,

exchange diagrams with external spinning fields can be represented as a sum of products of two

three-point functions with three external spins (l1, l2, l) and arbitrary interactions:

A4-pt
l1,l2,l3,l4

(xi) ∼
J∑
l=0

∫
dν

∫
dx0 A3-pt,kL

l1,l2,l
(x1, x2, x0)A3-pt,kR

l3,l4,l
(x3, x4, x0) (3.7.25)
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To use the gluing identity (3.3.7), the dimension ∆3 is taken as h + iν. 8 Note here that kL are

the integers (n1, n2, n0) parametrizing the interactions, and kR is also defined in a similar way.

In the previous section, we saw that the general three-point function can be expanded in terms

of three-point tensor structures. By using the differential basis, the three-point tensor structures

are produced by a three-point function with external spins (0, 0, J) and differential operators.

According to these facts, changing the order of integral and differentiation, the four point diagram

A4-pt is decomposed into a summation of CPW with differential operators:

A4-pt
l1,l2,l3,l4

(xi) ∼
J∑
l=0

∫
dν

∑
nL,nR

b(kL,nL) b(kR,nR)DnL
LeftD

nR
Right Ψ∆i

h+iν,l(xi) . (3.7.26)

Here DnL
LeftD

nR
Right Ψ∆i

h+iν,l(xi) is the CPW with external spins we discussed in section 2.6 , and we

can see that the exchange diagrams with symmetric and traceless tensors are decomposed into

this generalized CPWs. In the next chapter, we will consider the Mellin representation of this

generalized CPWs.

8 For the right side diagram, it is taken as h− iν .
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Chapter 4

Mellin Representation

In this chapter, we will discuss the Mellin representation of some four-point AdS diagram. In the

computation of AdS diagrams, through the Symanzik formula [60], Mellin integrations naturally

appear. Four-point diagrams or four-point functions are typically written as complicated functions

in coordinate space, however, in the Mellin space, these can be described as a combination of

gamma functions which are more acceptable. In principle, taking the contour properly, the Mellin

integration can be evaluated as a pole integration. Not only as a calculation tool but recently some

applications of the Mellin representation are proposed which are discussed in the below. In section

4.1, we explore the motivation and application more. In section 4.2, we will see some example

of Mellin representations for AdS diagrams. In 4.3, the Mellin representation of the CPW are

discussed, and as a byproduct, the expansion form conformal blocks in d-dimension is obtained in

4.4. In 4.5, extensions including external spin fields are discussed.

4.1 Motivation and Application

Relation to QFT Amplitudes

Recently, in [28], it is pointed out that Mellin representations of AdS diagrams have a similar

structure as usual QFT diagrams. More precisely, for a n-point diagram A, we define the Mellin

amplitude M as the integrand of Mellin representation:

A(xi) =

∫
CM

[dδij ]M(δij)
∏
i<j

Γ(δij)x
−δij
ij (4.1.1)

where δij satisfy the conditions:
∑

j(6=i) δij = ∆i, and there are n(n− 3)/2 independent variables.

The integration measure [dδij ] is defined only for independent ones including a factor (2πi)−1, and

the integration contour CM is taken as usual as the Mellin integral in Fig.A.1. Especially, in the
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case of four-point diagram, it can be written as:

A(xi) = F(xi)

∫
CM

dsdt

(2πi)2
M(s, t) us vt Γ

(
∆+

12

2
− s
)

Γ

(
∆+

34

2
− s
)

×Γ (−t) Γ (−a− b− t) Γ (a+ s+ t) Γ (b+ s+ t) , (4.1.2)

where F(xi) is the four-point kinematical factor and u and v are cross ratios. In this case, there are

two independent variables, and the Mellin amplitude depends on them. Here the factors other than

M are regarded as kinematical ones, and onlyM contains the dynamical information. Comparing

the result for a contact diagram in (3.4), it is clear that the Mellin amplitudes for contact diagrams

are just constants. In the case of exchange diagrams, the Mellin amplitude becomes a non-trivial

function as we will see in the below. More explicitly, the Mellin amplitude for an exchange diagram

with scalar field φ∆ is written as

M(s, t) ∼
∞∑
m=0

Rm
s−∆− 2m

, (4.1.3)

where Rm is a constant factor, and this form looks like an QFT scattering amplitude in the flat

space. To obtain the precise correspondence, we have to take the flat space limit: R → ∞ where

R is the AdS radius. According to the relation between the mass of AdS fields and the dimension

of CFT operators: R2m2 = ∆(∆− d) , in this limit, ∆ is also taken infinity large, while the mass

m is kept finite. In some papers [61–64], this properly is investigated for the cases including tensor

fields or more general diagrams.

In [65], this correspondence is applied to the so-called ”S-matrix bootstrap” in QFT, which

is an attempt to restrict the QFT dynamics by some kinematical constraints. Roughly speaking,

the basic idea is that through the correspondence, a four-point QFT amplitude can be mapped

to a four-point AdS diagram, and it gives a sort of CFT correlation function. Then we can apply

the numerical bootstrap technique developed in [9, 10, 66] to the correlation function and obtain

constraints on coupling constants. These constraints can be interpreted as constraints on QFT

couplings, thought the correspondence.

The conformal partial wave we introduced in 2.6 also has the Mellin representation [26,27], and

again it is expressed as a polynomial in the Mellin space. In section 4.5, we consider the Mellin

representation of conformal partial waves with external spinning fields. In such cases, it contains

tensor structures, namely, combinations of polarization vectors, in addition to coordinates. We

proposed a natural form of the Mellin representation inching such tensor structures [2] .
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Application to Bootstrap in CFT

One of the applications of the Mellin representation is the conformal bootstrap which is developed

in [29,30] . In the usual conformal bootstrap, a four-point function is expanded in conformal blocks

for a particular channel, and taking OPE in a different channel, another expansion in conformal

blocks for another channel. Then demanding the consistency of these expansions, it gives non-trivial

constraints on the dynamical data of CFT, or three-point coefficients. On the other hand, there is

another strategy to obtain non-trivial constraints on the CFT data, which is proposed in [31]. In this

approach, a four-point function is expanded in a crossing symmetrical way in advance, while in the

previous case, the conformal block expansion is not crossing symmetric explicitly and demanding

the symmetry later. In [31], form a discussion about unitarity, the building blocks are determined,

which are mathematically equivalent to exchange Witten diagrams. This expansion is described in

Fig. 4.1. After the expansion, because the building blocks contain redundant contributions which

correspond to the double trace operator coming from exchange diagrams, the conditions that the

unnecessary contributions disappear is imposed. These conditions are the bootstrap constraints

to restrict the dynamics. In [29, 30], they have revisited this approach, and because the exchange

diagrams have a relatively simple form in the Mellin space, they considered solving the bootstrap

condition in the Mellin space and applied this method to the Wilson Fisher fixed point. This

approach is discussed more in [32,33] and also in [34] .

Figure 4.1: A four point function expanded by AdS exchange diagram. In this expansion, the RHS
is clearly crossing symmetric, however, in general it contains redundant contributions.

As a Calculation Technique

As mentioned above, through the Symanzik star formula, the boundary or bulk integrations pro-

duce Mellin integrations, and typically the integrands are just combinations of gamma functions.

Basically, the integration can be performed by taking the contour properly and picking up the

relevant poles, and then the result is obtained as infinite summations, which are typically hyper-

geometric series. In some special cases, thanks to mathematical identities, the infinite summations

which come from the pole integration can be resumed and the results become relatively simple

forms. In section 4.3, we will derive an expansion form of d-dimensional conformal block through
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the Mellin representation of the conformal partial wave, and in this case, the infinite summation

can be packaged as Appell functions. This is a generalization of expansion for the scalar conformal

blocks [67] .

As another interesting application of Mellin representations, in [68–70] , the expression of four-

point functions for the N = 4 super Yang-Mills theory(SYM) is conjectured. In the N = 4 SYM,

there is the R-symmetry SO(6) in addition to the conformal symmetry, and thanks to the symmetry,

the kinematical form of correlation functions are highly restricted, and under some assumptions, it

is uniquely determined.

4.2 Diagrams in AdS

Here we will discuss Mellin representations of some basis AdS diagrams, and see that the Mellin

integrations give the conformal block expansions in 2-dimension (in principle, in even dimensions).

4.2.1 Contact Diagram

As discussed in 3.4.3, a four-point contact diagram with four scalar fields has the following Mellin

representation:

Aφ4
(u, v) = N φ4

∫ i∞

−i∞

dsdt

(2πi)2
us vt Γ

(
∆+

12

2
− s
)

Γ

(
∆+

34

2
− s
)

×Γ (−t) Γ (−a− b− t) Γ (a+ s+ t) Γ (b+ s+ t) , (4.2.1)

where the coefficient N φ4
is defined as

N φ4
=
πh

2
Γ

(∑4
i=1 ∆i − d

2

)
4∏
i=1

C∆i

Γ(∆i)
. (4.2.2)

The Mellin representation of a n-point contact diagram with n scalars is also immediately derived

from the Symanzik-star formula as reviewed in appendix B:

Aφn(Pi) =

∫
dX

n∏
i=1

Π∆i(Pi, X)

= N φn
∫ i∞

−i∞
[dδ]n(n−3)

2

∏
i<j

Γ(δij)P
δij
ij , (4.2.3)

where the coefficient N φn is given by:

N φn =
πh

2
Γ

(∑n
i=1 ∆i − d

2

)( n∏
i=1

C∆i

Γ(∆i)

)
. (4.2.4)
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Here the Mellin variables δij satisfy the condition:

∑
j( 6=i)

δij = ∆i . (4.2.5)

The integration in (4.2.3) is taken for n(n−3)
2 independent Mellin variables, and the integration

contour is taken in the same way as usual Mellin integral. Note that the number n(n−3)
2 is the same

as the number of independent cross ratios for n-point function.

Here we will discuss the conformal block expansion of a four-point contact diagram via the

Mellin representation. In the s-integration in (4.2.1), there are gamma functions which have poles

at s = ∆+
12 + 2m and s = ∆+

34 + 2m . These correspond to the dimensions of double trace operators

which we discussed in 3.5 . Here we demonstrate that the s-integration actually gives the two-

dimensional conformal block decomposition of the contact diagram, and as a result, it can be

expanded as a summation of contributions from the double trace operators. In order to get the

conformal block expansion, we utilize the formula in appendix C , to the cross ratios in the Mellin

representation (4.2.1):

zs(1− z)t =
∞∑
n=0

in

(2s+ n− 1)n
pn( it ; 0,−a− b, s+ a, s+ b) ks+n(z) . (4.2.6)

Here we use the notation z and z̄ for cross ratios, and this formula is also applied to z̄-part .

Here pn( it ; 0,−a − b, s + a, s + b) is the continuous Hahn polynomial, and the definition is given

in appendix C. After applying the expansion formula to z and z̄, the t-integration becomes the

orthogonality relation of the Hahn polynomial:

∫ i∞

−i∞

dt

2πi
Γ (−t) Γ (−a− b− t) Γ (a+ s+ t) Γ (b+ s+ t) (4.2.7)

×pn( it ; 0,−a− b, s+ a, s+ b) pm( it ; 0,−a− b, s+ a, s+ b)

=
Γ(s+ n± a)Γ(s+ n± b)

n!(2s+ 2n− 1)Γ(2s+ n− 1)
δn,m

According to this nice propery, we can perform the t-integration and obtain a summation of k-

functions: ∫ i∞

−i∞

dt

2πi
us vt Γ (−t) Γ (−a− b− t) Γ (a+ s+ t) Γ (b+ s+ t) (4.2.8)

=

∞∑
n=0

(−1)n

n!

Γ(s+ n± a)Γ(s+ n± b)
Γ(2s+ 2n) (2s+ n− 1)n

g
(2d)
2s+2n,0(z, z̄) .
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Here we identified the product of ks+n(z) and ks+n(z̄) as the two-dimensional conformal block:

ks+n(z)ks+n(z̄) = g
(2d)
2s+2n,0(z, z̄) (4.2.9)

Using the above results, the original Mellin representation becomes:

Aφ4
(z, z̄) = N φ4

∞∑
n=0

∫ i∞

−i∞

ds

2πi

(−1)n

n!

Γ(s+ n± a)Γ(s+ n± b)
Γ(2s+ 2n) (2s+ n− 1)n

(4.2.10)

×Γ

(
∆+

12

2
− s
)

Γ

(
∆+

34

2
− s
)
g

(2d)
2s+2n,0(z, z̄)

Now, the contour of s-integration has to be closed in the right half place due to the convergence

property of g
(2d)
2s+2n,0(z, z̄). There are two types of poles in the right half plane which correspond to

the double trace contributions:

s =
∆+

12

2
+m, s =

∆+
34

2
+m, where m ∈ N (4.2.11)

After performing the s-integral, the contact diagram is expressed by the following double summa-

tion:

Aφ4
(z, z̄) = N φ4

∞∑
n,m=0

(−1)n+m

n!m!
(4.2.12)

×

Γ(
∆+

12
2 +m+ n± a)Γ(

∆+
12
2 +m+ n± b)

Γ(∆+
12 + 2m+ 2n) (∆+

12 + 2m+ n− 1)n
Γ

(
∆+

34 −∆+
12

2
−m

)
g

(s;2d)

∆+
12+2n+2m,0

(z, z̄)

+ ( ∆+
12 ⇐⇒ ∆+

34 )

]
.

This expression means that the contact diagram can be expanded by the two-dimensional conformal

blocks of double trace operator whose dimension is ∆+
12 + 2n′ or ∆+

34 + 2n′ (n′ ∈ N) . In order to

simplify the expression, we define an integer N = n + m. Then the double summation can be

factorized, for example, the first term in the square parentheses in (4.2.12) becomes:

(The first term) = N φ4
∞∑
N=0

(−1)N

N !

 N∑
n=0

N !

n! (N − n)!

Γ
(

∆+
34−∆+

12
2 −N + n

)
(∆+

12 + 2N − n− 1)n

 (4.2.13)

×
Γ(

∆+
12
2 +N ± a)Γ(

∆+
12
2 +N ± b)

Γ(∆+
12 + 2N)

g
(s;2d)

∆+
12+2N,0

(z, z̄) .
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Now the range of n-summation is finite, and it is evaluated explicitly as:

N∑
n=0

N !

n! (N − n)!

Γ
(

∆+
34−∆+

12
2 −N + n

)
(∆+

12 + 2N − n− 1)n
=

(
∆+

12+∆+
34

2 − 1
)
N

(∆+
12 +N − 1)N

Γ

(
∆+

34 −∆+
12

2
−N

)
(4.2.14)

Then we can obtain the following expansion:

Aφ4
(z, z̄)

= N φ4
∞∑
N=0

(−1)N

N !

(
∆+

12+∆+
34

2 − 1
)
N

Γ
(

∆+
34−∆+

12
2 −N

)
Γ(

∆+
12
2 +N ± a)Γ(

∆+
12
2 +N ± b)

(∆+
12 +N − 1)NΓ(∆+

12 + 2N)
g

(s;2d)

∆+
12+2N,0

(z, z̄)

+ ( ∆+
12 ⇐⇒ ∆+

34 ) . (4.2.15)

There are only conformal blocks for the double trace series and it is consistent with the previous

result. The spectrum is determined by the pole structure of the s integration.

4.2.2 Exchange Diagram

As a next example, we consider a scalar exchange diagram. The Mellin representation is given by:

Aexch
∆ (u, v) = N exch

∫ i∞

−i∞

dsdt

(2πi)2
M∆(s)us vt Γ

(
∆+

12

2
− s
)

Γ

(
∆+

34

2
− s
)

(4.2.16)

×Γ (−t) Γ (−a− b− t) Γ (a+ s+ t) Γ (b+ s+ t) .

