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Abstract

Three-dimensional supersymmetric gauge theories has been studied in various contexts such

as understanding non-perturbative effects of gauge theory. The recent development of local-

ization techniques for supersymmetric field theory enables us to approach its non-perturbative

aspects because for some quantities the technique reduces the path integral needed to calculate

its expectation value to an ordinary finite-dimensional integral. However, a localization tech-

nique usually requires supersymmetric theories to be defined on a compact manifold to avoid

infrared divergence. Therefore, the results from localization techniques should not be inter-

preted by following flat-space intuition, in particular, for non-conformal theories. The purpose

of this thesis is to introduce our recent works [2–5] where we found that the results from a local-

ization technique cannot be interpreted by directly following flat-space intuition and discussed

them in relation to the flat-space point of view. The results are summarized as follows:

From our results [1–3], it has been expected that in the large N limit the behavior of

the three-sphere partition function of the mass-deformed ABJM theory drastically changes

beyond the critical value of the mass. We also found the candidate of the large N solution

which becomes dominant when the mass goes beyond the threshold and investigate physical

meanings [4]. This result implies that the gravity dual theory also exhibits such a singular

behavior and it is interesting to study the meaning of the threshold from the gravity side.

In my work [5], we investigated the general behavior of the partition function in the infinite

mass limit through considering mass-deformed N = 4 SQCD theory. We found that in the

infinite mass limit a point of the flat-space vacuum moduli space dominantly contributes to the

partition function and the partition function corresponds to that of the effective theory at the

point. This result leads us to understand the problem that which supersymmetric vacua of the

theory on flat space survive after coupling the curved background geometry and to shed lights

understanding why the partition function of the mass-deformed ABJM theory exhibits such a

singular behavior in terms of the flat-space supersymmetric vacua.
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Chapter 1

Introduction

As represented by the low-energy physics of Quantum ChromoDynamics (QCD), one of the

most important problems for modern physics is to obtain knowledge about the strongly coupled

theory. This is mainly because of lacking of non-perturbative calculation methods. To approach

this problem, we can rely on three-dimensional gauge theories though they do not seem not

to be “real” theory in the sense that they are not defined in four-dimensions. There are the

following two main reasons why we can rely on three-dimensional gauge theories: The first

is that three-dimensional gauge theories are generally more tractable than higher dimensional

gauge theories. The second is that in three dimensions, three-dimensional the Yang-Mills term

is super-renormalizable since the Yang-Mills couplings have mass dimension and thus, their

properties are similar with asymptotic free theories such as QCD. This leads an Abelian gauge

theory in three dimensions to be a simple example of a strongly coupled theory. Then, in three

dimensions, even for Abelian gauge theory, its low-energy physics is strongly coupled and it can

be expected to flow to a non-trivial fixed point [6–8].

We have considered so far advantages of three-dimensional gauge theory comparing with

four-dimensional gauge theory. Because three-dimensional gauge theory also includes peculiar

properties such as the Chern-Simons theory, which does not exist in four-dimensions, the three-

dimensional gauge theory itself can have rich structures. The Chern-Simons theory is a kind

of gauge theory and equipped with an integer called as Chern-Simons level instead of a cou-

pling constant. The quantize number connect the Chern-Simons theory with condensed matter

physics in the context of quantum Hall effects and so on. In this sense, three-dimensional gauge

theory can describe real physical systems.

However, it is still difficult to non-perturbatively analyze three-dimensional gauge theories.

Then, we consider supersymmetric theories. One of the advantage of supersymmetry gauge

theory is that some physical quantities can be calculated non-perturbatively because almost all
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contributions arising from bosonic and fermionic degrees of freedom cancel and only finite con-

tributions can remain. In particular, a localization technique for supersymmetric field theory,

which have been developed recently, is a very powerful tool for non-perturbative calculation.

For some physical quantities, a localization technique reduces the path integral needed to cal-

culate its expectation value to a finite dimensional ordinary integral. Thus, we can compute

the expectation value without perturbative analysis. Moreover, the finite dimensional integral

for a three-dimensional gauge theory is simpler than that for a gauge theory in other dimen-

sions in the sense that it does not include an infinite sum arising from solitonic objects such as

instantons. Thus, this technique has promoted us to understand non-perturbative phenomena

such as dualities.

Another motivation to investigate three-dimensional supersymmetric gauge theories is to

understand the M-theory, which is proposed in [9]. The M-theory is a strong candidate of the

non-perturbative realization of the string theory, which is defined only perturbatively. Thus, it

is important to study and establish the M-theory in order to achieve one of the goals of modern

physics, namely completion of the ultimate unified theory of the forces. Recently, a special kind

of the supersymmetric Chern-Simons with matter fields theories†1 has been studied intensively

because it is expected to correspond to the world-volume theory of coincided M2-branes. Here,

M2-brane is a solitonic object in the eleven dimensional supergravity and is expected to play

the important role to understand the M-theory. In particular, the Chern-Simons matter theory

proposed by Aharony, Bergman, Jafferis and Maldacena [10] (ABJM theory) is considered to

be a world-volume theory of coincided M2-branes on an orbifold singularity.

To apply a localization method to supersymmetric gauge theory, the theory is usually defined

on a compact manifold in order to avoid infrared divergence. Then, precisely speaking, the result

after localization technique is different from one for the theory on flat space. For conformal

theories, when the manifold on which the theory is defined is conformally flat, the result can

be interpreted as that for flat space because these can be mapped with each other. Many

of the results obtained by employing a localization technique are for superconformal theories.

Therefore, this point has not received much attention so far. However, it can be expected that

non-conformal theories have richer structures than conformal theories have in the sense that

there is an RG flow for a non-conformal theory and it is useful to understand infrared phases.

It is important to connect results from localization technique from non-conformal theory

with ones for the flat space theory. For this purpose, it is necessary to specify the properties

of the vacuum of the theory on a compact manifold. Generally speaking, the vacuum structure

of theory depends on the manifold on which the theory is defined because there are correction

†1At first, the theory employing the three-algebra was proposed in [22–25], but this theory turned out to

describe the world volume theory of two coincided M2-branes.
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terms arising from the geometry to the flat space theory. In particular, supersymmetric gauge

theories have a moduli space of vacua similar with the vacua of the Higgs fields in the standard

model and then, depending on a choice of vacuum, a different phase can be realized in the

low-energy region, for example, an interacting conformal phase and a gapped phase and so on.

The expectation value from a localization technique should correspond to a flat-space vacuum

expectation value by taking the decompactified limit, where the characteristic curvature of a

manifold where the theory is defined vanishes.

It is also important to investigate non-conformal supersymmetric theories in the large-N †2

limit in the sense of the general gauge/gravity correspondence and so on. Three-dimensional

supersymmetric gauge theories are also suitable for this purpose because three-dimensional

gauge theories have been intensively studied in terms of AdS4/CFT3, which is a correspondence

between a three-dimensional conformal field theory and the AdS4 geometry. In particular, it

is natural to expect that the gauge/gravity correspondence can be investigated by deforming a

conformal field theory which has a gravity dual with relevant terms. In this context, we should

investigate the properties of the theory in the large-N limit because the corresponding object

should exist in the gravity side.

Following these research backgrounds, we introduce our work [2–5] where we investigated

partition function of the mass-deformed gauge theories and the non-trivial phases are realized

in the large-N or the infinite mass limit †3.

I investigated the effect of the infinite mass limit to the three-sphere partition function in [5].

This work is motivated by the fact that on the three-sphere, we cannot select a vacuum, then

the effective mass seems not to be defined on the round-sphere. In the infinite mass limit, we

found that we can determine an effective mass of the matter fields by specifying a point of the

flat-space vacuum moduli which contributes dominantly to the partition function. Then, we

concluded that the partition function becomes that of an effective theory associated with the

point of the flat-space vacuum moduli in this limit.

For the mass-deformed ABJM theories, we found that in the large N limit, the partition

function has a singularity at certain finite value of mass. As a result of successive studies of this

theory and related theory in [1–3], we propose that in the large N limit the supersymmetry is

spontaneously broken beyond the above threshold. Though the mass-deformed ABJM theory

on flat space has a supersymmetry-preserving vacuum moduli space composed of discrete points,

on S3 metastable vacua can contribute to the partition function of the mass-deformed ABJM

theory. This is because the partition function is given by the integration over the parameters

describing the vacua. Then, the supersymmetry can be broken spontaneously.

†2Here, N typically denotes the rank of the gauge group.
†3In [11–18], the phase structure of mass-deformed gauge theories on S3 is also investigated.
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The contents of this thesis is as follows: In part I, we will review the basic properties of a

three-dimensional supersymmetric gauge theory. We will attempt to introduce the necessary

ingredients for this thesis. However, we will give these ingredients only schematically. When

the reader would like to know more information of these things, please read references. In part

II, we will introduce our results associated with the partition function of mass-deformed gauge

theory. In chapter 3, we will introduce the result in [5]. In chapter 4, we will introduce the

results in [1–3] related to the computation of the partition function and the threshold of the

saddle-point solution. In part III, we mainly discuss the phase appearing in the large N limit.

In chapter 5, we introduced the result in [4] related to a special kind of saddle-point solution

associated with the confinement (supersymmetry breaking) phase. In chapter 6, we will revisit

the mass deformed ABJM theory and discuss the large-N phase beyond the threshold through

the numerical analysis and results obtained so far and so on.
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Part I

Review of 3d N = 2 gauge theories
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Chapter 2

Basic properties of 3d N = 2 gauge

theories on flat space

In this thesis, we consider N = 2 supersymmetric gauge theories†1. The symbol N denotes

the number of generators of the supersymmetry. Because a generator of supersymmetry is

fermionic, it should be in “the minimal” spinor representation of the Lorentz group. Here, the

word “minimal spinor representation” meanes that the irreducible representation. This means

that the definition of the number of generators of supersymmetry depends on the dimension

on which a theory is defined. Because the number of conserved charges of the supersymmetry

(supercharges) are same, four-dimensional N = 1 gauge theories and three-dimensional N = 2

gauge theories share many of their properties, for example, Seiberg duality [19] and holomorphy

and so on. However, three-dimensional N = 2 gauge theories have some special properties with

wchich four-dimensional N = 1 gauge theories do not share. Main properties we focus on in

this thesis is that they admit a real mass deformation. Because a real mass deformation cannot

be given by an expectation value of a chiral multiplet, it cannot be restricted by holomorphy

and then, they can trigger the non-trivial phase transition. Moreover, in three dimensions, a

Chern-Simons (CS) theory which is a gauge theory different from the Yang-Mills theory

SCS =
k

4π

∫
d3xTrϵµνρ

(
Aµ∂νAρ +

2i

3
AµAνAρ

)
, (2.0.1)

exists. This action is gauge invariant when the Chern-Simons level k is appropriately quan-

tized depending on the gauge group. The existence of this kind of gauge theory makes three-

dimensional gauge theories interesting. In particular, its supersymmetric generalization (su-

†1Strictly speaking, in this thesis, we mainly focus on N = 4 and N = 6 supersymmetric gauge theories.

These theories are regarded as a special case of a N = 2 theory as we will explain later.
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persymmetric Chern-Simons theory) plays important roles when we compose the low-energy

effective theory of the stack of M2-branes, which will be investigated in this thesis.

2.1 N = 2 supersymmetric gauge theory

Here, we introduce basic properties of three-dimensional gauge theories. First, we show super-

multiplets corresponding to a vector field and a matter field. An N = 2 vector multiplet†2 is

composed by a vector field Aµ, a Majorana fermion (gaugino) λ, a real scalar σ and an auxil-

iary field D. They are in the adjoint representation of the gauge group and often denoted as

(Aµ, λ, λ̄, σ,D). Their kinetic term is given by

SSYM =
1

g2

∫
d3xTr

(
−1

4
FµνF

µν − iλγµDµλ̄− 1

2
DµσD

µσ +
1

2
D2 − iλ[σ, λ̄]

)
, (2.1.1)

where g2 is a Yang-Mills coupling constant and Dµ denotes a covariant derivative as

Dµ = ∂µ − i[Aµ, ], (2.1.2)

where the [Aµ, ] means that the vector fields Aµ appropriately act fields depending on its

representation of the gauge group. The Lagrangian of the supersymmetric Chern-Simons theory

is given by

SSCS =
k

4π

∫
d3xTrϵµνρ

(
Aµ∂νAρ +

2i

3
AµAνAρ + iλ̄λ+ 2Dσ

)
, (2.1.3)

where k is a Chern-Simons level. These actions are invariant under the following transformation

up to total derivative terms:

δQσ =ξλ̄+ ξ̄λ, (2.1.4)

δQAµ =− i(ξγµλ̄) + i(ξ̄γµλ), (2.1.5)

δQD =(ξγµDµλ̄) + (ξ̄γµDµλ)− (ξ[σ, λ])− (ξ̄[σ, λ]), (2.1.6)

δQλ =
i

2
γµνξFµν − γµξDµσ +Dξ, (2.1.7)

where ξ is a complex spinor parameter and ξ̄ is the complex conjugate of ξ. We can also

introduce the Fayet-Illopolous (FI) term when the gauge group has U(1) part as

SFI =
ζ

2π

∫
d3xTrD, (2.1.8)

†2A vector multiplets are denoted by a vector superfield V(x, θ, θ̄). A superfield is defined on superspace which

is parametrized by both ordinary and Grassmann coordinates (xµ, θ, θ̄).
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where ζ is an FI parameter, which has mass dimension 1 in three dimensions.

Then, we introduce a chiral multiplet as a supersymmetric multiplet corresponding to a

matter field. A chiral multiplet consist of a complex scalar ϕ, a complex fermion ψ and an

auxiliary field F . We can give the multiplet a representation R of the gauge group. We often

denote a chiral multiplet as (ϕ, ψ, F )†3. The kinetic term of a chiral multiplet with the gauge

interaction is given by

Smat =

∫
d3x

[
− (Dµϕi)

†Dµϕi + iψ†
iγ

µDµψi + F †
i Fi

− ϕ†
iDϕ+ i

√
2ϕ†

i (λψi) + i
√
2(ψ†

i λ̄)ϕi − ϕ†
iσ

2ϕi − ψ†
iσψi

]
. (2.1.9)

When there are Nf chiral multiplets, we can consider the interaction term among them in a

supersymmetric manner. This interaction is realized by the superpotential W (Φ), which is a

holomorphic function of chiral superfields. The interaction among matter fields is given by

Sint =

∫
d2θW (Φ) + (h.c). (2.1.10)

The action is invariant under the following infinitesimal transformation:

δQϕ =
√
2(ξψ), (2.1.11)

δQψ =
√
2ξF + ξ̄σϕ+

√
2(γµξ̄)αDµϕ, (2.1.12)

δQF =−
√
2i(ξ̄γµDµψ) +

√
2i(ξ̄σψ) +

√
2i(ξ̄λ̄)ϕ. (2.1.13)

Though the action we have introduced so far, a three-dimensional N = 2 gauge theory is

defined as

SN=2 =
∑
gauge

(SYM + SCS) +
∑
matter

Smat + Sint, (2.1.14)

where we assume that the gauge group G is given by a semi-simple Lie group as G =
∏M

a Ga,

Ga is a simple Lie group.

2.1.1 Enhancement of supersymmetry

In general, a supersymmetric field theory can have at most 16 supercharges, or it can have

N = 8 in three dimensions. The higher supersymmetry than N = 2 can be realized by

a specific combination of N = 2 supermultiplets and superpotentials. This is because the

R-symmetry can be enhanced by mixing with a global symmetry. In what follows, we will

introduce examples of higher supersymmetric fields theories we will investigate in this thesis.
†3A chiral multiplet are denoted by a chiral superfields Φ(x, θ, θ̄).
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Example: N = 4 super QCD theory

The field content of U(N) N = 4 super QCD with Nf flavors is as follows: An N = 4

vector multiplet is composed by a vector multiplet V and a chiral multiplet Φ in the adjoint

representation. An N = 4 hypermultiplet is a pair of a chiral multiplet in representation R and

that in the conjugate representation R̄ of the gauge group. An N = 4 vector multiplets and

Nf hypermultiplets in the fundamental representation.

The infrared behavior of this theory is well-studied in [20]. The Infrared property of the

N = 4 U(N) SQCD highly depends on the number of the flavors. In [20], the authors classified

the theories depending on their infrared structures: “good”, “ugly” and “bad” theory. They

define a “good” theory as a gauge theory in which all the monopole operator obey the unitarity

bounds. In this case, the gauge theory is expected to flow to an interacting superconformal

fields theory in the IR and the R-symmetry in the IR is the same as that of the UV theory

because there are no candidates which are mixed with the UV R-symmetry in the IR. An N = 4

U(N) SQCD is a good theory when Nf ≥ 2N .

An “ugly” theory is defined as a gauge theory in which the monopole operators satisfy the

unitarity bound, but several monopole operators saturate it. An “ugly” theory is also likely to

flow to an interacting superconformal field theory with R-symmetry visible in the UV and the

decoupled free sector consisting of the monopole operators that saturate the unitarity bound.

An N = 4 U(N) SQCD become an ugly theory when Nf = 2N − 1.

For a “bad” theory, there are monopole operators with zero or negative R-charge corre-

sponding to the R-symmetry manifest in the UV. Because the monopole operators violate the

unitarity bound of the UV R-symmetry, a bad theory may flow to an interacting SCFT, but

its R-symmetry is not manifest in the UV because the R-symmetry manifest in the UV theory

is mixed in the IR with an accidental symmetry which arises from the decoupled monopole

operators. An N = 4 U(N) SQCD becomes a bad theory when N ≤ Nf ≤ 2N − 2 †4.

These definitions are closely related to the convergence of the S3 partition function. In

particular, the partition function of a “bad” theory is divergent [21]. This might be because

the localization methods use the R-symmetry that is manifest in the UV to define the gauge

theory on a compact manifold. Thus, we should treat the number of flavors carefully.

†4Recent progress on“bad” theories in terms of the geometry of the moduli space of vacua is described

in [32,33].
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Example: N = 6 super Chern-Simons matter theory

It was an important open problem to find a superconformal field theory which has N = 8

supersymmetry in the sense that the theory should correspond to a wolrdvolume theory of

coincided M2-branes. About ten years ago, various successive works started with [22–25] about

this problem were done and finally a candidate were proposed in [10]†5. It is a the U(N)k ×
U(N)−k Chern-Simons theory whose field content in the language of N = 2 supermultiplets

is as follows: a U(N)k vector multiplet V = (Aµ, σ, χ,D), a U(N)−k vector multiplet Ṽ =

(Ãµ, σ̃, χ̃, D̃), two chiral multiplets Zα = (Aα, ϕα, Fα) in (□, □̄) representation under U(N)k ×
U(N)−k and two chiral multiplets Wα̇ = (Bα̇, ψα̇, Gα̇) in (□̄,□) representation.†6 Furthermore,

the ABJM theory has superpotential term given as

W =
4π

k
Tr(A1B1A2B2 − A1B2A2B1) =

2π

k
ϵabϵȧḃTr(AaBȧAbBḃ). (2.1.15)

This superpotential term is invariant under global symmetry SU(2)×SU(2), which act on Aa and

Bȧ respectively and SU(2) symmetry which exchanges Aa with (Bȧ)
†. Thus, the supersymmetry

can be enhanced to N = 6 †7.

The Lagrangian for this theory is given by

SABJM =

∫
d3xTr

[
k

4π
εµνρ(Aµ∂νAρ +

2i

3
AµAνAρ − Ãµ∂νÃρ −

2i

3
ÃµÃνÃρ)

− Tr(DµC
I)†DµCI − iTr(ψA)

†γµDµψA − Vbos − Vfer

]
, (2.1.16)

where we have defined the covariant derivative as

DµAa = ∂µAa + iAµAa − iAaÃµ (2.1.17)

DµBȧ = ∂µBȧ + iÃµBȧ − iBȧAµ. (2.1.18)

We also have employed a SU(4) covariant notation for the fermion fields by combing fermions

ζa, ωȧ of chiralmultiplets Aa and Bȧ and defining ψI which have SU(4)R index (I = 1, 2, 3, 4)

as

ψI = {ϵabζbe−iπ/4,−ϵȧḃ(ωḃ)
†eiπ/4}, (ψI)

† = {−ϵab(ζb)†, ϵȧḃωḃe
−iπ/4}, (2.1.19)

and for scalar fields we also define as

CI = (A1, A2, B†
1̇
, B†

2̇
). (2.1.20)

†5See also [37]
†6The (anti-)bi-fundamental chiral multiplets have U(1)R charges 1/2.
†7The N = 6 supersymmetry can be write down only on the on-shell formalism so far.
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The potential terms are also written as the SU(4)R invariant form as

Vfer =
2πi

k

[
(CI)†CI(ψJ)

†ψJ − (ψI)
†CJ(CJ)†ψI − 2(CI)†CJ(ψJ)

†ψJ + 2(ψJ)
†CI(CJ)†ψI

− ϵIJKL(CI)†ψJ(C
K)†ψL + ϵIJKLC

I(ψJ)
†(ψK)

†CL

]
(2.1.21)

Vbos =
4π2

3k2

[
CI(CI)†CJ(CJ)†CK(CK)† − 6CI(CJ)†CJ(CI)†CK(CK)†

+ (CI)†CI(CJ)†CJ(CK)†CK + 4(CI)†CJ(CK)†CI(CJ)†CK

]
. (2.1.22)

We can also find that the Lagrangian (2.1.16) is invariant following N = 6 supersymmetry

transformation:

δCI =iωIJψJ (2.1.23)

δ(CI)† =iψ†
JωIJ (2.1.24)

δψI =− γµωIJDµC
J +

2π

k

(
− ωIJ(C

K(CK)†CJ − CJ(CK)†CK) + 2ωKLC
K(CI)†CL

)
(2.1.25)

δ(ψI)
† =Dµ(CJ)

†γµωIJ +
2π

k

(
− (CJ)†CK(CK)† − (CI)†CK(CJ)†)ωIJ + 2(CL)†CI(CK)†

)
(2.1.26)

δAµ =− 2π

k

(
CI(ψJ)

†γµωIJ + ωIJγµψI(C
J)†
)

(2.1.27)

δÃµ =
2π

k

(
(ψI)

†CJγµωIJ + ωIJγµ(C
I)†ψJ

)
, (2.1.28)

where we have defined ωIJ as an antisymmetric fermionic parameter satisfying the following

condition:

(ωIJ)α = (ωIJ)
∗
α, ωIJ =

1

2
ϵIJKLωKL (2.1.29)

This transformation is guaranteed to be N = 6 since the fermionic parameter (ωIJ) is in 6

representation of SU(4)R and are set to Majorana fermion. We note that the Lagrangian has

only N = 6 supersymmetry apparently, but it is expected that the supersymmetry is enhanced

to N = 8 for k = 1, 2 case including the quantum effects [26–30]. This is consistent with

the gravity side because the ABJM theory is dual to N coincided M2-branes on Zk orbifold

singularity and the orbifold break 16 supercharges to 12 supercharges for k ̸= 1, 2.
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2.2 Complex and real mass deformation

Our interest in this thesis is real mass-deformed theories [31]. Here, we show that two mass

parameters which are admitted in three-dimensional supersymmetric gauge theories. A complex

mass deformation is given by the superpotential term as

Lcomp =

∫
d2θW (Φ) + (h.c.), (2.2.1)

where W (Φ) = mcΦ̃Φ. Φ̃ is a chiral superfield in the conjugate representation R̄ and then, the

combination Φ̃Φ is gauge-invariant. The corresponding Lagrangian is

Lcomp = mc|ϕ|2 +mc(ψψ) + m̄c(ψ
†ψ†) + (ϕ̃, ψ̃ terms). (2.2.2)

We note that the superpotential is a holomorphic function of Φ. This enables us to understand

non- perturbative effects of three-dimensional N = 2 theory in the same manner as the four-

dimensionalN = 1 gauge theory. Moreover, by the holomorphy, phase transitions are forbidden.

This is because the parameter space is a complex manifold and then, we can avoid the transition

point through the codimensions.

Next, we consider a real mass deformation. We can give a real mass parameter to a chiral su-

perfield that has a non-zero charge q under a global symmetry by introducing the corresponding

vector superfield Vb by

Lreal =

∫
d4θΦ†eqVbΦ = (qσb)

2|ϕ|2 + iqσbϵ
αβψαψβ + . . . , (2.2.3)

where we define the scalar components of Vb as σb and assume that the chiral superfield Φ does

not have gauge charges. The real mass deformation is given by replacing the vector superfields V

with the background vector superfield Vb. This implies that a real mass deformation is obtained

by introducing the background gauge fields coupled with the conserved current corresponding

to the global symmetry and giving it an expectation value. For the introduced background

fields to break the supersymmetry of the theory, the following condition is necessary:

σb = mr, Aµ = λ = D = 0. (2.2.4)

When a chiral superfield is charged under the gauge group, a real mass deformation is given by

Lreal =

∫
d4θΦ†eV+qVbΦ = ϕ†(σ + qmr)

2ϕ+ i(σ + qmr)ϵ
αβψαψβ + . . . . (2.2.5)

Then, a real mass deformation shift σ by qmr. This implies that a real mass deformation

shifts the origin of the Coulomb branch. We note that a real mass deformation changes the

supersymmetry algebra since the global symmetry has the conserved charge and the charge

appear in the supersymmetric algebra as the central charge. We also note that real mass

deformations are forbidden in four dimensions since in (2.2.5) the term ϵαβψαψβ cannot exist.
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2.3 Vacuum moduli space

A generic 3d N = 2 gauge theory has a moduli space denoting the lowest energy state and it

is continuous, not discrete. For quantum theories which have supersymmetry, the lowest state

is equivalent to the state preserving the supersymmetry. In this sense, we sometimes call such

a moduli space as SUSY vacua. At the classical level, the space is determined by zeros of the

scalar potential

V =
∑
i

(Fi)
†Fi +

1

2
TrD2 +

∑
i

((σ +mi)ϕi)
† (σ +mi)ϕi, (2.3.1)

where we consider M = 1 case for simplicity and introduce real mass mi employing the ith

U(1) global symmetry associated with the number of chiral multiplets. With the E.O.M of the

auxiliary F and D, the vacuum equations are as follows:

Da = −ga
(
−
∑
i

(
ϕ†
iT

a
Ri
ϕi

)
+

k

2π
σa +

ζ

2π

)
=0, a = 1, . . . , dimG (2.3.2)

F = −∂W (ϕ)

∂ϕ
=0, (2.3.3)(

dimG∑
a=1

σaT aRi +mb

)
ϕi =0. (2.3.4)

As the solution of these equations, we define the three branches as follows:

Coulomb branch: ⟨ϕi⟩ = 0, ⟨σ⟩ = σ0 ̸= 0, (2.3.5)

Higgs branch: ⟨ϕi⟩ ̸= 0, ⟨σ⟩ = 0, (2.3.6)

Mixed branch: ⟨ϕi⟩ ̸= 0, ⟨σ⟩ ̸= 0, (2.3.7)

When we introduce real masses, it shifts the origin of the branch. On the Coulomb branch,

the gauge group is spontaneously broken in a Coulomb phase U(1)r, where r is the rank of

the gauge group because σa can be diagonalized by the gauge transformation. This is because

the branch is called the Coulomb branch. Next, on the Higgs branch, the gauge group is

completely broken. Then, this branch is called the Higgs branch. We would like to argue about

the properties of the Coulomb branch for later use. The existence of FI terms leads to lifting

the Coulomb branch even at classical level except for k ̸= 0. When the Chen-Simons level k is

non-vanishing, there is an isolated vacuum σI = − ζ
k
at least classical level. When k = ζ = 0,

the Coulomb branch becomes non-compact. On the Coulomb branch, the matter fields charged

under the gauge group obtain a real mass by the Higgs mechanism as

qa,iσ0, (2.3.8)
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where qi is a charge under the ith U(1) group of its Caltan part U(1)r. Thus, chiral multiplets

with real mass m become effective massless fields on a specific point of the Coulomb branch

where (∑
i

qa,iσ0,i +m

)
= 0. (2.3.9)

This implies that the scalar fields σ is essentially the same as a real mass. What we mentioned

so far is a classical argument and we should consider the quantum effect. Generally speaking,

the Coulomb branch can be lifted by quantum effect and sometimes SUSY Vacua are completely

lifted by quantum effects. In fact, integrating out the massive fermions causes not only ordinary

Chern-Simons term,but also mixed Chern-Simons terms which include background gauge fields.