Here N exch is a constant given by:

N exch =
πh

2

4∏
i=1

1

Γ(∆i)
, (4.2.17)

and M∆(s) is the Mellin amplitude for a scalar field exchange, and it has the following spectral

integral:

M∆(s) =

∫ ∞
−∞

dν

2π

1

ν2 + (∆− h)2

Γ
(

∆+
12−h±iν

2

)
Γ
(

∆+
34−h±iν

2

)
Γ
(
h±iν

2 − s
)

4Γ(±iν)Γ
(

∆+
12
2 − s

)
Γ
(

∆+
34
2 − s

) (4.2.18)

We will give the derivation of this expression in the next section, however, here we use this result

and consider its conformal block expansion. Note that in the case of a scalar exchange, the Mellin

amplitude depends on only s. Therefore we can perform the t-integration in the same way as
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(4.2.8). Then the diagram becomes:

Aexch
∆ (u, v) = N exch

∫ ∞
−∞

dν

2π

1

ν2 + (∆− h)2

Γ
(

∆+
12−h±iν

2

)
Γ
(

∆+
34−h±iν

2

)
4Γ(±iν)

(4.2.19)

×
∫ i∞

−i∞

ds

2πi
Γ

(
h± iν

2
− s
) ∞∑
n=0

(−1)n

n!

Γ(s+ n± a)Γ(s+ n± b)
Γ(2s+ 2n) (2s+ n− 1)n

g
(2d)
2s+2n,0(z, z̄) .

Now we can perform the s-integration explicitly. Again, due to the asymptotic property of

g
(2d)
2s+2n,0(z, z̄), the contour is taken in the right half plane. There are two types of poles which

come from the gamma functions at s = (h ± iν)/2 + m where (m ∈ N) , however, these two

contribution can be combined after evaluating the integral, and we obtain the following expression:

Aexch
∆ (u, v) (4.2.20)

= N exch

∫ ∞
−∞

dν

2π

1

ν2 + (∆− h)2

Γ
(

∆+
12−h±iν

2

)
Γ
(

∆+
34−h±iν

2

)
2Γ(±iν)

×
∞∑

n,m=0

(−1)n+m

n! m!
Γ (−iν −m)

Γ(h+iν
2 + n+m± a)Γ(h+iν

2 + n+m± b)
Γ(h+ iν + 2n+ 2m) (h+ iν + 2m+ n− 1)n

g
(2d)
h+iν+2n+2m,0(z, z̄) .

In this expression, we have only spectrum integral in ν, and the integration contour is closed in

the lower half plane. The spectrum of conformal block expansion is determined by the integrand.

Naively, we can expect that this expression has a spectrum like ∆ + 2n+ 2m , however, there is an

identity truncating the redundant summation, and we can see the pole structure more clearly. To

see this, we focus on the summation in the third line of (4.2.20). This summation in n and m can

be rewritten in n and N ≡ n+m .

(The third line) =
∞∑
N=0

(−1)N

N !
SN (ν)

Γ(h+iν
2 +N ± a)Γ(h+iν

2 +N ± b)
Γ(h+ iν + 2N)

g
(2d)
h+iν+2N,0(z, z̄) . (4.2.21)

Here SN (ν) includes the m-summation:

SN (ν) ≡
N∑
n=0

N !

n! (N − n)!

Γ(−iν −N + n)

(h+ iν + 2N − n− 1)n
(4.2.22)

=
−π

Γ(iν + 2N) sin(iπν)

N∑
n=0

N !

n! (N − n)!
(−1)N−n(iν + 1 +N − n)N−1 .
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In the second line we substitute h as h = 1, therefore this result is correct only for two-dimensional

case. Then the n-summation is reduced to Kronecker’s delta through the following relation:

N∑
n=0

N !

n! (N − n)!
(−1)N−n(x+ n)N−1 =

1

x− 1
δN,0 . (4.2.23)

Applying the above relation, we can rewrite SN (ν) as:

SN (ν) =
−π

Γ(iν + 1) sin(iπν)
δN,0 . (4.2.24)

Substituting these results, we can simplify the integrand drastically:

Aexch
∆ (u, v) = N exch

∫ ∞
−∞

dν

2π

1

ν2 + (∆− h)2

iν

2Γ(1 + iν)2
(4.2.25)

× Γ

(
∆+

12 − h± iν
2

)
Γ

(
∆+

34 − h± iν
2

)
Γ

(
h+ iν

2
± a
)

Γ

(
h+ iν

2
± b
)
g

(2d)
h+iν,0(z, z̄)

Here the integration contour can be closed in the lower half ν-plane. In this expression, we can

easily see the pole structure of the integrand, and there are three types of poles:

Single trace pole: ν = −i(∆− h) , (4.2.26)

Double trace pole 1: ν = −i(∆+
12 − h+ 2n) , (4.2.27)

Double trace pole 2: ν = −i(∆+
34 − h+ 2n) , where n = 0, 1, 2... (4.2.28)

This spectrum is consistent with that we observed before using the bulk interpretation of CPW.

Performing this pole integration, we can easily obtain the conformal block expansion. For example,

from the single trace pole, we obtain the following contribution:

Aexch
∆ (u, v)

∣∣∣
Single tr.

= 2πhC12∆C34∆ g
(2d)
∆,0 (z, z̄) . (4.2.29)

Now the coefficient has the factorized form, and Cij∆ is defined as:

Cij∆ ≡
Γ

(
∆+
ij−∆

2

)
Γ

(
∆+
ij+∆−2

2

)
Γ
(

∆
2 ± a

)
4Γ(∆i)Γ(∆j)Γ(∆)

. (4.2.30)

As for the double trace contributions we can also compute and obtain the OPE coefficients.
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4.3 Conformal Partial Wave

In this section, we derive the Mellin representation of conformal partial wave with spin-J tensor.

In the Mellin space, it is characterized by a polynomial which is so-called the Mack polynomial. In

the embedding space, a CPW can be described as the following kinematic integral:1:

Ψ∆i
h+iν,J(Pi) ≡

1

P γ12
12 P γ34

34

∫
Rd
dP0

(
4∏
i=1

1

P γ0i
0i

)
1

J !(h− 1)J
(2P0 · P12 · DZ0)J(2P0 · P34 · Z0)J ,

where P12 and P34 are defined as:

PAB12 ≡ PA1 PB2 − PA2 PB1 , PAB34 ≡ PA3 PB4 − PA4 PB3 , (4.3.2)

and γij are given as:

γ12 =
∆1 + ∆2 − h− iν + J

2
, γ34 =

∆3 + ∆4 − h+ iν + J

2

γ01 =
∆12 + h+ iν + J

2
, γ02 =

−∆12 + h+ iν + J

2
,

γ03 =
∆34 + h− iν + J

2
, γ04 =

−∆34 + h− iν + J

2
. (4.3.3)

The contraction of symmetric traceless transverse tensors is implemented through the derivative

DZ0 and polarization vector ZA0 , which is evaluated in terms of the Gegenbauer polynomial:

1

J !(h− 1)J
(2P0 · P12 · DZ0)J(2P0 · P34 · Z0)J

=
∑̃
r

(−4P0 · P12 · P34 · P0)J−2r(−4P0 · P12 · P12 · P0)r(−4P0 · P34 · P34 · P0)r

=
∑̃
r

(J − 2r)!

2J−2r
P r12P

r
34

∑
∑
kij=J−2r

(−1)k24+k13
∏
(ij)

P
kij
ij

kij !

∏
i

P
J−r−

∑
j kji

0i , (4.3.4)

where the symmetric indices kij = kji comes form the expansion of the factor (−4P0 · P12 · P34 ·

P0)J−2r, and (ij) runs over (13), (14), (23) and (24), and label the all possible four-fold non-negative

1 Here the differential operator DZA
0

is defined as in (2.2.13):

DZA
0

=

(
h− 1 + Z0 ·

∂

∂Z0

)
∂

∂ZA0
− 1

2
Z0,A

∂2

∂Z0 · ∂Z0
. (4.3.1)
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integer partitions of J − 2r 2. For the summation of r, we introduced a short-hand notation:

∑̃
r

=

[J/2]∑
r=0

(−1)r
J !(J + h− 1)−r
22rr!(J − 2r)!

, (4.3.6)

where the square parentheses [J/2] is the Gauss’s symbol. Summarizing, the boundary integration

over P0 now becomes:

Ψ∆i
h+iν,J(Pi) =

∑̃
r

(J − 2r)!

2J−2r

1

P γ12−r
12 P γ34−r

34

(4.3.7)

×
∑

∑
kij=J−2r

(−1)k24+k13
∏
(ij)

P
kij
ij

kij !

∫
Rd
dP0

(
4∏
i=1

P
−γ0i+J−r−

∑
j kji

0i

)
.

We can now use the Symanzik star-formula 3 to rewrite Iν,J(Pi) into the desired Mellin transfor-

mation:

Ψ∆i
h+iν,J(Pi) =

∑̃
r

(J − 2r)!

2J−2r

1

P γ12−r
12 P γ34−r

34

∑
∑
kij=J−2r

(−1)k24+k13
∏
(ij)

P
kij
ij

kij !

× πh

 4∏
i=1

1

Γ
(
γ0i − J + r +

∑
j kij

)
∫ i∞

−i∞

dδ̄12dδ̄13

(2πi)2

∏
i<j

Γ(δ̄ij)P
−δ̄ij
ij . (4.3.8)

Here the parameters {δ̄ij} satisfy the following conditions:

∑
j(6=i)

δ̄ij = γ0i − J + r +
∑
j

kij , (4.3.9)

and we can further unify the powers of Pij using δij = δji, i 6= j defined as:

δ12 = δ̄12 + γ12 − r , δ34 = δ̄34 + γ34 − r , δ(ij) = δ̄(ij) − k(ij) , (4.3.10)

which again satisfy the constraints
∑

j(6=i) δij = ∆i, i = 1, 2, 3, 4. In terms of {δij}, Ψ∆i
h+iν,J is

2 Here we used the following identity about the Gegenbauer polynomial C
(h−1)
J (x):

1

J !(h− 1)J
(X · DZ)J(Y · Z0)J =

J !

2J(h− 1)J
(X2Y 2)

J
2 C

(h−1)
J (x) where x =

X · Y
(X2Y 2)

1
2

=

[J/2]∑
r=0

(−1)r
J !(J + h− 1)−r
22rr!(J − 2r)!

(X · Y )J−2r(X2Y 2)r . (4.3.5)

3 Note here that
∑
i

(
−γ0i + J − r −

∑
j kji

)
= −d. Therefore we can use the result for the boundary integration

in appendix B.
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expressed as:

Ψ∆i
h+iν,J(Pi) = πh

(
4∏
i=1

1

Γ(γ0i)

)∑̃
r

(J − 2r)!

2J−2r

∑
∑
kij=J−2r

(−1)k24+k13

4∏
i=1

(
γ0i − J + r +

∑
j

kij

)
J−r−

∑
j kij

×
∫ i∞

−i∞

dδ12dδ13

(2πi)2

Γ(δ̄12)Γ(δ̄34)

Γ(δ12)Γ(δ34)

∏
(ij)

(δij)kij
kij !

∏
i<j

Γ(δij)P
−δij
ij , (4.3.11)

where the additional Pochhammer symbols arise from the shifts in (4.3.10). If we now identify the

Mellin momenta s and t as:

t = −δ23 , 2s = ∆1 + ∆2 − 2δ12 , (4.3.12)

then the relation between δij and (s, t) are given in (4.2.5), and we obtain the following form:

Ψ∆i
h+iν,J(Pi) = πh

(
4∏
i=1

1

Γ(γ0i)

)∫ i∞

−i∞

dsdt

(4πi)2

Γ
(
h±iν−J

2 − s
)

Γ
(

∆1+∆2
2 − s

)
Γ
(

∆3+∆4
2 − s

) P̃ν,J(s, t)
∏
i<j

Γ(δij)P
−δij
ij ,

(4.3.13)

where P̃ν,J(s, t) is the following polynomial:

P̃ν,J(s, t) =

[J/2]∑
r=0

(−1)r
J !(J + h− 1)−r

2J−2rr!

(
h± iν − J

2
− s
)
r

×
∑

∑
kij=J−2r

(−1)k24+k13
∏
(ij)

(δij)kij
kij !

4∏
i=1

(
γ0i − J + r +

∑
j

kij

)
J−r−

∑
j kij

. (4.3.14)

Notice that we have absorbed the shift by r in δ̄12 and δ̄34 in (4.3.10) by introducing additional

r-dependent Pochhammer symbols in (4.3.14).

Mellin Representation of Exchange Diagram

In the previous chapter, we conclude that the exchange diagrams can be written as a spectral

integration with a CPW, and from the above discussion, the Mellin representation for CPW is

obtained. Now we can also get the Mellin representation for exchange diagram immediately. For

example for the case of a scalar exchange, substituting the Mellin representation of CPW into

(3.5.34), we can obtain (4.2.16).
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4.4 Series Expansion of Conformal Block

In (4.3.13), we have derived the Mellin representation of CPW, and from this expression, performing

the Mellin integrations, we can obtain the expansion form of the conformal block for d-dimensions

and general spin J . The Mellin integral For CPW has the following form:

Ψ∆i
h+iν,J(xi) = F(xi)π

h

∫ i∞

−i∞

dsdt

(2πi)2
us vt

∑
r,k

(∏
i

(1− γ0i)J−r−
∑
j kij

Γ(γ0i)

)
Γ

(
h± iν − J + 2r

2
− s
)

×Γ(−t+ k23)Γ(−a− b+ k14 − t)Γ(a+ s+ t+ k24)Γ(b+ s+ t+ k13) . (4.4.1)

Here we have used the following a short-hand notation for the summation:

∑
r,k

≡
[J/2]∑
r=0

(−1)r
J !(J + h− 1)−r

2J r!

∑
∑
kij=J−2r

(−1)k24+k13
∏
(ij)

1

kij !
. (4.4.2)

In the above expression, the integrand depends on only cross ratios u and v, this is consistent

with the fact that CPW transforms in the same way as four-point functions under the conformal

transformation as discussed in 2.6 . After performing t-integration picking up poles at t = k23 + nt

and t = −a−b+k14+nt (nt = 0, 1, 2, ...), the infinite summation can be written as a hypergeometric

series. Then the Mellin integral (4.3.13) becomes:

Ψ∆i
h+iν,J(xi) = F(xi)π

h
∑
r,k

∫ i∞

−i∞

ds

2πi
us Γ

(
h± iν − J + 2r

2
− s
)(∏

i

(1− γ0i)J−r−
∑
j kij

Γ(γ0i)

)

× v
−a−b+k14+k23

2

v ω23
2 2F1

κ2(s) , κ3(s)

1 + ω23

; v

+ v
ω14

2 2F1

κ1(s) , κ4(s)

1 + ω14

; v


(4.4.3)

where we have introduced some useful notations:

κ1(s) = −a+ s+ k13 + k14 , κ2(s) = a+ s+ k23 + k24 ,

κ3(s) = b+ s+ k13 + k23 , κ4(s) = −b+ s+ k14 + k24 ,

ω23 = −ω14 = a+ b+ k23 − k14 , (4.4.4)

and the function 2F1 is defined as a hypergeometric function including some factors:

2F1

a , b
c

;x

 = Γ(a)Γ(b)Γ(1− c) 2F1

a , b
c

;x

 . (4.4.5)
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We can perform the s-integral also picking up the relevant poles in the right half plane; s =

h±iν−J+2r
2 + ns (ns = 0, 1, 2, ...) . Again, after the integration, it produces an infinite summation,

however, these two infinite summations which come from s and t integral can be combined as an

Appell function. Then the final expression is given by:

Ψ∆i
h+iν,J(xi) = F(xi)π

h
∑
r,k

∑
σs=±

(∏
i

(1− γ0i)J−r−
∑
j kij

Γ(γ0i)

)
uτσsνv

−a−b+k14+k23
2 (4.4.6)

×

v ω23
2 F4

κ2(τσsν), κ3(τσsν)

1 + ω23, 1 + iσsν
;u, v

+ v
ω14

2 F4

κ1(τσsν), κ4(τσsν)

1 + ω14, 1 + iσsν
;u, v


where τσsν = h±iν−J+2r

2 and the summation
∑

σs=± is taken for ±iν which correspond to the

contributions coming form two types of pole at s = h±iν−J+2r
2 + ns . The function F4 is defined as

the Appell function with some factors:

F4

a1, a2

b1, b2
;x, y

 = Γ(a1)Γ(a2)Γ(1− b1)Γ(1− b2)F4

a1, a2

b1, b2
;x, y

 , (4.4.7)

and F4 is the Appell function defined by

F4

a1, a2

b1, b2
;x, y

 =
∞∑
m=0

∞∑
n=0

(a1)m+n(a2)m+n

m!n!(b1)m(b2)n
xm yn . (4.4.8)

Here comparing this expression with the relation (2.6.5) and from the asymptotic behavior at

u → 0 , we can identify the fist term in the summation
∑

σs=±, namely terms when σs = + ,

corresponds to the direct conformal block Gh+iν,J , and the second term associated with σs = −

corresponds to the shadow conformal block gh−iν,J . After multiplying the inverse of the coefficient

K∆3,∆4

h−iν,J , we obtain the expression for the conformal block in general dimension and spin J .

g∆i
∆,J(xi) = F(xi)

πh

K∆3,∆4

d−∆,J

∑
r,k

(∏
i

(1− γ0i)J−r−
∑
j kij

Γ(γ0i)

)
u

∆−J+2r
2 v

−a−b+k14+k23
2 (4.4.9)

×

v ω23
2 F4

κ2(∆−J+2r
2 ), κ3(∆−J+2r

2 )

1 + ω23, 1 + ∆− h
;u, v

+ v
ω14

2 F4

κ1(∆−J+2r
2 ), κ4(∆−J+2r

2 )

1 + ω14, 1 + ∆− h
;u, v

 .
We can check that in two or four dimensions, this expression has the same series expansion as the

conformal blocks determined by the conformal Casimir equation discussed in 2.5 .
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4.5 Mellin Representation with Spinning Fields

In section 4.3, we have derived the Mellin representation of CPW, and using this expression we

could immediately acquire the Mellin representation for exchange diagrams. In this section, we will

discuss the spinning CPW defined by gluing two three-point functions:

I(nL,nR)
ν,J (Pi, Zi) ≡

1

J ! (h− 1)J

∫
∂
dP0


∆1 ∆2 h+ iν

l1 l2 J

n20 n01 n12

 ·


∆3 ∆4 h− iν

l3 l4 J

n40 n03 n34

 , (4.5.1)

where we have used the box notation introduced in (2.3.30) and the spinning CPW is parametrized

by integers nL,R defined as nL = (n20, n01, n12) and nR = (n40, n03, n34) . This integration can also

be evaluated and expressed into Mellin representation by using the generalization of Symanzik star-

formula given in appendix B, and we relegate most of the calculation details and some definitions

of notations to the next section 4.5.1. Let us first state the final result:

I(nL,nR)
ν,J (Pi, Zi) = πh

(
4∏
i=1

mi!

Γ(γ̃0i)

) ∑
{aij ,bij}

∫ i∞

−i∞

dδ12dδ13

(2πi)2
(4.5.2)

×P̃ (nL,nR)
ν,J (δij , aij , bij)

Γ(δ̂12)Γ(δ̂34)

Γ(δ12)Γ(δ34)

∏
i 6=j

Ṽ
aij
ij

aij !

∏
i<j

H̃
bij
ij

bij !
Γ(δij)P

−δij
ij ,

and explain various quantities and definitions in turns. Here the Mellin variables δij satisfy the

modified constraints: ∑
j(6=i)

δij = ∆i − li ≡ τ̃i , (4.5.3)

where we have introduced the twist parameters τ̃i and we can solve the constraint (4.5.3) as in

(4.2.5) with ∆i replaced by τ̃i. This also leads us to the natural identifications of Mellin momenta

for the spinning Mellin amplitude as:

s = τ̃3 − τ̃4 − 2δ13 , t = τ̃1 + τ̃2 − 2δ12 . (4.5.4)

The arguments δ̂12 and δ̂34 in the explicit Γ-functions in (4.5.2) are:

δ̂12 = δ12 −
τ̃1 + τ̃2 − τ̃+

0

2
, δ̂34 = δ34 −

τ̃3 + τ̃4 − τ̃−0
2

, (4.5.5)

where τ̃±0 ≡ h± iν − J . In terms of the Mellin momenta t, δ̂12 and δ̂34 can be expressed as:

δ̂12 =
h+ iν − J − t

2
, δ̂34 =

h− iν − J − t
2

. (4.5.6)
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In (4.5.2), we have introduced the alternative basis for independent tensor structures {Ṽij} and

{H̃ij}:

Ṽij ≡
−2v̄i · Pj
Pij

, H̃ij ≡
−2v̄i · v̄j
Pij

, i, j = 1, 2, 3, 4. (4.5.7)

Here {v̄Ai } are composite vectors which are constructed from antisymmetric tensor CABi , and they

are defined as:

v̄A1 ≡
(−2P2 · C1)A

P12
, v̄A2 ≡

(2P1 · C2)A

P12
, v̄A3 ≡

(−2P4 · C3)A

P34
, v̄A4 ≡

(2P3 · C4)A

P34
. (4.5.8)

The list of the non-vanish products among Pi and v̄i is given in (4.5.39) and (4.5.40), which consist

of combinations of {Vi,jk} and {Hij} given in (2.3.21). In particular Ṽij is linear in Zi and H̃ij is

quadratic in Zi and Zj , and we still preserve the transverse condition. The two sets of non-negative

integers {aij} and {bij} labeling the powers of Ṽij and H̃ij need to satisfy the constraints:

∑
j(6=i)

(bij + aij) = li , (4.5.9)

this can be understood that we can only have total li of Zi polarization vectors in the final expres-

sion. The {aij} and {bij} in the summation of (4.5.2) take values when they satisfy the constraint

(4.5.9). Notice that bij are symmetric in the two indices, but aij are not, and they can be regarded

as the discrete Mellin variables which incorporate the discrete spin degrees of freedom encoded in

the invariant tensor structures {H̃ij , Ṽij}.

Now to count the number of independent parameters, both continuous and discrete, there are

two types of constraints: (4.5.3) for δij and (4.5.9) for aij and bij . There are six continuous variables

δij initially, the constraint (4.5.3) eliminate them to only two independent ones, the same number

as the independent cross ratios. Similarly, due to the four constraints (4.5.9), starting with twelve

aij and six bij , we are left with fourteen independent discrete variables. This number precisely

corresponds to the number of independent elements of tensor structures, explicitly we have eight

Ṽij ’s and six H̃ij ’s as in from (4.5.39) to (4.5.41).

It is also interesting to pause here and consider the possible interpretations of these remaining

variables in the flat space limit. For the continuous Mellin variable δij , we can again regard them

as bilinear of scattering momenta {pi} in the flat space through the identification: δij = pi · pj and

p2
i = −τ̃i. For the flat space limit of independent discrete {aij , bij}, we can count the number of

independent possible tensor structures arising from the four-point spinning scattering amplitudes.

Consider the fields with spins in the flat space following [64], we can also construct the corresponding
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elements of tensor structures as products of the scattering momenta {pi} and polarization vectors

{εi}, i = 1, 2, 3, 4 for each spinning field. There are six εi · εj and eight εi ·pj because inner products

like εi · εi = 0 or pi · εi = 0. The number of the independent products are the same as the discrete

Mellin variables {aij} and {bij}, which indicate they may play the similar role of enumerating the

independent tensor structures even in the flat space.

Finally in (4.5.2), we have introduced the following polynomial:

P̃
(nL,nR)
ν,J (δij , aij , bij) ≡

∑̃
r,β,k

1

(−2)
∑
imi+n12+n34

∏
i

(γ̃0i − κi)κi(mi + 1)κ̄ī

×(δ̂12)d12(δ̂34)d34

b12!

(b12 − n12 − k̄{11̄2̄2})!

b34!

(b34 − n34 − k̄{33̄4̄4})!

×
∏
(ij)

(δij)dij+
∑
{A} k

{A}
ij∏

{A} k
{A}
ij !

∏
(̄ij)

(aij −
∑
{A} k

{A}
īj

+ 1)∑
{A} k

{A}
īj∏

{A} k
{A}
īj

!

∏
(̄ij̄)

(bij −
∑
{A} k

{A}
īj̄

+ 1)∑
{A} k

{A}
īj̄∏

{A} k
{A}
īj̄

!
,

(4.5.10)

where the definition of the summation
∑̃

r,β,k is given in (4.5.33), {γ̃0i} are given in (4.5.18), and

κi and κ̄ī are defined in (4.5.32) as summations of integers β{...} and k
{...}
αβ which come from the

polynomial expansions. dij are non-negative integers defined in (4.5.44) and (4.5.46). Note that

when all external spins li = 0, this polynomial becomes P̃ν,J in (4.3.14). In this sense, we shall call

P̃
(nL,nR)
ν,J (δij , aij , bij) generalized Mack polynomial, which is purely kinematical and can be regarded

as the natural polynomial basis for expressing spinning conformal partial waves in Mellin space.

Combining various pieces, now we can define the Mellin representation for the contribution of

interaction vertices labeled by (kL,kR) to the four-point spinning Witten diagram. Substituting

(4.5.2) into (3.7.26), we obtain the following4:

W 4pt
∆,J(kL,kR) 3 (4.5.11)∑

{nL,nR}

∑
{aij ,bij}

∫ i∞

−i∞

ds dt

(4πi)2

∫ ∞
−∞

dν b
(nL,nR)
J (ν)M(nL,nR)

ν,J (s, t; aij , bij)
∏
i 6=j

Ṽ
aij
ij

aij !

∏
i<j

H̃
bij
ij

bij !

∏
i<j

Γ(δij)

P
δij
ij

,

where we define the spectrum function b
(nL,nR)
J (ν) and the spinning Mellin amplitudeM(nL,nR)

ν,J (s, t; aij , bij)

as:

b
(nL,nR)
J (ν) ≡

πhgΞ1Ξ2Ξ0gΞ3Ξ4Ξ̃0

2

(
4∏
i=1

mi!

Γ(τi)
C∆i,li

)
1

(h−∆)2 + ν2
, (4.5.12)

4 Through the split representation of the bulk-to-bulk propagator, the four-point spin-J tensor exchange diagram
gives the summation over l = 0 to J . Here we focus only on the highest contribution for l = J .
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M(nL,nR)
ν,J (s, t; aij , bij) ≡

2ν2

π

(
4∏
i=1

Γ(τi)

Γ(γ̃0i)C∆i,li

)
(4.5.13)

×b(kL,nL)b(kR,nR)
Γ(δ̂12)Γ(δ̂34)

Γ(δ12)Γ(δ34)
P̃

(nL,nR)
ν,J (δij , aij , bij) ,

where gΞ1Ξ2Ξ0 and gΞ3Ξ4Ξ̃0
are the bulk coupling constants. We can view the Mellin representa-

tion of the spinning four-point function (4.5.11) as combining the continuous integral and discrete

transformations, where we have rewritten the factorials aij ! and bij ! into Γ-functions to make them

on parallel footing with the continuous Mellin variables δij . These variables need to satisfy the

constraints (4.5.3) and (4.5.9), the last three products of Gamma functions in (4.5.11) form univer-

sal transformation kernel for given external twists {τ̃i} and spins {li}. All the information about

specific choice of interaction vertices encoded in the dynamical factors b(kL,nL)b(kR,nR), we can

for example use the explicit expressions for these factors given in [58] and [59] to compute the

complete spinning Mellin amplitude (4.5.13).

Here we would like to argue that using the identification of Mellin momenta (4.5.5) and (4.5.6),

the spinning Mellin amplitude (4.5.13) itself again does not contain any singularities corresponding

to the double trace operators as in the scalar case. As discussed earlier, the dynamical pre-factors

of the three point spinning Witten diagram b(kL,nL) and b(kR,nR) include poles in the ν-plane

corresponding to the double trace operators. Upon collision with the poles in Γ(δ̂12)Γ(δ̂34) =

Γ
(
h±iν−J−t

2

)
, they yield the poles in t-plane corresponding to the double trace operators. However

these t-plane poles are canceled by the zeroes from Γ(δ12)Γ(δ34) = Γ
(
τ̃1+τ̃2−t

2

)
Γ
(
τ̃3+τ̃4−t

2

)
in the

denominator. More explicitly, for example using the results in [59], the the relevant singularities

are contained in the dynamical pre-factors b(kL,nL) through Γ-function of the form:

Γ

(
τ̃1 + τ̃2 − (h+ iν − J)

2
+N

)
, (4.5.14)

where N is some non-negative constant. Comparing with the corresponding Γ-function for the

derivation of scalar Mellin amplitude Γ
(

∆1+∆2−(h+iν−J)
2

)
, the additional integer shift here is caused

by the additional derivatives and index contractions in the interaction vertices. The poles in the

ν-plane are at h+ iν = τ̃1 + τ̃2 +J+2N +2m, and m is also a non-negative integer. When colliding

with the poles in Γ(δ̂12), they yield the poles in the t plane at t = τ̃1 + τ̃2 + 2N + 2m. These

poles in the t plane are canceled with zeros which come from the Γ-function in the denominator in

(4.5.13) Γ(δ12) at t = τ̃1 + τ̃2 + 2m′, where m′ = 0, 1, 2, 3, . . . includes all non-negative integers. On

the other hand, as similar as the scalar case, when we consider geodesic diagrams, the coefficients

do not contain such Γ-functions including the double trace poles as in (4.5.14). According to this

fact, spinning geodesic diagrams contain only the single trace exchange, and this is consistent with
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the fact that a geodesic diagram is proportional to a conformal partial wave, which is associated

with the exchange of single type of primary operators. For details about spinning geodesic Witten

diagrams, please see [1, 21–23].

Finally as the scalar case in (4.1.3), the spinning Mellin amplitude (4.5.13) again has Laurent

expansion in t-channel, which arises from the same mechanism of the collision of the poles in ν

integration ν = ±i(∆−h) and poles in the t integration of the gamma functions Γ(δ̂12) and Γ(δ̂34).

The spinning Mellin amplitude has the following expansion:

∫ ∞
−∞

dν b
(nL,nR)
J (ν)M(nL,nR)

ν,J (s, t; aij , bij) =

∞∑
m=0

Q
(nL,nR)
J,m (s)

t− (∆− J + 2m)
+ regular , (4.5.15)

Q
(nL,nR)
J,m (s) = πhgΞ1Ξ2Ξ0gΞ3Ξ4Ξ̃0

(
4∏
i=1

mi!