This means that the Chern-Simons level and FI-terms can be corrected by the one-loop effects

we mentioned above as k → keff ζ → ζeff. The correction arising from keff and ζeff can lift the

Coulomb branch.

The Coulomb branch is parametrized by monopole operators Va†8 defined classically as

Va = e
± 2π
g2

(σa+iγa), (2.3.10)

where γa is a dual photon defined for U(1) gauge fields as

∂µγ = ϵµνρF
νρ. (2.3.11)

The dual photon is changed under the topological symmetry transformation as

2π

g2
γ → 2π

g2
γ + 2π, (2.3.12)

then, a monopole operator V is well-defined under this symmetry. However, it is known that a

monopole operator cannot parametrize the whole Coulomb branch after taking quantum effects.

The Coulomb branch has singularities and as we across a singularity, it is parametrized by a

different parameter. The singularity is interpreted as a fixed point of the monopole operators

under the topological symmetry transformation. Then, the singularity can be a root point of

the Higgs branch because the matter fields do not have charges under the topological symmetry.

It is known that the SUSY vacua are generally a kähler manifold with singularities. On

the singular point, the gauge symmetry is recovered, namely, the W-boson become massless

and then, the low-energy effective theory of the gauge theory expected to be an interacting

superconformal fields theory. Recently, the relation between singularities of the Coulomb branch

and a low-energy effective theory in is argued [32, 33]. In what follows, we introduced N = 2

SQED as an example for calculating the quantum corrections to the Coulomb branch [34].
†8For the Chern-Simons theory, the monopole operators are not gauge invariant. Thus, the dressed monopole

operator, which is a neutral composite of the monopole operator and the charged matter fields.
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Example of quantum Coulomb branch: N = 2 SQED

We consider the SUSY vacua of three-dimensional N = 2 SQED with one flavor. The word

“flavor” denotes that a pair of chiral multiplets in fundamental and anti-fundamental rep-

resentation. At the classical level, the Higgs branch is parametrized by the gauge invariant

combination, the meson M = qq̄, where q (q̄) is a scalar component of the chiral multiplet in

the fundamental (antifundamental)representation of U(1) respectively. Then, we would like to

consider the Coulomb branch. Because at the classical level, the coulomb brach is parametrized

by a monopole operator, it is denoted as R×S1
γ in which σ denotes R direction and γ denotes S1

γ

direction. The topological symmetry transformation corresponds to the rotation of γ direction.

These two branches are intersected at σ = M = 0, however, the U(1)J symmetry act on the

Coulomb branch freely while it does not act on the Higgs branch. This contradiction is resolved

at the quantum level. In fact, at the semiclassical level, the metric can be calculated as

ds2 =
1

4

(
1

g2
+

1

|σ|

)
dσ2 +

1

4

1(
1
g2

+ 1
|σ|

)dγ2. (2.3.13)

This means that at σ = 0, γ direction shrinks. Thus, the point is a fixed point of the U(1)J

symmetry and then the contradiction is resolved.

Example: N = 2 super Chern-Simons theory

Finally, we would like to introduce N = 2 supersymmetric Chern-Simons theory as an example

of the theory that does not have SUSY vacua at the quantum level. In what follows, we review

the argument in [35,36]. The argument is based on the calculation of the Witten index. For the

Uk(N) (SU(N)) N = 2 supersymmetric Chern-Simons matter theory with generic real mass

parameters, the Witten index Tr(−1)F is given by

Tr(−1)F = JG(k
′), k′ = |k| −N +

1

2

∑
f

T2(Rf ), (2.3.14)

where JG(k
′) is the number of the primary operator of U(N)k′ Wess-Zumino-Witten theory and

the summation over f denotes the contributions from all the fermions of chiral multiplets Φf in

the representation Rf with T2(Rf ) being the quadratic index of the representation. Thus, the

condition that k′ < 0 implies that there are no supersymmetric vacua, namely spontaneously

supersymmetry breaking. This condition is consistent with the s-rule arising from D-brane

configurations [89,90]. In particular, for SU(N)k pure Chern-Simons theory with k = N , there

is only one isolated supersymmetric vacuum at σ = 0 and a gapped phase is realized. We note

that confinement of electric flux can occur only if the center symmetry ZN acts trivially on
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the states, and that requires k = N . We expect that this vacuum corresponds to the large-N

solution we will discuss in chapter 5.

2.4 Review of mass deformed ABJM theory

Here, we review the mass-deformed ABJM theory in which N = 6 supersymmetry of the

ABJM theory are preserved at the Lagrangian level [37, 42]. This mass deformation preserves

the SU(2)× SU(2)× U(1)× Z2 R-symmetry out of original R-symmetry SU(4)× U(1) for general

Chern-Simons level k. On-shell formalism, this mass deformation is given by the complex mass

deformation as

Lmass = µ2Tr
(
CI(CI)†

)
= µ2Tr

(
Qα(Qα)† +Rα(Rα

)†
), (2.4.1)

where µ is a mass parameter. For off-shell formalism, this deformation is given by the FI-

deformation as

LFI =
ζ

2π

(
D + D̃

)
, ζ ∈ R. (2.4.2)

This FI-deformation is favorable for a localization technique because we must use the off-shell

formalism of the supersymmetric theory. For this case, this FI term can be canceled by the

shift of σ (σ̃) by ζ
k
(− ζ

k
) respectively. Thus, these shifts give all matter fields in the ABJM

theory the same real mass as that (2.4.1) gives.

This mass deformation change the scalar potential as

V = TrMα(M †
α) + TrNα(N †)α, (2.4.3)

where we have defined Mα and Nα as

Mα = µQα +
2π

k

(
2Q[α(Q†)βQ

β] +Rβ(R†)βQ
α −Qα(R†)βR

β + 2Qβ(R†)βR
α − 2Rα(R†)βQ

β
)

(2.4.4)

Nα = −µRα +
2π

k

(
2Rα(R†)βR

β +Qβ(Q†)βR
α −Rα(Q†)βQ

β + 2Rβ(Q†)βQ
α − 2Qα(Q†)βR

β
)
,

(2.4.5)

where we take µ = 2ζ
k
. Comparing with the original scalar potential, the first term is added by

the mass deformation. This term makes the zeros of the scalar potential given by

Mα = 0, Nα = 0, (2.4.6)

19



finite solution instead of continuous one. Actually, the non-trivial solution is given by

Rα =



Aℓ1α
. . .

Aℓkα
0

. . .

0


, Qα =



0
. . .

0

(A
ℓk+1
α )†

. . .

(Aℓnα )†


, (2.4.7)

where Aℓ1α is defined as

Aℓ1 =

√
ζ

π


0

. . .
√
ℓ− 2 √

ℓ− 1

 , Aℓ2 =

√
ζ

π


0

√
ℓ− 1
. . . . . .

. . . 1

0

 , (2.4.8)

and ℓk is partition of N satisfying the following relation:

n∑
i=1

ℓi = N, ℓn ≥ . . . ≥ ℓi ≥ 1, (2.4.9)

In [40,41], it has been reported that this classical vacua is partially lifted by the quantum effect

and a vacua remain. This implies that the vacuum on which ranks of higged gauge groups are

less than the Chern-Simons level k survives.

This mass deformation corresponds to introducing the background flux in the gravity side.

It is known that this background flux causes the M-theoretical generalization of the Myers effect

[38, 39]. The Myers effect is an analogy of the polarization in the Electromagnetism. Namely,

the Dp-brane is polarized into D(p+2)-brane with the background flux, which corresponds to

the electric flux. In this case, M2-branes are polarized into M5-branes. In fields theory side,

the vacuum solution (2.4.7) corresponds to the polarization of the M2-branes into M5-branes

in terms of the Fuzzy sphere geometry [42,43].

2.5 Supersymmetry gauge theory on S3
b

We have reviewed three-dimensional N = 2 gauge theories in Minkowski spacetime so far.

In this section, we consider that three-dimensional N = 2 gauge theories on the ellipsoid S3
b

to apply a localization technique we will introduce later. The ellipsoid is one parameter b

deformation of the round three-sphere. Generally speaking, it is highly non-trivial to put the
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theory defined in flat space to a curved manifold M because the spinor parameters employed

in supersymmetric variations are no longer a constant field. If we just replace the flat theory

from the curved one by the following procedure:

ηµν → gµν , ∂µ → ∇µ, (2.5.1)

in L and supersymmetric variations, the theory replaced by this procedure is not supersymmetry

on M because the term ∇µϵ breaks the covariance of the corresponding action. Indeed, if we

impose the condition ∇µϵ = 0, the theory can be defined on M by the simple procedure

mentioned above. However, the condition highly restricts the curved manifold M, namely, M
need to be a Ricchi-flat manifold.

It is known that we do not have to impose such a restriction in order to define a supersym-

metric field theory on a curved manifold. A systematic strategy of how to put the theory on the

curved manifold is to couple the supersymmetric field theory with supergravity and then to take

a rigid limit in which Newton’s constant GN → 0 and the supergravity become non-dynamical

while taking the metric to a fixed curved manifold, rather than the original flat space. This

procedure was proposed in [44]. In this section, we will introduce the result of N = 2 gauge

theory on S3 and do not enter the detail of the procedure to put the supersymmetric theory on

a curved manifold.

2.5.1 Notation for the Elipsoid S3
b

Here, we introduce notation of the geometry and spinor we use in this article. The notation is

fundamentally based on [45,46]. The metric of the ellipsoid S3
b is written as

d2s = r2
(
f 2(ϑ) + b2 sin2 ϑd2φ1 + b−2 cos2 ϑd2φ2

)
, (2.5.2)

where ϑ ∈ [0, π
2
] and φ1, φ2 ∈ [0, π

2
] and parameter is defined as

b =

√
ℓ̃

ℓ
, r =

√
ℓℓ̃, f(ϑ) =

√
b2 sin2 ϑ+ b−2 cos2 ϑ (2.5.3)

where f(ϑ) is allowed to be an any function whose asymptotic form at ϑ = 0, π
2
is ℓ and ℓ̃

respectively and which gives the smooth metric. Thus, the choice of this function is irreverent

with the geometry.

This manifold is the hyper surface in R4 defined as

x20 + x21 + x22 + x23 = 1, (2.5.4)
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with the metric

d2s = ℓ(d2x0 + d2x1) + ℓ̃(d2x2 + d2x3). (2.5.5)

The orthogonal frame are given by

e1 = rb−1 cosϑdφ2, e
2 = −rb sinϑdφ1, e

3 = rf(ϑ)dϑ. (2.5.6)

This means that the component of the veilbein is explicitly written as e1φ1
e1φ2

e1ϑ
e2φ1

e2ϑ e2ϑ
e3φ1

e3φ2
e3ϑ

 =

 0 rb−1 cosϑ 0

−rb sinϑ 0 0

0 0 rf(ϑ)

 (2.5.7)

The inverse of the vielbein is inverse of the component because this veilbein is diagonal. The

killing spinor equations in this manifold are given by

∇µξ =
1

2rf(ϑ)
γµξ, (2.5.8)

∇µξ̄ =
1

2rf(ϑ)
γµξ̄, (2.5.9)

where covariant derivative is defined including the background U(1) gauge field V = 1
2

(
1− b

f(θ)

)
dφ1+

1
2

(
1− b−1

f(θ)

)
dφ2 as

∇µ = ∂µ −
i

2
ωµ + iVµ. (2.5.10)

We note that on the round three-sphere, namely b = 1 case, this U(1) gauge background

vanishes. The solution is given by [45]

ξ =
1√
2

(
e
i
2
(φ1+φ2+ϑ)

e
i
2
(φ1+φ2−ϑ)

)
, ξ̄ =

1√
2

(
−e− i

2
(φ1+φ2−ϑ)

e−
i
2
(φ1+φ2+ϑ)

)
. (2.5.11)

2.5.2 Supersymmetric actions on S3
b

The Yang-Mills action on S3
b for a N = 2 vector multiplet†9 is given by

SYM =
1

g2YM

∫
S3
b

d3x
√
gTr

(
1

4
FµνF

µν +
1

2
DµσD

µσ + iλ̄γµDµλ+ iλ̄[σ, λ] +
1

2

(
D +

σ

rf(ϑ)

)2

− λ̄λ

4rf(ϑ)

)
,

(2.5.12)

†9In Euclid space, we cannot define a Majorana spinor unlike in Minkowski space time. Thus, for N = 2

supersymmetry, we consider a gaugino λ̄ is not complex conjugate of λ. but indenpedent spinor.
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where Dµ = ∇µ − i[Aµ, ], r is the radius of S3 and g is the determinant of the metric gµν . The

supersymmetric Chern-Simons action is given by

SSCS =

∫
S3
b

d3x
√
g
ik

4π
Tr

(
1
√
g
ϵµνρAµ

(
∂νAρ −

2i

3
AνAρ

)
+ 2Dσ + 2λλ̄

)
, (2.5.13)

with quantized level k. A Fayet-Iliopoulous action is

SFI =
iζ

2π

∫
S3
b

d3x
√
gTr

(
D − σ

rf(ϑ)

)
, (2.5.14)

We find that these actions are invariant under the following supersymmetric variation:

δAµ =− i
(
(ξγµλ̄) + (ξ̄γµλ)

)
(2.5.15)

δσ =ξλ̄− ξ̄λ (2.5.16)

δD =iDµ(ξγλ̄− ξ̄γµλ)− 1

r
δσ − i(ξ̄[σ, λ]− ξ[σ, λ̄]) (2.5.17)

δλ =− ξ

(
D +

σ

rf(ϑ)

)
+

1

2
γµνFµνξ + i(Dµσ)γ

µξ (2.5.18)

δλ̄ =ξ̄

(
D +

σ

rf(ϑ)

)
+

1

2
γµνFµν ξ̄ − i(Dµσ)γ

µξ̄ (2.5.19)

We find that the correction terms to the flat space action are given 1
r
expansion. This is because

the curvature of the curved manifold can be negligible when we focus on sufficiently microscopic

physics, namely go to the ultraviolet region.

Next, we consider the kinetic term of the chiral multiplets (ϕ, ψ, F ) in the representation R

of the gauge group†10. On S3
b , we can assign the R-charge n to the chiral multiplets by adding

the background gauge field which couple with R-symmetry current and giving an expectation

value n. Then, the kinetic term of a chiral multiplet on S3
b is written as

Smat =

∫
S3
b

d3x
√
g

(
Dµϕ̄D

µϕ− iψγµDµψ + F̄F − iϕ̄
(
D +

σ

rf(ϑ)

)
ϕ− 2i

n− 1

rf(ϑ)
ϕ̄σϕ (2.5.20)

+ ϕ̄

(
σ2 − n(n− 2)

(rf(ϑ))2

)
ϕ+ iψ̄

(
−σ +

i

rf(ϑ)

(
n− 1

2

))
+
√
2i
(
ϕ̄λψ + ϕλ̄ψ̄

))
,

(2.5.21)

and the interactions among the multiple chiral multiplets is also given by the superpotential as

Sint =

∫
d2θW (Φ) +

∫
d2θ̄W (Φ̄). (2.5.22)

†10We should consider N = 2 theory for Euclid space. In what follows, (ϕ̄, ψ̄, F̄ ) should be regarded as an

independent chiral multiplet in the conjugate representation of R.
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These terms are invariant under the following variation of supersymmetry:

δϕ =
√
2ξ̄ψ, (2.5.23)

δψ =
√
2ξF +

√
2i

(
σ − i

n

rf(ϑ)

)
ξ̄ϕ−

√
2iξ̄Dµϕ, (2.5.24)

δF =−
√
2i

(
σ − i

n− 2

rf(ϑ)

)
ξ̄ψ + 2iξ̄λϕ−

√
2iDµ(ξ̄γ

µψ). (2.5.25)

In particular, by the definition of a superpotential, a superpotential is regarded as the F-term

of a gauge invariant chiral multiplet whose R-charge is 2. Then, a supersymmetric variation of

(2.5.22) become 0 up to a total derivative term.

The actions we introduced above can be rewritten by the supersymmetric variation as

follows:

SYM =δξδξ̄

∫
S3
b

dx3
√
g

(
λ̄λ− 2Dσ

)
(2.5.26)

Smat =δξ̄δξ

∫
S3
b

d3x
√
g

(
ψ̄ψ − 2iϕ̄σϕ+

2 (n− 1)

rf(ϑ)
ϕ̄ϕ

)
, (2.5.27)

Sint =
1√
2

∫
S3
b

d3
√
g
(
ξ̄δξψW (Φ) + ξδξ̄ψW (Φ̄)

)
, (2.5.28)

where ψW (Φ) (ψW (Φ̄)) denotes the middle component of the superpotential W (Φ) (W (Φ̄)), re-

spectively. This Q-exactness play a crucial role in the derivation of a localization technique.

2.6 Supersymmetric Localization method

A notable advantage of the supersymmetric theory is that we can obtain some non-perturbative

properties of the theory. First, we introduce the general argument of the localization methods

for the path integral and then, we apply it to a three-dimensional N = 2 gauge theory †11.

2.6.1 Localization technique for SUSY QFTs

We define the supersymmetric theory on a compact manifold M. The expectation value of the

BPS operator is given by through the path integral

⟨OBPS⟩ =
∫
F
DXOBPSe

−S[X], (2.6.1)

†11There are several nice review articles, for example [47]
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where X and F represent all fields that the theory have and a total field configuration space

respectively. Here, there are no infrared divergences since the the theory is defined on a compact

manifold M. The action S and the BPS operator OBPS are invariant (Q-closed) under the

supersymmetric transformation δQ

δQS[X] = 0, δQOBPS = 0. (2.6.2)

the supersymmetry transformation δQ satisfy the following relation:

δ2Q = (Bosonic transformations), (2.6.3)

where the bosonic transformations is associated with the symmetry of the theory such as gauge

transformations, translations and so on. The fact that the square of the supersymmetry trans-

formation is vanishing up to symmetry transformation is important for the localization tech-

nique. We deform the theory by a Q-exact functional δQV [X] as follows:

⟨OBPS(t)⟩ =
∫
F
DXOBPSe

−S[X]−tδQV [X], (2.6.4)

where t is a non-negative deformation parameter and V [X] is a functional of X that satisfies

δ2QV [X] = 0, V [X]|Boson ≥ 0, (2.6.5)

where V [X]|Boson represents the part composed by only bosonic fields. The original expectation

value is recovered by taking t = 0

⟨OBPS⟩ = ⟨OBPS(0)⟩ (2.6.6)

Moreover, we find that this deformed expectation value does not depend on the parameter t as

follows:

d

dt
⟨OBPS(t)⟩ =−

∫
F
DXOBPSδQ(V [X])e−S[X]−tδQV [X]

=−
∫
F
DXδQ

(
OBPSV [X]e−S[X]−tδQV [X]

)
= 0 (2.6.7)

This implies that the expectation values can be evaluated at any values of t. In particular,

when we take t to infinity, the path integral can be evaluated exactly by the saddle-point

approximation associated with the localization parameter t. Actually, when we take t to infinite,

in the RHS of (2.6.4), we find that the field configurations which satisfy δQV [X] > 0 do not

contribute to the path integral because the integrand of the path integral is e−∞. Thus, the

path integral is not taken over whole field configuration space F , but only the subspace which

satisfies δQV [X]|boson = 0.
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It is important to which a deformation term δQV [X] we select because the saddle-point

configuration and the one-loop corrections are determined by δQV [X]. One of the canonical

choices of such a term is

Lcano = δQ
∑
ψ

(
(δQψ)

† ψ + ψ† (δQψ†)†) , (2.6.8)

where the sum runs over all fermionic fields of the theory. The bosonic part of this term is

given by the squares of supersymmetric variations of fermionic fields,

Lcano

∣∣
boson

=
∑
ψ

(
|δQψ|2 + |δQψ†|2

)
, (2.6.9)

then the saddle-point configuration is determined by the equations.

ψ = ψ† = 0, δQψ = δQψ
† = 0. (2.6.10)

This condition is nothing but BPS condition.

Then, we need to evaluate the effects of the fluctuation around the dominant saddle-point

configuration. If we regard the parameter t as the inverse of the Plank constant h, the effects

of the fluctuation are regarded as the “loop effects” of the t = 1
h
expansion. To evaluate the

effects, we expand the fields around the saddle-point as

X = X0 +
1√
t
δX, (2.6.11)

where X0 denotes the saddle-point configuration and δX denotes the fluctuation fields. By

plugging this into the deformed action, we obtain

S[X]− tδQV [X] = S[X0] +
1

2

δ2(δQV [X])

δX2
(δX)2 +O

(
1√
t

)
, (2.6.12)

where we assume that δS[X]
δX

∣∣
X=X0

= 0 †12. We can take t to infinity and then, the “one-loop”

part only remains. Finally, the path integral is given by

⟨OBPS(0)⟩ = lim
t→∞

⟨OBPS(t)⟩ =
∫
DX0D(δX)OBPS(X0)e

−S[X0]− 1
2

δ2(δQV [X])

δX2

∣∣
X=X0

(δX)2

. (2.6.13)

The “one-loop” effect is obtained by the Gaussian integral over the fluctuation fields δX and

it is given by the determinant of
δ2(δQV [X])

δX2 . Therefore, the path integral in (2.6.4) reduces to

†12The inequality δQV [X]boson ≥ 0 means that the saddle-point configuration X0, defined
δS[X]
δX

∣∣
X=X0

= 0,

automatically satisfies δQV [X]
∣∣
boson

= 0. Thus, we consistently assume that the X0 satisfies δS[X]
δX

∣∣
X=X0

= 0
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the saddle-point configuration whose dimension is lower than the original one and the action is

composed of “classical” action S[X0] and “one-loop” corrections associated with t.

⟨OBPS⟩ =
∫
DX0OBPS(X0)e

−S[X0]
1

SDet[ δ
2S[X]
δX2 ]

∣∣
X=X0

, (2.6.14)

where the one-loop correction is schematically denoted by 1

SDet[
δ2S[X]

δX2 ]

∣∣
X=X0

, which is the ratio of

the determinants of the operator arising from bosonoic and fermionic fluctuation fields respec-

tively. We note that the result (2.6.14) can be regarded as an exact semiclassical approximation

with respect to an auxiliary Plank constant h = 1
t
of the deformation action δQV [X]. Because

the original action S[X] is not weighted t, it can only contribute to the classical part.

By employing the localization formula, the dimensionality of the path integral reduces.

When fields configuration belonging to the localization locus depend on the spacetime, the

reduced path integral is still an infinite dimensional integral, Namely, the path integral of a

lower-dimensional quantum field theory. The desirable case is that the localization locus is

composed by the constant field configurations and then the path-integral reduces to a finite

dimensional integral of a 0-dimensional quantum fields theory. In this sense, we often called

the expectation value given by the finite dimensional integral as a matrix model. In particular,

it is known that expectation values of various BPS operators of supersymmetric gauge theories

in various dimensions are given by a matrix model by employing localization methods [21, 48–

50,53–55] and so on.

We note that when there are multiple conserved supercharges Qi, we need to fix a super-

charge Qi0 in order to run the procedure of the localization methods. Depending on the choice

of a supercharge, a set of the BPS operator OBPS is determined and a deformation term δQV [X]

can differ, which need not be canonical one. A choice of a deformation term δQV [X] affect the

localization saddle-point locus and then the one-loop corrections. This change of the localiza-

tion scheme generally leads to apparently different forms of the localization formula. However,

The final answers in different localization schemes must coincide because the differences are

Q-exact terms and then they cannot contribute to the path integral. In this thesis, we employ

one of the localization scheme, which is the so-called Coulomb branch localization. Another

localization scheme, which is called Higgs branch localization, is also well-known [55–57].

2.6.2 S3
b partition function from Coulomb branch localization

In this section, we apply a localization method we reviewed in the previous section to the 3d

N = 2 gauge theory. A theory needs to be defined on a compact manifold M to be applied

localization technique. In this thesis, we apply the localization methods to 3d N = 2 gauge
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theory defined on M = S3
b introduced in the previous section 2.5.2. Looking back the argument

on localization methods, we should choose the localization deformation term δQV [X] associated

with a specific supersymmetry charge Q. Fortunately, we found that in (2.5.26) and (2.5.27),

the kinetic terms of vector and chiral multiplets are rewritten as a form δQV [X]. We often

use the kinetic terms as a localization term and find that the localization locus is given by the

same condition as that of the canonical choice of δQV [X] introduced in the previous section. In

this section, we introduced the formula of S3
b partition function given by a matrix model and

will not enter the detailed argument on the derivation of one-loop corrections. The detailed

derivation is given by [45,46].

We consider ta gauge theory with gauge group G =
∏r

a=1Ga and N0 chiral multiplets in the

representation R of G. The corresponding vector multiplets to Ga is denoted as (Aaµ, λa, λ̄a, Da)

with the label a associated with a-th gauge group. The N0 chiral multiplets is denoted as

(ϕiℓ0 , ψiℓo , Fiℓ0) with two indeces i, ℓ0 associated with the representation R and N0, respectively.