Γ (γ0i)

)
Γ(h−∆−m)

Γ
(
τ̃1+τ̃2−∆+J

2 −m
)

Γ
(
τ̃3+τ̃4−∆+J

2 −m
)

×
[
b(kL,nL)b(kR,nR)P̃

(nL,nR)
ν,J (δij , aij , bij)

]
ν=i(h−∆)
t=∆−J+2m

. (4.5.16)

As expected, these t-channel poles again correspond to the exchange of symmetric traceless primary

operator with twist τ̃ = ∆− J and its infinite descendants.

4.5.1 Conformal Integral for spinning cases

Here we will see the details of the calculation of general conformal integral in (4.5.1). Using the

definition of the box tensor basis and the vectors {v̄i}, we can rewrite the kinematical integral as:

I(nL,nR)
ν,J (Pi, Zi) =

Hn12
12 Hn34

34

P γ̃12
12 P γ̃34

34

∫
dP0

(
4∏
i=1

(v̄i · P0)mi

P γ̃0i
0i

)
V(mL,mR) . (4.5.17)

Now γ̃ij are shifted dimensions as below:

γ̃12 =
τ1 + τ2 − τ+

0

2
+m+

0 −m1 −m2 , γ̃34 =
τ3 + τ4 − τ−0

2
+m−0 −m3 −m4 ,

γ̃01 =
τ1 + τ+

0 − τ2

2
+m2 , γ̃02 =

τ2 + τ+
0 − τ1

2
+m1 ,

γ̃03 =
τ3 + τ−0 − τ4

2
+m4 , γ̃04 =

τ4 + τ−0 − τ3

2
+m3 , (4.5.18)

where τi = ∆i + li , τ±0 = h ± iν + J . The vectors {v̄i} are combinations of a polarization vector

and coordinates which are defined in (4.5.8). V(mL,mR) is introduced as the contraction part:

V(mL,mR) ≡ 1

J ! (h− 1)J
(2P0 · P12 · DZ0)m

+
0 (2P0 · C1 · DZ)n01(2P0 · C2 · DZ)n20

97



×(2P0 · P34 · Z0)m
−
0 (2P0 · C3 · Z0)n03(2P0 · C4 · Z0)n40 , (4.5.19)

where mL = (m+
0 , n01, n02) and mR = (m−0 , n03, n04) . To calculate the contraction between DZ0

and Z0, we introduce the two following rank-two anti-symmetric tensors:

WAB
12 (tL) ≡ (t+0 P12 + t1C1 + t2C2)AB, WAB

34 (tR) ≡ (t−0 P34 + t3C3 + t4C4)AB , (4.5.20)

where two sets of triplets of real parameters tL = (t+0 , t1, t2) and tR = (t−0 , t3, t4). Using W12 and

W34, we can rewrite V(mL,mR) as:

V(mL,mR) =
1

J ! (h− 1)J
∂tL,tR(2P0 · W12 · DZ)J(2P0 · W34 · Z0)J . (4.5.21)

Here the t-differential operator ∂tL,tR is defined as:

∂tL,tR(...) ≡ 1

(J !)2
∂
m+

0

t+0
∂n01
t1
∂n02
t2
∂
m−0
t−0

∂n03
t3
∂n04
t4

(...)|tL=0,tR=0 . (4.5.22)

Now we can easily evaluate the contraction betweenDZ0 and Z0 and it gives Gegenbauer polynomial:

V(mL,mR)

= ∂tL,tR
∑̃
r

(−4P0 · W12 · W34 · P0)J−2r(−4P0 · W12 · W12 · P0)r(−4P0 · W34 · W34 · P0)r

=
∑̃
r

∑
β{A,L,R}

m+
0 !n01!n02!m−0 !n03!n04!

(J !)2

(J − 2r)!∏
{A} β

{A}!
V(1234) r!∏

{L} β
{L}!
V(1212) r!∏

{R} β
{R}!
V(3434) ,

(4.5.23)

The summation
∑̃

r is the same as defined in (4.3.6). In the second line, we expanded the factors

(−4P0 ·W12 ·W34 ·P0), (−4P0 ·W12 ·W12 ·P0) and (−4P0 ·W34 ·W34 ·P0)5, and applied the differential

operator ∂tL,tR . Here the factors {V(....)} are given as:

V(1234) = (−4P0 · P12 · P34 · P0)β
{1234}

(−4P0 · C1 · P34 · P0)β
{11̄34}

(−4P0 · C2 · P34 · P0)β
{2̄234}

× (−4P0 · P12 · C3 · P0)β
{1233̄}

(−4P0 · P12 · C4 · P0)β
{124̄4}

(−4P0 · C1 · C3 · P0)β
{11̄33̄}

× (−4P0 · C2 · C3 · P0)β
{2̄233̄}

(−4P0 · C1 · C4 · P0)β
{11̄4̄4}

(−4P0 · C2 · C4 · P0)β
{2̄24̄4}

,

V(1212) = (−4P0 · P12 · P12 · P0)β
{1212}

(−8P0 · P12 · C1 · P0)β
{1211̄}

× (−8P0 · P12 · C2 · P0)β
{122̄2}

(−8P0 · C1 · C2 · P0)β
{11̄2̄2}

,

5We will label the powers of the various terms obtained from the polynomial expansion by the indices β{...}. see
(4.5.24) and (4.5.25).
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V(3434) = (−4P0 · P34 · P34 · P0)β
{3434}

(−8P0 · P34 · C3 · P0)β
{3433̄}

× (−8P0 · P34 · C4 · P0)β
{344̄4}

(−8P0 · C3 · C4 · P0)β
{33̄4̄4}

. (4.5.24)

In (4.5.23), we have used the abridged notations:

{A} =
{
{1234}, {11̄34}, {2̄234}, {1233̄}, {124̄4}, {11̄33̄}, {2̄234}, {11̄4̄4}, {2̄24̄4}

}
,

{L} =
{
{1212}, {1211̄}, {122̄2}, {11̄2̄2}

}
,

{R} =
{
{3434}, {3433̄}, {344̄4}, {33̄4̄4}

}
. (4.5.25)

to denote the sets of indices arising from the expansions of V(1234), V(1212) and V(3434) respectively.

Notice that we have used combined indices ij to associate with the anti-symmetric tensor Pij ,

however the ordered combined indices īi and īi indicate that we can obtain Ci from Pij or from Pji
by replacing Pj with v̄i. Note that seventeen possible non-negative integers β{...} need to satisfy

the following nine constraints and the summations of β{...} in the last line of (4.5.23) are taken

within the values where the constraints are satisfied6:

∑
{..12..}∈{A}

β{A} +
∑

{..12..}∈{L}

β{L} = m+
0 ,

∑
{..11̄..}∈{A}

β{A} +
∑

{..11̄..}∈{L}

β{L} = n01 ,

∑
{..2̄2..}∈{A}

β{A} +
∑

{..2̄2..}∈{L}

β{L} = n02 ,
∑

{..34..}∈{A}

β{A} +
∑

{..34..}∈{R}

β{R} = m−0 ,∑
{..33̄..}∈{A}

β{A} +
∑

{..33̄..}∈{R}

β{R} = n03 ,
∑

{..4̄4..}∈{A}

β{A} +
∑

{..4̄4..}∈{R}

β{R} = n04 ,

∑
{A}

β{A} = J − 2r ,
∑
{L}

β{L} = r ,
∑
{R}

β{R} = r . (4.5.27)

The first six constraints come from the differentiations with respect to parameters tL and tR , and

the last three constraints come from the expansion of polynomials. Next we have to expand each

factor in (4.5.24) . For example, one of the factors, (−4P0 · P12 · P34 · P0) , is expanded as:

(−4P0 · P12 · P34 · P0)β
{1234}

=
(1

2
(P14P02P03 − P13P02P04 − P24P01P03 + P23P01P04)

)β{1234}

6 For example, the first constraint is written explicitly as follows:

β{1234} + β{1233̄} + β{124̄4} + 2β{1212} + β{1211̄} + β{122̄2} = m+
0 . (4.5.26)

Note here that there is factor 2 in front of β{1212} because it contains two set of 12 , and β{11̄2̄2} is not included in
the second summation because it does not contain P12 .
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=
β{1234}!

2β
{1234}

∑
∑
k
{1234}
ij =β{1234}

(−1)
k
{1234}
(1)(3)

+k
{1234}
(2)(4)

∏
(ij)

P
k
{1234}
ij

ij

k
{1234}
ij !

∏
i

P
β{1234}−

∑
j k
{1234}
ij

0i . (4.5.28)

Here we introduce new four integers k
{1234}
ij labeling the partition of β{1234} . The indices of (1)(3)

in the third line means the first and third indexes in the bracket are substituted, for example,

k
{ijkl}
(1)(3) = k

{ijkl}
ik , and (ij) runs over only (13), (14), (23) and (24) .

The expansions of the other factors can be obtained by replacing Pi with v̄i appropriately ac-

cording to the bracket index. For example, the expansion of (−4P0 · P12 · C3 · P0) is obtained by

replacing P4 with v̄3:

(−4P0 · P12 · C3 · P0)β
{1233̄}

=
(1

2
((−2v̄3 · P1)P02P03 − P13P02(−2v̄3 · P0)− (−2v̄3 · P2)P01P03 + P23P01(−2v̄3 · P0))

)β{1233̄}

=
β{1233̄}!

2β
{1233̄}

∑
∑
k
{1233̄}
αβ =β{1233̄}

(−1)
k
{1233̄}
(1)(3)

+k
{1233̄}
(2)(4)

∏
(̄ij)∈{1233̄}

(−2v̄i · Pj)
k
{1233̄}
īj

k
{1233̄}
īj

!

×
∏

(ij)∈{1233̄}

P
k
{1233̄}
ij

ij

k
{1233̄}
ij !

∏
i∈{1233̄}

P
β{1233̄}−

∑
α k
{1233̄}
iα

0i

∏
ī∈{1233̄}

(−2v̄i · P0)β
{1233̄}−

∑
α k
{1233̄}
īα . (4.5.29)

Similarly as in the previous example, we introduced four non-negative integers k
{1233̄}
αβ to denote the

four-folds partition of β{1233̄}. The indices α and β can be i and ī which take values in {1233̄}, such

that in this case i = 1, 2, 3 in the third product and ī = 3̄ in the fourth product in the summation.

And following these assignments, we have k
{1233̄}
13̄

and k
{1233̄}
23̄

from the first product and k
{1233̄}
13

and k
{1233̄}
23 from the second product in the summation. Comparing this case with (4.5.28), index

4 is replaced with 3̄ because this polynomial expansion is obtained by replacing P4 with v̄3.

The next example is the expansion of the factor such as (−8P0 ·C1 ·C2 ·P0)β
{11̄2̄2}

in the expansion

of V(1212):

(−8P0 · C1 · C2 · P0)β
{11̄2̄2}

= (P12(−2v̄1 · P0)(−2v̄2 · P0) + (−2v̄1 · v̄2)P01P02)β
{11̄2̄2}

(4.5.30)

=
∑

k{11̄2̄2}+k̄{11̄2̄2}=β{11̄2̄2}

β{11̄2̄2}!

k{11̄2̄2}!k̄{11̄2̄2}!
P k
{11̄2̄2}

12 (−2v̄1 · v̄2)k̄
{11̄2̄2}

×P k̄{11̄2̄2}
01 P k̄

{11̄2̄2}
02 (−2v̄1 · P0)k

{11̄2̄2}
(−2v̄2 · P0)k

{11̄2̄2}
.

For the binomial expansion of this factor, we introduced two non-negative k{11̄2̄2} and k̄{11̄2̄2}.

Similarly, we introduced k{33̄4̄4} and k̄{33̄4̄4} for the the expansion of β{33̄4̄4}. The other factors
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which come from {R} or {L} combine into a single factor. After expanding all the factors and

collecting various terms, we obtain:

V(mL,mR) =
∑̃
r,β,k

∏
(ij)

P

∑
{A} k

{A}
ij

ij∏
{A} k

{A}
ij !

∏
(̄ij)

(−2v̄i · Pj)
∑
{A} k

{A}
īj∏

{A} k
{A}
īj

!

∏
(̄ij̄)

(−2v̄i · v̄j)
∑
{A} k

{A}
īj̄∏

{A} k
{A}
īj̄

!
(4.5.31)

×
∏
i

P κi0i (−2v̄i · P0)κ̄īP r−k̄
{11̄2̄2}

12 P r−k̄
{33̄4̄4}

34 (−2v̄1 · v̄2)k̄
{11̄2̄2}

(−2v̄3 · v̄4)k̄
{33̄4̄4}

Here κi and κ̄ī are defined as:

κi =
∑
{A}(3i)

(β{A} −
∑
α∈{A}

k
{A}
iα ) +

∑
{B}(3(ii))

β{B} +
∑
{B}(3i)

k̄{B} ,

κ̄ī =
∑
{A}(3ī)

(β{A} −
∑
α∈{A}

k
{A}
īα

) +
∑

{B}(3(iīi))

β{B} +
∑
{B}(3i)

k{B} . (4.5.32)

Note that {B} = {L} ∪ {R} , and α runs over i and ī. The summation
∑̃

is given by:

∑̃
r,β,k

=
∑̃
r

∑
β{A},β{L},β{R}

m+
0 !n01!n02!m−0 !n03!n04!

(J !)2

(J − 2r)!

2J−2r

r!∏
{L} β

{L}!

r!∏
{R} β

{R}!
(4.5.33)

×
∑

∑
(αβ) k

{A}
(αβ)

=β{A}

∑
k{11̄2̄2},k{33̄4̄4}

(−1)
∑
{A} k

{A}
(1)(3)

+k
{A}
(2)(4)

β{11̄2̄2}!

k{11̄2̄2}!k̄{11̄2̄2}!

β{33̄4̄4}!

k{33̄4̄4}!k̄{33̄4̄4}!
.

By substituting (4.5.31) into (4.5.17) and using the generalized Symanzik star-formula, the inte-

gration (4.5.17) can be expressed into the Mellin representation as:

I(nL,nR)
ν,J (Pi, Zi) = πh

(
4∏
i=1

mi!

Γ(γ̃0i)

)∑
{a,b}

∫ i∞

−i∞

dδ̃12dδ̃13

(2πi)2
P̃

(0)(nL,nR)
ν,J (δ̃ij , aij , bij)

× 1

Γ(δ̃12)Γ(δ̃34)

∏
i 6=j

(−2v̄i · Pj)aij
aij !

∏
i<j

(−2v̄i · v̄j)bij

bij !
Γ(δ̃ij)P

−δ̃ij
ij (4.5.34)

Now the Mellin variables {δ̃ij , aij , bij} satisfy the conditions;

∑
j(6=i)

(bij + aij) = li ,
∑
j(6=i)

(δ̃ij − aji) = ∆i , (4.5.35)

where aij 6= aji and bij = bji are non-negative integers. The range of summation of aij and bij

restricted by the first constraint, and the second constraint of δ̃ij is shifted from the scalar case
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(4.2.5) by aij and bij . Here P̃
(0)(nL,nR)
ν;J is

P̃
(0)(nL,nR)
ν,J (δ̃ij , aij , bij) ≡

∑̃
r,β,k

1

(−2)
∑
imi+n12+n34

∏
i

(γ̃0i − κi)κi(mi + 1)κ̄ī

×Γ(δ̄12)Γ(δ̄34)
b12!

(b12 − n12 − k̄{11̄2̄2})!

b34!

(b34 − n34 − k̄{33̄4̄4})!

×
∏
(ij)

(δ̃ij)∑
{A} k

{A}
ij∏

{A} k
{A}
ij !

∏
(̄ij)

(aij −
∑
{A} k

{A}
īj

+ 1)∑
{A} k

{A}
īj∏

{A} k
{A}
īj

!