The localization locus given by the solution of the equations

λa = λ̄a = 0, δQλ = δQλ̄a = 0, (2.6.15)

ψiℓ0 = ψ̄iℓ0 = 0, δQψiℓ0 = δQψ̄iℓ0 = 0. (2.6.16)

is as follows:

σa = σ0a, (σoa: constant matrix), (2.6.17)

Da = − 1

rf(ϑ)
σ0a, (Other fields) = 0. (2.6.18)

This implies that the path integral reduces to an integration over the whole constant matrices,

which is in the adjoint representation of G. By employing the gauge transformation, we can

make the constant matrix σ0a a diagnal matrix as

σoa = diag(σ0a,1, . . . , σ0a,ra). (2.6.19)

and then, the integration variables of the matrix integral can be changed to the diagonal

elements with accompanied with the Vandermonde determinant as∫
F
DX →

M∏
a=1

1

|W (Ga)|

ra∏
i=1

(∫
dσ0a,i

) M∏
a=1

∏
α∈∆a+

π (α(σ0a))
2 . (2.6.20)

Therefore, the expectation values are written by the integration over the diagonal U(1)s part of

σa, namely, they are represented by the contributions from the whole classical Coulomb phase

of the theory with the generic point of the Coulomb branch. Then, this localization scheme is

called Coulob branch localization †13.
†13In what follows, all parameters which have mass dimensions will appear as a dimensionless form by the

radius r. We will set r to 1 for simplicity.
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By substituting the localization locus for the action, the classical action arises only from

Chern-Simons terms and FI terms as

SSCS =
M∑
a=1

ika
4π

∫
S3

d3x
√
gTr

(
−2f(ϑ)σ2

0a

)
= −iπ

M∑
a=1

ka

ra∑
i=1

(
σ2
0a,i

)
, (2.6.21)

SFI =
M∑
a=1

iζa
2π

∫
S3

d3x
√
gTr

(
−2

σ0a
f(ϑ)

)
= −2πi

M∑
a=1

ra∑
i=1

(ζar) (σ0a,i) . (2.6.22)

Then, we would like to introduce one-loop correction which arise from the localization defor-

mation terms, which are kinetic terms of the vector and chiral multiplets in this case. Here,

we make a rough sketch of the derivation of the one-loop correction. In fact, we can evaluate

SDet[ δ
2S[X]
δX2 ]

∣∣
X=X0

because the eigenvalues of the kinetic operator δ2S[X]
δX2

∣∣
X=X0

, which is com-

posed of covariant derivative terms and interaction terms with σa0 in this case, are denoted by

indices which label the eigenvalues of the representation of the isometry group of S3
b . Thus,

the fluctuation fields can be expanded by the harmonic functions and then, the gaussian in-

tegral over the fluctuation fields can be done. Then, SDet[ δ
2S[X]
δX2

∣∣
X=X0

] can be represented by

an infinite product of the eigenvalues of the kinetic operator δ2S[X]
δX2

∣∣
X=X0

. While almost all the

contributions from the modes of the harmonic function expansion between the paired bosonic

and fermionic degree of freedom by the supersymmetry, an infinite series of of the eigenvalues

still remain arising from unpaired bosonic and fermionic degree of freedoms. Then, we would

like to give the result in [45]. For a vector multiplets, the one-loop contributions are given by
†14

Zvec
1-loop(σa0) =

∏
α∈∆a+

∏
n>0

(
n2

ℓ2
+ (α(σ0a))

2

)(
n2

ℓ̃2
+ (α(σ0a))

2

)
(2.6.23)

=
∏
α∈∆a+

sinhπbα(σ0a) sinh πb
−1α(σ0a)

(πα(σ0a))2
, (2.6.24)

where ∆a
+ denotes a set of the positive root of the Lie algebra of Ga. We note that the denom-

inator is nothing but the Vandermonde determinant and exactly cancel a factor in (2.6.20).

For a chiral multiplets in the representation R and R̂ of gauge group G and of the glovbal

symmetry group Ĝ with R-charge r†15, the one-loop correction is determined as

Zmat
1-loop(σ0) =

∏
m,n≥0 detR,R̂(mb+ nb−1 − Q(r−2)

2
+ i(σ0 + σ̂))∏

m,n≥0 detR,R̂(mb+ nb−1 + Qr
2
− i(σ0 + σ̂))

(2.6.25)

†14The infinite product is divergent and should be regularized. In terms of the Physics, this divergence

corresponds to an ultraviolet divergence. It is usually defined in the zeta function reguralisation.
†15This is slight abuse of notation since we have employed “r” as the radius of the ellipsoid. However, since

the radius has been set to 1, “r” denotes the R-charge.
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=
∏
ρ,ρ̂

sb

(
iQ(1− r)

2
− (ρ(σ0) + ρ̂(σ̂))

)
, Q =

b+ b−1

2
, (2.6.26)

where we define σ0 as a diagonal matrix diag(σ01, σ02, . . . , σ0r). We note that we can regard the

part in (2.6.25)

m ≡ ρ(σ) + ρ̂(σ̂) (2.6.27)

as effective real mass m(σ) of a chiral multiplet. This is because we can regard ρ(σ) is real

mass arising from the higgse mechanism on a generic point of the Coulomb branch σ0 and ρ̂(σ̂)

is a real mass arising from introducing a background vector multiplet that couple with the

symmetry current of a global symmetry.

Consequently, the corresponding S3
b partition function for a given 3d N = 2 gauge theory

is obtained by producting the classical part with the one-loop part as

ZS3
b (σ̂, k, ζ) =

M∏
a=1

1

|W (Ga)|

ra∏
i=1

(∫
dσ0a,i

)
Z1-loop(σ0, σ̂)Zclassical(σ0, k, ζ), (2.6.28)

where we define

Zclassical(σ0, k, ζ) =e
−SSCS−SFI , (2.6.29)

Zone-loop(σ0, σ̂) =
M∏
a=1

∏
α∈∆a+

sinhπbα(σ0a) sinh πb
−1α(σ0a)

∏
ρ,ρ̂

sb

(
iQ(1− r)

2
− (ρ(σ0) + ρ̂(σ̂))

)
.

(2.6.30)

We note that an expectation value does not depends on the Yang-Mills coupling because

the Yang-Mills term is Q-exact and then, it cannot contribute to the expectation values. In

particular, a S3
b partition function without any real mass parameter denotes the infrared fixed

point of the gauge theory obtained as g → ∞ even though its derivation depends only on the

ultraviolet definition of the gauge theory. In fact, between two gauge theories which flow to

the same IR fixed point, namely they are a pair associated with the Seiberg like duality, it is

confirmed that their partition functions coincide in many cases [21, 58, 59]. The localization

methods have played important role in consistency checks of dualities.

Then, we would like to argue on the partition function for a real mass-deformed theory.

Because the partition function has mass parameters, the partition function cannot represent

some infrared fixed point of some gauge theory. Then, we may interpret the deformed partition

function denoting the theory obtained by adding the fixed point theory to which the undeformed

theory flow to the real mass deformation term. If there are no spontaneously symmetry breaking
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of the global symmetry of the gauge theory, the infrared fixed point theory has the same global

symmetry. Then, we can deform the fixed point theory by real mass parameter by introducing

the background vector multiplets which couple with the current of the global symmetry. Thus,

when m = 0, the partition function denote the fixed point theory and it also may denote

another fixed point theory when we take m to infinity.

We introduce the localization formula for a partition function, namely, in case that OBPS = 1

in (2.6.14) so far. To calculate the expectation value OBPS , all we have to do is to insert it

evaluated at the localization locus in (2.6.28). For example, a supersymmetric Wilson-loop in

representation R on S1 at θ = 0 defined as

WR(θ = 0) ≡ TrRP exp

∮
θ=0

(iA+ σdl), (2.6.31)

is also evaluated at the saddle-point inserting the Wilson loop becomes

WR(θ = 0)|saddle = TrR(e
2π σ

b ). (2.6.32)

in the finite dimensional integral in (2.6.28).

2.6.3 Useful formulas and examples

In the previous section, we introduced the finite integral formula denoting an expectation value.

Generally, it has the all non-perturbative effects of the gauge theory in some sense. However, it

is still difficult to do the integral exactly for given parameters because the integrand is a complex

form. Fortunately, For specific theories, which have high supersymmetry, the integrand often

reduces to a simple form by employing the formulas about the double sine function sb. In this

section, we introduce useful formulas of the double sine function and find that the integrand

becomes the more simple form for the specific case.

The function sb is a double sine function. We introduce some properties of the function

studied in [60,61]. The double sine function sb(x) satisfies

sb(z) = sb−1(z), sb(z)sb(−z) = 1, (2.6.33)

and the expansion around Re(z) = ∞:

i log sb(z) = −πz
2

2
− π

24
(b2 + b−2) +

∞∑
l=1

(−1)l−1

l

(
e−2πlbz

2 sin(πlb2)
+

e−2πlz/b

2 sin(πlb−2)

)
, (2.6.34)

and around Re(z) = −∞:

i log sb(z) =
πz2

2
+

π

24
(b2 + b−2) +

∞∑
l=1

(−1)l

l

(
e2πlbz

2 sin(πlb2)
+

e2πlz/b

2 sin(πlb−2)

)
. (2.6.35)
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For the vector like matters, the 1-loop factor becomes(∏
w∈R

sb(
iQ

2
(1− r)− w(σ))

)(∏
w∈R

sb(
iQ

2
(1− r) + w(σ))

)
=
∏
w∈R

D−iQ(1−r)/2(w(σ)), (2.6.36)

where

Dα(x) ≡
sb(x− α)

sb(x+ α)
. (2.6.37)

This function satisfies

Dα(x) = Dα(−x). (2.6.38)

We also define

Db(x) ≡ D−iQ/4(x). (2.6.39)

When |Im(x)| < |ReQ|
2

, logDb(x) has the following integral form:

logDb(x) =

∫
R+i0

dt

2t

sinh
(
Qt
2

)
cos(2xt)

sinh(bt) sinh(b−1t)
. (2.6.40)

For round three-sphere S3 case, it is useful to introduce the following function ℓ(x) defined

in [51]:

ℓ(x) = −x log(1− e2πix) +
i

2

(
πx2 +

1

π
Li2(e

2πix)

)
− πi

12
(2.6.41)

The double sine function sb(x) with b = 1 is written by ℓ(z) as

log sb(iz) = ℓ(z). (2.6.42)

When b = 1, (2.6.36) become drastically simple as∏
w∈R

D1 (w(x)) =
∏
w∈R

1

2 cosh (πw(x))
. (2.6.43)

In what follows, we introduce simple examples of the partition function using above formulas.

Example: Free massive chiral multiplet

For a chiral multiplet with R-charge r and real mass m, the partition function is given by

Zfree(r,m) = sb

(
iQ(1− r)

2
− im

)
. (2.6.44)
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Then, for two chiral multiplets with R-charge r and real mass ±m respectively, the partition

function

Zfree(r,m) = sb

(
iQ(1− r)

2
− im

)
sb

(
iQ(1− r)

2
+ im

)
= D− iQ(1−r)

2

(m). (2.6.45)

When r = 1
2
and b = 1, the partition function has the following simple form:

Zfree(m) =
1

2 cosh πm
(2.6.46)

Example: N = 2 SQED and check of mirror symmetry

three-dimensional N = 2 SQCD with Nf flavors and an FI term ζ denote the U(1) Yang-

Mills theory with Nf pairs of massive chiral multiplets in fundamental representation and in

anti-fundamental representation with real mass m†16. The partition function is given by

ZSQED =

∫ ∞

−∞
dσe2πiζσsb

(
iQ(1− r1)

2
+ σ −m

)
sb

(
iQ(1− r2)

2
− σ −m

)
(2.6.47)

and the integral over σ is exactly done by the Ramanujan’s integral identity

ZSQED =e−
iπ
12

(1+Q2)e
−iπζ

(
iQ(r1−r2)

2

)
sb

(
iQ(1− (r1 + r2))

2
+ 2m

)
× sb

(
ζ − iQ(1− (r1 + r2))

2
+m

)
sb

(
−ζ − iQ(1− (r1 + r2))

2
+m

)
. (2.6.48)

When r1 = r2, this result reflect in the fact that SQED flows to the XYZ model composed three

free chiral multiplet X,Y and Z with the superpotential W = XY Z in the IR [65] in the sense

that

ZSQED = ZXY Z . (2.6.49)

In the RHS of (2.6.48), three double sine functions correspond to free chiral multiplets X,Y, Z.

In fact, this is an example of the consistency check of a infrared duality in three-dimensional

supersymmetric field theories through S3
b partition functions.

†16it seems that tbecaus there are two U(1) global symmetries as the maximal subgroup we can introduce two

real mass parameter m1 and m2. However, one parameter of the real mass parameters cancel by shifting σ.

Generally speaking, the real mass parameter corresponds to the diagonal part of the global symmetry group.
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Example: N = 4 SQCD with massive hypermultiplets

Vector multiplet

We only consider U(N) gauge theories in this paper. The one-loop contribution of the vector

multiplets is given by

Zvec
1-loop(σ) =

N∏
i<j

4 sinh2 π(σi − σj)

π2(σi − σj)2
, (2.6.50)

where the denominator cancels against the Vandermonde determinant, which appears when we

choose the diagonal gauge of σ.

Matter multiplet

Here, we consider following two mass deformations: In case (i), we give a real mass m to
Nf
2

flavors while we give a real mass −m to the remaining
Nf
2

flavors†17. This breaks each

SU(Nf ) of the global symmetry SU(Nf )×SU(Nf ) down to SU(
Nf
2
)×SU(

Nf
2
). The total one-

loop contribution is given by

Zmat
1-loop(σ) =

N∏
i=1

(Db (σi +m)Db (σi −m))
Nf
2

b=1
=

N∏
i=1

1

2 (cosh π (σi +m) 2 cosh π (σi −m))
Nf
2

. (2.6.51)

In case (ii), we give
Nf
3

flavors a real mass m while we give other
Nf
3

flavors a real mass −m.

Then, we keep the remaining
Nf
3

flavors massless. This real mass assignment breaks each of

the SU(Nf ) global symmetries of the matter fields down to SU(
Nf
3
)×SU(

Nf
3
)×SU(

Nf
3
)†18. The

total one-loop contribution of the chiral multiplets is given by

Zmat
1-loop(σ) =

N∏
i=1

(Db(σ +m)Db(σ −m)Db(x))
Nf
3

b=1
=

N∏
i=1

1

(2 cosh π (σi +m) 2 cosh π (σi −m) 2 cosh πσi)
Nf
3

. (2.6.52)

†17We assume that
Nf

2 is an integer.
†18We assume that

Nf

3 is an integer.
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Part II

Aspects of Massive Gauge Theory on

The Three-Sphere
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Chapter 3

Dominant Point of Coulomb Branch

in Infinite Mass Limit

In this chapter, we investigate S3 partition functions of real mass-deformed N = 4 U(N) SQCD

in the infinite mass limit†1. For example, if we give real masses to enough matter multiplets

of a “good” theory for it to become a “bad” theory after the massive matter fields decouple,

it could naively be thought that the massive matter multiplets will decouple from the theory.

Thus, it is interesting to investigate what happens to this partition function in the infinite mass

limit. In particular, a partition function of a “bad” theory is divergent.†2. This means that

our interest is to determine which hypermultiplets become effectively massless or massive in

the infinite mass limit on the three-sphere. When a theory is defined on flat space, we must

choose a vacuum in order to determine decoupling of matter fields. However, we cannot select

a vacuum for the theories on the three-sphere. In particular, we will apply the Coulomb branch

localization scheme to calculate the S3 partition function and this is given by the integration

over the classical Coulomb branch parameters in flat space. Therefore, it is difficult to determine

whether or not the massive multiplets will decouple when we take the infinite mass limit.

It is highly non-trivial to determine which points dominantly contribute to a S3 partition

function in the infinite mass limit because all points of the Coulomb branch can contribute

to it, including generic points and singular ones. The singular points have special meanings

in the sense that whole or a part of W-bosons become massless on that point. Namely, the

gauge group is recovered. As an example, let us consider U(2) N = 4 SQCD with
Nf
2

pairs

†1The infinite mass limit of the matrix model of 3d gauge theories is also considered in [59, 66–69] in the

context of finding new examples of Seiberg-like dualities [31, 70]. This is because in the infinite mass limit the

matter fields can decouple from the theory and a phase transition can occur.
†2The magnetic theory of a “bad” theory in terms of the Seiberg-like duality is considered as a good theory [67].
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σ1 = σ2

m,m)

m, -m)

m, m)

Generic point

Origin

Figure 3.1: This figure schematically shows the real parts of the two classical Coulomb branch

parameters of U(2) N = 4 SQCD with
Nf
2

pairs of hypermultiplets with real mass ±m. There

are some special points where new massless degrees of freedom appear or the gauge symmetry

is enhanced to U(2). Here, we assume that σ2 ≥ σ1 due to the Weyl symmetry of U(2). (This

figure is cited from my paper [5].)

of hypermultiplets with real mass ±m. In Figure 3, we show that the real parts of the two

classical Coulomb branch parameters have some special points denoted by colored dots. When

we take a generic point of the Coulomb branch (blue dot), the low-energy effective theory is

U(1)× U(1) with massive matter fields and W-bosons while on a specific point, such as green or

red points, the effective theory has
Nf
2

or Nf massless hypermultiplets, respectively. The origin

(black dot) is also special in the sense that the gauge symmetry is enhanced to U(2). These

special points may be likely to dominantly contribute to the partition function. However, we

cannot determine which points dominantly contribute to the partition function so far.

First, we focus on the solution of the saddle-point equation because the solution corresponds

to a classical Coulomb branch point and in the large N limit it gives a dominant contribution

to the S3 partition function. Hence, in the large N limit, we can determine which massive

matter fields decouple as well as which theory will appear as an effective theory on the point

of the Coulomb branch which corresponds to the solution.

Then, we would like to determine the dominant which points of the Coulomb branch become

dominant even in the finite N and the infinite mass limit. The dominant point should exist

and then the partition function becomes that of an effective theory because the infinite mass

limit corresponds to the decompactified limit (rS3 → ∞)†3 and in flat space we must choose a

†3Mass parameters m necessarily appear as a combination with the radius of the three-sphere rS3 as mrS
3

.

Therefore we cannot distinguish between the infinite mass limit and the decompactified limit. In our convention

we take rS3 to 1.
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vacuum. From the solution of the saddle-point, we determine the mechanism of the vacuum

selection in the infinite mass limit, rather than the large N limit. We deduce the dominant

point of the Coulomb branch from the large N analysis and verify it for the partition function

for small rank N . We also confirm that the effective theory is the same as that we deduced.

Therefore, we conclude that this vacuum selection does not require the large N limit, rather

than just the infinite mass limit.

We study the two types of the mass-deformed N = 4 U(N) SQCD. For the first one, there

are only massive matter fields with real mass ±m and for the second one, there are massive

and massless matter fields. The first deformation is simple and suitable for studying the case

in which the mass deformation of a good theory leads to a bad theory after decoupling of the

matter fields. The second deformation is simple and suitable for investigating the case where a

good theory arise from the mass deformation of a good theory after the massive matter fields

simply decouple from the theory.

The rest of this chapter is organized as follows: In Section 3.1, we solve the saddle-point

equation of N = 4 SQCD with massless or massive matter fields and investigate the theory that

appears in the infinite mass limit. In Section 3.2, we calculate the partition function for finite

rank SQCDs and evaluate the leading part in the infinite mass limit. In Section 3.3 we present

a conclusion and discussion. In Appendix A.1, we introduce the techniques of the resolvent

methods utilized in this paper. In Appendix A.2, we explain mixed Chern-Simons terms which

appear in the infinite mass limit as one-loop effects. Then, we attempt to interpret what

happens in the infinite mass limit in terms of these mixed Chern-Simons terms. In Appendix

A.3, we discuss the convergent bound of the matrix model and reconsider the matrix model of

the effective theory in the infinite mass limit from the viewpoint of its convergence bound.

3.1 Large N solution and point of Coulomb branch

3.1.1 SQCD with massless hypermultiplets

In this subsection, we solve the saddle-point equation of U(N) SQCD with massless hypermul-

tiplets and FI parameter. In particular in this section, we consider imaginary FI terms. This

is in preparation for the latter part of this paper, where such terms appear as one-loop effects

when we take the infinite mass limit, namely in the form of certain mixed Chern-Simons terms.

The solution is given as an eigenvalue density function ρ(x), which determines the large N
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behavior of the theory. The partition function is written as

Z =
1

N !

∫ N∏
i=1

dxi
eπζ

∑
i xi
∏

i<j 4 sinh
2 (π(xi − xj))∏

i

(
2 cosh π(xi)

)Nf , (3.1.1)

It is generally difficult to calculate this partition function exactly. Fortunately, the leading

part in the large N limit can be evaluated by the saddle-point approximation. Namely, the N

dimensional integration are evaluated by substituting the solution of the saddle-point equation

into the integrand as

Z =

∫
dNxe−S[x]

N→∞−−−→ e−S[x]
∣∣
saddle

, (3.1.2)

where the RHS represents that the integrand is evaluated at the solution of the saddle-point

equation into. For this theory, the saddle-point equation is given by

0 = ζ +Nf tanh(πxi)− 2
∑
j ̸=i

cothπ(xi − xj). (3.1.3)

Assuming that the eigenvalues become dense in the large N limit, we take the continuous limit

as follows:

i

N
→ s ∈ [0, 1], xi → x(s),

1

N

N∑
i=1

→
∫
ds. (3.1.4)

The leading part of this saddle-point equation is given by a singular integral equation†4

0 = η + ξ tanhπ(x)− 2

(
P

∫
dyρ(y) coth π(x− y)

)
, (3.1.5)

where we also took Nf to be infinite with

ξ ≡ Nf

N
, η ≡ ζ

N
, (3.1.6)

finite and introduced the density function ρ(x) defined as

ds

dx
≡ ρ(x), (3.1.7)

†4We denote a principal value integral as

P

∫
dx.
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with the following normalization condition:∫
I

dxρ(x) = 1. (3.1.8)

This means that we regard the values of the eigenvalues denoted by x as constituting the

fundamental variables. The density function ρ(x) counts the number of the eigenvalues which

exist between x and x + dx. In order to solve the equation (3.1.5), it is useful to employ the

resolvent methods. In Appendix A.1, a brief summary of the resolvent methods is provided.

Before solving the equation, we define the variables X and Y as

e2πx ≡ X, e2πy ≡ Y (3.1.9)

and also define the resolvent ω(X) and the potential V ′(x) as

ω(X) ≡2

∫
I

dyρ(y)
eπ(x−y) + e−π(x−y)

eπ(x−y) − e−π(x−y)
= 2

∫
I

dyρ(y)
X + Y

X − Y
= 2

(
1 +

∫
C

dY

π

ρ(y)

X − Y

)
, (3.1.10)

V ′(x) ≡η + X − 1

X + 1
ξ, (3.1.11)

where I and C represent the intervals [xmin, xmax] and [b, a] respectively. The resolvent is de-

termined from the analyticity and the one-cut solution of the resolvent is given by (A.1.14)

as

ω(X) = η + ξ

(
X − 1

X + 1
−

2
√

(X − a)
√
(X − b)

(X + 1)
√

(1 + a)(1 + b)

)
= η + ω0 (X; 1; a, b) , (3.1.12)

For later convenience, we have introduced the following function ω0:

ω0(X;A; a, b) = ξ

(
X − A

X + A
−

2A
√

(X − a)
√
(X − b)

(X + A)
√

(1 + a)(1 + b)

)
. (3.1.13)

Then, the solution ρ(x) defined on [b, a] is given by (A.1.8) as

ρ(x) =
ξ

(X + 1)

√
(X − b)(a−X)

(1 + a)(1 + b)
. (3.1.14)

where a and b are determined from the equation describing the asymptotic behavior of ω(X)

at X = 0 and ∞:

η

ξ
=

1−
√
ab√

(1 + b)(1 + a)
, (3.1.15)

1− 2

ξ
=

1 +
√
ab√

(1 + b)(1 + a)
. (3.1.16)
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Because an FI term breaks the Z2 symmetry under which xi → −xi in the saddle-point equation,

a and b do not satisfy the condition ab = 1. The solutions of (3.1.15) and (3.1.16) are given by

a =
−4 + 4ξ + ξ2 − η2 + 4

√
(ξ − 1) (ξ2 − η2)

(−2 + ξ + η)2
, b =

−4 + 4ξ + ξ2 − η2 − 4
√

(ξ − 1) (ξ2 − η2)

(−2 + ξ + η)2
.

(3.1.17)

From (3.1.15) and (3.1.16), we find that the solution only exists when

ξ ≥ 2 + |η|. (3.1.18)

This condition is equivalent to the condition that the matrix model converges in the large N

limit. In Appendix A.3, we will discuss the convergence bound of the matrix model of SQCDs.

Here, we argue on the relation between this large N solution and a point of the classical

Coulomb branch. The equation (3.1.17) implies that when we take rS3 to infinity, xmin and xmax

become 0 because the edges of the interval given by a = e2πrS3xmax and b = e2πrS3xmin , where

the radius is recovered as x → xrS3 . Thus, the saddle-point solution becomes condensed to 0

in this limit. Because taking the radius to infinity corresponds to considering the theory on a

flat space, this solution corresponds to the origin of the Coulomb branch in flat space. On this

point, the theory at the deep IR of the RG flow expected to be an interacting superconformal

field theory because the W-bosons become massless on the point. Thus, it is expected that

the sphere partition function of SQCD with massless hypermultiplets always represents that of

the non-trivial SCFT. Here, we note that we use the terminology “Coulomb branch” as that

associated with a flat space, not the three-sphere. Generally, the Coulomb branch associated

with flat space and that associated with the three-sphere is completely different. In this thesis,

we would like to claim that the saddle-point solution corresponds to a point of the Coulomb

branch associated with flat space in the decompactified limit.

3.1.2 SQCD with massive hypermultiplets

In this subsection, we consider U(N) SQCD with Nf pairs of chiral multiplets with real mass

m and the partition function is given as follows (2.6.51):

Z =
1

N !

∫ N∏
i=1

dxi

∏
i<j 4 sinh

2 (π(xi − xj))∏
i

(
2 cosh π(xi +m)2 cosh π(xi −m)

)Nf
2

. (3.1.19)

When m = 0, this partition function becomes that of U(N) with Nf massless fundamental

hypermultiplets. If the massive matter multiplets decouple, the partition function is not well
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defined because the theory become a bad theory. In what follows, we confirm that in the infinite

mass limit the partition function does not diverge and its leading part in the infinite mass limit

may correspond to the partition function of a effective theory.

The saddle-point equation for the above matrix model is written as

2
∑
i

cothπ(xi − xj) =
Nf

2

(
tanhπ(xi +m) + tanh π(xi −m)

)
, (3.1.20)

and in the continuous limit this becomes

4

(
P

∫
dyρ(y) coth π(x− y)

)
= ξ

(
tanhπ(x+m) + tanh π(x−m)

)
, (3.1.21)

Then, the resolvent ω(X) and potential V ′(x) are defined as

ω(X) =4

∫
dyρ(y)

X + Y

X − Y
= 4

(
1 +

∫
dY

π

ρ(y)

X − Y

)
, (3.1.22)

V ′(x) =ξ

(
X −M−1

X +M−1
+
X −M

X +M

)
, (3.1.23)

where we have defined M instead of m as

M ≡ e2πm. (3.1.24)

Then, the saddle-point equation is solved by analytic properties (A.1.14) of the resolvent as

ω(X) =ω0 (X;M ; a, b) + ω0

(
X;M−1; a, b

)
, (3.1.25)

and the density function through the discontinuity equation on the branch cut (A.1.8) as

ρ(x) =
ξ

2

[
M
√
(a−X)(X − b)

(X +M)
√

(M + a)(M + b)
+

M−1
√

(a−X)(X − b)

(X +M−1)
√
(M−1 + a)(M−1 + b)

]
. (3.1.26)

The constants a and b are detemined by the symmetry under the simultaneous change of signs

of all eigenvalues and asymptotic behavior when X = 0:

−4 = 2ξ

−1 +
1√

(M + a)(M + 1
a
)
+

1√
(M−1 + a)(M−1 + 1

a
)

 , (3.1.27)

and the solution a is given by

a =
2(ξ − 1)(M2 + 1) +Mξ2 + 2(M + 1)

√
(ξ − 1) (ξ − 1 +M2(ξ − 1) +M(ξ2 − 2ξ + 2))

M(ξ − 2)2
.

(3.1.28)
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Figure 3.2: These figures show the numerical solution (blue dots) and analytic solutions for

ρ(x) (green line). The left utilizes the parameter (N,Nf ,m)=(100,2000,2), and the right one

is for parameter (N,Nf ,m)=(200,800,0.5). There is relation between the numerical xnum and

exact xexa values as πxexa = xnum. (These figures are cited from my paper [5].)

This equation immediately implies that a exists when ξ ≥ 2. This implies that this type of

mass deformation does not affect the bound of the existence of the solution.