∏
(̄ij̄)

(bij −
∑
{A} k

{A}
īj̄

+ 1)∑
{A} k

{A}
īj̄∏

{A} k
{A}
īj̄

!
,

(4.5.36)

Notice that δ̃ij depend on the integers aij and bij due to the condition (4.5.35). We have also

defined δ̄12 and δ̄34 as:

δ̄12 ≡ δ̃12 − γ̃12 + n12 + r − k̄{11̄2̄2} , (4.5.37)

δ̄34 ≡ δ̃34 − γ̃34 + n34 + r − k̄{33̄4̄4} . (4.5.38)

In the Mellin representation, the combinations of Pi and v̄i give the elements of tensor structures

v̄1 · P3 =
P23

P12
V1,23 , v̄1 · P4 =

P24

P12
V1,24 , v̄2 · P3 = −P13

P12
V2,13 , v̄2 · P4 = −P14

P12
V2,14 ,

v̄3 · P1 =
P14

P34
V3,41 , v̄3 · P2 =

P24

P34
V3,42 , v̄4 · P1 = −P13

P34
V4,31 , v̄4 · P2 = −P23

P34
V4,32 .

(4.5.39)

These are proportional to Vi,jk and the products of v̄i relate to Hij and Vi,jk

v̄1 · v̄2 =
H12

P12
, v̄1 · v̄3 =

−P12P34H13 + 2P14P23V1,23V3,41

P12P34P13
, (4.5.40)

v̄3 · v̄4 =
H34

P34
, v̄1 · v̄4 =

P12P34H14 − 2P13P24V1,24V4,31

P12P34P14
,

v̄2 · v̄3 =
P12P34H23 − 2P13P24V2,13V3,42

P12P34P23
, v̄2 · v̄4 =

−P12P34H24 + 2P14P23V2,14V4,32

P12P34P24
.

Now Pi · v̄j and v̄i · v̄j become the elements of tensor structure for the four point case instead of

Vi,jk and Hij . Next we rescale the tensor structures as:

(−2v̄i · v̄j)→ H̃ij ≡
(
−2v̄i · v̄j
Pij

)
, (−2v̄i · Pj)→ Ṽij ≡

(
−2v̄i · Pj
Pij

)
. (4.5.41)

Here we defined new tensor structures H̃ij and Ṽij . After this rescaling, δ̃ij are shifted as δ̃ij → δij ,

and (4.5.34) becomes (4.5.2), and the constraint for δij are changed as in (4.5.3). Now δ̄12 and δ̄34
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are:

δ̄12 = δ12 − γ̃12 + n12 + r − k̄{11̄2̄2} + b12

= δ12 −
τ̃1 + τ̃2 − τ̃+

0

2
+ d12 , (4.5.42)

δ̄34 = δ34 − γ̃34 + n34 + r − k̄{33̄4̄4} + b34

= δ12 −
τ̃3 + τ̃4 − τ̃−0

2
+ d34 . (4.5.43)

where d12 and d34 are defined as:

d12 = r + b12 − n12 − k̄{11̄2̄2}, d34 = r + b34 − n34 − k̄{33̄4̄4}. (4.5.44)

Note that d12 and d34 are non-negative integers because due to the factor in the Mack polynomial

1
(b12−n12−k̄{11̄2̄2})!

= 1
Γ(b12−n12−k̄{11̄2̄2}+1)

, if b12−n12−k̄{11̄2̄2} < 0 , this factor becomes zero. Therefore

only b12 which is greater than n12 + k̄{11̄2̄2} can contribute, and for the same reason, we can regard

d34 as a non-negative integer. Now we can decompose the gamma functions Γ(δ̄12) and Γ(δ̄34) as:

Γ(δ̄12) = Γ(δ̂12)(δ̂12)d12 , Γ(δ̄34) = Γ(δ̂34)(δ̂34)d34 , (4.5.45)

where δ̂12 and δ̂34 are defined in (4.5.5). The other δ̃ij are also shifted as

δ̃ij → δij = δ̃ij − dij , dij ≡ aij + aji + bij . ( ij ∈ (ij) ) (4.5.46)

Substituting this decomposition into (4.5.34), we obtain the Mellin representation (4.5.2).

4.5.2 Simple Examples

In the previous section, we have seen the general expression of the conformal integral with

spinning fields. The general expression is somewhat complicated, in this section we will consider

some simple examples of Mellin representations for specific conformal integrals.

Example-1: nL = nR = 0

The first example is the conformal integral of two three point functions which contain only Vi,jk

and Pij .

I(0,0)
ν,J (Pi, Zi) =

1

J ! (h− 1)J

∫
∂
dP0


∆1 ∆2 h+ iν

l1 l2 J

0 0 0

 ·


∆3 ∆4 h− iν

l3 l4 J

0 0 0

 . (4.5.47)
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In this case, it is easier to perform the integration, and we obtain the following expression:

I(0,0)
ν,J (Pi, Zi) = πh

(
4∏
i=1

li!

Γ(γ̃0i)

) ∑
aij ,bij

∫ i∞

−i∞

dδ12dδ13

(2πi)2
(4.5.48)

×P̃ (0,0)
ν.J (δij , aij , bij)

Γ(δ̂12)Γ(δ̂34)

Γ(δ12)Γ(δ34)

∏
i 6=j

Ṽ
aij
ij

aij !

∏
i<j

H̃
bij
ij

bij !
Γ(δij)P

−δij
ij .

Now γ̃ij are the same as (4.5.18) for mi = li, m
±
0 = J and nij = 0 . δ̂12 and δ̂34 are

δ̂12 = δ12 − γ̃12 , δ̂34 = δ34 − γ̃34 . (4.5.49)

Here the generalized Mack polynomial P̃
(0,0)
ν.J (δij , aij , bij) is given as:

P̃
(0,0)
ν.J (δij , aij , bij) =

1

(−2)
∑4
i=1 li

[J/2]∑
r=0

(−1)r
J !(J + h− 1)−r

r! 2J
(δ̂12)r+b12(δ̂34)r+b34 (4.5.50)

×
∑

∑
kij=J−2r

(−1)k24+k13
∏
(ij)

(δij)kij+dij
kij !

4∏
i=1

(
γ̃0i − J + r +

∑
j

kji

)
J−r−

∑
j kji

.

This polynomial has almost the same form as the scalar case (4.3.14), except for some additional

Pochhammer symbols and the over all factors. The definition of dij is the same as in (4.5.46).

Example-2: nL = nR = n(J) = (J, 0, 0)

Next we consider the case with nL = nR = n(J) = (J, 0, 0) :

I(n(J),n(J))

ν,J (Pi, Zi) ≡
1

J ! (h− 1)J

∫
∂
dP0


∆1 ∆2 h+ iν

l1 l2 J

J 0 0

 ·


∆3 ∆4 h− iν

l3 l4 J

J 0 0

 .(4.5.51)

Here we suppose that l2 ≥ J and l4 ≥ J to keep mi non-negative integers. The differential

operator DZ0 and the polarization vector Z0 are contained only in H02 and H04 respectively, and

the contraction between DZ0 and Z0 are evaluated only through H02 and H04 instead of V012 and

V0,34 as in the scalar case (4.3.5). Now we have to evaluate the following combination:

1

J !(h− 1)J
(2P0 · C2 · DZ0)J (2P0 · C4 · Z0)J . (4.5.52)

This type of combination gives the Gegenbauer polynomial in general as in (4.3.5). In this case,

however, because (−4P0 · Ci · Ci · P0) = 0, the terms of the polynomial are reduced, and the
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combination is equivalent to (−4P0 ·C2 ·C4 ·P0)J . After the similar calculation, we can obtain the

following generalized Mack polynomial:

P̃
(n(J),n(J))

ν.J (δij , aij , bij) =
J !

2J

∑
∑
k=J

(−1)k24+k2̄4̄
1

(−2)
∑
i li−2J

(4.5.53)

×(m2 + 1)κ̄2(m4 + 1)κ̄4(γ̃02 − κ2)κ2(γ̃04 − κ4)κ4(δ̂12)b12(δ̂34)b34

×(δ13)d13(δ14)d14(δ23)d23

(δ24)d24+k24

k24!

(a24 − k2̄4 + 1)k2̄4

k2̄4!

(a42 − k4̄2 + 1)k4̄2

k4̄2!

(b24 − k2̄4̄ + 1)k2̄4̄

k2̄4̄!
.

Note that there is no r-summation because of the reduction of the Gegenbauer polynomial, and we

have only the summation in k. In this example, only β{2̄24̄4}(= J) is non-zero, and these kαβ in

(4.5.53) correspond to k
{2̄24̄4}
αβ in the general case. κi and κ̄i are given as

κ2 = J − k24 − k24̄ , κ4 = J − k24 − k2̄4 ,

κ̄2 = J − k2̄4 − k2̄4̄ , κ̄4 = J − k24̄ − k2̄4̄ , (4.5.54)

and the others are zero. The definition of dij is the same as before.

Here we end with a couple of short comments about the possible future directions. So far, we

have considered only the Mellin representation of the spinning four-point functions, it would be

interesting also to consider the higher point functions involving symmetric traceless tensor fields.

Although it is still difficult to obtain the explicit form, we can count the number of independent

variables through the generalized Symanzik formula which is useful even for n-point functions.

Counting the number of discrete Mellin variables arising in this general case, there are altogether
3n(n−1)

2 of {aij , bij}7, however among them there are also n constraints, the numbers of independent

discrete Mellin variables is n(3n−5)
2 . Again, this number matches with the counting of flat space

independent elements of tensor structures. It would also be interesting to generalize our analysis

to more general representations, while here we consider only symmetric traceless operators. There

are already some works related to such a direction [51,71,72].

7 Here we assumed that n < d, where d is the number of the Euclidean spacetime dimensions.
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Chapter 5

Towards the Crossing Kernel

So far, in the previous sections, we saw how the conformal block decompositions of some diagrams

are obtained, and then the conformal partial wave(CPW) and its orthogonality played a crucial

role. Especially, in section 3.4, it is discussed that an exchange diagram is simply expressed in

terms of CPW via the AdS harmonic function. It happened because the exchange diagram and

CPW are associated with the same channel, in fact, we have considered only s-channel exchange

diagram and s-channel CPW. The next natural question is what kind of decomposition can be

obtained from t- or u-channel exchange diagrams, and in order to answer this question, we have to

compute the inner product between CPWs in different channels, for example,

(
Ψ

(t),∆i

h+iν,J ,Ψ
(s),d−∆i

h−iν′,J ′
)

(5.0.1)

where Ψ(t) is the t-channel CPW, the explicit definition is given later. We also denote the CPW

in s-channel as Ψ(s) to indicate the channel explicitly. Exchange diagrams in t-channel are readily

expanded in the t-channel CPW, therefore once we could compute this inner product, we can

know what kind of contributions come from a t-channel diagram into s-channel conformal block

decomposition. The inner product in (5.0.1) is called the crossing kernel.

The crossing kernel is important in the conformal bootstrap because through the crossing kernel,

we can expand t-channel conformal block in s-channel conformal blocks. Then both sides of the

crossing equation are written in terms of s-channel quantity, and it becomes easy to find solutions

to this equation. In the procedure of the bootstrap approach introduced in 4, we have to consider

exchange diagram in different channels and tune the coupling constant so that there is no double

trace contribution in the whole summation. It is known that exchange diagram in t- or u- chan-

nel give s-channel conformal blocks for double trace operators. The crossing kernel provides the
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coefficients of these contributions. More explicitly, through the following equation:

Ψ
(t),∆i

h+iν,J(xi) =
∞∑
J=0

∫ i∞

−i∞

dν

nν,J

(
Ψ

(t),∆i

h+iν,J ,Ψ
(s),d−∆i

h−iν′,J ′
)

Ψ
(s),∆i

h+iν′,J ′ , (5.0.2)

we can know what kind contributions come from the t-channel quantities. Once we could compute

the inner product, the pole structure in the ν-plane tells us the spectrum of the dimensions and

the residues become the expansion coefficients. After the ν-integral, through the relation between

s-channel CPW and conformal blocks, we could expand t-channel CPW in terms of s-channel

conformal blocks. In this way, it seems that the crossing kernel helps to solve the crossing equation

and it is a key quantity in the bootstrap problem.

There are some previous works trying to calculate this inner product [73, 74] , however, it have

not yet been understood the pole structure of this inner product. In one dimension, because there

is only one cross ratio, the calculation is reduced to simple Mellin integrals, and this inner product

can be evaluated [75]. The technique in one dimension is used to analyzed the SYK model [76] .

There we can see the poles corresponding to the double trace contributions after the integrations.

Recently, it is pointed out that in the calculation of inner products, once we went to the Lorentzian

space by the Wick rotation of coordinates, the range of the coordinate integral can be reduced to

the integral around the cuts associated with the conformal blocks [36,37]. This is formulated as the

so-called Lorentzian inversion formula. By using this technique and the analytic form of conformal

blocks for two or four dimensions, the crossing kernel is calculated in [38] . There again we can see

the double trace poles in the result of the calculation. However, in the general d-dimension, the

pole structure of crossing kernel is not known.

In the following sections, we will see that the bulk interpretation of the crossing kernel in section

5.1, and in section 5.2, we will see that it can be represented as Mellin integrals.

5.1 Bulk interpretation

So far, we have considered s-channel CPWs which are defined as a combination three-point functions

associated with points (x1, x2, x0) and (x3, x4, x0) , however, of cause we can defined t- or u-channel

CPW gluing three-point functions in different ways. For example the t-channel CPW is defined as:

Ψ
(t),∆i

h+iν,J(xi) =

∫
Rd
ddx0 〈O∆1(x1)O∆4(x4)Oh+iν,J(x0)µ1...µJ 〉1〈Õh−iν,J(x0)µ1...µJO∆2(x2)O∆3(x3)〉1 .

(5.1.1)
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The Mellin representation and bulk representation for t-channel CPW are obtained by exchanging

2↔ 4 or 1↔ 3 .

We can write the bulk diagram corresponding to the crossing kernel 5.0.1 in the same way as

in discussed in section 3.5. Using the bulk expression of the conformal partial wave (3.5.2) and

the definition of the AdS harmonic function (3.3.1), we can obtain the crossing kernel as a bubble

diagram in bulk:

(
Ψ

(t),∆i

h+iν,J ,Ψ
(s),d−∆i

h−iν′,J ′
)

= N (t),(s)

[
1

J !(h− 1
2)J

]2 [
1

J ′!(h− 1
2)′J

]2 ∫
dX12dX34dX14dX23

vol (SO(1, d+ 1))

×(K14 · ∇14)J Ωα1(X12, X14) (K12 · ∇12)J
′
Ωα2(X12, X23)

×(K23 · ∇23)J Ωα3(X23, X34) (K34 · ∇34)J
′
Ωα4(X14, X34)

×Ων,J(X13, X24;W 13,W 24) Ων′,J ′(X
12, X34;W 12,W 34) , (5.1.2)

where the coefficient N (t),(s) is defined as follows:

N (t),(s) =
1

B∆1,∆4

h+iν,JB
∆2,∆3

h−iν,JB
d−∆1,d−∆2

h−iν′,J ′ Bd−∆3,d−∆4

h+iν′,J ′

(
4∏
i=1

π

α2
i

)
π2

ν2 ν ′2
. (5.1.3)

Here we have introduced αi again in the same way as before: ∆i = h + iαi . The picture of this

Figure 5.1: Crossing kernel as a bulk bubble diagram.

bubble diagram is given in Fig. 5.1 . Because in the t-channel the combination for the three-point

functions are different from the s-channel case, in this case, the inner product is represented as a

tetrahedron diagram. In order to compute this diagram, we have to perform the bulk integration,

however, each bulk integral has the following form:∫
dY Ων1(X1, Y )(KY · ∇Y )JΩν2(X2, Y )Ων3,J(X3, Y ;W3,WY ) (5.1.4)
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This integral differs from the function Ξ which we have calculated in section 3.5 before. Now the

scalar harmonic functions do not share the endpoints, and this integral depends on three points

X1,2,3 . Therefore we cannot expand this integral in terms of the AdS harmonic function which is a

basis for functions depending on two bulk points. It seems difficult to perform this integral exactly,

and in the next section, we will see that this quantity can be evaluated as Mellin integrals.