In the infinite mass limit, it can naively be thought that this theory becomes a bad theory,

and its partition function diverges. However, this argument is not correct in the following sense:

The partition function of this massive SQCD theory corresponds to that of an effective theory

on a point of the Coulomb branch associated with the solution of the saddle-point equation.

The density function shows that the eigenvalues corresponding to the solution gather around

±m, which is showed in Figure 3.2. This implies that the solution of the saddle-point equation

corresponds to the following point of the Coulomb branch:

σ =

(
−m1N

2
×N

2
0

0 m1N
2
×N

2

)
. (3.1.29)

In fact, this argument is confirmed as follows: We assume that the eigenvalues are separated

as

xi =

m− λi (i = 1, . . . N
2
),

−m− λ̃i (i = N
2
+ 1 . . . N),

(3.1.30)

where we also assume that λi and λ̃i are independent on m. For the first N
2
eigenvalues, the

saddle-point equations (3.1.20) are written as

0 =− 2
∑
j ̸=i

cothπ (λi − λj)− 2
∑
j

cothπ
(
λi − λ̃j − 2m

)
+
Nf

2

(
tanhπλi + tanh π

(
λi − 2m

))
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→ 0 =N

(
Nf

2N
− 1

)
+ 2

N
2∑
j ̸=i

cothπ (λi − λj)−
Nf

2
tanhπλi, (3.1.31)

where we took the infinite mass limit in the second line. It is worth noting that the first term

in the second line can be interpreted as the gauge-R mixed Chern-Simons term [62–64] induced

by integrating out the massive gauginos and complex fermions of chiral multiplets. Then, for

the latter N
2
eigenvalues, the saddle-point equation in the large mass limit is

0 =N

(
1− Nf

2N

)
+ 2

N
2∑
j ̸=i

cothπ
(
λ̃i − λ̃j

)
− Nf

2
tanhπλ̃i. (3.1.32)

The equations (3.1.31) and (3.1.32) imply that in the infinite mass limit the partition function

(3.1.19) becomes †5

Z ∼ ZMassive(m)

∫
d
N
2 λ
e
πN

(
Nf
2N

−1
)∑

i λi
∏

i<j (2 sinh π (λi − λj))
2∏

i (2 cosh πλi)
Nf
2

×
∫
d
N
2 λ̃
e
−πN

(
Nf
2N

−1
)∑

i λ̃i
∏

i<j

(
2 sinh π

(
λ̃i − λ̃j

))2
∏

i

(
2 cosh πλ̃i

)Nf
2

, (3.1.33)

because the saddle-point equation of this is equivalent to (3.1.31) and (3.1.32). The factor

ZMassive(m) arises from the contribution of decoupled free massive degrees of freedom. We

can evaluate ZMassive ∼ M−N
2
(Nf−N) by substituting (3.1.30) for (3.1.19). This matrix model

represents SQCD theories with the two U(N
2
) gauge group,

Nf
2
fundamental hypermultiplets, and

an FI parameter ±N
(
1− Nf

2N

)
. †6 We will argue that FI terms and the sector of decoupled free

massive degree of freedomes can be interpreted as induced mixed Chern-Simons term through

one-loop effect of the massive fermions in Appendix A.2.

Then, we verify our assumptions by comparing the density function of the effective theory

(3.1.33) with that of the original theory (3.1.19) in the infinite mass limit. First, we consider

the density function of SQCD with massive hypermultiplets (3.1.26) in the infinite mass limit.

In order to focus on the peak of the density function around +m, we redefine X as X = MZ

and assume that Z is order O(M0). This redefinition corresponds to simultaneous shifting xi

by m. We consider the expansion of a (3.1.28) and ρ around m = ∞. It is given by

a =αM +O(M0), α ≡ 4(ξ − 1)

(ξ − 2)2
, (3.1.34)

†5The overall factor of the matrix model cannot be determined in this procedure.
†6To be precise, the FI parameter is given by 1

rS3

(
1− Nf

2N

)
if we recover the radius of S3 because in a 3d

theory an FI parameter has mass dimension 1.
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ρ(x) =
ξ

2(Z + 1)

√
Z (α− Z)

1 + α
+O(M−1), (3.1.35)

where Z ∈ [0, α] in the infinite mass limit. We compare this with the solution for the saddle-

point equation of λ part (3.1.31) because λ part corresponds to a part of the massive SQCD

in which the eigenvalues are concentrated on +m. The solution of its saddle-point equation

(3.1.31) is given by applying the result in Section 3.1.1. In this case, a, b and ρ(x) are obtained

as

a = α, b = 0, (3.1.36)

ρ(z) =
ξ

2(Z + 1)

√
Z (α− Z)

1 + α
, Z ≡ e2πz, (3.1.37)

where the additional factor of 1
2
arises from the fact that the effective theory has two U(N

2
)

gauge groups and the normalization condition should be taken as∫
I

dZ

2πZ
ρ(z) =

1

2
. (3.1.38)

The density functions (3.1.35) and (3.1.37) are completely equivalent. Next, we should consider

the part around −m. Here, in order to focus on the part, we rewriteX asX =M−1Z in (3.1.26)

and the density function in this limit can be written as

ρ(x) =
ξ

2(Z + 1)

√
Z − 1

α

1 + 1
α

+O(M−1), (3.1.39)

where Z is defined on an interval [ 1
α
,∞]. Then, we should compare this with the solution of λ̃

part of (3.1.33). The solution is given by applying the result of 3.1.1 to (3.1.32) as

a = ∞, b =
1

α
, (3.1.40)

with the density function

ρ(z) =
ξ

2(Z + 1)

√
Z − 1

α

1 + 1
α

. (3.1.41)

This is the same as (3.1.39). Thus, we conclude that SQCD with Nf massive hypermultiplets,

as studied here, becomes two SQCDs in the infinite mass limit: each theory is a U(N
2
) SQCD

with
Nf
2

massless hypermultiplets and the FI term ζ = ±iN(
2Nf
N

− 1). This result implies that

if the mass deformation naively leads to a bad theory, the sphere partition function actually

becomes that of a specific effective theory. This is because a specific point of the Coulomb

branch dominantly contributes to the partition function in the infinite mass limit. This result

also suggests that a mass-deformed theory cannot be employed for the UV regularization of

a bad theory. In Section 3.2, we will verify our claim through the exact calculation of the

partition function of finite N cases.
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3.1.3 SQCD with massive and massless hypermultiplets

In the previous subsection, we made all matter fields massive. Here, we consider an SQCD

theory with both massive and massless matter fields. The number of massless matter fields will

change the asymptotic behavior of the partition function in the infinite mass limit since the

existence of sufficient matter fields makes the partition function convergent.

We think of U(N) SQCD with
Nf
3
pairs of massive hypermultiplets with ±m and

Nf
3
massless

hyper multiplets.†7 The partition function for this theory is given by (2.6.52)

Z =
1

N !

∫ N∏
i=1

dxi

∏
i<j 4 sinh

2 (π(xi − xj))∏
i

(
2 cosh π(xi +m)2 cosh π(xi −m)2 cosh π(xi)

)Nf
3

. (3.1.42)

The saddle-point equation is

2
N∑
j ̸=i

cothπ(xi − xj) =
Nf

3
(tanhπ (xi +m) + tanh π (xi −m) + tanh πxi) , (3.1.43)

and in the continuous limit, this equation is rewritten as

6

(
P

∫
C
dy cothπ(x− y)

)
= ξ

(
tanhπ(x+m) + tanh π(x−m) + tanh πx

)
. (3.1.44)

In this case, the resolvent ω(X) and potential V ′(x) are defined as

ω(X) =6

∫
dyρ(y)

X + Y

X − Y
= 6

(
1 +

∫
dY

π

ρ(y)

X − Y

)
, (3.1.45)

V ′(x) =ξ

(
X − 1

X + 1
+
X −M

X +M
+
X −M−1

X +M−1

)
, (3.1.46)

where M = e2πm. The resolvent is determined by its analytic properties and obtained from

(A.1.14) as

ω(X) = ω0

(
X; 1; a,

1

a

)
+ ω0

(
X;M ; a,

1

a

)
+ ω0

(
X;M−1; a,

1

a

)
, (3.1.47)

where b is determined as 1
a
because of the symmetry of the saddle-point equation under the

simultaneous changing the sign of the eigenvalues. Then, the cut C = [ 1
a
, a] is determined by

the following asymptotic equation:

−6

ξ
= −3 +

2√
(1 + a)(1 + 1

a
)
+

2√
(M + a)(M + 1

a
)
+

2√
(M−1 + a)(M−1 + 1

a
)
. (3.1.48)

†7Here, We assume that
Nf

3 is an integer.

46



There are generally no explicit forms of the solution because this equation corresponds to an

octic equation in a . However we can obtain the solution numerically or in the infinite mass

limit.

The density function for this case is detemined by (A.1.8) as

ρ(x) =
ξ

3

[ M
√

(a−X)(X − 1
a
)

(X +M)
√

(M + a)(M + 1
a
)
+

M−1
√
(a−X)(X − 1

a
)

(X +M−1)
√

(M−1 + a)(M−1 + 1
a
)

+

√
(a−X)(X − 1

a
)

(X + 1)
√

(1 + a)(1 + 1
a
)

]
. (3.1.49)

Then, we argue that the leading behavior of the partition function in the infinite mass limit

depends on the number of the matter fields. First, when
Nf
3

≥ 2N , the partition function is

still well-defined even if all massive matter fields decouple from the theory. This implies that

the limit in which mass goes to infinity and the integrals of the matrix model are commutative
†8. In this case, all massive matter fields simply decouple and the remaining theory is U(N)

SQCD with
Nf
3

massless matter fields. This situation is reflected in the equation (3.1.48) in the

sense that the equation becomes the same as (3.1.16) for the case with
Nf
3

flavors and b = 1
a
.

To confirm this fact, we assume that the solution does not depend on M when we take m to

infinity. Then, the equation becomes

3− 6

ξ
=

2√
(1 + a)(1 + 1

a
)
. (3.1.51)

This implies that the solution of (3.1.48), which does not depend on mass m can exist when
Nf
3

≥ 2N while the constant solution cannot exist in the infinite mass limit when
Nf
3
< 2N .

The numerical analysis of (3.1.48) supports the existence of such a solution. Indeed, the density

function becomes the same as that of U(N) gauge theory with
Nf
3

massless hypermultiplets.

Therefore, we conclude that in this case, all the massive hypermultiplets simply decouple from

the theory because the origin of the Coulomb branch become dominant in the infinite mass

limit.

†8In this work, we focus only on the leading part of the mass infinite limit. Namely, when there exist finite

constants α and β such that the relation

lim
M→∞

(∫ ∞

−∞
dxf(x,M)Mα

)
=

∫ ∞

−∞
dx lim

M→∞
(f(x,M)Mα) = β, (3.1.50)

is satisfied for f(x,M), which is a function of x and M , we say that the infinite integral and the limit of M are

commutative.
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Next, we consider the case
Nf
3
< 2N . the solution a have to be proportional to M in the

infinite mass limit and then, we find that the density function has three peaks: around the

origin and x = ±m. We illustrate the behavior of the density function ρ(x) in Figure 3.3. We

would like to study the effective theory in the infinite mass limit that appears in this situation

by analyzing the density function. First, we should know how the gauge group U(N) is broken.

Because the density function has three peaks, it is expected that the gauge group U(N) is

broken into three parts. Thus, we assume that

U(N) → U(N1)× U(N2)× U(N3), (N1 +N2 +N3 = N). (3.1.52)

Each rank of the three gauge groups is determined by the numbers of eigenvalues around each

peak. Since the density function ρ(x) counts the number of the eigenvalues between x and

x+dx, what we should do to count the numbers of the eigenvalues that exist around each peak

is to integrate the corresponding density function over the corresponding peak. Then, we can

determine each rank of the three gauge group.

First, we would like to determine a solution proportional to M . In the infinite mass limit,

the equation (3.1.48) becomes with the assumption a =Mβ.

1− 2

ξ
=

2

3
√

(1 + β)
, (3.1.53)

then we can immediately determine β as

β =
(5ξ − 6)(−ξ + 6)

9(ξ − 2)2
. (3.1.54)

In order to study the behavior of the density function around x = m, we redefine X using an

order O(M0) variable Z as X =MZ. When m→ ∞, the density function (3.1.49) becomes

ρ(x)
m→∞−−−→ ρ+(z) ≡

ξ

3(Z + 1)

√
Z(β − Z)

1 + β
, Z ≡ e2πz, (3.1.55)

where Z ∈ [0, β]. Next, we investigate the density function around the peak at x = −m by

redefining X as X =M−1Z in (3.1.49). By the same calculation as in (3.1.37), this becomes

ρ(x)
m→∞−−−→ ρ−(z) ≡

ξ

3(Z + 1)

√√√√Z − 1
β

1 + 1
β

, (3.1.56)

where Z ∈ [ 1
β
,∞]. Finally, we study the density function around x = 0. To focus on this part

of the density function, we regard X as order O(M0). Then, in the infinite mass limit, the

density function becomes

ρ(x)
m→∞−−−→ ρ0(z) ≡

ξ
√
Z

3(Z + 1)
, (3.1.57)
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Figure 3.3: These figure shows the density function ρ(x) (3.1.49) (green line) and the numer-

ical one from the saddle-point equation (blue dots). The left and right figures correspond to

(N ,Nf ,m)=(200,1000,3) and (200,420,3) respectively. There are relation between the numerical

values xnum and exact values xexa as πxexa = xnum. (These figures are cited from my paper [5].)

where Z takes value ∈ [0,∞]. In order to determine N1, N2 and N3, we employ (3.1.55), (3.1.56)

and (3.1.57), respectively. We obtain the following relation:∫ β

0

dZ

2πZ
ρ+(z) =

6− ξ

12
, (3.1.58)∫ ∞

1
β

dZ

2πZ
ρ−(z) =

6− ξ

12
, (3.1.59)∫ ∞

0

dZ

2πZ
ρ0(z) =

ξ

6
. (3.1.60)

This result implies that the gauge group U(N) is broken into the following:

N1 =
ξ

6
N, N2 = N3 =

6− ξ

12
N, (3.1.61)

where we assume that ξ
6
N and 6−ξ

12
N are integers. This implies that in the infinite mass limit,

the theory becomes a effective theory on a point of the Coulomb branch as

σ =

 −m1N2×N2

0N1×N1

m1N2×N2

 . (3.1.62)

We assume that eigenvalues are separated as

xi =


−m− λ1i , (i = 1, . . . , N2),

λ2i , (i = N2 + 1, . . . N1 +N2),

m− λ3i (i = N1 +N2 + 1, . . . , N).

(3.1.63)
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Through a similar calculation in the previous subsection, the saddle-point equation is rewritten

in the following three parts under the assumption:

0 =2N

(
6 + ξ

12
− ξ

3

)
+ 2

N2∑
j ̸=i

cothπ
(
λ1i − λ1j

)
− Nf

3
tanhπλ1i , (i = 1, . . . N2), (3.1.64)

0 =2

N1∑
j ̸=i

cothπ
(
λ2i − λ2j

)
− Nf

3
tanhπλ2i , (i = 1, . . . N1) (3.1.65)

0 =− 2N

(
6 + ξ

12
− ξ

3

)
+ 2

N2∑
j ̸=i

cothπ
(
λ3i − λ3j

)
− Nf

3
tanhπλ3i , (i = 1, . . . N2). (3.1.66)

These equations imply that the partition function (3.1.19) in the infinite mass limit becomes

the following matrix model:

Z =Zmassive(m)

∫
dN2λ2

e2πN(
ξ
3
− 6+ξ

12 )
∑
i λ

2
i
∏

i<j

(
2 sinh π

(
λ2i − λ2j

))2
∏

i (2 cosh πλ
2
i )

Nf
3

×
∫
dN2λ3

e−2πN( ξ3−
6+ξ
12 )

∑
i λ

3
i
∏

i<j

(
2 sinh π

(
λ3i − λ3j

))2
∏

i (2 cosh πλ
3
i )

Nf
3

∫
dN1λ1

∏
i<j

(
2 sinh π

(
λ1i − λ1j

))2
∏

i (2 cosh πλ
1
i )

Nf
3

.

(3.1.67)

There are FI terms associated with two U(N2) gauge group, which also arise from the gauge-

R-symmetry mixed Chern-Simons term. The U(N1) part has no FI terms since there are pairs

of mixed Chern-Simons terms which have opposite overall signs corresponding to those of the

masses of the effectively massive fermions. The decoupled massive free sector can be estimated

by ZMassive(m) ∼M−
NfN(6+ξ)

36 by substituting (3.1.63) for (3.1.42).

In fact, we can confirm that the three density functions in the infinite mass limit are the

same as those obtained from (3.1.64), (3.1.65) and (3.1.66). First, the solution of (3.1.64) is

obtained from (3.1.14) and (3.1.17) as

a = ∞, ρ(z) =
ξ
√
Z

3π(Z + 1)
, (3.1.68)

where Z ∈ [0,∞]†9. This density function is the same as ρ0(z). Next, we consider the solution

of (3.1.65). We obtain the solution from the equations (3.1.17) as

a = ∞, b =
(ξ̃ − 2)2

4(ξ̃ − 1)
=

1

β
, ξ̃ ≡ 4ξ

6− ξ
, (3.1.69)

†9Here we assume that Z
a is zero since when we scale Z = aZ̃, ρ(z) is O( 1a ) and only the order O(a0) part of

Z can contribute to ρ(z).
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and the density function is

ρ(z) =
6− ξ

12

ξ̃

(Z + 1)

√√√√Z − 1
β

1 + 1
β

=
ξ

3(Z + 1)

√√√√ Z − 1
β

(1 + 1
β
)
, (3.1.70)

where Z ∈ [ 1
β
,∞]. This coincides with ρ−(z). Finally, we consider the solution of (3.1.66)

obtained in the same manner as that of (3.1.65) as

a =
4(ξ̃ − 1)

(ξ̃ − 2)2
= β, b = 0, (3.1.71)

and

ρ(z) =
6− ξ

12

ξ̃

(Z + 1)

√
Z(β − Z)

1 + β
=

ξ

3(Z + 1)

√
Z(β − Z)

1 + β
. (3.1.72)

This density function is the same as ρ+(z). We note that the normalization condition of each

density function is set such that they correspond to each rank of the gauge groups (3.1.61). We

conclude that the partition function (3.1.42) becomes that (3.1.67) in the infinite mass limit.

The result so far suggests that the massive multiplets cannot always simply decouple from

the theory. In other words, a partition function of a “good” theory cannot become that of a

“bad” theory after the massive matter fields decouple although a partition function of a “good”

theory can become that of a specific “good” theory after simply decoupling of the massive

matter multiplets. A notable result is that the gauge group of the effective theory depends on

the number of flavors.

3.2 Finite rank SQCD

For SQCD cases, partition functions can be actually calculated at least for a sufficiently low

rank of the gauge group. In this section, through exact results, we confirm exact results that

our argument for the effective theory is true even in case of finite N . Furthermore, we reveal

what happens in the infinite mass limit for theories that are not covered by our argument in

the large N limit.

3.2.1 With massive hypermultiplets

U(1) SQED

The partition function of SQED with massive matter fields is given by

Z
Nf
U(1) =

∫ ∞

−∞
dx

1

(2 cosh π(x+m)2 cosh π(x−m))
Nf
2

. (3.2.1)
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This model is considered in [15] with an FI term. In this case, the theory may not become

the effective theory expected from the previous section because N
2
is not integer. Thus, it is

interesting to know what happens in this case when m → ∞. The exact result for any Nf is

given in terms of the hypergeometric function as [15]

Z
Nf
U(1) =

Γ(
Nf
2
)

2
Nf
2

√
2πΓ(

Nf
2
+ 1

2
) (cosh 2πm+ 1)

Nf
2

− 1
2

2F1

(
1

2
,
1

2
,
Nf

2
+

1

2
;
1

2
(1− cosh 2πm)

)
,

(3.2.2)

and its leading part in the infinite mass limit is written as

Z
Nf
U(1) −−−→m→∞

1

π

logM

M
Nf
2

, M ≡ e2πm. (3.2.3)

This is a strange result in the sense of our argument so far because a decoupled sector, which

is the only part depending on mass in the mass infinite limit, does not have such a term.

Therefore, we cannot determine what the effective theory is in this case from our previous

argument.

U(2) SQCD

The partition function for this theory is following:

Z
Nf
U(2) =

1

2!

∫ ∞

−∞
dx

∫ ∞

−∞
dy

4 sinh2 π(x− y)

(2 cosh π(x+m)2 cosh π(x−m)2 cosh π(y +m)2 cosh π(y −m))
Nf
2

,

(3.2.4)

and the results for small Nf are summarized in the following table.

Nf = 4 Nf = 6 Nf = 8 Nf = 10
1

(2π)2M2
1

(4π)2M4
1

(6π)2M6
1

(8π)2M8

Table 3.1: The leading part of Z
Nf
U(2) when m→ ∞.

These results show that in the infinite mass limit, our expectation obtained from the large

N calculation is valid since the following relation is verified:

ZMassiveZU(1)×U(1) =
4 sinh2(2πm)

(2 cosh 2πm)Nf

∫ ∞

−∞
dx

e
π
(
2−

Nf
2

)
x

(2 cosh πx)
Nf
2

∫ ∞

−∞
dx

e
−π

(
2−

Nf
2

)
x

(2 cosh πx)
Nf
2
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m→∞−−−→ 1

((Nf − 2)π)2M (Nf−2)
, (3.2.5)

where two integrals represent a U(1)× U(1) theory and the pre-factor Zmassive denotes the

decoupled massive free sector, for which the denominator arises from massive hypermultiplets

and the numerator arises from vector multiplets. the gauge group U(2) can be broken down

U(1)× U(1) since N
2
is an integer. In this case, we also find that the leading part of partition

functions are equal with a partition function of corresponding effective theory including the

overall factor, which cannot be determined from the large N analysis.

U(3) SQCD

The partition function for this case is written as

Z
Nf
U(3) =

1

3!

∫ ∞

−∞
dxdydz

4 sinh2 π(x− y)4 sinh2 π(x− z)4 sinh2 π(y − z)

(2 cosh π(x±m)2 cosh π(y ±m)2 cosh π(z ±m))
Nf
2

, (3.2.6)

where we have defined the following notation:

2 cosh π(X ± Y ) ≡ 2 cosh π(X + Y )2 cosh π(X − Y ). (3.2.7)

The results for small Nf are summarized in the following table:

Nf = 6 Nf = 8 Nf = 10 Nf = 12
logM

16π3M5
logM

144π3M8
logM

576π3M11
logM

1600π3M14

Table 3.2: The leading part of Z
Nf
U(3) when m→ ∞

In this case, it may not also be possible that the partition function of effective theories is

divided into a superconformal field theory sector and a massive free sector for the same reason

as in the U(1) case, namely, that N
2
is not an integer.

3.2.2 With massive and massless hypermultiplets

U(1) SQED

This case is trivial because the limit that takes mass to infinity is commutative with the infinite

integral. Massive matter fields simply decouple from the theory and the remaining theory is
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SQED with
Nf
3

massless hypermultiplets. In fact, the following relation is valid:

Z̃
Nf
U(1) =

∫ ∞

−∞
dx

1

(2 cosh πx2 cosh π(x+m)2 cosh π(x−m))
Nf
3

−−−→
m→∞

(
1

M

)Nf
3

Z̃
Nf
3

U(1)

∣∣
m=0

,

where for N = 4 U(N) SQCD with a massless flavors part, Z̃
Nf
U(N)

∣∣
m=0

can be calculated for

Nf ≥ 2N [71, 72] as

Z̃
Nf
U(N)

∣∣
m=0

=
1

N !

1

(2π)N

N−1∏
k=0

Γ(k + 2)
(
Γ(

Nf
2
−N + k + 1)

)2
Γ(Nf −N + k + 1)

. (3.2.8)

U(2) SQCD

In what follows, we present the exact calculation of the partition function of U(2) SQCD

Z̃
Nf
U(2) =

1

2!

∫ ∞

−∞
dxdy

4 sinh2 π(x− y)

(2 cosh π(x±m)2 cosh(y ±m)2 cosh πx2 cosh πy)
Nf
3

. (3.2.9)

The results for small Nf are summarized in the following table:

Nf = 3 Nf = 6 Nf = 9 Nf = 12
1

4M
(logM)

2

4π2M4
1

32M6
1

48π2M8

Table 3.3: The leading part of Z̃
Nf
U(2) when m→ ∞.

When Nf = 3, we can deduce the effective theory as follows:

ZMassiveZU(1)×U(1) =
4 sinh2 2πm

(2 cosh 2πm2 cosh πm)2

(∫ ∞

−∞
dx

1

2 cosh πx

)2

−−−→
m→∞

1

4M
. (3.2.10)

This means that the effective theory appears when we chose the point of the Coulomb branch

as

σ =

(
−m

m

)
, (3.2.11)

in the sense of theories on the flat space. Our previous expectation cannot be applied to this

case because ξ
6
N and 12−ξ

12
N are not integers, nevertheless a logM term does not appear in the

infinite mass limit unlike the case with only massive matter fields. The effective theory can be

deduced. When Nf = 6, a logM term appears and the effective theory may not be U(1)×U(1).
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It is also notable that whether or not a logM appears depends on the number of flavors. When

Nf ≥ 9, the infinite mass limit is commutative with the integral. Thus, the result is trivial
†10. This implies that the

2NNf
3

massive matter fields simply decouple by choosing the origin of

the Coulomb branch since the remaining theory is a good theory. Namely, in the infinite mass

limit, the partition function is written as

Z̃
Nf
U(2) −−−→m→∞

(
1

M

) 2Nf
3

Z̃
Nf
3

U(2)

∣∣
m=0

. (3.2.12)

U(3) SQCD

For this case, the partition function is given by

Z̃
Nf
U(3) =

1

3!

∫ ∞

−∞

4 sinh2 π(x− y)4 sinh2 π(x− z)4 sinh2 π(y − z)dxdydz

(2 cosh(πx)2 cosh(πy)2 cosh(πz)2 cosh π(x±m)2 cosh π(y ±m)2 cosh π(z ±m))
Nf
3

.

(3.2.13)

For small Nf , the results are summarized in the following table:

Nf = 6 Nf = 9 Nf = 12 Nf = 15
1

(2π)3M4
9

212M8

(logM)
2

48π3M12
1

213M15

Table 3.4: The leading part of Z̃
Nf
U(3) when m→ ∞.

For Nf = 6 case, the gauge group U(3) is broken into U(1)×U(1)×U(1) and then, each U(1)

SQCD has two massless fundamental hypermultiplets. This theory is expected from the large

N analysis because ξ
6
N and 12−ξ

6
N are integers. Actually, the partition function becomes

ZMassiveZU(1)×U(1)×U(1) =
(4 sinh2 πm)24 sinh2 2πm

(2 cosh πm)4(2 cosh 2πm)6

(∫ ∞

−∞
dx

1

(2 cosh πx)2

)3

−−−→
m→∞

1

(2π)3M4
. (3.2.14)

When Nf = 9, this means that ξ
6
N and 12−ξ

12
N are not integers. Therefore, we cannot simply

apply the result from the large N analysis to this case. Nevertheless, we can guess that the

†10Exactly speaking, the matrix converges when 2N − 2 ≤ Nf

3 . In the large N limit the order one part is

neglected.
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effective theory will be a U(1)× U(1) × U(1) gauge theory in which each U(1) SQED has three

massless hypermultiplets. The partition function of the effective theory is given by

ZmassiveZU(1)×U(1)×U(1) =

(
4 sinh2 πm

)2 (
4 sinh2 2πm

)
(2 cosh 2πm)6(2 cosh πm)12

(∫ ∞

−∞
dx

e−2πx

(2 cosh πx)3

)2 ∫ ∞

−∞
dx

1

(2 cosh πx)3

−−−→
m→∞

9

212M8
, (3.2.15)

and this is the same as Z̃
Nf=9

U(3) . Unlike the Nf = 6 case, two of the three U(1) theory have

an imaginary FI term arising from one-loop effects of massive fermions. Thus, in the case of

Nf = 6, 9, we conclude that the IR effective theory corresponds to the theory on a non-trivial

Coulomb branch point

σ =

 m

0

−m

 , (3.2.16)

in the sense of theories in flat space.

When Nf = 12, a logM term appears and then, we do not have any interpretations of the

effective theory. we would like to note that a logM term appears when
Nf
3

= 2N − 2, where

Nf = 2N −2 is the threshold for a “bad” theory of N = 4 U(N) SQCD with Nf flavors. When

Nf ≥ 15, massive multiplets simply decouple in the infinite mass limit because we can change

the order of the limit of the mass and the integrals. Indeed, the following relation is valid:

Z̃
Nf
U(3) −−−→m→∞

(
1

M

) 3Nf
3

Z̃
Nf
3

U(3)

∣∣
m=0

, (3.2.17)

and this relation implies the trivial Coulomb branch point

σ =

 0

0

0

 . (3.2.18)

dominantly contributes to the partition function.

3.3 Summary and Discussion

It is known that three-dimensional supersymmetric SQCD theories flow to different phases in

the deep IR depending on the number of matter multiplets. Hence, it is interesting that we

give infinite mass to matter multiplets in order to decouple them and then investigate the
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effects including non-perturbative effects. In particular, a supersymmetric localization method

is a powerful tool which allowed us to exactly calculate several observables. Thus, through a

round three-sphere partition function, we studied the effect in the infinite mass limit. In this

chapter, we consider the following two types of deformations: (i) only massive matter fields, and

(ii) massive and massless matter fields. To determine which matter hypermultiplets decouple

from theory, we must select a vacuum (in this thesis we only consider the Coulomb branch),

which can give matter fields real mass by the Higgs mechanism in the sense of theories on

flat space. Because a three-sphere partition function is written in terms of integrals over the

Coulomb branch, it seemed that we cannot determine effective real masses of matter fields and

then which matter fields decouple. To specify a dominant point of the Coulomb branch, we

focused on the solution of the saddle-point equation. This is because it not only corresponds

to a point of the Coulomb branch, but also determine the leading behavior of the partition

function in the large N limit. Therefore, we could investigate decoupling of matter fields and

the effective theory by the following solution in the large N limit. Finally, for finite-rank SQCD,

we confirmed that in the infinite mass limit an effective theory on a non-trivial point of the

Coulomb branch appears through the exact calculation of the partition function.

In case (i), we can naively think that if we consider a theory at the trivial Coulomb branch

and take mass to infinity, then, all massive matter fields decouple from the theory and its

partition function diverges. However, in fact, this argument was not valid since the limit with

respect to real mass is not commutative with the integrals of the matrix model. Then, we

found that the density function, which shows a configuration of the solution, is distributed in

two separated regions: one is concentrated around m and the other around −m. This means

that in the infinite mass limit the gauge group U(N) is broken down to U(N
2
)×U(N

2
) with Nf

massless hypermultiplets and FI terms. Even for cases of finite N , this expectation obtained

from the large N analysis may be true except when N
2
is not an integer.

In case (ii), the behavior of the partition function depends on the number of the massless

flavors. When
Nf
3
> 2N − 2, the limit with respect to real mass is commutative with the

integrals and the massive matter fields simply decouple from the theory. This implies that the

origin of the Coulomb branch dominantly contributes to the partition function. On the other

hand, in case that
Nf
3

≤ 2N − 2, we found that the gauge group is broken into three parts

and each rank of gauge group depends on the number of flavors. Through the results in cases

of finite N , we confirmed that a non-trivial effective theory appears in the infinite mass limit

except in a few cases.

Let us comment on more general mass deformations. In this chapter, we considered above

two mass deformations. In fact, we can consider more general mass deformations of N = 4

U(N) SQCD as long as mass deformations preserve N = 4 supersymmetry because the large

57



N analysis with resolvent methods can be applied to the general mass deformations. We can

expect the result for the more general mass-deformed theories from our results. In fact, our

results suggest that the number of real mass parameters corresponds to that of peaks of the

density function and the number of flavors which have the same real mass is associated with

the rank of the gauge groups which the original gauge group is spontaneously broken into.

Finally, we would like to comment on the F-theorem. In our analysis, it can be verified that

the free energies of many theories are divided into two parts in the infinite mass limit as

F → FSCFT + FMassive, (3.3.1)

where FSCFT is the mass-independent part of the free energy, which can be regarded as that of

a superconformal field theory and FMassive denotes the sector of free massive multiplets. FMassive

is proportional to m and we can counter it by a local-counter term, which corresponds the

Einstein-Hilbert action of S3 [62]. In this setting, we expect that

FUV > FSCFT, (3.3.2)

where FUV is the free energy when m = 0 because it can naively be considered that the limit

m→ ∞ corresponds to flowing to the deep IR and m = 0 corresponds to a UV limit†11. Indeed

this relation is valid at least in our results in Section 3.2. We would like to note that there

are exceptional theories, whose partition functions exhibit logM behavior in the infinite mass

limit, and these theories cannot be interpreted as in (4.2.41) because the leading behavior of

the partition function can be evaluated by substituting the dominant point of the Coulomb

branch for the action. Therefore, contributions from the points of the Coulomb branch (at

most countable) cannot cause the logarithmic factors. It may be possible that the logarithmic

factors arise from the contributions of the uncountably infinite points of the Coulomb branch,

namely, the moduli is remaining.

†11we can regard that the characteristic energy scale E0 is determined as 1
rS3

and then m/E0 → ∞ and

m/E0 → 0 corresponds to the UV and IR limit respectively.
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Chapter 4

Mass-deformed ABJM theory

This chapter is organized as follows. In Section 4.1, we show that the matrix model expression

of the three-sphere partition function resulting from the localization. Before we provide our

main results, we also provide the solution to the saddle-point equation for the imaginary mass,

as an easy example of HKPT’ ansatz. Then, in Section 2.2.5, we solve the saddle-point equation

for real mass parameter and show that the solution is not valid beyond the certain value of the

mass parameter. In Section 4.3, we consider the mass-deformation for ζ1 = 0. We find that the

saddle-point solution does not have any singularities at a finite value of ζ2 unlike that for the

real FI-deformed case. In Section 4.4, we conclude with some discussion about the threshold of

the eigenvalues distributions and comments on the relation between it and the next chapter.

4.1 General mass deformation of ABJM theory

In this section, we review some basic facts on the mass-deformed ABJM theory on S3. The

field content of the ABJM theory consists of, in the 3d N = 2 SUSY notation, a U(N)k

vector multiplet V = (Aµ, σ, χ,D), a U(N)−k vector multiplet Ṽ = (Ãµ, σ̃, χ̃, D̃), two chiral

multiplets Zα = (Aα, ϕα, Fα) in (□, □̄) representation under U(N)k × U(N)−k and two chiral

multiplets Wα̇ = (Bα̇, ψα̇, Gα̇) in (□̄,□) representation.†1 Here the vector multiplets obey the

Chen-Simons action with level ±k, while the action for the chiral multiplets consists of the

superpotential together with the following minimal coupling to the vector multiplets

Skin =

∫
d3x

√
gTr

[
|DµAa|2 + |DµWȧ|2 +

3

4r2S3

(|Aa|2 + |Wȧ|2)

+
1

rS3

|σAa − Aaσ̃|2 + i(ĀaDAa − AaD̃Ā
a)

†1The (anti-)bi-fundamental chiral multiplets have U(1)R charges 1/2.
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+
1

rS3

|σ̃Bȧ −Bȧσ|2 + i(B̄ȧD̃Bȧ −BȧDB̄
ȧ)
]
+ (fermions). (4.1.1)

We can introduce a mass by turning on a background vector multiplet V(bgd) = (A
(bgd)
µ , σ(bgd),

χ(bgd), D(bgd)) of a global symmetry in the following supersymmetric configuration†2 [73]

A(bgd)
µ = 0, σ(bgd) = δ, χ(bgd) = 0, D(bgd) = −δ. (4.1.2)

where we have set the radius of S3 to rS3 = 1. Here we turn on the background multiplets

of the flavor symmetries U(1)1 × U(1)2 × U(1)3 commuting with the N = 2 supersymmetry

under which the chiral multiplets are charged†3 as in table 4.1. The background gauge fields

also minimally couples to the chiral multiplets in the same way as (4.1.1), hence it modifies the

action as

S → S +

∫
√
gTr

[(δ1
2

+
δ2

2
+
δ3

2

)
(−i|A1|2 − 2(Ā1σA1 − Ā1A1σ̃)) +

(δ1
2

+
δ2

2
+
δ3

2

)2
|A1|2

+
(δ1
2

− δ2

2
− δ3

2

)
(−i|A2|2 − 2(Ā2σA2 − Ā2A2σ̃)) +

(δ1
2

− δ2

2
− δ3

2

)2
|A2|2

+
(
−δ

1

2
+
δ2

2
− δ3

2

)
(−i|B1̇|2 − 2(B̄1̇σ̃B1̇ − B̄1̇B1̇σ)) +

(
−δ

1

2
+
δ2

2
− δ3

2

)2
|B1̇|2

+
(
−δ

1

2
− δ2

2
+
δ3

2

)
(−i|B2̇|2 − 2(B̄2̇σ̃B2̇ − B̄2̇B2̇σ)) +

(
−δ

1

2
− δ2

2
+
δ3

2

)2
|B2̇|2

]
. (4.1.3)

Then, we introduce δi (i = 1, 2, 3) as the vacuum expectation values of the background vector

multiplets V(bgd,i) for U(1)i. In this chapter, we select δi as

δ1 =
2(ζ1 + ζ2)

k
, δ2 =

2(ζ1 − ζ2)

k
, δ3 = 0, (4.1.4)

so that ζ1, ζ2 are regarded as real mass parameters for chiral multiplets as m1 = 2ζ1/k for

Z1, W2̇ and m2 = 2ζ2/k for Z2, W1̇. We note that first, we will investigate FI-deformed

ABJM theory, which corresponds to the case δ2 = 0 as follows: The background gauge fields

uniformly gives the mass to both of Aα, B̄
α̇ in (4.1.3) and then can be absorbed into the shift

as (σ,D, σ̃, D̃) → (σ,D, σ̃, D̃) + (−πζ/k, πζ/k, πζ/k,−πζ/k) with ζ = (ζ1 + ζ2)/2. Finally,

the Fayet-Illiopoulos terms arise from the Chern-Simons term by the above redefinition of the

fields.

†2This type of mass is usually called real mass. We can also add “complex mass” by adding quadratic terms in

superpotential but it is known that S3 partition function of general 3d N = 2 theory is independent of complex

mass.
†3These charges are denoted as h4, h1, h2 in [26], respectively. These U(1) symmetries are a part of non-

Abelian R-symmetry in higher SUSY language.
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U(1)1 U(1)2 U(1)3

Z1
1
2

1
2

1
2

Z2
1
2

−1
2

−1
2

W1̇ −1
2

1
2

−1
2

W2̇ −1
2

−1
2

1
2

Table 4.1: Charges of the U(1)1 × U(1)2 × U(1)3 flavor symmetry.

Applying the localization method [50–52] to this theory, the sphere partition function of the

mass-deformed ABJM theory is given by the following matrix model [74]

Z =
1

(N !)2

∫
dNλ

(2π)N
dN λ̃

(2π)N
e
ik
4π

∑
i(λ

2
i−λ̃2i )

∏N
i ̸=j 2 sinh

λi−λj
2

· 2 sinh λ̃i−λ̃j
2∏N

i,j=1 2 cosh
λi−λ̃j−4πζ1/k

2
· 2 cosh λi−λ̃j−4πζ2/k

2

. (4.1.5)

4.2 Large N ansatz and Imaginary FI-parameter

In this section, before going on to the real mass deformation, we shall investigate the case with

pure imaginary FI-parameter

ζ = −iξ, ξ ∈ R. (4.2.1)

as an example of an ansatz proposed in [75] (HKPT ansatz) to solve the large N saddle-point

of the equation. Though this FI deformation is equivalent to that for the R-charge deformation

of the ABJM theory studied in [51, 74] (see also [63]), it is useful to consider gauge theories of

which the large N free energy exhibits a special behavior like as the N
3
2 behavior of the ABJM

theory for a demonstration of the general ideas in the evaluation of the free energy in the

large N limit. Interestingly, the results for mass deformed ABJM theory and its “analytically

continued” version we consider here are substantially different in various ways, contrary to the

naive expectation.

Employing (4.2), for the mass-deformed ABJM theory, the partition function is given by

the following finite dimensional integral

Z(N) =
1

(N !)2

N∏
i=1

∫
dλidλ̃ie

−f(λ,λ̃), (4.2.2)

where the action f(λ, λ̃) is written as

f(λ, λ̃) = πik

(∑
i≥1

λ2i −
∑
i≥1

λ̃2i

)
− 2πiζ

(∑
i≥1

λi +
∑
i≥1

λ̃i

)
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−
∑
i>j

log 4 sinh2 π(λi − λj)−
∑
i>j

log 4 sinh2 π(λ̃i − λ̃j) +
∑
i,j≥1

log 4 cosh2 π(λi − λ̃j),

(4.2.3)

In the large N limit, the partition function can be evaluated with the saddle-point approx-

imation. The saddle-point equation are given by

0 =
∂f(λ, λ̃)

∂λi
= 2πikλi − 2πiζ − 2π

∑
j ̸=i

cothπ(λi − λj) + 2π
∑
j

tanhπ(λi − λ̃j),

0 =
∂f(λ, λ̃)

∂λ̃i
= −2πikλ̃i − 2πiζ − 2π

∑
j ̸=i

cothπ(λ̃i − λ̃j)− 2π
∑
j

tanhπ(λj − λ̃i). (4.2.4)

The free energy F = − logZ(N) can be evaluated by the saddle-point configuration

F ≈ f(λ, λ̃)|saddle. (4.2.5)

We note that the saddle-point configurations is generally complex although λi and λ̃i are real

in the integration contours in (4.2.2).

Analytical solution in large N limit

In the case of pure imaginary FI parameter, we can find the solution to the saddle-point

equations (4.2.4) in the large N limit by evaluating the equations up to O(N0). As we discuss

above we set

λi =
(
λ̃i

)∗
. (4.2.6)

Moreover, we shall assume that

λi = Nαxi + iyi, λ̃i = Nαxi − iyi, (4.2.7)

with xi and yi being of order O(N0). We have introduced a factor Nα to denote the growth of

the real part of eigenvalues and then, the scaling exponent α will be determined later.†4

In the large N limit, we can define continuous functions x(s), y(s) : [0, 1] → R to replace xi

and yi as

xi = x
( i
N

)
, yi = y

( i
N

)
. (4.2.8)

†4Although there is no proof that there are no solutions without the assumption, we believe this assumption

is valid for the solution which gives the lowest free energy configurations, based on numerical calculations.
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Here we have ordered the eigenvalues so that x(s) is a strictly increasing function. It is reason-

able to take the real part of the eigenvalues x as the fundamental variable rather than s and

to denote the imaginary part y as a function of x. Then, we introduce the eigenvalue density

ρ(x) associated with the real part of the eigenvalues as

ρ(x) =
ds

dx
(4.2.9)

which is normalized as ∫
I

dxρ(x) = 1. (4.2.10)

This means that ∑
i

(· · · )i → N

∫
I

dxρ(x)(· · · )(x). (4.2.11)

Here I is the support where the eigenvalues are defined and we shall assume it to be a single

finite interval I = [a, b]. In this continuum limit, the saddle-point equations (4.2.4) become

0 = −ik(Nαx+ iy(x)) + ξ +N

(
P

∫
I

dx′ρ(x′) coth π
[
(x− x′)Nα + i(y(x)− y(x′))

])
−N

(
P

∫
I

dx′ρ(x′) tanh π
[
(x− x′)Nα + i(y(x) + y(x′))

])
. (4.2.12)

We regard the integral whose integrand has a singular point at x = x′ as the principal value

integral. Now to solve the saddle-point equation (4.2.12) implies to find functions y(x) and

ρ(x) which satisfy (4.2.12) and the normalization (4.2.10).

Then, to obtain the leading part of the saddle-point equation, we expand the last two

terms in (4.2.12) including the integration over x′ Because the arguments of coth and tanh are

scaled by Nα, this can be evaluated by approximating them by the sign of the real part of the

arguments and by the integration by parts. First, we notice the following expansion formulas

tanh(z) =


1− 2

∞∑
n=1

(−1)n−1e−2nz (Re(z) ≥ 0)

−1 + 2
∞∑
n=1

(−1)n−1e2nz (Re(z) < 0)

,

coth(z) =


1 + 2

∞∑
n=1

e−2nz (Re(z) ≥ 0)

−1− 2
∞∑
n=1

e2nz (Re(z) < 0)

. (4.2.13)
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The leading terms in (4.2.13) arise from the sign function approximation. In the two integrals,

these leading factors are precisely canceled together as follows:

N

∫
I

dx′ρ(x′) coth π
[
(x− x′)Nα + i(y(x)− y(x′))

]
−N

∫
I

dx′ρ(x′) tanh π
[
(x− x′)Nα + i(y(x) + y(x′))

]
∼ N

∫
I

dx′ρ(x′) sgn(x− x′)−N

∫
I

dx′ρ(x′) sgn(x− x′) = 0. (4.2.14)

Because the real part of the arguments grows with Nα, the contributions from the remaining

terms e−2nz in (4.2.13) are exponentially suppressed in large N limit and do not contribute

to the 1/N expansion except for the contributions from the integration near z ∼ 0, which

give 1/Nα corrections. These terms in (4.2.13) can be evaluated by separating the integration

interval into x > x′ and x < x′ and integrating by parts

N

∫
I

dx′ρ(x′) coth π
[
(x− x′)Nα + i(y(x)− y(x′))

]
−N

∫
I

dx′ρ(x′) tanh π
[
(x− x′)Nα + i(y(x) + y(x′))

]
= −2iN1−αρ(x)

∞∑
n=1

(−1)n−1

πn
sin(4nπy(x))−N1−2αρ̇(x)

∞∑
n=1

(−1)n−1

π2n2
cos(4nπy(x))

−N1−2αρ̇(x)
∞∑
n=1

1

π2n2
+ 2N1−2αρ(x)ẏ(x)

∞∑
n=1

(−1)n−1

πn
sin(4nπy(x)) +O(N1−3α),

(4.2.15)

where we have used the following formula∫ b

a

g(x)eAx+iy(x)dx =
∞∑
ℓ=0

(−1)ℓ

Aℓ+1

[
dℓ

dxℓ
(
g(x)eiy(x)

)
eAx
]b
a

(4.2.16)

with A an arbitrary constant. In this case, A denotes a Nα factor and this formula implies the

1/Nα expansion. Here, we have kept the terms up to O(N1−2α) since these terms will be the

leading contributions.

Substituting (4.2.15) for the saddle-point equation (4.2.12), Finally, we obtain two equations

from the real part and the imaginary part as the leading part in the 1/N expamsion of the

saddle-point equation as(imaginary part) = 0 → −kNαx− 4N1−αρ(x)y(x) = 0,

(real part) = 0 → ky(x) + ξ −N1−2αρ̇(x)
[1
4
− 4y2(x)

]
+ 4N1−2αρ(x)y(x)ẏ(x) = 0,

(4.2.17)
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where dot “·” denotes the abbreviation for the differential with respect to x. Here, we have

used the following Fourier series expansion formulas:

∞∑
n=1

(−1)n−1

n2
cos(4πny) =

π2

12
− 4π2y2, for − 1

4
≤ y ≤ 1

4
, (4.2.18)

∞∑
n=1

(−1)n−1

n
sin(4πny) =2πy, for − 1

4
≤ y ≤ 1

4
. (4.2.19)

If the function y(x) does not satisfy −1
4
≤ y(x) ≤ 1

4
, (4.2.17) is no longer correct. The formulas

can be generalized considering the periodicity of the trigonometric functions although we will

not consider this here. In order to obtain a non-trivial solution, we should balance the scalings

of all terms in each equation of (4.2.17). From this condition, the scaling exponent is determined

as

α =
1

2
. (4.2.20)

Here, we note that the non-local saddle-point equations (4.2.12) have reduced to the local

differential equations (4.2.17). This is because the non-local part of the equation vanishes

under the assumption λi = λ̃∗i , as we have seen in (4.2.14).

The saddle-point equations can be solved by

y(x) =− kx

4(4ξx+ C)
, (4.2.21)

ρ(x) =4ξx+ C, (4.2.22)

where C is an integration constant which is determined from the normalization condition

(4.2.10) as

C =
1

b− a
− 2ξ(b+ a). (4.2.23)

Formally, the solution (4.2.22) implies that y(x) diverges at x = − C
4ξ
, and the density ρ(x) is

negative for x < − C
4ξ
. This situation is obviously contradicts to the notion of the eigenvalue

density. Here, we assume that these points are excluded from the support I. The support is

determined by the extremization of the free energy consistently with the assumption, as we will

see in the next section.

Leading behavior of free energy

Employing the solution (4.2.22) obtained in the last section, the free energy in the large N limit

(4.2.3) can be evaluated. The free energy is evaluated as a function of the edges of the support
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(a, b). As in the case of the ABJM theory, The support (a, b) is determined by the condition

extremizing the free energy under the variation of a and b.

We shall start with the continuum limit of the free energy (4.2.3) as

f(λ, λ̃) =− 4N
3
2πk

∫
I

dxxρ(x)y(x)− 4N
3
2πξ

∫
I

dxρ(x)x

− 2N2Re

∫
I

dx

∫
I

dx′ρ(x)ρ(x′) log 2 sinhN
1
2π
[
(x− x′) + i(y(x)− y(x′))

]
+ 2N2

∫
I

dx

∫
I

dx′ρ(x)ρ(x′) log 2 coshN
1
2π
[
(x− x′) + i(y(x) + y(x′))

]
. (4.2.24)

The last two double integrations can be evaluated in the parallel way as in the last section,

with the help of the formulas obtained by integrating (4.2.13)

log 2 cosh(z) =


z +

∞∑
n=1

(−1)n−1e−2nz

n
(Re(z) ≥ 0)

−z +
∞∑
n=1

(−1)n−1e2nz

n
(Re(z) < 0)

,

log 2 sinh(z) =


z −

∞∑
n=1

e−2nz

n
(Re(z) ≥ 0)

−z −
∞∑
n=1

e2nz

n
± iπ (Re(z) < 0)

. (4.2.25)

The contributions to the free-energy arising from the first terms in (4.2.25) are again canceled,

and this implies that the double integration terms in the free energy no longer exist in the

large N limit. The contributions from the second terms in (4.2.25) can be evaluated by the

integration by parts with the formula (4.2.16) and the integration by parts as

2πN2− 1
2

∫
I

dx
[1
4
− 4y2(x)

]
ρ2(x), (4.2.26)

where we have applied the formula (4.2.18) to the summation over n. In this case, we should

keep the terms up to N
3
2 because the Chern-Simons terms and FI terms are already of order

O(N
3
2 ) for α = 1

2
.

Substituting (4.2.26) for (4.2.24) and performing the single integrations for the solution

(4.2.22), we obtain

f

πN
3
2

=
k2(b3 − a3)

6

(
1− 16ξ2

k2

)
+

1

2(b− a)
− 2ξ(b+ a) + 2ξ2(b+ a)2(b− a). (4.2.27)

For the free energy to have a local minimum in terms of (a, b), the deformation ξ has to satisfy

the inequality

1− 16ξ2

k2
> 0. (4.2.28)
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Inside this region, the values of a and b are uniquely determined as†5

a = − 1√
2k

(
1− 4ξ

k

)
, b =

1√
2k

(
1 +

4ξ

k

)
, (4.2.30)

where the free energy is evaluated as

F =

√
2k

3
πN

3
2

(
1− 16ξ2

k2

)
. (4.2.31)

Substituting these values of (a, b) into the solution (4.2.22), we obtain the solution as

y(x) =− kx

4
[
4ξx+

√
k
2

(
1− 16ξ2

k2

)] , (4.2.32)

ρ(x) =4ξx+

√
k

2

(
1− 16ξ2

k2

)
. (4.2.33)

Here we note that the solution is indeed consistent with the bound −1
4
≤ y(x) ≤ 1

4
we have

assumed and the positivity of ρ(x) on the support (a, b).

Before closing this section, let us comment on the results obtained in [74] where the ABJM

theory was deformed by assigning the non-canonical R-charges ∆ to the bifundamental matter

fields Ai and Bi. Our solution (4.2.22) and (4.2.31) corresponds to the special case of their

results (See section 5 in [74]) with the parameters ∆A1 = ∆A2 = 1
2
+ 2ξ

k
, ∆B1 = ∆B2 = 1

2
− 2ξ

k

and ∆m = 0. The dual gravity solution corresponding to this field theory result was also

constructed [73].

In the next section, we will consider the case of real mass with the similar method used here.

The naive guess is that the free energy and the eigenvalue distribution in the mass deformed

ABJM theory would be obtained by simply replacing ξ → iζ and assuming ζ ∈ R. Such an

“analytic continuation” of the parameter, however, is not allowed generally. Our result will

suggest that the large N limit breaks the holomorphy in the sense that the solution is valid

only in the certain region of the parameter.

We also have obtained the large N saddle-point solution for the real FI-deformation by a

generalization of the HKPT ansatz [1]. However, there are several subtle points for the HKPT

†5So far we have not considered the other non-local constraint the following by integrating the real part of

the saddle-point equation (4.2.12)

k

∫ b

a

dxρ(x)y(x) + ξ = 0, (4.2.29)

which should have been considered before the variation of the free energy. The solutions (a, b) (4.2.30) indeed

satisfy this condition.
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ansatz: First, we must determine the domain where the density function is defined by the

minimization condition for the free energy. This means that the large N saddle-point solution

cannot be determined only by the saddle-point equation and the minimization condition is

necessary. The second one is that the assumption we employ to use the formula of Fourier

expansion (4.2.18) seems to be somehow ad hoc. For a simple theory like as the ABJM theory,

indeed, we can confirm that the solution is consistent with the assumptions after solving saddle-

point equation and calculating the free energy. In general case, the consistency check is hard

to do. Intrinsically, the saddle-point solution including the integral constant and the domain

should be completely determined only by the saddle-point equation. Thus, we attempt to search

another way and found a new ansatz in [2] in which the solution is determined by the saddle-

point equation, including the boundary conditions which is missed in the approach introduced

here. We will introduce the methods in the next section.

4.2.1 A new derivation of the saddle-point solution for N
3
2

We also take the continuous limit and impose the following ansatz on the eigenvalues:

λ(s) =
√
Nz1(s) + z2(s),

λ̃(s) =
√
Nz1(s)− z2(s), (4.2.34)

where z1 and z2 are N independent and arbitrary complex-valued functions of s.†6 In what

follows, we will not introduce the density function instead of the previous section and treat the

eigenvalues as a function of the continuous valuable s.