5.2 Mellin representation

Here we try to compute the crossing kernel in a different way. Substituting the original definition of

t- and s-channel CPW, the inner product can be expressed as integrals of four three-point functions:

(
Ψ

(t),∆i

h+iν,J ,Ψ
(s),d−∆i

h−iν′,J ′
)

=

∫
ddP0...d

dP5

vol (SO(d+ 1, 1))

1

J !(h− 1)J

1

J ′!(h− 1)′J
(5.2.1)

×〈O∆1(P1)O∆2(P2)Oh−iν′,J ′(P5,DZ5)〉1〈Õh+iν′,J ′(P5, Z5)O∆3(P3)O∆4(P4)〉1

×〈O∆1(P1)O∆4(P4)Oh+iν,J(P0,DZ0)〉1〈Õh−iν,J(P0, Z0)O∆2(P2)O∆3(P3)〉1 .

Here there are six integrals for Pi (i = 0, ..., 5) where P0 and P5 integrations come from the

definitions of CPWs. In the below we will try to evaluate some of these integral for the simplest

case J = J ′ = 0 using the Symanzik formula and see it can be represented as four Mellin integrals.

In the scalar case, the integrals become:

(
Ψ

(t),∆i

h+iν,0,Ψ
(s),d−∆i

h−iν′,0

)
=

∫
ddP0...d

dP5

vol (SO(d+ 1, 1))

1

P γ12
12 P γ34

34 P γ14
14 P γ23

23

∏4
i=1 P

γ0i
0i P

γi5
i5

, (5.2.2)

where γij are given by

γ01 = −a(t) +
h+ iν

2
, γ02 = −b(t) +

h− iν
2

, γ03 = b(t) +
h− iν

2
, γ04 = a(t) +

h+ iν

2
, (5.2.3)

γ15 = a(s) +
h− iν ′

2
, γ25 = −a(s) +

h− iν ′

2
, γ35 = −b(s) +

h+ iν ′

2
, γ45 = b(s) +

h+ iν ′

2
,

γ12 =
2d−∆+

12 − h+ iν ′

2
, γ34 =

2d−∆+
34 − h− iν ′

2
, γ14 =

∆+
14 − h− iν

2
, γ23 =

∆+
23 − h+ iν

2
.

Here a(t) = ∆41/2 and b(t) = ∆32/2 , a(s) and b(s) are the same as a and b defined before. We

can easily perform the P1-integration and through the symanzik formula, it introduces two Mellin

integrations:

∫
dP1

1

P γ12
12 P γ15

15 P γ14
14 P γ01

01

= N1

∫ i∞

−i∞

dδ02δ04

(2πi)2

∏
i<j∈{0,2,4,5}

Γ(δij)P
−δij
ij (5.2.4)
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Here the index i and j run over {0, 2, 4, 5} and δij satisfies the conditions:
∑

j(6=i) δij = γi1 . In

the above integral, we have chosen δ02 and δ04 are the integration variables and the other δij are

written in terms of δ02 and δ04 through the conditions. The coefficient N1 is given by:

N1 = πh
∏

i∈{0,2,4,5}

1

Γ(γi1)
(5.2.5)

Similarly, the P3-integral is also evaluated:

∫
dP3

1

P γ23
23 P γ35

35 P γ34
34 P γ03

03

= N3

∫ i∞

−i∞

dδ̃02δ̃04

(2πi)2

∏
i<j∈{0,2,4,5}

Γ(δ̃ij)P
−δ̃ij
ij , (5.2.6)

where δ̃ij satisfy
∑

j(6=i) δ̃ij = γi3 and the coefficient N3 is give by:

N3 = πh
∏

i∈{0,2,4,5}

1

Γ(γi3)
(5.2.7)

Now the crossing kernels for scalars is given by the following integrals:

(
Ψ

(t),∆i

h+iν,0,Ψ
(s),d−∆i

h−iν′,0

)
= N1N3

∫ i∞

−i∞

dδ02δ04dδ̃02δ̃04

(2πi)4

∏
i<j∈{0,2,4,5}

Γ(δij)Γ(δ̃ij) (5.2.8)

×
∫

dP0dP2dP4dP5

vol (SO(d+ 1, 1))

1

P γ02
02 P γ04

04 P γ25
25 P γ45

45

∏
i<j∈{0,2,4,5}

1

P
δij
ij P

δ̃ij
ij

Here we can evaluate one more coordinate integral, for example the P2-integral can be evaluated

as a usual three-point integral:∫
dP2

1

P γ02+δ02+δ̃02
02 P γ25+δ25+δ̃25

25 P δ24+δ̃24
24

(5.2.9)

= πh
Γ(δ̂05)Γ(δ̂45)Γ(δ̂04)

Γ(γ02 + δ02 + δ̃02)Γ(γ25 + δ25 + δ̃25)Γ(δ24 + δ̃24)

1

P δ̂05
05 P

δ̂45
45 P

δ̂04
04

,

where δ̂ij are defined as below:

δ̂05 =
∆21 + ∆43

2
+ δ02 + δ04 + δ̃02 + δ̃04 , δ̂45 =

∆32 + h+ iν

2
− δ02 − δ̃02 ,

δ̂04 =
∆14 + h− iν

2
− δ04 − δ̃04 . (5.2.10)
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After the P2-integration, the remaining integrals are just kinematical ones and can be evaluated by

using the conformal symmetry as in section 2.7:∫
dP0dP4dP5

vol (SO(d+ 1, 1))

1

P h05P
h
04P

h
45

=
1

vol (SO(d− 1))
. (5.2.11)

Then the inner product becomes four Mellin integrations as follows:

(
Ψ

(t),∆i

h+iν,0,Ψ
(s),d−∆i

h−iν′,0

)
=

N1N3

vol (SO(d− 1))

∫ i∞

−i∞

dδ02δ04dδ̃02δ̃04

(2πi)4

∏
i<j∈{0,2,4,5}

Γ(δij)Γ(δ̃ij)

× Γ(δ̂05)Γ(δ̂45)Γ(δ̂04)

Γ(γ02 + δ02 + δ̃02)Γ(γ25 + δ25 + δ̃25)Γ(δ24 + δ̃24)
.(5.2.12)

The gamma functions in the integrand depend on δ02 , δ04 , δ̃02 and δ̃04 through the equations

(5.2.10) and conditions which δij and δ̃ij satisfy. Note here a similar form of integration can be

found in [74] . We can perform these Mellin integral naively picking up the relevant poles coming

from gamma functions, however, then the pole integrations produce infinite summations. Now

we are interested in pole structure in the ν-plane of this inner product, and if there are infinite

summations, it is difficult to see the correct pole structure in general. In some special cases, the

result of this type of Mellin integration can be resumed and can be written in terms of gamma

functions or hypergeometric functions as in section A . In this case, there are fifteen gamma functions

in the numerator and three gamma functions in the denominator, and as far as we know, there is

no useful mathematical formula in order to evaluate this integration. In the case including spinning

CPW, we can evaluate the inner product in a similar way, and eventually, we reach the same kind

of Mellin integrations.
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Chapter 6

Conclusion and Future directions

In this thesis, we have discussed some kinematic aspects of d-dimensional Euclidean conformal

field theory (CFT) and diagrams in the (d+ 1)-dimensional Euclidean AdS space. Recently there

are some developments on analysis using orthogonal basis in CFT and AdS diagram. In the CFT

side, the conformal partial wave (CPW) forms a basis for four-point functions, and in AdS space,

the AdS harmonic function forms a basis for AdS propagators. Thanks to these useful function, we

could compute correlation functions or AdS diagrams systematically. As other recently developed

concepts, we have also discussed geodesic diagrams and Mellin representations. Here we will give

a summary for each chapter and discuss future directions.

Conformal Field Theory in d-dimension

As significant progress in d-dimensional CFT, in [7,8], the conformal blocks are characterized as

eigenfunctions of the conformal Casimir equation and in even dimensions, the closed forms are dis-

covered. The CPW which is defined as a product of two three-point functions is also eigenfunction

of the Casimir equation, and it forms an orthogonal basis for four-point functions. Another nice

property of CPW is that it is written as a linear combination of conformal blocks [67], according to

this fact, we can systematically obtain the conformal block expansion of four-point functions. This

procedure is encoded as the (Euclidean) inversion formula which is formulated in [36, 37] . These

techniques are related to the harmonic analysis for the Lorentz group SO(1, d + 1) corresponding

to the conformal symmetry in d-dimensional Euclidean space [35, 77]. Recently, this method is

applied to an analysis of the SYK model [76] or the fishnet theory [78] , and also computation of

anomalous dimensions [79,80] .

In chapter 2, we have given a simple example to show the use of inversion formula for the case

of the generalized free theory. Another direction we discussed is the extension including external

symmetric traceless tensors. In this discussion, the embedding formalism is quite useful, and the
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possible tensor structures are parametrized by using the simple elements Vi,jk and Hij . By using the

differential operators, the spinning three-point functions are constructed from three-point functions

with (0, 0, J) spin. The CPWs with external spins are also defined applying the differential operator

to the scalar CPW [47, 49]. The extension including general representations is recently developed

in [51].

Diagrams in AdS Space

In the context of the AdS/CFT correspondence, correlation functions in large N CFT are com-

puted as tree diagrams in AdS of the dual bulk theory. In the CFT side, there are some con-

straints on the conformal block decomposition, unitarity, crossing symmetry, etc. There are some

works trying to solve these constraints for simple theories, and find corresponding diagrams in AdS

space [17–19]. From these points of view, we are interested in what kind of conformal blocks are

coming from a diagram in AdS space. To answer this question, the inversion formula is also useful.

We have seen that CPW can be lifted to AdS space, and there the AdS harmonic function plays

a role as an AdS analog for CPW. Through the inversion formula, we have seen the conformal

block expansion of tree contact and exchange diagrams. Not only to obtain the conformal block

expansion of bulk diagrams but also as a calculation tool, the bulk interpretation is useful. For

example, we have seen how the orthogonality of CPW is working via the bulk interpretation, then

the property of AdS harmonic function made the computation transparent.

In chapter 3, we also discuss geodesic diagrams which are proposed the bulk dual of conformal

block [20] . In the spectral representation, the usual exchange diagrams contain the double trace

poles not only the single trace pole, however, the four-point geodesic diagrams do not contain such

redundant contributions. Therefore there is only the single trace pole, and this corresponds to a

conformal block [1]. The extension involving external spins is also discussed. By parameterizing

the bulk interactions properly, we can see the correspondence between the bulk interactions and the

tensor structures [58,59]. In the case of geodesic diagrams, once the interactions are parametrized

properly, these form a basis for CFT tensor structures [1, 23]. So far we have considered only

symmetric traceless tensors, and for extensions to other representations, there are some works

[24,25].

Mellin Representation

It is pointed out in [26, 27] that CFT correlation functions have relatively simple forms in the

Mellin space, and there, they become analogous form to amplitudes in frat space. From computa-

tions of AdS diagrams, through the Symanzik formula [60], Mellin integrations naturally appear,

and also it has a similar form to the QFT amplitude [28] . In fact, taking the flat space limit, the
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tree diagrams become tree QFT amplitudes [28,62,65].

In section 4, we have discussed the Mellin representation of come simple tree diagram and from

these expressions, we can also derive the conformal block expansion. The Mellin representation

of CPW is also argued, then in the integrand, the so-called Mack polynomial appeared. Roughly

speaking, this polynomial is the Mellin transformation of the Gegenbauer polynomial, and plays an

essential role in the bootstrap in the Mellin space recently developed in [29, 30, 34]. The spinning

extension is also discussed. Then the CPW contains polarization vectors, not only coordinates,

and through the generalized Symanzik formula, the new Mellin variables for polarization vectors

are naturally introduced [2].

Towards the Crossing Kernel

In section 5, we discussed the crossing kernel which is the inner product of s- and t-channel

CPW. When we try to compute the s-channel conformal block decomposition of the t-channel

exchange diagram, we have to evaluate this quantity. The bootstrap approach, the crossing kernel

would be critical since through the crossing kernel, we can convert t-channel conformal block into

s-channel one. This fact may make it easy to solve the crossing equation which gives the bootstrap

conditions [10].

In another bootstrap approach in the Mellin space discussed above, the building blocks are

exchange diagrams in AdS space, and a four-point function expanded as a summation of exchange

diagrams in s-, t- and u-channels. The summation is taken over all possible intermediate exchanged

states. These exchange diagrams contain double trace contributions in the conformal block expan-

sion, and then the non-trivial constraints on the expansion coefficients are demanded so that there

are no such redundant double trace contributions after the summation. To solve this problem, the

crossing kernel seems quite useful, because it enables us to expand diagrams in different channels

in terms of the same basis. However, the actual computation is very complicated as we have seen in

section 5. We may obtain the expansion form from the Mellin representation, however, it contains

infinite summations and it makes it difficult to see the correct pole structure. In one dimensional

case, this computation works well, and the explicit form of the crossing kernel is given in [75].

Recently, via the Lorentzian inversion formula, in two and four dimensions, the crossing kernel is

computed [38]. However, in general, d-dimension, it is still an open problem.

Future Works

The computation of crossing kernel is one of the most interesting directions. From the Mellin

representation, we have obtained the expansion form of CPW, and this expression may help us

compute the crossing kernel. Once we could succeed in computing it, the poles in the ν-plane
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tell us what kind of contribution comes from t-channel to s-channel. Then we may extract some

non-trivial conditions for OPE coefficients from the bootstrap constraints. The extension to other

representation might be interesting. In the CFT side, the generalization of the differential operators

to create general representations are available [51]. These differential operators can be applied to

AdS diagrams also, therefore we could discuss the AdS diagrams with general representation in a

parallel way. In three dimension, there are only symmetric traceless tensor fields in the possible

representation. Therefore our discussion becomes exact. It is also interesting to consider the

bootstrap problem involving spinning fields in three dimensions.

Another direction is to consider loop diagrams or more complicated diagrams. In the AdS/CFT

correspondence, the loop diagrams appear in the next leading order in the large N expansion. For

four-point diagrams, the loop diagrams are also expanded by CPWs and through the inversion

formula, we can obtain the conformal block expansion. The most simple loop diagram is computed

in [28] .

In this thesis, we have considered Euclidean d-dimensional CFT and Euclidean (d+1)-dimensional

AdS space. Almost all of the things we have discussed so far can be converted into the Lorentzian

space probably. However there are some non-trivial things, for example, in the Lorentzian space,

there is no geodesic connecting time-like separated boundary points. The analog of geodesic dia-

grams in the Lorentzian space is already discussed in [81] . It would be interesting to consider some

concepts in the Lorentzian space again, CPW, inversion formula, etc.

In the end, it is desirable to develop the technique of bootstrap in d-dimensional CFT and

understanding of the AdS/CFT correspondence, from kinematical points of view, we discussed in

this thesis.
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Appendix A

Formulae for Hypergeometric

Functions

In this appendix, some useful formulae for generalized hypergeometric functions are summarized.