Note that the transformation

λ̃(s) → λ̃(−s), (4.2.36)

only changes the ordering of the U(N) index of the λ̃, thus the gauge symmetry. This means

that the configuration {λ(s), λ̃(s)} is equivalent to {λ(s), λ̃(−s)} under this symmetry. Then,

we can find that the new ansatz (4.2.34) includes the ansatz taken in [1] for pure imaginary ζ

and for real ζ with this gauge transformation (4.2.36).

Due to the above gauge symmetry, we always take Re(z1(s)) a monotonically increasing

function with respect to s. We also assume that the complex functions z1(s) and z2(s) are

†6We can generalize this ansatz while keeping the large N scaling of the free energy f ∼ N3/2 unchanged to

λ(s) =
√
Nz1(s) + z2(s),

λ̃(s) =
√
Nz1(s) + z3(s). (4.2.35)

However, this generalized ansatz is reduced to (4.2.34) by an O(N−1/2)-shift of z1(s).
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piecewise continuous in 0 ≤ s ≤ 1 for this choice of the ordering. We believe that the form

(4.2.34) is the most general form which gives N
3
2 behavior of the free energy, but there are no

theoretical supports for this belief. However, a highly non-trivial cancellation of O(N2) and

O(N
5
2 ) terms in the free energy make the free energy exhibit the N

3
2 behavior. This cancelation

prevents us to find other possible ansatzes difficult.

Then, we evaluate the free energy for the assumptions (4.2.34). The Chern-Simons term,

which is proportional to k, and the FI term, which is proportional to ζ, are immediately

evaluated as

4iπkN
3
2

∫
ds

(
z1 z2 −

ζ

k
z1

)
. (4.2.37)

The one-loop factor in the free energy is written as ,

−N2

∫ 1

0

ds′
∫ 1

s′
ds

(
log
(
4 sinh2

(√
Nπ (z(s) + w−(s))

)
4 sinh2

(√
Nπ (z(s)− w−(s))

))
− log

(
4 cosh2

(
π
(√

Nz(s) + w+(s)
))

4 cosh2
(
π
(√

Nz(s)− w+(s)
))))
(4.2.38)

where we define

z(s) =
√
N(z1(s)− z1(s

′)), (4.2.39)

w±(s) =z2(s)± z2(s
′), (4.2.40)

with a fixed s′. we will use the decomposition∫
ds log(sinh2(z)) =2

∫
ds sgn(R(s)) z

+

∫
R(s)>0

ds log(sinh2(z)e−2z) +

∫
R(s)<0

ds log(sinh2(z)e2z), (4.2.41)

where R(s) is a real function, and the decomposition for cosh is obtained by replacing sinh by

cosh in (4.2.41). We take R(s) = Re(z(s)) in this case. Then, we can find that the terms linear

in z cancel each other:

N2π

∫ 1

0

ds′
∫ 1

s′
dsRe(z(s))

((√
Nz(s) + w+(s)

)
+
(√

Nz(s)− w+(s)
)

−
(√

Nz(s) + w−(s)
)
−
(√

Nz(s)− w−(s)
))

= 0. (4.2.42)

The leading contribution can arises from the neighborhood of the point s = s′ because the

contributions can evaluated as about O
(
e−N

)
when s ̸= s′ and cannot contribute to the leading
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part in the large N expansion. The remaining terms arising from the neighborhood of s = s′

can be evaluated by employing the following formulas (here dot · is the abbreviation for d
ds
):∫

s0

ds log(1± e−2y(s)) ∼ 1√
Nu̇(s)|s=s0

∫
C+

dt log(1± e−2y(s)), (4.2.43)∫ s0

ds log(1± e2y(s)) ∼ 1√
Nu̇(s)|s=s0

∫
C−

dt log(1± e2y(s)), (4.2.44)

for u̇(s)|s=s0 > 0 where

y(s) =
√
Nu(s) + v(s), (4.2.45)

and u(s0) = 0. The arguments of the integrand are varied vary largely even when s is slightly

change around s = s′ because z(s) is proportional to
√
N . Thus, we have assumed that u(s)

extends to infinity even in the neighborhood of s = s′. This means that the integral contours

C± also are regarded as the half-starlight line from ±2z2(s) towards z(
1
2
) respectably. ż1(s) can

be replaced by ż1(s
′) and we can take w− = 0, w+ = 2z2(s

′). Then, the one-loop parts of the

free energy is evaluated as

N
3
2

∫
ds′

1

πż1(s′)

(
−4

∫ ∞

0

dt log(sinh(t)e−t)

+2

∫ ∞

2πz2(s′)

dt log(cosh(t)e−t) + 2

∫ ∞

−2πz2(s′)

dt log(cosh(t)e−t)

)
= N

3
2

∫
ds′

2

πż1(s′)

(
−2

∫ ∞

0

dt log

(
sinh(t)

cosh(t)

)
+

∫ 0

2πz2(s′)

dt log

(
cosh(t)e−t

cosh(t)et

))
= N

3
2

∫
ds′

1

πż1(s′)

(
1

2
π2 + 2(2πz2(s

′))2
)
, (4.2.46)

where we have assumed ż1(s
′) > 0 and there is no singularities in t-plane and we can deform

the contour C±. However, there are singularities of the integrand where the cosh factors vanish.

We can find that if the relation

−1

4
< Im(z2)− Re(z2)

Im(ż1)

Re(ż1)
<

1

4
, (4.2.47)

is satisfied, we can deform the contour. If this is not the case, we should shift z2 → z2 + in/2,

where n is an integer, to satisfy the condition (4.2.47). Including the correction term h, we

finally evaluate the free energy as

f = 4πN
3
2

∫
ds

(
ikz1(s)z2(s)− iζz1(s) +

2

ż1(s)

(
1

16
+ (z2(s) + ih)2

))
, (4.2.48)

where h ∈ Z/2 such that the condition

−1

4
< Im(z2)− Re(z2)

Im(ż1)

Re(ż1)
+ h <

1

4
, (4.2.49)
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is satisfied.†7

In the above derivation of the free energy f (4.2.48), the assumption that Re(z1) is monoton-

ically increasing †8 is crucial. This assumption is violated when the real part of the eigenvalue

distribution is a double-valued function of s. In this case, (4.2.48) should include the correction

term arising from the cross terms such as log sinhπ(λi − λj) with λi and λj in two different

segments with overlapping shades.

Here, we will argue that such a double-valued configuration cannot be the saddle-point so-

lution. First, we suppose that the values of Im(z1) are different for s and s′ where Re(z1(s) =

z1(s
′)) and denote the difference as Im(∆z1). We can evaluate the cross terms again us-

ing the formula (4.2.43) and (4.2.44), but with the contour C± extended by a straight line

[±v(s0),±v(s0)+ iπ
√
NIm(∆z1(s0))]. Since the integration of log(cosh(t)e−t) over πi vanishes,

the contribution of Im(∆z1) to the free energy depends on the remainder of
√
NIm(∆z1) divided

by 1 and then oscillate as N varies. This implies that the profile functions will not converge in

the large N limit and thus, the N → ∞ will be ill-defined. To obtain a well-defined large N

limit, we should impose the condition that Im(∆z1) = 0 on the profile function as an ansatz.

In this case, however, the original saddle-point equation will not be solved by the variational

problem, as the degrees of freedom of the variations will be fewer than those for the smooth

eigenvalue distributions for multiple segments. The above argument means that there are no

solutions with overlapping segments, at least, if we assume that the free energy exhibits N3/2.

Below we will consider only the solution without overlapping segments.

The saddle-point equations are given by the variation of the free energy with respect to z1

and z2 in this case. That associated with z1 is given by

0 = ikz2(s)− iζ + 2
∂

∂s

(
1

ż1(s)2

(
1

16
+ (z2(s) + ih)2

))
. (4.2.51)

We note that because the free energy includes a derivative of z1, we should solve the following

boundary condition as a part of the saddle-point equation:

0 =
1

ż1(s)2

(
1

16
+ (z2(s) + ih)2

) ∣∣
boundary

, (4.2.52)

†7Note that

Im(z2)− Re(z2)
Im(ż1)

Re(ż1)
+ h =

Im((z2 + ih)¯̇z1)

Re(ż1)
= −k|ż1|2

Re(z1)

4Re(ż1)
. (4.2.50)

Thus, if z2 + ih→ ±i/4, then Im((z2+ih)¯̇z1)
Re(ż1)

→ ±1/4, which is the edge of the bound (4.2.49).
†8This condition is satisfied when the eigenvalues are rearranged so that the profile functions are piecewise

continuous in s
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and the saddle-point equation associated with z2 is given by

0 = ikz1(s) + 4
1

ż1(s)
(z2(s) + ih), (4.2.53)

which is rewritten as

z2(s) + ih = −ik
4
z1(s)ż1(s) = −ik

8

∂

∂s
(z1(s))

2 . (4.2.54)

These implies that

0 =
k2

8
(z1(s)

2)− i(ζ + ikh)(s− s0) +
2

ż1(s)2

(
1

16
+ (z2(s) + ih)2

)
= −i(ζ + ikh)(s− s0) +

1

8ż1(s)2
, (4.2.55)

where s0 is a complex integration constant. Therefore, we obtain the solution as

z1(s) =g
√
s− s0 + z0, ż1(s) = g

1

2
√
s− s0

, (4.2.56)

z2(s) + ih = −ikg
2

8
− iz0g

k

8
√
s− s0

, (4.2.57)

where z0 is the integration constant and

g =
1√

2i(ζ + ikh)
. (4.2.58)

we note that because z1(s) should be defined on the single segment of s and a continuous

function, we defined
√
s− s0 as a continuous function of s although we allowed the overall sign

ambiguity. This overall sign should be determined by requiring that z1 should be a monotoni-

cally increasing function of s.

To obtain solutions, we have to determine the locations of the boundary points and integra-

tion constant z0 and the solutions must satisfy the condition (4.2.49) everywhere. We would

like to emphasize that for general types of ζ, above discussions are also valid. In fact, we can

find the solutions for the pure imaginary ζ and undeformed case also are included in the above

solutions.

Then, we assume that ζ is real and there is only one segment in the eigenvalue distributions.

We can always choose s0 = ic where c is real by shifting s. Because there is one segment, the

boundary points is written as s = sb and s = sb + 1. Then, the boundary condition is written

as

(z2 + ih)|s=sb = γ1
i

4
, (4.2.59)
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(z2 + ih)|s=sb+1 = −γ1
i

4
, (4.2.60)

where γ1 satisfies the condition (γ1)
2 = 1 representing a choice of the boundary values,†9 which

lead (assuming ζ ̸= 0)

kz0√
sb − ic

=− 2γ1
1

g
− kg, (4.2.61)

kz0√
sb + 1− ic

=2γ1
1

g
− kg. (4.2.62)

We can determine z0 from these boundary conditions:

1 =

(
− 1

(2
g
+ γ1kg)2

+
1

(2
g
− γ1kg)2

)
(kz0)

2 =
8γ1k(kz0)

2

( 4
g2

− k2g2)2
, (4.2.63)

which also lead

sb − ic =
γ

8k

(
2

g
− γ1kg

)2

. (4.2.64)

Thus, we find

sb =− 1

2
− γ1

(
h+

1

16

h

m2 + h2

)
, (4.2.65)

c =γ1m

(
−1 +

1

16

1

m2 + h2

)
. (4.2.66)

In what follows, we will confirm that the solution is indeed a continuous function of s. First,

we define the following parameters:

m ≡ζ
k

(4.2.67)

mc ≡m+ ih, (4.2.68)

s′ ≡γ1(s− sb −
1

2
), (4.2.69)

thus, we determine

s′ = −γ1
2

for s = sb, (4.2.70)

s′ =
γ1
2

for s = sb + 1. (4.2.71)

†9The other possibility is z1(s) = g
√
s + z0 (s = [0, 1]) which satisfies ż1(s = 0) = ∞ and z0 is fixed by the

boundary condition at s = 1. However, considering s ≫ 1, we see that for the condition (4.2.49) Re(z0) = 0 is

needed. This is not satisfied for generic ζ/k, for example, with h = 0, z0 = 0 means ζ
k = 1

4 .
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Then, we find

z1 =
1√

−2γ1k

(√(
1

16m2
c

− 1

)
+ i

s′

mc

− 4γ2

(
mc +

1

16mc

))
, (4.2.72)

and

ż1 =
iγ1

2mc

√
−2γ1k

1√(
1

16m2
c
− 1
)
+ i s

′

mc

, (4.2.73)

which leads

z2 + ih = − 1

16mc

+ γ2
1

4

1 + 1
16m2

c√(
1

16m2
c
− 1
)
+ i s

′

mc

. (4.2.74)

Here, we introduced γ2 which satisfies (γ2)
2 = 1 for the sign ambiguity of z0. The boundary

condition z2 + ih = ±i/4 means that√(
1

16m2
c

− 1

)
+ i

s′

mc

∣∣∣∣∣
s′=∓γ1/2

= γ2

(
1

4mc

∓ iγ1

)
, (4.2.75)

at the boundaries.†10 This condition implies γ2 is determined by fixing the overall sign in the

l.h.s. of (4.2.75). Furthermore, we will find that for m > 1
4
, these conditions are not consistent

with the continuity of the factor
√
D where

D =

(
1

16m2
c

− 1

)
+ i

s′

mc

, (4.2.77)

for s′.

As we will see below, Re(D) is always negative for m > 1
4
. Then, the phase eiθ =

√
D/|

√
D|

satisfies the condition that π
4
< θ < 3π

4
or −3π

4
< θ < −π

4
while for m ≤ 1

4
, −π

4
< θ < π

4
or

3π
4
< θ < 5π

4
. This range of the phase for m > 1

4
conflict with two boundary conditions (4.2.59)

and (4.2.60) imposing Im(
√
D) to have different signs at the two boundaries. In fact, for h = 0,

we easily find that Re(D) is always negative. Even for h ̸= 0, we can see that

Re(D) =
1

16|mc|4
(
(Re(mc))

2 − (Im(mc))
2 − 16|mc|4 − 16|mc|2Im(mc)s

′) (4.2.78)

†10The condition is only for the sign because(
1

16m2
c

− 1

)
− iγ

1

2mc
=

(
1

4mc
− iγ

)2

, (4.2.76)

for γ2 = 1.
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≤ 1

16|mc|4
(
(Re(mc))

2 − (Im(mc))
2 − 16|mc|4 + 8|mc|2|Im(mc)|

)
< 0, (4.2.79)

where we have used |s′| ≤ 1
2
and |Im(mc)| = |h| ≥ 1

2
. Therefore, there are no solutions for

m > 1
4
.

We can also confirm that no solutions exist for m ≤ 1
4
and h ̸= 0 because

(Re(mc))
2 − (Im(mc))

2 = m2 − h2 < 0, (4.2.80)

−|mc|4 + |m2
chs

′| < |mc|2(−(m2 + h2) + |h/2|) < 0, (4.2.81)

where we have used |h| ≥ 1
2
, which implies Re(D) < 0 using (4.2.78). Therefore, only the

possibility is for m ≤ 1
4
and h = 0. For this case, we see that for γ1 = −1, Re(ż1) = 0 at s′ = 0.

Thus, this solution violates the condition (4.2.49) and we should set γ1 = 1. The solution is

given by

z1 =
1√
−2k

(√(
1

16m2
− 1

)
+ i

s′

m
− 4γ2

(
m+

1

16m

))
, (4.2.82)

where the sign ambiguity of the
√(

1
16m2 − 1

)
+ i s

′

m
is fixed by requiring Re(ż1) ≥ 0 because we

have arranged the ordering of eigenvalues such that z1(s) is an increasing function of s.

Finally, we will consider the solution defined on multiple segments. The real part of such a

solution should not intersect each other because of the extra interactions as explained before.

Then, the solutions are denoted as a sum of the single segment solutions with Na eigenvalues

where
∑

aNa = N . However, the unique single segment solutions for m < 1
4
with different N

always have an eigenvalue such that Re(λ) = 0 and then the monotonicity of the function is not

maintained. Thus, there are no multiple-segments solutions.†11 We conclude there is a unique

solution for m = ζ
k
< 1

4
, and no solutions for m > 1

4
.

4.3 Large N solution with one massless hypermultiplet

It is unfamiliar for a large N saddle-point solution to have a singularity. For example, there

is no singularity for the large N saddle-point solution obtained in Section 3.1. It seems that

for a general mass-deformed ABJM theory, the large-N saddle-point solution always has a

singularity. However, we can find a specific mass deformation for which a large-N saddle-point

†11So far, we have neglected a possibility that the solutions with different h which have the same z1 and z2 at

a boundary. However, this is not possible because the cancellation of the boundary term requires that (z2+ ih)
2

also should be same at the boundary.
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solution does not have a singularity†12. It is the case in which one massless hypermultiplet

and massive hypermultiplet exist taking ζ1 = 0. Therefore, it is reasonable to expect that

the physical situation is very different among mass deformations which exhibit the singular

behavior and does not. We expect that the singular behavior arises from the physical situation

and we will discuss in the next part.

4.3.1 Partition function of S-dual theory

Before investigating the mass-deformation, we introduce the S-dual representation of the parti-

tion function, which we practically use in what follows and chapter 5. It is simply obtained by

rewriting the original partition function 4.1.5. The computation is essentially the same as those

in the Fermi gas formalism for the ABJM theory [76]. Let us start with the integral (4.1.5).

Changing the integral variables as λ→ λ/k + π(ζ1 + ζ2) and λ̃→ λ̃/k − π(ζ1 + ζ2), we find

Z =
1

(N !)2

∫
dNλ

(2πk)N
dN λ̃

(2πk)N
e

i
4πk

∑
i(λ

2
i−λ̃2i )+

iζ
k

∑
i(λi+λ̃i)

∏N
i<j(2 sinh

λi−λj
2k

)2
∏N

i<j(2 sinh
λ̃i−λ̃j
2k

)2∏N
i,j=1

∏
± 2 cosh

λi−λ̃j±µ
2k

,

(4.3.1)

where

ζ =
ζ1 + ζ2

2
, µ = 2π(ζ1 − ζ2). (4.3.2)

Then, we rewrite the one-loop determinant into a pair of determinants of N × N matrices by

using the Cauchy determinant formula∏N
i<j 2 sinh

xi−xj
2

∏N
i<j 2 sinh

yi−yj
2∏N

i,j=1 2 cosh
xi−yj

2

= det
i,j

1

2 cosh
xi−yj

2

, (4.3.3)

and then, Z is rewritten as

Z =
1

(N !)2

∫
dNλ

(2πk)N
dN λ̃

(2πk)N
e

i
4πk

∑
i(λ

2
i−λ̃2i )+

iζ
k

∑
i(λi+λ̃i) det

i,j

1

2 cosh
λi−λ̃j+µ

2k

det
i,j

1

2 cosh
λi−λ̃j−µ

2k

.

(4.3.4)

Then, we use the formula

1

N !

∫
dNx det

i,j
fi(xj) det

i,j
gi(xj) = det

i,j

∫
dxfi(x)gj(x). (4.3.5)

†12We can calculate exactly for finite N case. The detail is written in app.C.2
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and obtain the following expression for the partition function

Z =
1

N !

∫
dNλ

(2π)N
det
i,j
f(λi, λj), (4.3.6)

where

f(x, y) =

∫
dz

2π
e

i
4πk

x2+ iζ
k
x 1

2k cosh x−z−µ
2k

e−
i

4πk
z2+ iζz

k
1

2k cosh z−y−µ
2k

. (4.3.7)

We can see that the partition function takes the form of the partition function of 1d N particle

non-interacting Fermi gas if we regard f(λ′, λ′′) as the matrix element of a one-particle density

matrix ⟨λ|ρ̂|λ′⟩ with position eigenstates |·⟩

Z =
1

N !

∫
dNx

(2π)N
det
i,j

⟨xi|ρ̂|xj⟩, (4.3.8)

where†13

ρ̂ = e
i

4πk
q̂2+ iζ

k
q̂ e

iµ
2πk

p̂

2 cosh p̂
2

e−
i

4πk
q̂2+ iζ

k
q̂ e

iµ
2πk

p̂

2 cosh p̂
2

. (4.3.9)

Furthermore, we can rewrite the parts represented as determinant by the Fourier transfor-

mation

1

2 cosh p
=

1

π

∫
dx

e
2i
π px

2 cosh x
, (4.3.10)

and by doing the Fresnel integral with respect to both of λ and λ̃. Then, employing the

above Fourier transformation and Cauchy determinant formula inversely, we finally obtain the

following another equivalent representation of the partition function †14:

Z(N, k, ζ1, ζ2) =
1

N !

∫
dNx

(2πk)N

N∏
i=1

e
2iζ1
k
xi

2 cosh xi
2

∏N
i<j(2 sinh

xi−xj
2k

)2∏N
i,j=1 2 cosh

xi−xj+4πζ2
2k

. (4.3.13)

†13See (C.1.8) for the notation for the 1d quantum mechanics.
†14These computations can be interpreted in terms of the Fermi gas formalism. It is obvious from (4.3.8) that

the partition function is invariant under any similarity transformation of the density matrix ρ̂. We can simplify

ρ̂ by the similarity transformation ρ̂→ e−
i

4πk p̂2− iζ
k p̂ρ̂e

i
4πk p̂2+ iζ

k p̂ as

ρ̂ =
e

2iζ1
k q̂

2 cosh q̂
2

e
2iζ2
k p̂

2 cosh p̂
2

, (4.3.11)

whose matrix element is

⟨x|ρ̂|y⟩ = e
2iζ1
k x

2 cosh x
2

1

2k cosh x−y+4πζ2
2k

. (4.3.12)

Applying the Cauchy determinant formula (4.3.3) reversely to deti,j⟨xi|ρ̂|xj⟩ in the Fermi gas formalism (4.3.8)

with this new ρ̂, we finally obtain the S-dual representation for the partition function (4.3.13).
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For k = 1 and ζ1 = ζ2 = 0, this latter expression denotes the partition function of the N = 8

U(N) Yang-Mills theory coupled with a fundamental hypermultiplet, which is dual to the ABJM

theory under the S-dual transformation in the type IIB brane setup. Due to this reason, we

simply refer to (4.3.13) as the S-dual representation even for general (k, ζ1, ζ2).

We note that the integration in the S-dual representation (4.3.13) is absolutely convergent

while the representation (4.1.5) is not and its convergence is guaranteed by the rapidly oscillating

factors. In the sense of the convergence, the S-dual representation is much more suitable for

the Monte Carlo simulation than the original one (4.1.5). By employing the Monte Carlo

simulation of (4.3.13), we will find a notable behavior of the partition function: the partition

function vanishes at some finite values of ζ1, ζ2, which was not observed in the undeformed case

or the case of the R-charge deformation (ζ1, ζ2 ∈ iR).

In what follows, we investigate the case with ζ1 = 0. We can find a solution to the saddle-

point equation for the partition function in the S-dual representation (4.3.13) while we could

not find any large-N solution of the saddle-point equation of (4.1.5) for ζ1 = 0.

saddle-point analysis in the large-N limit

Here, we evaluate the partition function in the large-N limit

N → ∞, with fixed (k, ζ2). (4.3.14)

In this limit, we can evaluate the partition function with the saddle-point approximation. To

perform the saddle-point analysis, we first introduce the action for the matrix model Seff by

Z =
1

N !

∫
dNx

(2πk)N
e−Seff(x) (4.3.15)

where

Seff(x) = −2iζ1
k

N∑
i=1

xi +
N∑
i=1

log
(
2 cosh

xi
2

)
−

N∑
i<j

log
(
2 sinh

xi − xj
2k

)2
+

N∑
i,j=1

log

(
2 cosh

xi − xj + 4πζ2
2k

)
. (4.3.16)

We rearrange the eigenvalues xi such that xi+1 ≥ xi by the permutation symmetry. We also

take the continuous limit taken in the previous section.

We look for saddle-point solutions by the same approach taken in the previous section 4.2.1

which has been used to derive O(N
3
2 ) behaviors of free energies, rather than the traditional
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approach applied for matrix models in the planar limit.†15 This is achieved by the following

ansatz

x(s) =
√
Nz(s), (4.3.17)

with an N -independent real†16 function z(s), and perform the large-N expansion of Seff(x) to

reduce the saddle-point equation to the true leading order. It is easy to write down the leading

part for the first and second terms in (4.3.16) in the continuous limit:

−2iζ1
k

N∑
i=1

xi +
N∑
i=1

log
(
2 cosh

xi
2

)
= N

3
2

∫ 1
2

− 1
2

ds
(
−2iζ1z

k
+

|z|
2

)
+O(N). (4.3.18)

We can also expand the third and fourth terms in (4.3.16) respectively using the same techniques

as that we employed in the previous section to evaluate the leading part of Seff. First, we rewrite

these terms as

−
N∑
i<j

log
(
2 sinh

xi − xj
2k

)2
= −N

2

2

∫
dsds′ log

(
2 sinh

√
N(z − z′)

2k

)2
=
N2

2

∫
dsds′

[
sgn(z − z′)

√
N(z − z′)

k
+ log

(
1− e−

√
N | z−z

′
k

|
)2]

, (4.3.19)

and†17

N∑
i,j

log

(
2 cosh

xi − xj + 4πζ2
2k

)

=N2

∫
dsds′

[
sgn(z − z′)

√
N(z − z′)

2k
+ log

(
1 + e− sgn(z−z′)

√
N(z−z′)+4πζ2

k

)]
. (4.3.20)

where z′ is the abbreviation for z(s′). We note that the O(N5/2) terms, which are the first

terms in (4.3.19) and (4.3.20), are canceled and only the second terms remain. Then, as we

follows the same procedure as that we employed in Section 4.2.1, we use the formula in the

large-N limit (4.2.43) and (4.2.44)†18. Through these formulas, the second terms in (4.3.19)
†15The traditional approach was taken in [81, 82] for ζ1 = 0 = ζ2 identifying ’t Hooft coupling with N/Nf

where Nf denotes an additional power put on the cosh (For our case, Nf = 1).
†16In our actual analysis, we have looked for solutions with complex z(s) under the ansatz (4.3.17) but we have

found only a real solution as a result. Because of this, we take z(s) to be real for simplicity in the main context.