First of all, the generalized hypergeometric function is defined as the following series expansion.

pFq

 a1, ..., ap

b1, ..., bq
;x

 =

∞∑
n=0

1

n!

(a1)n...(ap)n
(b1)n...(bq)n

xn , (A.0.1)

where (a)n is the Pochhammer symbol defend as (a)n = Γ(a + n)/Γ(a) . The simplest example is

the exponential function when 0F0(−;−;x) = ex . By the definition, it is shown that a function

p+1Fq+1 can be created by a function of pFq through the following integral:

p+1Fq+1

 a1, ..., ap, c

b1, ..., bq, d
; x

 =
Γ(d)

Γ(c)Γ(d− c)

∫ 1

0
dt tc−1(1− t)d−c−1

pFq

 a1, ..., ap

b1, ..., bq
; tx

(A.0.2)

This integral is called the Euler integral for generalized hypergeometric functions.

Another important expression is obtained by the Mellin transformation. The Mellin represen-

tation of hypergeometric function is given by the inverse Mellin transformation of the following

gamma functions:

pFq

 a1, ..., ap

b1, ..., bq
; x

 =

∏q
m=1 Γ(bm)∏p
m=1 Γ(am)

∫ i∞

−i∞

ds

2πi

Γ(−s)
∏p
m=1 Γ(am + s)∏q

m=1 Γ(bm + s)
(−x)s (A.0.3)

The integration contour is taken as in Fig.A.1 . We can show that this integral reproduce the original

series expansion picking up poles which come form the gamma function Γ(s) . The integration

contour is taken to above the irrelevant poles.
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Figure A.1: The integration contour for the Mellin integral. The black points are poles coming from gamma
functions. The contour is deformed so that it does not cross the series of poles.

From the Mellin transformation of hypergeometric function, we can also derive the integration

formula:

∫ ∞
0

dxxα−1
pFq

 a1, ..., ap

b1, ..., bq
; −x

 =

∏q
m=1 Γ(bm)∏p
m=1 Γ(am)

Γ(α)
∏p
m=1 Γ(am − α)∏q

m=1 Γ(bm − α)
(A.0.4)

For convenience, we will list some formulae in below. A Mellin integration with four gamma

functions are computed as:

∫ i∞

−i∞

ds

2πi
Γ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s) =

Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
. (A.0.5)

this formula is known as the first Barnes lemma. Again the contour is taken as the same way as in

Fig.A.1. We can show this formula using the following property of Gauss’s hypergeometric function

2F1:

2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

(A.0.6)

As a deformation of the first lemma, the following integral including x actually gives a hypergeo-

metric funtion:∫
ds

2πi
xs Γ(a+ s)Γ(b+ s)Γ(c− s)Γ(d− s) (A.0.7)

=
Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
xc 2F1(a+ c, b+ c; a+ b+ c+ d; 1− x)
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=
Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
xd 2F1(a+ d, b+ d; a+ b+ c+ d; 1− x)

In the first line, we used the the following identity:

2F1(a, b; c;x) =
Γ(c)Γ(a+ b− c)

Γ(a)Γ(b)
(1− x)c−a−b 2F1(c− a, c− b; c− a− b+ 1; 1− x)

+
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; a+ b− c+ 1; 1− x) , (A.0.8)

and in the last line, we used the following identity:

2F1(a, b; c; 1− x) = xc−a−b2F1(c− a, c− b; c; 1− x) . (A.0.9)

As the next complicated integral, the following integral with 6 gamma functions also has a

compact form:

∫ i∞

−i∞

ds

2πi

Γ(a+ s)Γ(b+ s)Γ(c+ s)Γ(d− s)Γ(−s)
Γ(a+ b+ c+ d+ s)

=
Γ(a)Γ(b)Γ(c)Γ(a+ d)Γ(b+ d)Γ(c+ d)

Γ(b+ c+ d)Γ(a+ c+ d)Γ(a+ b+ d)

(A.0.10)

This integral is known as the second Barnes lemma. As a more general case, when the argument

of the gamma function in the denominator is arbitrary, the result is written in terms of 3F2:∫
ds

2πi

Γ(a+ s)Γ(b+ s)Γ(c+ s)Γ(d− s)Γ(−s)
Γ(e+ s)

=
Γ(a+ d)Γ(b+ d)Γ(a)Γ(b)Γ(c)

Γ(a+ b+ d)Γ(e)
3F2

 a, b, e− c

a+ b+ d, e
; 1

 (A.0.11)

As for 3F2 at x = 1, the following relation is hold:

3F2

 a, b, c
d, e,

; 1

 =
Γ(e)Γ(d+ e− a− b− c)
Γ(e− a)Γ(d+ e− b− c)3F2

 a, d− b, d− c

d, d+ e− b− c,
; 1

 . (A.0.12)

A Mellin integration with eight gamma functions is computed as follows:

∫ i∞

−i∞

ds

2πi

Γ(a1 + s)Γ(a2 + s)Γ(a3 + s)Γ(b1 − s)Γ(b2 − s)Γ(b3 − s)
Γ(c1 + s)Γ(c2 − s)

(A.0.13)

=
Γ(a2 − a1)Γ(a3 − a1)Γ(b1 + a1)Γ(b2 + a1)Γ(b3 + a1)

Γ(c1 − a1)Γ(c2 + a1)
4F3

 b1 + a1, b2 + a1, b3 + a1, 1− c1 + a1

1− a2 + a1, 1− a3 + a1, c2 + a1

; 1
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+
Γ(a1 − a2)Γ(a3 − a2)Γ(b1 + a2)Γ(b2 + a2)Γ(b3 + a2)

Γ(c1 − a2)Γ(c2 + a2)
4F3

 b1 + a2, b2 + a2, b3 + a2, 1− c1 + a2

1− a1 + a2, 1− a3 + a2, c2 + a2

; 1


+

Γ(a1 − a3)Γ(a2 − a3)Γ(b1 + a3)Γ(b2 + a3)Γ(b3 + a3)

Γ(c1 − a3)Γ(c2 + a3)
4F3

 b1 + a3, b2 + a3, b3 + a3, 1− c1 + a3

1− a1 + a3, 1− a2 + a3, c2 + a3

; 1


Here we evaluate the contour integration around the poles at

s = −a1 − n , s = −a2 − n , s = −a3 − n . ( where n ∈ N ) (A.0.14)

Then there are gamma functions whose arguments are Γ(... + n) and Γ(... − n) . For the gamma

function including −n, we can apply the following formula:

Γ(x− n) =
π

sin[π(x− n)]

1

Γ(1− x+ n)
=

π

sin[π(x− n)]Γ(1− x)

1

(1− x)n
(A.0.15)

=
Γ(x)(−1)n

(1− x)n
.

Now we have Pochhammer symbols with the subscript n and these can be combined as a hyperge-

ometric function.
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Appendix B

The Symanzik Star Formula

In this section, we introduce the Symanzik formula. This formula play a crucial role when

performing the bulk or boundary integration, and we cans that this formula naturally gives Mellin

representations for n(≥ 4)-point integral.

B.1 Coordinate Integration

At first, we give a review of some integration formulae using the Schwinger parametrization to

calculate the boundary and bulk integrals.

Boundary integration

Here we consider the following boundary integration;

I∂(Pi) ≡
∫
∂
dP0

n∏
i=1

P−δii0 , (B.1.1)

where we suppose the following relation:

n∑
i=1

δi = d . (B.1.2)

By using the Schwinger parametrization for each P0i:

1

P δii0
=

1

Γ(δi)

∫ ∞
0

dti
ti

tδii e
−tiPi0 , (B.1.3)
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the integration I can be written as:

I∂(Pi) =

(
n∏
i=1

1

Γ(δi)

∫ ∞
0

dti
ti

tδii

)∫
∂
dP0 e

2P0·Q (B.1.4)

where Q ≡
∑n

i=1 ti Pi . Now P0 is parametrized as P0 = (1, x2, xµ), and if we choose Q as Q =

|Q|(1, 1,0) by using the Lorentz transformation, the P0 integration can be calculated as follows;

∫
∂
dP0 e

2P0·Q =

∫
Rd
ddx e−|Q|(1+x2) =

πh

|Q|h
e−|Q| . (B.1.5)

Using this relation, the integration I becomes:

I∂(Pi) =

(
n∏
i=1

1

Γ(δi)

∫ ∞
0

dti
ti

tδii

)
πh

|Q|h
e−|Q| . (B.1.6)

Next we will remove the factor |Q|−h . Firstly we insert a factor 1 into the integrand (B.1.6) :

1 =

∫ ∞
0

ds δ(s−
n∑
i=1

ti) , (B.1.7)

and shift ti as ti → s ti .1 Next we rescale s as s→ |Q|s, and then the factor |Q|−h is removed:2

I∂(Pi) = πh

(
n∏
i=1

1

Γ(δi)

∫ ∞
0

dti
ti

tδii

)∫ ∞
0

ds

s
she−s|Q|

2
δ(1−

n∑
i=1

ti) . (B.1.8)

To eliminate the s integration, we rescale ti again as ti → ti/
√
s , and we obtain the following form:

I∂(Pi) = 2πh

(
n∏
i=1

1

Γ(δi)

∫ ∞
0

dti
ti

tδii

)
e−
∑
i<j titjPij . (B.1.9)

Bulk integration

Next we consider the following bulk integration:

Ibulk(Pi) ≡
∫

AdS
dX

n∏
i=1

(−2Pi ·X)−δi , (B.1.10)

As similar as the boundary case, using the Schwinger parametrization, the bulk integration becomes:

Ibulk(Pi) =

(
n∏
i=1

1

Γ(δi)

∫ ∞
0

dti
ti

tδii

)∫
AdS

dX e2X·Q , (B.1.11)

1Note that then Q is also shifted; Q→ sQ .
2Here we used the relation;

∑n
i=1 δi = d .
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where Q is the same as the boundary integration case: Q ≡
∑n

i=1 ti Pi . Q can be set as Q =

|Q|(1, 1,0) by the Lorentz transformation, and using the parametrization of X: X = (1, x2 +

z2, xµ)/z , we can evaluate the bulk integration:

∫
AdS

dX e2X·Q =

∫ ∞
0

dz

z

∫
Rd

ddx

zd
e−
|Q|
z

(1+x2+z2)

=

∫ ∞
0

dz

z

πh

zh|Q|h
e−
|Q|
z

(1+z2)

=

∫ ∞
0

dz

z

πh

zh
e−z−

|Q|2
z . (B.1.12)

In the last line of (B.1.12), we scale z as z → |Q|−1z . Using this result and rescaling ti as ti →
√
zti ,

we obtain the following form:

Ibulk(Pi) = πhΓ

(∑n
i=1 δi − d

2

)( n∏
i=1

1

Γ(δi)

∫ ∞
0

dti
ti

tδii

)
e−
∑
i<j titjPij (B.1.13)

B.2 Integration for Schwinger parameters

Here we consider the remaining integral of the Schwinger parameters in (B.1.9) and (B.1.13):

Ĩ(Pi) =

(
n∏
i=1

∫ ∞
0

dti
ti

tδii

)
e−
∑
i<j titjPij . (B.2.1)

The exponential factors has the following Mellin transformation3 :

e−titjPij =

∫ i∞

−i∞

dδij
2πi

Γ(δij)(titjPij)
−δij . (B.2.3)

We use this transformation for each [ij], introducing the symmetric variables:

δij(= δji) ( for (ij) ∈ [ij] ) , (B.2.4)

where [ij] are the possible combinations of the indexes i and j exclusive of (23) and (1i) (i ≥ 2) .

For the remaining combinations, we change the variables in the following manner:

t2 t3 = m1 , t1 ti = mi , ( for i = 2 ∼ n )

3 Note that this relation is easily shown due to the fact that the gamma function has poles at −m (m ∈ N) and
the residue is

Resz=−mΓ(z) =
(−1)m

m!
. (B.2.2)
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⇔ t1 =

√
m2m3

m1
, ti =

√
m1

m2m3
mi . ( for i = 2 ∼ n ) . (B.2.5)

Then the measure is changed as:

n∏
i=1

dti =
1

2m1

(
m1

m2m3

)n
2
−1 n∏

i=1

dmi . (B.2.6)

Then the integral Ĩ becomes:

Ĩ(Pi) =
1

2

∫ i∞

−i∞
[dδ]n(n−3)

2

∏
[ij]

Γ(δij)P
−δij
ij

×

(
n∏
i=1

∫ ∞
0

dmi

mi

)
mδ23

1

(
n∏
i=2

mδ1i
i

)
e−m1P23−

∑n
i=2 miP1i , (B.2.7)

where

[dδ]n(n−3)
2

=

∏
[ij] dδij

(2πi)
n(n−3)

2

, (B.2.8)

and we define δij where (ij) = (23) or (1i) in the following manner:

δ23 =
1

2

−δ1 +
n∑
i=2

δi − 2
∑
[ij]

δij

 , δ12 =
1

2

δ1 + δ2 −
n∑
i=3

δi + 2
∑
[ij]

δij − 2
∑
i≥4

δ2i

 ,

δ13 =
1

2

δ1 + δ3 −
n∑

i(6=1,3)

δi + 2
∑
[ij]

δij − 2
∑
i≥4

δ3i

 , δ1i = −
n∑

j( 6=1,i)

δij + δi . ( for i ≥ 4 )

(B.2.9)

Now each mi integral can be replaced with the Gamma function, and we obtain the Mellin inte-

gration of Ĩ:

Ĩ(Pi) =
1

2

∫ i∞

−i∞
[dδ]n(n−3)

2

∏
i<j

Γ(δij)P
−δij
ij . (B.2.10)

Note here from (B.2.9), it is shown that δij satisfies the following relation:

∑
j( 6=i)

δij = δi . (B.2.11)

In this section, we demonstrated the Mellin transformation of Ĩ with a particular choice of the

Mellin variables as in (B.2.4). For the other choices of [ij] whose Jacobian (B.2.6) is not zero, we
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can drive the Mellin representation in the similar way. Combining these results, we obtain the

following formulae for bulk or boundary integration4:

∫
∂
dP0

n∏
i=1

(−2Pi · P0)−δi = πh

(
n∏
i=1

1

Γ(δi)

)∫ i∞

−i∞
[dδ]n(n−3)

2

∏
i<j

Γ(δij)P
−δij
ij , (B.2.12)

∫
AdS

dX
n∏
i=1

(−2Pi ·X)−δi =
πh

2
Γ

(∑n
i=1 δi − d

2

)( n∏
i=1

1

Γ(δi)

)∫ i∞

−i∞
[dδ]n(n−3)

2

∏
i<j

Γ(δij)P
−δij
ij .

B.3 Generalized Symanzik formula

Here we will generalize the Symanzik formula discussed in the previous section. A similar extension

is discussed in [82].

Boundary integration

We consider the following boundary integration including vectors Yi which satisfy Yi ·Yi = Pi ·Yi = 0:

I∂(Pi, Yi) ≡
∫
∂
dP0

n∏
i=1

(Yi · P0)ξi

(−2Pi · P0)δi
, (B.3.1)

where ξi are positive integers and we assume
∑

i(δi− ξi) = d . To calculate this integral, we use the

Schwinger parametrization for each (Pi0)−δi as in (B.1.3), and for (Yi · P0)ξi we use the following

relation:

(Yi ·X)ξi = ξi!

∮
dζi

2πi ζi
ζ−ξii eζiYi·X , (B.3.2)

where the contour of integral is a small circle around the origin. Now the boundary integral

becomes:

I∂(Pi, Yi) =

(
n∏
i=1

ξi!

Γ(δi)

∫ ∞
0

dti
ti

∮
dζi

2πi ζi
tδii ζ

−ξi
i

)∫
∂
dP0 e

2Q·P0 . (B.3.3)

Here Q is given as:

Q ≡
n∑
i=1

ti Pi +
1

2

n∑
i=1

ζi Yi . (B.3.4)

4 For the boundary integration, we assume
∑n
i=1 δi = d .
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The P0 integral is evaluated similarly as in the previous section, and we obtain:

I∂(Pi, Yi) = 2πh

(
n∏
i=1

ξi!

Γ(δi)

∫ ∞
0

dti
ti

∮
dζi

2πi ζi
tδii ζ

−ξi
i

)
e−|Q|

2
. (B.3.5)

Bulk integration

Here we consider the bulk integration whose integrand is the same as (B.3.1):

IAdS(Pi, Yi) ≡
∫

AdS
dX

n∏
i=1

(Yi ·X)ξi

(−2Pi ·X)δi
. (B.3.6)

Using the Schwinger parametrization (B.1.3) and (B.3.2), X integration is evaluated as:

IAdS(Pi, Yi) = πhΓ

(∑n
i=1(δi − ξi)− d

2

)( n∏
i=1

ξi!

Γ(δi)

∫ ∞
0

dti
ti

∮
dζi

2πi ζi
tδii ζ

−ξi
i

)
e−|Q|

2
. (B.3.7)

Here Q is the same as (B.3.4) .

Generalized Schwinger integration

Next we consider the remaining integration over the Schwinger parameter in (B.3.5) and (B.3.7):

Ĩ(Pi, Yi) =

(
n∏
i=1

∫ ∞
0

dti
ti

∮
dζi

2πi ζi
tδii ζ

−ξi
i

)
e−
∑
i<j(titjPij−

1
2
ζiζj(Yi·Yj))+

∑
i 6=j tiζj(Pi·Yj) . (B.3.8)

For the product (Yi · Yj) and (Pi · Yj), we insert the expansion of exponential function:

etiζj(Pi·Yj) =
∞∑

aij=0

1

aij !
(ti ζj)

aij (Pi · Yj)aij ,

e
1
2
ζiζj(Yi·Yj) =

∞∑
nij=0

1

nij !
(ζi ζj)

nij

(
1

2
Yi · Yj

)nij
, (B.3.9)

Here the symmetric indexes nij are symmetric: nij = nji, but aij is not. Then Ĩ becomes:

Ĩ(Pi, Yi) =

∞∑
aij=0

∞∑
nij=0

(
n∏
i=1

∫ ∞
0

dti
ti

∮
dζi

2πi ζi
t
δi+

∑
j(6=i) aij

i ζ
−ξi+

∑
j(6=i)(nij+aji)

i

)
∏
i 6=j

(Pi · Yj)aij
aij !

∏
i<j

(
1
2Yi · Yj

)nij
nij !

e−
∑
i<j titjPij . (B.3.10)

Now ξi integral is easily evaluated and this integral is zero unless
∑

j(6=i)(nij + aji) = ξi. Due to

this constraint, the summation over aij and nij is restricted into a finite region. For the ti integral,
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we can use the Symanzik formula (B.2.10), and the integral is:

Ĩ(Pi, Yi) =
1

2

∑
aij ,nij

∫ i∞

−i∞
[dδ]n(n−3)

2

∏
i 6=j

(Pi · Yj)aij
aij !

∏
i<j

(
1
2Yi · Yj

)nij
nij !

Γ(δij)P
−δij
ij , (B.3.11)

where the Mellin variables δij , aij and nij satisfy the following relation:

∑
j(6=i)

(δij − aij) = δi ,
∑
j(6=i)

(nij + aji) = ξi . (B.3.12)

Note that the first condition ensures that the total power of Pi is −δi and the second ensure that

the total power of Yi is ξi .
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Appendix C

Orthogonal polynomials

Here we introduce some orthogonal polynomials and formulae which appear in the main text.

C.1 Jacobi Transformation

Here we discuss the Jacobi transformation. For the more detail, please see [83] . The Jacobi

transformation is an expansion associated with the Jacobi function defined as:

φ(p,q)
ν (x) = 2F1

1
2(p+ q + 1)− iν , 1

2(p+ q + 1)− iν

p+ 1
;−x

 (C.1.1)

This function is related to the Jacobi polynomial:

P (p,q)
n (x) =

(p+ 1)n
n!

2F1

−n , 1 + p+ q + n

p+ 1
;
1

2
(1− x)

 , (C.1.2)

Here the factor −n in the argument of 2F1 truncates the hypergeometric series because (−n)m = 0

when m > n , and P
(p,q)
n (x) is a polynomial of x in degree n . The relation of these functions is

given as:

φ(p,q)
ν (x) =

n!

(p+ 1)n
P

(p,q)
1
2

(iν−p−q−1)
(1− 2x) . (C.1.3)

According to the orthogonality and the completeness, we can defined the following functional

transformation using the Jacobi function:

F(ν) =

∫ ∞
0

dxw(p,q) f(x)φ(p,q)
ν (x) ,

f(x) =

∫ ∞
−∞

dν

2π

1

N (p,q)(ν)
F(ν)φ(p,q)

ν (x) , (C.1.4)
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where

w(p,q) = xp(1 + x)q , N (p,q)(ν) =
2Γ(1 + p)Γ(±2iν)

Γ
(

1+p+q
2 ± 2iν

)
Γ
(

1+p−q
2 ± 2iν

) . (C.1.5)

Note here that we have used a shot-hand notation Γ(a±b) = Γ(a+b)Γ(a−b) . This transformation is

useful to expand a polynomial of cross ratios z and z̄ in the k-function which is the one-dimensional

conformal block because the Jacobi function φ
(p,q)
ν (x) in (C.1.1) is related to the k-function through

a formula of hypergeometric function1:

φ(a+b,a−b)
ν

(
1− z
z

)
≡ za Ψ 1

2
+iν (z) =

za

2

[
Q(ν) k 1

2
+iν(z) +Q(−ν) k 1

2
−iν(z)

]
, (C.1.6)

where Q(ν) is defined as

Q(ν) =
2Γ(−2iν)Γ(1 + a+ b)

Γ(1
2 + a− iν)Γ(1

2 + b− iν)
. (C.1.7)

Note that the factor N (p,q)(ν) in (C.1.5) can be written in Q(ν)

N (p,q)(ν) =
1

2
Q(ν)Q(−ν) . (C.1.8)

In [75,84], they applied these technique to analyze one-dimensional CFTs.

In the below, let us consider some example of the transformation. As a simple example, firstly

we will consider expanding an exponential function z∆ in the k-function. The function in the

ν-space F (1)(ν) is given by the following integral:

F (1)(ν) =

∫ 1

0
dx z∆−2a−2(1− z)a+b φ(a+b,a−b)

ν

(
1− z
z

)
. (C.1.9)

Here we changed the integration variable: x → (1 − z)/z . By using the Mellin representation for

2F1 , the integral becomes

F (1)(ν) =
Γ(1 + a+ b)

Γ
(

1
2 + a± iν

) ∫ i∞

−i∞

ds

2πi

Γ(−s)Γ
(

1
2 + a± iν + s

)
Γ(1 + a+ b+ s)

∫ 1

0
dx z∆−2a−2−s(1− z)a+b+s .

(C.1.10)

Now the z-integral is just the beta function which is basically a combination of gamma functions,

and using the Barnes first lemma (A.0.5), we can obtain a compact form:

F (1)(ν) =
Γ(1 + a+ b)Γ

(
∆− 1

2 − a± iν
)

Γ(∆)Γ(∆− a+ b)
(C.1.11)

1Here we follow the notation in [75]
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Now, from the inverse transformation, we have the following expression:

z∆ =

∫ ∞
−∞

dν

2π

1

N (p,q)(ν)

Γ(1 + a+ b)Γ
(
∆− 1

2 ± iν
)

Γ(∆ + a)Γ(∆ + b)
z−aφ(a+b,a−b)

ν

(
1− z
z

)
. (C.1.12)

Here we shift ∆ as ∆ → ∆ + a for later convenience. Substituting (C.1.6) and using (C.1.8), we

can rewrite it as follows:

z∆ =
Γ(1 + a+ b)

Γ(∆ + a)Γ(∆ + b)

∫ ∞
−∞

dν

2π

2

Q(−ν)
Γ

(
∆− 1

2
± iν

)
k 1

2
+iν(z) . (C.1.13)

Then the integration contour can be closed in the lower half plane and by picking up poles at

1
2 + iν = ∆ + n (n = 0, 1, 2, ...) , the expansion for z∆ can be obtained:

z∆ =

∞∑
n=0

(−1)n

n!

(∆ + a)n(∆ + b)n
(2∆ + n− 1)n

k∆+n(z) . (C.1.14)

This formula is useful to see the conformal block expansion from a polynomial of cross ratio as in

the discussions in section 2.7 and 4.2.

As a more general case, next we consider the expansion of zα(1 − z)β . Through a similar

calculation as before, the function in the ν-plane F (2)(ν) is evaluated as follows:

F (2)(ν) =

∫ 1

0
dx zα−2a−2(1− z)β+a+b φ(a+b,a−b)

ν

(
1− z
z

)
(C.1.15)

=
Γ(1 + a+ b)

Γ
(

1
2 + a± iν

)
Γ(α+ β − a+ b)

×
∫ i∞

−i∞

ds

2πi

Γ
(

1
2 + a± iν + s

)
Γ (β + a+ b+ 1 + s) Γ (α− 2a− 1− s) Γ (−s)

Γ(1 + a+ b+ s)

Using (A.0.11) and (A.0.12) , The integration is evaluated as

F (2)(ν) =
Γ(1 + a+ b)Γ

(
α− a− 1

2 ± iν
)

Γ(α)Γ(α− a+ b)
3F2

 − β, α− a− 1
2 + iν, α− a− 1

2 − iν

α, α− a+ b
; 1

 .
(C.1.16)

As similar as the previous case from the inverse formula, the expansion is obtained:

zα(1− z)β =

∞∑
n=0

(−1)n

n!

(α+ a)n(α+ b)n
(2α+ n− 1)n

3F2

−n , 2α+ n− 1 , − β

α+ a , α+ b
; 1

 kα+n(z)

=
∞∑
n=0

in

(2α+ n− 1)n
pn(iβ; 0,−a− b, s+ a, s+ b) kα+n(z) (C.1.17)
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In the last line, we rewrite 3F2 in terms of the continuous Hahn polynomial which we introduced

in the next section.

C.2 Continuous Hahn Polynomial

The definition of the continuous Hahn polynomial is given as:

pn(x ;α, β, γ, δ) ≡ in (α+ γ)n(α+ δ)n
n!

3F2

−n , n+ α+ β + γ + δ − 1 , α+ ix

α+ γ , α+ δ
; 1

 .(C.2.1)

Here again the factor −n in the argument of 3F2 truncates the hypergeometric series, and pn is a

polynomial of x in degree n . pn is orthogonal for the following integral and measure:∫ ∞
−∞

dx

2π
Γ(α+ ix)Γ(β + ix)Γ(γ − ix)Γ(δ − ix) pn(x ;α, β, γ, δ)pm(x ;α, β, γ, δ) (C.2.2)

=
Γ(n+ α+ γ)Γ(n+ α+ δ)Γ(n+ β + γ)Γ(n+ β + δ)

n!(2n+ α+ β + γ + δ − 1)Γ(n+ α+ β + γ + δ − 1)
δn,m .

This property is useful in the computation in the Mellin space. It is worthy noting that the

continuous Hahn polynomial is also related to the Mack polynomial which is introduced in appendix

C.4 :

Qτ+l
l,0 (t) =

(−2i)l l !

(τ + l − 1)l
pl

(
−it ;

τ

2
+ b,

τ

2
+ a, 0,−a− b

)
. (C.2.3)

C.3 Gegenbauer Polynomial

The next important polynomial is the Gegenbauer polynomial defined as

C
(α)
J (x) =

Γ(J + 2h− 2)

Γ(J + 1)Γ(2h− 2)
2F1

[
−J, J + 2h− 2; h− 1

2
;

1− x
2

]

=

[J/2]∑
r=0

(−1)r
2J−2rΓ(α+ J − r)
r!(J − 2r)!Γ(α)

xJ−2r (C.3.1)

In the last line, [J/2] means Gauss’ symbol which is the greatest integer less than or equal to J/2 .

The Gegenbauer polynomial can be regarded as a generalization of the Legendre polynomial. In

fact, it is reduced to the Legendre polynomial PJ(x) when α = 1/2 :

C
(1/2)
J (x) = PJ(x) . (C.3.2)
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This polynomial is also satisfies the orthogonality relation as follows:∫ 1

−1
dx (1− x2)α−

1
2C

(α)
J (x)C

(α)
J ′ (x) =

π 21−2αΓ(2α+ J)

J !(α+ J)Γ(α)2
δJ,J ′ . (C.3.3)

The Gegenbauer polynomial appears when taking a contraction between symmetric traceless tensor

structures as

1

J !(h− 1)J
(X · DZ)J(Y · Z)J =

J !

2J(h− 1)J
(X2Y 2)

J
2C

(h−1)
J (x) where x =

X · Y
(X2Y 2)

1
2

.

(C.3.4)

Here X and Y are the Rd coordinates in the (d + 2)-dimensional embedding space and h ≡ d/2 .

Finally, some useful formulae in certain limits are listed:

J ! (ab)
J
2

(h− 1)J
C

(h−1)
J (

a+ b

2
√
ab

)
h→1−→ aJ + bJ , (C.3.5)

and for h→ 2:

J ! (ab)
J
2

(h− 1)J
C

(h−1)
J (

a+ b

2
√
ab

)
h→2−→ aJ+1 − bJ+1

a− b
. (C.3.6)

C.4 Mack polynomial

The Mack polynomial appears as the Mellin transformation of the Gegenbauer polynomial. It is

defined as:

P̃ν,J(s, t) ≡
[J/2]∑
r=0

(−1)r
J !(J + h− 1)−r

2J r!

(
h± iν − J

2
− s
)
r

(C.4.1)

×
∑

∑
kij=J−2r

(−1)k24+k13
∏
(ij)

(δij)kij
kij !

∏
i

γ0i − J + r +
∑
j

kij


J−r−

∑
j kji

,

The upper bound of r summation is given by the Gauss’ symbol, and this summation comes from

the expansion form of the Gegenbauer polynomial. As a remarkable property, at a pole value of s

integration: s = (h+ iν − J)/2, the Mack polynomial becomes the continuous Hahn polynomial:

Qh+iν
J,0 (t) =

22J

(h± iν − 1)J
P̃ν,J

(
h+ iν − J

2
, t

)

=
(−2i)J J !

(h+ iν − 1)J
pJ

(
−it ;

h+ iν − J
2

+ b,
h+ iν − J

2
+ a, 0,−a− b

)
(C.4.2)
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This relation provides an insight that the continuous Hahn polynomial is regarded as a natural

orthogonal basis in Mellin space. In general, after the Mellin integration, there are other contribu-

tions corresponding to s = (h+ iν−J)/2+n, and we can define the associated polynomial Qh+iν
J,n (t)

for general integer n . However the orthogonal relation is known only when n = 0 . As another

property, the Mack polynomial transforms in the following way under the sign reflection of a and

b:

P̃∆i
ν,J(s,−a− b+ t) = P̃ d−∆i

ν,J (s, t) = P̃∆i
ν,J(s, t)

∣∣∣
a→−a ,b→−b

. (C.4.3)

For more detail of the property of the Mack polynomial, please see [26,30,85].
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