Precisely speaking, we should take the variation δSeff

δz(s) with z(s) ∈ C before taking z(s) ∈ R. This causes a new

constraint δSeff

δIm(z(s)) = 0 in addition to (4.3.24) and (4.3.25); nevertheless the final result (4.3.27) remains the

same.
†17Note that odd functions of z − z′ do not contribute.
†18The condition that this evaluation is valid is following [2]:

−1

4
< Im(w)− Re(w)

Im(v̇)

Re(v̇)
<

1

4
.
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and (4.3.20) can be evaluated as

2kN
3
2

∫
ds′

ż1(s′)

[
−2

∫ ∞

0

dt log(1− e−2t) +

∫ ∞

2πζ2
k

dt log(1 + e−2t) +

∫ ∞

− 2πζ2
k

dt log(1 + e−2t)

]

=
π2kN

3
2

2

(
1 +

16ζ22
k2

)∫
ds′

ż1(s′)
. (4.3.21)

Putting the above evaluation together, we find the following large-N expansion for the effective

action

Seff = N3/2

∫
dsF (z, ż) +O(N), (4.3.22)

with

F (z, ż) =
[
−2iζ1z

k
+

|z|
2

+
π2k

2

(
1 +

16ζ22
k2

)1
ż

]
. (4.3.23)

Then, this implies that the integration (4.3.15) is dominated in the large-N limit by the saddle-

point configuration satisfying the following equation of motion

0 =
δF (z, ż)

δz(s)
=
∂F

∂z
− d

dt

∂F

∂ż
= −2iζ1

k
+

sgn(z)

2
− d

ds

[
−π

2k

2

(
1 +

16ζ22
k2

) 1

ż2

]
(4.3.24)

together with the boundary condition

0 =
∂F

∂ż
= −π

2k

2

[(
1 +

16ζ22
k2

) 1

ż2

]
boundary

. (4.3.25)

First, let us consider the case for ζ1 = 0. First of all the equation of motion (4.3.24) has the

following two local solutions depending on sgn(z)

z(+)(s) =

√
2π2k

(
1 +

16ζ22
k2

)(
z
(+)
b −

√
2(sb − s)

)
, (sgn(z) = +1)

z(−)(s) = −

√
2π2k

(
1 +

16ζ22
k2

)(
z
(−)
b −

√
2(sb + s)

)
, (sgn(z) = −1) (4.3.26)

where sb and zb are integration constants.†19 The bulk solution would be obtained by connecting

these solutions appropriately and determining the integration constants so that z(s) satisfies

the boundary condition ż(s) = ±∞ (4.3.25) at every point. We note that both of z(±)(s)

satisfies ż(±)(s) = ∞ at only a single point s = sb and z
(+) and z(−) must be glued at the zero of

the functions because we have assumed that the solution is differentiable at every point. These

In this case. this condition is satisfied.
†19We have excluded the other two solutions by the condition ż(s) ≥ 0.
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lead the solution to be defined on a single segment by the following argument: If we split the

support −1/2 < s < 1/2 into segments by the points of discontinuity, z(s) on each segment

must be given as a smooth junction of z(−)(s) and z(+)(s). Since z(+)(s) cannot be followed

by z(−)(s) due to the assumption that z(s) is monotonically increasing, we conclude that the

solution has a single junction of z(−)(s) with sb = −1/2 (−1/2 < s < s0) and z(+)(s) with

sb = 1/2 (s0 < s < 1/2), which are connected at some s0. The remaining constants s0, zb are

determined from z(−)(s0) = z(+)(s0)=0 as s0 = 0, zb = 1 (for both domain). Consequently, we

obtain the following unique solution as the saddle-point configuration:

z(s) = sgn(s)

√
2π2k

(
1 +

16ζ22
k2

)(
1−

√
1− 2|s|

)
. (4.3.27)

In the language of the eigenvalue density, this solution corresponds to

ρ(z) =
ds

dz
=

1√
2π2k (1 + 16ζ22/k

2)

(
1− |z|√

2π2k (1 + 16ζ22/k
2)

)
. (4.3.28)

Substituting this solution to (4.3.22), we find that the partition function in the large-N

limit is given as

− logZ|ζ1=0 ≈
π
√
2k

3

√
1 +

16ζ22
k2

N
3
2 . (4.3.29)

For ζ1 ̸= 0, we could not solve the saddle-point equation with the ansatz employed here

because the solution cannot satisfy the boundary condition (4.3.25) because of the existence

of the imaginary term 2iζ1
k

in (4.3.24). However, the partition function with ζ1 = 0, ζ2 ̸= 0

and that with ζ1 ̸= 0, ζ2 = 0 is the same because the partition function is invariant under

exchanging ζ1 and ζ2. This fact may suggest that even when ζ2 = 0, ζ1 ̸= 0, there exists the

solution of the saddle-point equation in large-N limit and the free energy can be evaluated by

the saddle-point approximation.
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4.4 Summary and Discussion

In this chapter, we studied the mass deformed ABJM theory in the large N limit with finite

value (k, ζ1, ζ2), using the saddle-point approximation for the matrix model. We obtained the

saddle-point equation assuming a new ansatz including the boundary condition as the saddle-

point equation we propose [2]. In particular, the second one has solved the problems that some

assumptions apparently are not included in the saddle-point equation by regarding them the

boundary conditions.

Our result for the ABJM theory deformed by an FI-term suggests that the large N solution

of the saddle-point equation is valid only when ζ
k
< 1

4
in our convention. This also implies that

the free energy is no longer proportional to N
3
2 beyond the critical value. It is not clear that

what is a correct solution for ζ
k
> 1

4
. One possibility is that it is the solution with f ∼ N2 we

will show in the next part, which implies that the free energy seems to jump between ζ
k
< 1

4

and ζ
k
> 1

4
. However, for finite N , the partition function (4.2.2) will be continuous with respect

to ζ
k
, hence so is the free energy f . This does not rule out the discontinuous change of the

scaling exponent of the free energy N
3
2 → N2 in the large N limit while the finite N correction

can make the free energy smooth around the critical value. Indeed, our solution for which the

free energy exhibiting the order N
3
2 singular at ζ

k
= 1

4
, thus it is not valid very near the point.

We expect that the analysis very near ζ
k
= 1

4
including finite N effects makes the free energy

smooth.

It seems that for the general mass deformation, the large N saddle-point solution has a

singularity at a finite mass parameter. Indeed, we found that the large N saddle-point solution

for the case ζ1 = 0 can be obtained in the S-dual representation and it does not have a singularity

at finite ζ2. Thus, we expect that the singularity reflects in some physical origin.

Another important property of the FI-deformed ABJM theory is that it will describe the

M2-M5 system. Indeed, in the classical analysis [42], the supersymmetric vacua are found to be

discrete and given by a configuration which is a generalization of the fuzzy sphere to a fuzzy S3

which describes the M5-brane [42,83]. Remember the result of chapter 3 that the solution of the

saddle-point equation associated with a point of the Coulomb branch can become dominant.

This implies that in the infinite mass region, the corresponding point of the Vacuum moduli

space is no longer realized in the large N limit. Then, we cannot deny the possibility that

another solution for which the free energy exhibits N
3
2 behavior becomes dominant. However,

because we could not find such a solution with our general ansatz, it is likely that the solution

associated with a metastable vacuum becomes dominant †20. This scenario is also supported

†20More generally speaking, it is subtle that the partition function in the infinite mass limit can always be

identified with that of an effective theory.
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by the fact that the supersymmetric vacuum moduli space of the mass-deformed ABJM theory

is composed of discrete points, but the integration of the matrix model is taken over the all

Coulomb branch parameter including non-supersymmetric vacua.

In the next part, we argue on the large N solution corresponding to the supersymmetry

breaking phase. We investigate several examples which can exhibit spontaneously supersym-

metry breaking and the similar properties with confinement in the large N limit. Then, we

show the solution for supersymmetry breaking exists in the mass deformed ABJM theory and

argue on its supersymmetry breaking in the large N limit.
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Part III

Notes on Large N phases of gauge

theories on the elipsoid
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Chapter 5

Saddle-point solution for SUSY

breaking phase

In this chapter, we study a phase which can be realized in the large-N limit of N = 2 gauge

theories, using the localization technique for various theories on the ellipsoid, which interpolates

the sphere and the flat space compactified on S1. Due to the large-N limit, we can evaluate

the matrix model integral by the saddle-point approximation and find a large-N saddle-point

solution for a gauge theory (with massive matter fields which transform as the adjoint repre-

sentation of the gauge group). The free energy evaluated by this solution exhibits the vanishing

typical order O (N2) arising from the degrees of freedom of gluons in 1/N expansion except

for the contributions from the decoupling matter fields. This implies that O(N2) gluons are

confined. We also find that the solution is consistent with the exact results of N = 2 SUSY

Chern-Simons theory believed to be in a SUSY breaking phase.

We also investigate the expectation value of a supersymmetric Wilson loop on the ellipsoid

for the solution and show that it vanishes in the leading order in 1/N expansion. In the flat limit

of the ellipsoid, a Wilson loop can be regarded as a (supersymmetric generalized) Polyakov loop

since this loop wraps around the S1 in S1 × R2. Because the usual Polyakov loop is the order

parameter of this symmetry, we can expect that the supersymmetric Wilson loop (2.6.31) also is

the order parameter of the center symmetry because the center symmetry does not act the scalar

in it and the supersymmetric Wilson loop is expected to be transformed under the symmetry as

the non-supersymmetric Wilson-loop. We note that only the R2 is the non-compact space, thus

there are no spontaneous breaking of symmetries if N is finite. However, we take the large-N

limit of the theory and thus symmetries can be broken spontaneously. Therefore, we will call

the phase with ⟨WR⟩ = 0 “confinement phase” although it is only meaningful for the large-N

limit.
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The remaining of this chapter is organized as follows: In section 1,2 and 3, we investigate

large-N solutions of several kinds of gauge theories and show that there exists the solution

corresponding to supersymmetry breaking phase. In section 4, we summarize this paper and

discuss some problems. In appendix B, we discuss which solution is dominant in the large-N

limit. We introduce the theory whose saddle-point equation has at least two types of solutions.

We investigate when the solution in the SUSY breaking phase tends to become the dominant

one.

5.1 Pure N = 2 SUSY Chern-Simons Yang-Mills theory

First, we study the Chern-Simons Yang-Mills theory without chiral multiplets†1. The action S

for the matrix model is

S(σ) =iπk
N∑
i=1

σ2
i − 2πiζ

N∑
i=1

σi

− 1

2

∑
i,j=1, i>j

(
log 4 sinh(πb(σi − σj) + log 4 sinh(πb−1(σi − σj)

)
+N logN, (5.1.1)

up to a constant.†2 In particular, for k = 0, the matrix integral is not convergent and the theory

is the pure N = 2 SUSY Yang-Mills theory which has the runaway type effective potential [86].

The saddle-point equation is written down as

0 =
∂S(σ)

∂σj
= 2iπkσj − 2iπζ − bπ

∑
k ̸=j

cothπb(aj − ak)− b−1π
∑
k ̸=j

cothπb−1(aj − ak). (5.1.2)

In this chapter, we consider the special class of the ellipsoids which have

b =

√
p

q
, (5.1.3)

where p, q ∈ Z. For these special values, we can find large-N solutions corresponding to the

supersymmetry breaking phase†3.

†1In this case, although the integrations over ai diverge, even for non-zero k without a precise regularization.

We will analyze them assuming the regularization is done. In fact, we can introduce the imaginary part of the

Chern-Simons-level for the integrals to converges and finally take it to zero. The existence of this imaginary

part of the Chern-Simons-level does not change the solution of the saddle-point equation because the solution

we will consider does not depend on the Chern-Simons-level. In the recent works [84,85], it was shown that we

can take the contour so that the integrations of the matrix models converge.
†2We have approximated logN ! ≈ N logN .
†3It is interesting to extend the solution without this condition on b. It is also interesting to find the reason

why this condition should be imposed. We will argue this point in Section 5.5.
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Extending the solution given in [2], the solution is determined as

aj = i

(
j

N
− c

)
√
pqM, (5.1.4)

where M = Z>0 and c = N+1
2N

. We note that the constant is taken c to satisfy
∑N

j=1 aj = 0.

Then, the saddle-point equation in the large-N limit becomes

0 = b

∫ 1

0

dy cot πp(x− y) + b−1

∫ 1

0

dy cotπq(x− y), (5.1.5)

where we have taken the continuous limit in which we replace the discrete valuable j and the

summation of it from continuous ones x and the integral over x as

j

N
→ x ∈ [0, 1],

1

N

N−1∑
j=1

→
∫ 1

0

dx. (5.1.6)

The integrals are defined as the principal value integral because the zero of the sinh is not

included in (5.1.1)†4. Here, the Chern-Simons term and the FI term were neglected in the

large-N limit because k and ζ are finite. Then, indeed, the integrations over y in (5.1.5) vanish

for any x because the integration of the cot over the period vanishes since p, q are integers†5.

The expectation value of a Wilson loop at θ = 0 for the fundamental representation is

evaluated in the leading order in the large N limit as

⟨W ⟩ ≈ e−πiq
N∑
j=1

exp

(
2πi

j

N
q

)
= 0, (5.1.7)

where we neglected the sub-leading term which will be O(N0). This implies that a theory is

in the confining phase, at least in the large b limit which can be taken, for example, by taking

q = 1 and p→ ∞.

The free energy is evaluated for the solution (5.1.4) as

F =0 ·N2 +O(N), (5.1.8)

because

N2

4

∫
1≥x>y≥0

dxdy
[
log sin2 πp(x− y) + log sin2 πq(x− y)

]
= 0. (5.1.9)

†4Here we assumed pq and N are coprime.
†5For this solution, there are infinitely many discrete moduli, aj = i

(
j
N − c+ n(j)

)√
pqM where n(j) is an

O(N0) integer, which do not change the values of the free energy and the Wilson loop [2]. The summation over

these may not affect the large N results although these could be important to obtain Z = 0, which is expected

for the theory in the SUSY breaking, through the Chern-Simons term.

87



This result also implies that this theory is in the confining phase because the vanishing O(N2)

term corresponds to confinement of gluons and other fields. We also note that at the saddle-

point, σ is pure imaginary. This would be related to the expectation value of a usual Polyakov

loop because the combination of the gauge field iAµ and σ appears in the supersymmetric

Wilson loop.

We have considered the large-N limit of the N = 2 supersymmetric Chern-Simons Yang-

Mills theory, however, even for finite N the partition function and the Wilson loop have been

obtained by doing the integration. Under a certain regularization, the partition function for

the N = 2 supersymmetric SU(N) Chern-Simons theory on the round three-sphere can be

explicitly computed as [50]

|ZChern-Simons| =
2N(N−1)/2

kN/2

N−1∏
m=1

| sinN−m
(πm
k

)
| = 1

kN/2

∏
1≤j<l≤N

∣∣2 sin(π(l − j)

k

) ∣∣, (5.1.10)

which is the same as the one for the bosonic Chern-Simons theory with the level k −N . This

result is the same for the theory even on the ellipsoid as expected from the fact that the Chern-

Simons theory is topological. The expectation value of a supersymmetric Wilson loop of the

fundamental representation was also computed as [50]

⟨W ⟩ ∼
∏

1≤j<l≤N

sin
(
π(l−j+δ1,j−δ1,l)

k

)
sin
(
π(l−j)
k

) =
sin(πN

k
)

sin
(
π
k

) (5.1.11)

where we neglected the phase factor which is related to the flaming dependence.

For N > k, this partition function (5.1.10) becomes zero and this is related to the sponta-

neous symmetry breaking of SUSY Chern-Simons theory as we reviewed in Part I. Although

the partition function is vanishing, the expectation value of a supersymmetric Wilson loop,

which is normalized by the partition function, is not diverging†6 and O(N0) for the large N

limit with finite k(̸= 1), which is the same as for the large N solution†7. On the other hand,

the free energy is divergent for N > k, which seems to be different from the large N solution

for the confinement phase. However, below we will argue that in the large N expansion the free

energy − log |ZChern-Simons| is consistent with that for the large N solution. Thus, we expect

that the large N solution corresponds to a SUSY breaking phase.

†6There may be Nambu-Goldstone fermion zero modes which make the partition function vanishes. It is

expected that the Wilson loop does not include these zero modes and the contributions of the zero modes are

canceled.
†7For k → 1, we find ⟨W ⟩ ∼ N . Thus, for k = 1, the large N solution does not seem to correspond to the

pure Chern-Simons theory.
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Now we will evaluate the (5.1.10) in the large-N limit and compare it to the saddle-point

approximation by the confinement solution. We take logarithm of (5.1.10) and take continuous

limit by the following replacements of the discrete index m and the summation:

m

N
→ x ∈ [0, 1],

1

N

N−1∑
m=1

→
∫ 1

0

dx. (5.1.12)

Then, the large N leading part of the logarithm of (5.1.10) is written as

F (t)

N2
≡ −

log
∣∣ZChern-Simons

∣∣
N2

∼−
∫
0≤y<x≤1

dxdy log
∣∣2 sin π(x− y)

t

∣∣ (5.1.13)

=−
∫ 1

0

dx(1− x) log
∣∣2 sin πx

t

∣∣, (5.1.14)

where N is infinite while keeping k
N

= t finite †8. In the first line, the RHS is the same as (5.1)

except for 1/t factor. We can find that there are infinite zeros of (5.1.14) as a function of t at

t = 1
n
, n ∈ Z and no singularities for t > 0. The behavior of (5.1.14) is shown in the figure

5.1 and we can see that F (t)
N2 → 0 when t → 0. This is consistent with the large N solution

with finite k. We would like to emphasize that in this large N analysis it may be impossible to

recover the singular behavior where k is an integer.
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Figure 5.1: The left figure shows the numerical plot of − log
∣∣ZChern-Simons

∣∣ divided by N2 with

N = 400. The horizontal axis corresponds to k ∈ [390, 410] as real value. The function is

diverging when k < N and k is integer. The right figure shows (5.1.14) as a function of t. The

zeros only appear in t ≤ 1 region. (These figures are cited from our paper [4].)

Finally, we will comment on the numerical results on the large N solution in the ‘t Hooft

limit. In the region k ≪ N , the solution is indeed the confinement solution we discussed above
†8In [91,92], the authors discuss this free energy of the pure Chern-Simons theory in the ’t Hooft limit. They

argue that when t < 1 the integrand of the free energy has a logarithmic branch cut on a part of the integral

interval and the integral is ill-defined. However, in this time, we only consider the absolute value of the partition

function and then its singular properties does not change. The integrand of (5.1.14) is well-defined even when

t < 1. t is a inverse ’t Hooft coupling.
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because the Chern-Simons term can be ignored. In the region k ≫ N , we found the solution also

in [2] and the distribution of aj lie on a line in the complex plane. The numerical result suggests

that as k decreases and goes beyond to N , the imaginary part of the saddle-point solution tends

to become a double-valued function as a function of the real part. The confinement solution

(5.1.4) seems to be also a double-valued function including the real part of the confinement

solution, which is O( 1
N
) and ignored †9. These similarities also suggest that the confinement

solution corresponds to a SUSY breaking phase.

5.2 N = 2 SUSY gauge theory with fundamental matter

fields

In this section, we consider the Nf non-chiral pair of chiral multiplets (Qa, Q̃
a) in the funda-

mental and the anti-fundamental representations of the gauge group G and a is a flavor index

which runs from 1 to Nf . The total global symmetry is U(Nf )×U(Nf ) and we will introduce

the mass ma for the a-th flavor by gauging U(1)Nf part of flavor symmetry as usual [52] †10.

Since the center symmetry ZN does not exist, the argument about the confinement we used so

far is not available.

For this theory, we have

S(a) =iπk
N∑
i=1

σ2
i − 2πiζ

N∑
i=1

σi −
1

2

N∑
i,j=1, i>j

(
log 4 sinh(πb(σi − σj) + log 4 sinh(πb−1(σi − σj)

)
−

Nf∑
a=1

N∑
i=1

(log sb(α +ma − σi) + log sb(α−ma + σi)) +N logN, (5.2.1)

where

α =
iQ(1− r)

2
. (5.2.2)

In the large N limit, for Nf = O(N0), the matter parts do not contribute to the saddle-point

equation. Thus, the previous result (5.1.4) without matter fields is valid for this case although

the O(N) part of the free energy F is changed.

†9The real part of the solution was considered in the appendix of [2].
†10When we take the gauge group G=U(N), we take the overall U(1) symmetry of U(N) to cancel one of the

flavor mass. This means that when the Chern-Simons level and FI parameter is vanishing, we can always make

one hypermultiplet massless. We do not consider such a case.
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For Nf = O(N), the saddle-point equation has the following extra terms:

−
Nf∑
a=1

∂

∂σi
(log sb(α +ma − σi) + log sb(α−ma + σi)) , (5.2.3)

which will make a solution completely different from the previous one and may reflect in the

general fact that definitions of the confinement phase are ambiguous†11 for the theory with the

matter fields in the fundamental representations. However, for the large mass limit e−2πb±1|ma| ≪
1, these extra terms in the action are approximated to

− i
π

2

Nf∑
a=1

N∑
i=1

sign(ma)
(
(α +ma − (σi))

2 − (α−ma + (σi))
2
)

(5.2.4)

=− 2πiα

Nf∑
a=1

N∑
i=1

sgn(ma)(ma − σi),

thus, the action in this limit is written as

S(a) ≈− 1

2

N∑
i,j=1, i>j

(
log 4 sinh(πb(σi − σj)) + log 4 sinh(πb−1(σi − σj))

)
+N logN

+ iπk
N∑
i=1

(
σi −

1

k
ζ̃

)2

− 2πiαN

Nf∑
a=1

|ma| − i
π

k
ζ̃2, (5.2.5)

where

ζ̃ = ζ − α

Nf∑
a=1

sgn(ma). (5.2.6)

This action is the same form as the one without the matter fields. Thus, by shifting the U(1)

part of σi in the solution (5.1.4), the saddle-point solution is obtained as

σj = i

(
j

N
− c

)
√
pqM +

ζ̃

k
, (5.2.7)

The Wilson loop vanishes also because the shift changes the overall phase only. Note that for

the SU(N) gauge theory, (5.2.5) with ζ̃ = 0 is correct.

Without the vector multiplets, in the large mass limit we obtain the action (5.2.5). Naively

considering, by choosing ζ̃ = 0 and subtracting the contribution of the decoupled massive

matter fields from the action, the result of the pure N = 2 super Yang-Mills Chern-Simons

†11The center symmetry is explicitly broken by the matter fields and the Wilson loop will not obey the area

law by the pair creations.
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theory is recovered. This implies that this solution corresponds to the origin of the Coulomb

branch and simply the massive multiplets decouple. Because this point does not maintain

the supersymmetry, which is a metastable vacuum, we conclude that the confinement solution

corresponds to a supersymmetry breaking phase in the large N limit. However, as we mentioned

in chapter 3, whether the solution introduced in this chapter can become dominant is non-trivial.

As will be discussed in the appendix for the adjoint matter fields, we need to choose the coupling

constants to realize the solution for the confinement phase for this theory with fundamental

matter field although we do not explicitly do this.

5.3 N = 2 SUSY gauge theory with adjoint matter fields

Next, we consider the Na chiral multiplets of the adjoint representation of the gauge group

G†12. We will introduce the mass ma for the adjoint chiral multiplets. Then, the action for the

matrix model is written as

S(σ) =iπk
N∑
i=1

σ2
i − 2πiζ

N∑
i=1

σi −
1

2

N∑
i,j=1, i>j

(
log 4 sinh (πb(σi − σj)) + log 4 sinh

(
πb−1(σi − σj)

))
+N logN −

Na∑
a=1

N∑
i,j=1

log sb(α +ma − (σi − σj)). (5.3.1)

Comparing with the pure Chern-Simons Yang-Mills case, additional terms in the saddle-

point equations are

Na∑
a=1

N∑
j ̸=i

∂

∂ai
(log sb(α +ma − (ai − aj))− log sb(α +ma − (aj − ai)))

(5.3.2)

where x = j
N
. We will expand log sα using (2.6.34) and (2.6.35).

Then, the matter fields contribute to the action as

−iπ
2

Na∑
a=1

N∑
i,j=1

sgn(ma)

(
(α +ma − (σi − σj))

2 +
(Q2 − 2)

12
− 2

π
H (sgn(ma)(α +ma − (σi − σj)))

)
,

(5.3.3)

†12When G is SU(N) case, the matrix model of the gauge theory with gauge group G with Na ≥ 2 converges.

However, G =U(N) case, the matrix model with any Na diverges because the integrand depends only through

the difference of the integral valuables as σi − σj . Generally, the condition that the determinant is one makes

the matrix model converge depending on the Na.
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where

H(z) =
∞∑
l=1

(−1)l−1

l

(
e−2πlbz

2 sin(πlb2)
+

e−2πlz/b

2 sin(πlb−2)

)
. (5.3.4)

Now, we assume that

Na∑
a=1

sgn(ma) = 0, (5.3.5)

to solve the saddle-point equations.

In what follows, we will show that

aj = 2i

(
j

N
− c

)
√
pqM, (5.3.6)

is a solution of the saddle-point equation for the theory with the adjoint matter fields†13. We

see that the terms including H ′(x) vanish because H(x) is the periodic function with the period

2i
√
pq, i.e. H(x+ 2i

√
pq) = H(x), which can be seen from

√
pq = qb = p/b, and then,

N∑
j ̸=i

H ′
(
sgn(ma)

(
α +ma ± i

√
pqM

N
(i− j)

))
=

N−1∑
ℓ=1

H ′
(
sgn(ma)

(
α +ma ± i

√
pqM

N
ℓ

))
.

(5.3.7)

We can also see that the remaining terms are canceled each others:

Na∑
a=1

sgn(ma)

(
α +ma + 2i

√
pqM

N

N∑
j ̸=i

(i− j)− (α +ma) + 2i

√
pqM

N

N∑
j ̸=i

(i− j)

)
= 0. (5.3.8)

Therefore, (5.3.6) is the large N saddle-point solution. The leading part of the Wilson loop

in the fundamental representation vanishes in the large N limit as for the pure Chern-Simons

Yang-Mills case. We can also evaluate the free energy and find that F = 0 ·N2 +O(N) where

we used the periodicity of the function H(z) like as (5.3.7).

For this theory with fundamental matter fields, there is another largeN solution as discussed

in the appendix. To realize the confinement phase, we need to tune the parameters as we will

see in the appendix.

†13There is an additional factor 2 in (5.3.6) compared with the pure Yang-Mills case. This is because H(x)

contains eπb
±1x instead of e2πb

±1x for sinh2(πb±1x). If (1 + b±2)(1− r) = m± where m± ∈ Z, we can show that

this factor 2 can be dropped, although these mean b = 2r = m± = 1 for r > 0.
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5.4 FI-deformed ABJM theory

In this section, we study the confinement solution of the mass-deformed ABJM theory for

ζ1 = ζ2 = ζ in the limit N → ∞ with the Chern-Simons levels k kept finite. The solution is

different from the solution for which the free energy exhibits N
3
2 behavior.

5.4.1 Solutions in large ζ/k limit

First, we consider the case ζ/k ≫ 1. The saddle-point equations further (4.2.4) are simplified

in this regime. Here, we take the reality condition and an ansatz as follows:

λi =− λ̃∗j (5.4.1)

λj =
ζ

k
+ i

N

k
+ uj + ivj. (5.4.2)

where we assume that uj and vj are of O(N0). Shifting the eigenvalues in the real part by ζ
k
can-

cels the term −2πiζ, while the last terms in the saddle-point equations (4.2.4) are approximated

as

N∑
j=1

tanhπ(λi − λ̃j) = N +O(e−
4πζ
k ), (5.4.3)

which is canceled by the shift in the imaginary part of the eigenvalues. The equation finally

obtained are up to sub-leading correction of ζ

−kvi −
N∑
j=1
(j ̸=i)

sinh 2π(ui − uj)

cosh 2π(ui − uj)− cos 2π(vi − vj)
= 0, (5.4.4)

kui +
N∑
j=1
(j ̸=i)

sin 2π(vi − vj)

cosh 2π(ui − uj)− cos 2π(vi − vj)
= 0, (5.4.5)

where we write down the real and imaginary part of the saddle-point equation separately. The

free energy (4.2.3) also is simplified in this limit as

f = 2N logN +
4πN2ζ

k
+ δf +O(e−

4πζ
k ) (5.4.6)

with

δf = −4πk
N∑
i=1

uivi −
N∑

i,j=1
(i ̸=j)

log

[
2
(
cosh 2π(ui − uj)− cos 2π(vi − vj)

)]
. (5.4.7)

94



We note that the equations (5.4.4) and (5.4.5) are in the same form as the saddle-point

equations for the pure Chern-Simons theory, which were analyzed in 5.1. In that sense the

correction δf in the free energy corresponds to the free energy of the pure Chern-Simons theory

in the large-N limit.

Large-N solution

With the ansatz (5.4.2), the solution of the saddle-point equations is the following:

uj = 0 +
1

N
g
( j
N

)
, vj =

j

N
+ n(j) + ∆ +O

( 1

N

)
. (5.4.8)

Here g(s) is some function and ∆ is a constant both of which being of O(N0), while n(j) is some

integer which can be different for each j. Indeed, after the substitution of these expressions the

real part of the saddle-point equation (5.4.4) is of O(N0), while the O(N) part of the imaginary

part of the saddle-point equations (5.4.5) vanishes due to the following identity

N∑
j=1
(j ̸=i)

sin 2π(i−j)
N

1− cos 2π(i−j)
N

= 0. (5.4.9)

Hence, (5.4.8) solves the saddle-point equations up to O(N0) corrections.

Then, we evaluate the free energy δf for this solution. The second term is obviously of

O(N0). Approximating the cosine hyperbolic factor by 1 we can compute the third term

exactly as

−
N∑

i,j=1
(i ̸=j)

log

[
2
(
cosh 2π(ui − uj)− cos 2π(vi − vj)

)]
≈ −N log

N−1∏
i=1

2
[
1− cos

2πi

N

]
= −2N logN.

(5.4.10)

Hence the free energy in the large N limit is

f ≈ 4πN2ζ

k
+O

(
1

N

)
, (5.4.11)

with the solution,

λj ≈
ζ

k
+ i
(N
k

+
j

N
− 1

2

)
, (5.4.12)

where we have fixed the values of ∆ and n(j) as ∆ = −1
2
and n(j) = 0.

We note that N logN term arising from the Weyl group of U(N)× U(N) cancels the con-

tributions from the one-loop part (5.4.10). The remaining N2 factor can be interpreted as the
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contributions from decoupled free hypermultiplets. Because there are N×N hypermultiplets in

the ABJM theory, from (2.6.46) we can derive the above result. On the other hand, after inte-

grating out the matter multiplets in the mass deformed ABJM theory, the pure Chern-Simons

theory remains. This is the reason why the saddle-point equations for the shifted eigenvalues

ui + ivi (5.4.4) and (5.4.5) can be interpreted as that for this reduced theory.

Wilson loops

Then, we attempt to compute the expectation values of a supersymmetric Wilson loops (2.6.31).

We consider the Wilson loop associated with U(N)k gauge group in U(N)k× U(N)−k. By

substituting the saddle-point configuration (5.4.2) with (5.4.8), we obtain

⟨W□(C)⟩ =
1

N
eπ(

ζ
k
+iN

k )
N∑
j=1

exp
[2πij
N

+O(N−1)
]
. (5.4.13)

Similarly, the Wilson loop for U(N)−k can be written as

⟨W̃□(C)⟩ =
1

N
eπ(−

ζ
k
+iN

k )
N∑
j=1

exp
[2πij
N

+O(N−1)
]
. (5.4.14)

When we neglect the O(N−1) deviations in the exponent, the leading part of the right-hand

side vanishes in both cases.

5.4.2 Any ζ/k

Below we will consider the limit N → ∞ with both k and ζ kept finite. We will show that for

any finite ζ/k, there is a solution which is a simple generalization of the solution obtained in

the last section and has the same expression for the free energy f ∼ 4πN2ζ
k

in the large-N limit.

Let us begin with the small generalization of the ansatz in the last section (5.4.12) (λi =

xi + iyi)

xi =
ζ

k
+

1

N
g
( i
N

)
, yi =

N

k
+

i

N
+∆+

1

N
h
( i
N

)
. (5.4.15)

with g(s) and h(s) some functions and ∆ some real constant, both being of O(N0). Indeed, we

can solve the saddle-point equation with the help of the following trivial generalization of the

identities (5.4.9):

N∑
j=1

sin 2π(i−j)
N

a+ cos 2π(i−j)
N

= 0, (a /∈ (−1, 1)). (5.4.16)
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Similarly, O(N) terms in the real part of the saddle-point equation vanish due to

N∑
j=1

1

cosh b+ cos 2π(i−j)
N

=
N

sinh b
. (b > 0) (5.4.17)

We can also solve the O(N0) part of the saddle-point equations to determine (f(s), g(s),∆),

though they are irrelevant to the leading part of the free energy. The computation is parallel

to those in the large ζ limit and displayed in [2].

The free energy f for this solution also takes the same form as in the case of the large ζ

limit. In the large-N → ∞, the relevant terms to the free energy are following:

f(λ) ≈ N logN −
N∑

i,j=1
(i ̸=j)

log 2

[
1− cos

2π(i− j)

N

]
+

N∑
i,j=1

log

[
cosh

4πζ

k
+ cos

2π(i− j)

N

]

=
4πζN2

k
+O(N logN). (5.4.18)

To obtain the second line, it is convenient to take the continuous limit in which the summation

is replaced with the integration over s ∼ i
N
. The O(N logN) denotes correction terms due to

the difference between the integrations and the original discrete summation.

5.5 Summary and Discussion

In this chapter, we have studied the properties of the confinement solution which we discovered

in [2] and the theory which has that type of the solution. First, we have considered theories on

S3
b for supersymmetric Wilson loops to be regarded as the (generalized) Polyakov loop by taking

b→ ∞ limit in the sense that S3
b become locally S1 ×R2 and the supersymmetric Wilson loop

is wrapping on the S1. In the large-N limit, a supersymmetric Wilson loop in the fundamental

representation can be evaluated with the solution of the saddle-point equation. We showed that

various gauge theories have the special kind of solution. With this solution, the expectation

value of Wilson loop is vanishing in the large-N limit. Thus, we call the solution as a confinement

solution in the sense that this Wilson loop can be regarded as the generalized Polyakov loop.

We expect that this solution corresponds to the spontaneously SUSY breaking phase †14. This

result is somewhat surprising in the sense that although ZN symmetric configurations for the

non-vanishing gauge fields give the vanishing Polyakov loop, the localization technique reduces

the path integral variables to the integrations over the constant scalars where the gauge fields

†14One reason for this expectation is that this solution only valid in the region N ≫ k. This is consistent with

the fact that the SUSY breaking phase may be gapped and confined [35].
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are fixed to zero. We also note that in our solution, the nonzero imaginary scalars values are

similar to the ZN symmetric configurations for the gauge fields. The scalars and gauge fields

are combined and regarded as a complex variable in a supersymmetric Wilson loop, then this

may lead to the vanishing (generalized) Polyakov loop.

One of the interesting future work is to consider the large-N solution for the confinement

phase in a theory on the Seifert manifold [84, 85]. Indeed, we expect that this solution for

the confinement phase exists even for a theory on the Seifert manifold also by the following

reasons. In the 1-loop part of the twisted index of the Seifert manifold, the holonomy a along

the S1 fiber direction and the scalar field of the vector multiplet σ are combined into a complex

scalar in which a and σ are real and imaginary part respectively. Moreover, the 1-loop part

is periodic under the constant shift of the holonomy which is regarded as the large gauge

transformation and essentially equivalent to the action of the center symmetry. Then, it is also

periodic under the shift of the imaginary part of σ because this also gives the same constant

shift of the complex scalar. Thus, the large-N solution for the confinement phase exists as

for the theory on the ellipsoid S3
b . We emphasize that if there is no non-trivial one-cycle, the

holonomy a does not exist, however, for the Seifert manifold with a non-trivial fundamental

group, the large-N solution associated with the confinement phase is regarded as just the usual

symmetric configuration of the Polyakov loop for the confinement phase. This might explain

our observation that the large-N solution for the theory on the squashed S3 may exist only

when a square of the squashed parameter b is a rational number because the partition function

for a theory on the ellipsoid with the rational squashing parameter is represented by the one

on a Seifert manifold. It will be interesting to investigate the large-N solution of the theory on

a Seifert manifold further and the corresponding gravity solutions [87,88].†15

We also note that we found that the mass deformed ABJM theory has the large N solution

whose free energy is proportional to N
3
2 and it is valid when ζ

k
< 1

4
. In the next chapter, we will

argue that when ζ
k
≥ 1

4
, the mass deformed ABJM theory is expected to be in a SUSY breaking

phase in the large-N limit and the confinement solution is a candidate which becomes dominant

in this region. This might reflect in the naive expectation that the pure Chern-Simons theory in

a SUSY breaking phase appears if all massive bi-fundamental hypermultiplets decouple. Thus,

we expect that the theory is in a SUSY breaking phase and the confinement solution can be

relevant in the large-N limit when ζ
k
≥ 1

4
.

†15We would like to thank a referee of our paper [4] for suggesting a relation between our solution and the

theory on Seifert manifolds.
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Chapter 6

Mass-Deformed ABJM Theory

Revisited

First, we would like to clarify relation between results introduced so far and this chapter. As

we have mentioned, the theory with the R-charge deformation is formally identical to the mass

deformation with pure imaginary mass parameters ζ1, ζ2 ∈ iR at the level of the localization

formula (4.1.5). Therefore, it seems that the results for the real masses were simply obtained

by an analytic continuation of the ones for the R-charge deformations or equivalently imaginary

masses. Indeed, our result will show that the statement is true only in a small region of the

mass parameters, but we claim that this is true for small ζ1, ζ2 otherwise this is not. However,

the behaviors of the partition function are completely different from that for the real mass

deformation. The partition function diverges because when one of ζ1, ζ2 reaches ζi = ± ik
4
, the

integration runs over the pole of the integrand. On the other hand, the partition function never

vanishes for real masses since the integrand has no poles. Furthermore, the shape of the phase

boundary is different from that for the R-charge deformation. In particular, the result in 4.3

has told us that if ζ1 = 0 the matrix model does not encounter any phase transition regardless

of the value of ζ2. Though the understanding is not complete, we suspect that this phase

boundary particular for the real masses is related to the convergence property of the large-N

expansion, which is completely different for ζ1, ζ2 ∈ iR and ζ1, ζ2 ∈ R. We will elaborate this

point in Section 6.2.3 in terms of the result [77].

Combining the results in chapter 3, it is likely that the supersymmetric vacua do not become

dominant in the infinite mass limit and metastable vacua contribute to the partition function.

One possible phase realized in the large N limit outside the phase boundary is that mentioned

in chapter 5. Then, in this chapter, we have obtained the exact expressions†1 for Z(N, k, 0, ζ2)

†1The exact expression for N = 1, 2 and general ζ1, ζ2 was obtained in [104].
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and numerical results for Z(N, k, ζ1, ζ2) with finite N ≥ 3, and the large-N expressions. We

expect that in the large N limit, the mass-deformed ABJM theory on the three-sphere is in

supersymmetry breaking phase outside of the above phase boundary. We argue that point in

this chapter from the numerical result for finite N result and the result we discussed so far in

this thesis.

6.1 Evidence for SUSY breaking

In this section, we explain why we expect the SUSY breaking of the mass deformed ABJM

theory on S3 in the large-N limit at some finite (ζ1, ζ2) and explain our criterion for the SUSY

breaking which we will examine in the following sections.

First, in the case of ζ1 = ζ2 = ζ, there is a large-N saddle-point solution for the original

matrix model (4.1.5) which exist only for 0 ≤ ζ
k
< 1

4
[2]. This solution is smoothly connected

with the saddle-point solution of the massless ABJM theory [75] as m → ∞ and exhibit the

N3/2-law of the free energy:

− logZ =
π
√
2k

3

(
1 +

16ζ2

k2

)
N3/2. (6.1.1)

However, this saddle-point solution becomes singular in the ζ
k
→ 1

4
limit. There is another

large-N solution for any value of ζ. The free energy of this solution is proportional to N2 and

this solution may correspond to a confinement vacuum.†2 Although it would be possible that

there are other solutions,†3 these results strongly indicate a phase transition at ζ
k
→ 1

4
in the

large N limit.

We expect that this phase transition comes from a superpsymmetry breaking as follows.

We take the mass very large, i.e. ζ
k
≫ 1, then, at least naively, the hypermultiplets become

heavy and decouple from the vector multiplets. The remaining N = 2 SUSY pure Chern-

Simons theory will be in supersymmetry breaking phase as shown in [35, 90], and at the same

time be in the confinement phase in the large-N limit. This perspective is consistent with the

above large-N solutions. However, for the mass deformed ABJM theory, the Witten index was

computed to be non-zero in [40,41]. As we reviewed in the previous review part, this theory has

†2This statement is not precise because the Chern-Simons interaction remains and theory may be in a gapped

phase. Nevertheless, we will call the confinement phase for such case also. Note that here we take k/N → 0 limit,

thus the Chern-Simons interaction will be ignored for the leading order in the large-N limit and the Yang-Mills

term always induced by the renormalization flow. We also note that the N = 2 SUSY pure Yang-Mills theory

does not have SUSY vacua.
†3From some numerical methods, we have not been able to find any solution other than the two solutions.
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discrete supersymmetric vacua which are characterized by the fuzzy S3 solutions, which denote

dielectric M5-branes. Although the contribution to the index for the trivial vacuum, where

all the scalar fields are zero, vanishes as in the pure supersymmetric Chern-Simons theory for

N > k, other vacua can give the non-zero contributions to the index. This result seems to

contradict with the above argument of the supersymmetry breaking. However, this results is

for the theory on T 3, not on S3. For the N = 2 SUSY theory on S3, there are mass terms

for the chiral multiplets proportional to the curvature of S3. The mass term will lift all of the

vacua except the trivial vacuum at the origin classically.†4 Thus, the result of [40, 41] on the

Witten index does not exclude the possibility that the mass deformed ABJM theory on S3 has

the supersymmetry breaking phase in the large N .†5 Here note that we do not take the large

volume limit.

6.1.1 Criterion for SUSY breaking

By now, we have denoted the definition of a spontaneous SUSY breaking on S3. Usually, a

spontaneous supersymmetry breaking means that there are no states with zero energy of the

theory. For S3, we cannot define states with an appropriate Hamiltonian and time, thus we

cannot apply this definition to our case. Instead of this definition for a spontaneously SUSY

breaking, the spontaneous breaking of a symmetry Q̂ can be defined as ∃Ô s.t. ⟨0|[Q̂, Ô]|0⟩ ̸= 0.

In the path-integral formalism, this corresponds to

Q is spontaneously broken
def⇐⇒ ∃O s.t. ⟨QO⟩ ̸= 0, (6.1.2)

where the condensation is the order parameter of the spontaneously symmetry breaking. Note

that this definition is valid for the theory with enough number of non-compact space directions,

in which the notion of vacuum is meaningful, otherwise, ⟨QO⟩ corresponds to Tr[Q̂, Ô],†6 not to

⟨0|[Q̂,O]|0⟩. Because Q is a symmetry generator which behaves well, we expect that ⟨QO⟩ = 0

(Tr[Q,O] = 0) is trivial identity because of the invariance of path integral measure (cyclic in-

variance of Tr).†7 For example, for SUSY quantum mechanics case, the invariance of the Witten
†4We expect that the energy of the possible metastable SUSY breaking vacuum is proportional to ζ and the

free energy will be proportional to ζrS3 . The extra contribution by the curvature induced mass term to the

free energy for the fuzzy sphere solutions will also proportional to ζrS3 because the size of the fuzzy sphere

grows as ζ grows. Of course, this is not valid except the weak coupling limit and the phase of the theory can

be non-trivial.
†5Here, we assume that the theory is regarded as a deformation of the ABJM theory on S3 for a small ζ/k

case. For an enough large ζ/k case, we think that the curvature effect of S3 is almost negligible, but still

remains. This picture will lead the SUSY breaking scenario explained here.
†6For the SUSY, it corresponds to Tr(−1)F̂ {Q̂, Ô} = Tr[(−1)F̂ Q̂, Ô].
†7In the case of Q =SUSY, QO is such as F -term and D-term. Unfortunately, we cannot compute ⟨F ⟩ or ⟨D⟩

by using the supersymmetry localization. We can compute ⟨
∫
F ⟩ and ⟨

∫
D⟩, but they are trivially zero. This is
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index implies that Tr[(−1)F̂ Q̂, Q̂†] ∼ Tr(−1)F̂ Ĥ = 0. Thus, the definition of (6.1.2) is mean-

ingful for the theory with some space with enough number of non-compact directions. In order

to apply this definition to our case, we need to take the large volume limit or large-N limit in

which extra dimensions can effectively appear. When supersymmetry is spontaneously broken,

there should exist a massless Goldstone fermion in the theory which makes the supersymmetric

partition function Z vanished.

We take a large-N limit and the SUSY breaking can be meaningful. Thus, we need a criterion

of the SUSY breaking in the large-N limit from a finite N result. For the theory in which the

Witten index can be defined, Z = 0 denotes the necessary condition for the SUSY breaking for

the finite volume. For the other theories also, we expect that the massless Goldstone fermion

makes Z = 0. Indeed, for a superconformal theory on S3, the theory can break the SUSY if

Z = 0 because the radius of S3 is not physical. As an example of such theories is Chern-Simons

matter theory and discussed in [58, 91–93]. For our case, the theory is not conformal, but we

take the large-N limit. Thus, we regard Z = 0 as a criterion of the SUSY breaking.†8 †9 We

emphasize that Z = 0 does not always mean SUSY breaking as in the Witten index. However,

for our case, interpreting Z = 0 as SUSY breaking is the most natural possibility because the

mass deformed ABJM theory on S3 will be smoothly connected to the pure SUSY CS theory

in the large mass limit whose SUSY is broken for k ≤ N .

In the following sections, we will see further supporting arguments for the SUSY breaking

phase for the mass deformed ABJM theory on S3 using the S-dual representation of the matrix

model. Here, we will summarize these arguments for the SUSY breaking shortly. The S-dual

representation of the matrix model (for k = 1) is obtained from the U(N) Yang-Mills theory

with an adjoint and fundamental matter fields where ζ1 and ζ2 corresponds to the FI term

and the mass for the adjoint matter in the S-dual representation, respectively. Because of

the FI term and the mass term included at the same time, the supersymmetry will be broken

spontaneously at the origin of the Coulomb branch which will be favored by the mass terms

induced from the curvature of S3. Moreover, for ζ1 = 0, we expect that because the FI term

vanishes, the SUSY will not be broken. Indeed, for this case, as we seen, we constructed a

large-N solution for any value of ζ2, thus there was no critical mass for this case. This is

consistent with the above picture.

consistent with the fact that there is no SUSY breaking for the theory on S3 with N finite.
†8In the gravity dual, the SUSY is gauged and the theory is described by supergravity. In supergravity, there

are massless fermions, however, there are no zero modes around the SUSY vacuum which is an asymptotic AdS4

background. In a SUSY breaking vacuum, some fermions near the boundary have zero modes.
†9As an analogy to the case with bosonic zero modes, an appropriate analysis would be to add an explicit-

SUSY-breaking deformation to kill the zero modes and see what happens in the limit of zero deformation. In

this approach, however, we cannot use the result of the localization.
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In order to investigate further, we will compute the partition function Z for finite N exactly

and numerically using the Monte Carlo method for various points of (ζ1, ζ2). With some finite

values of N , we computed Z and the computed values of Z are consistent with the large-N

solutions for ζ1 = ζ2 <
k
4
and ζ1 = 0 even though the employed values of N is not so large. These

actual computations of Z for finite N show that as Z is a decreasing and oscillating function

of ζ1, thus Z = 0 is realized for some values of ζi. We will associate this zero with the SUSY

breaking in the large-N limit. Furthermore, when we increase N with other parameters fixed,

the smallest value of ζi which gives Z = 0 tends to decreasingly approach to the critical point

of the large-N solution. Therefore, the extrapolation of this to the large-N limit is consistent

with the SUSY breaking picture above at least within our calculation.

6.2 General deformation with ζ1, ζ2 ̸= 0

In this section, we consider the case for ζ1, ζ2 ̸= 0. Note that this may affect the sign of the

partition function because the integrand of (4.3.13) for ζ1 ̸= 0 has the oscillation factor e
2iζ1
k

∑
i xi

in contrast to the ζ1 = 0 case, where the integrand was positive semi-definite. Therefore the

partition function may be negative or zero depending on the parameters (N, k, ζ1, ζ2). In this

section, we will see that the zeroes appear also for finite (ζ1, ζ2).

In this case, we could not find a solution to the saddle-point equation. The technique for

small integers k,N in app. C.1.1 is not applicable either. Nevertheless, we can evaluate the

partition function exactly for N = 1, 2, which suggest the partition function has zeroes as a

function of ζ1, ζ2 only for (N, k) = (2, 1), (2, 2). We argue a possible interpretation for this

zeroes. We further conjecture the zeroes for general k,N , and provide positive evidence from

the numerical computation of the partition function for N ≥ 3.

6.2.1 Exact expression for N = 1, 2

In this subsection, we review the exact results for N = 1, 2 obtained in [104].†10 The relation

(C.1.3) between the partition function and Trρ̂n is correct also for general ζ1 if we take ρ̂ as

⟨x|ρ̂|y⟩ = e
2iζ1
k
x

2 cosh x
2

1

2k cosh x−y+4πζ2
2k

. (6.2.1)

†10The notation in [104] is related to ours through the relation

Zours(N, k, ζ1, ζ2) = 2−2NZRusso−Silva(N, k,m1 = −4πζ2/k, ζ2 = −4πζ1/k).
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For N = 1, the partition function is simply determined by Z(1, k, ζ1, ζ2) = Tr ρ̂, which can be

exactly obtained as

Z(1, k, ζ1, ζ2) =

∫ ∞

−∞

dx

2π

e
2iζ1x
k

2 cosh x
2

1

2k cosh 2πζ2
k

=
1

4k cosh 2πζ1
k

cosh 2πζ2
k

. (6.2.2)

For N = 2, we need to determine Tr ρ̂2, which is obtained by the following two dimensional

integration

Tr ρ̂2 =

∫ ∞

−∞

dx

2π

dy

2π

e
2iζ1(x+y)

k

16k2 cosh x
2
cosh y

2
cosh x−y+4πζ2

2k
cosh x−y−4πζ2

2k

. (6.2.3)

By changing the integration variables x, y to x± = x± y, we can do the x+-integration and it

leads to the following integration over x−

Tr ρ̂2 =
1

16πk2 sin 4πζ1
k

∫ ∞

−∞
dx−

sin 2ζ1x−
k

sin x−
2
cosh x−+4πζ2

2k
cosh x−−4πζ2

2k

. (6.2.4)

For k ∈ Z+, this integral can be evaluated by an integral with the same integrand of which

integral contour is set to a rectangular whose corners are x− = (−∞,∞,∞+2πik,−∞+2πik)

[103,104], and we obtain

Tr ρ̂2 =
1

8k2 sinh 4πζ1
k

cosh2 2πζ2
k

(1− (−1)k cosh 4πζ1)

[
k−1∑
n=1

(−1)n sin2 πn
k
sinh 4πζ1n

k

cosh 2πζ2+iπn
k

cosh 2πζ2−iπn
k

+Rk

]
,

(6.2.5)

where

Rk =

(−1)
k−1
2

k coth
2πζ2
k

cosh
2πζ1
k

cosh 2πζ2
sin 8πζ1ζ2

k
for odd k

(−1)
k
2
+1 k coth

2πζ2
k

sinh
2πζ1
k

sinh 2πζ2
cos 8πζ1ζ2

k
for even k

. (6.2.6)

For example, the final results for k = 1, 2, 3, 4 are explicitly determined as

Z(2, 1, ζ1, ζ2) =
sin 8πζ1ζ2

8 sinh 4πζ1 sinh 4πζ2 cosh 2πζ1 cosh 2πζ2
,

Z(2, 2, ζ1, ζ2) =
sin2 2πζ1ζ2

8 sinh2 2πζ1 sinh
2 2πζ2

,

Z(2, 3, ζ1, ζ2) =
1

24(cosh 4πζ1
3

+ cosh 8πζ1
3
)(cosh 4πζ2

3
+ cosh 8πζ2

3
)

(
2−

sin 8πζ1ζ2
3

sinh 2πζ1
3

sinh 2πζ2
3

)
,

Z(2, 4, ζ1, ζ2) =
1

128 sinh2 πζ1 sinh
2 πζ2

(
1− 1

cosh πζ1
− 1

cosh πζ2
+

cos 2πζ1ζ2
cosh πζ1 cosh πζ2

)
.

(6.2.7)

We easily see from these results that the partition function for (N, k) = (2, 1), (2, 2) has zeroes

at finite (ζ1/k, ζ2/k).
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Remembering the results in Part II, the partition function in the infinite mass limit can

be interpreted as the massive free part and the superconformal part. Here, we would like to

investigate the infinite mass limit of the above partition function. First, we focus on the case

for (N, k) = (2, 3). In the infinite mass limit in which ζ1, ζ2 → ∞, the leading part of the

partition function is evaluated as

Z(2, 3, ζ1, ζ2) =
1

3 (M1M2)
4
3

+O

(
1

(M1M2)
4
3

)
, (6.2.8)

where we have defined

M1 = e2πζ1 , M2 = e2πζ2 . (6.2.9)

This result implies that the origin of the Coulomb branch dominantly contributes to the par-

tition function because this result is the same as the partition function in which the massive

multiplets simply decouple from the theory

Zdecoupled =

1

24 cosh4
(
2πζ1
3

)
24 cosh4

(
2πζ2
3

) ∫ dλ2

2!

∫
dλ̃2

2!
e3πi(λ

2−λ̃2)
2∏
i>j

4 sinh2 π (λi − λj)
2∏
i>j

4 sinh2 π
(
λ̃i − λ̃j

)
∼ 1

3

1

(M1M2)
4
3

, (6.2.10)

where we have employed the formula (5.1.10). The same thing happens to the case for (N, k) =

(2, 4). However, it does not in the case for (N, k) = (2, 2) and (2, 1). This may be because the

theory is in a supersymmetry breaking phase for these case as we reviewed. The result cannot be

obtained simply assuming that the dominant point of the Coulomb branch is the origin. Then,

we expect that the dominant point of the Coulomb branch will be the confinement solution

through the analysis here is for finite N and the confinement solution includes the imaginary

part.

6.2.2 N ≥ 3 from Monte Carlo Simulation

In this subsection, through numerical analysis, we would like to provide evidence that the

partition function has zeroes at finite (ζ1/k, ζ2/k) also for N ≥ 3. For this purpose, we apply

(Markov chain) Monte Carlo method to the S-dual representation of the partition function

(4.3.13):

Z(k,N, ζ1, ζ2) =
1

N !

∫
dNx

(2πk)N
e−S(k,N,ζ1,ζ2;x), (6.2.11)
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where

S(k,N, ζ1, ζ2;x) = −
N∑
i<j

log

(
2 sinh

xi − xj
2k

)2

+
N∑

i,j=1

log

(
2 cosh

xi − xj + 4πζ2
2k

)

+
N∑
i=1

log
(
2 cosh

xi
2

)
− log cos

(
2ζ1
k

N∑
i=1

xi

)
. (6.2.12)

Algorithm

First, we shall explain our algorithm. There are two subtleties when we apply the Monte Carlo

method to our problem. The first subtlety, which will not be problematic as explained below,

is that Monte Carlo simulation can calculate only “expectation values” or equivalently ratio of

two functions rather than Z itself. The second one is that the Boltzmann weight e−S is not

positive semi-definite for ζ1 ̸= 0 and hence cannot be regarded as a probability.

We treat these subtleties as follows. We consider the ratio, rather than Z itself

ZMC(N, k, ζ1, ζ2) =
Z(N, k, ζ1, ζ2)

Z(N, k, 0, ζ2)
=

⟨
cos

(
2ζ1
k

N∑
i=1

xi

)⟩
ζ1=0

, (6.2.13)

where ⟨O(x)⟩ζ1=0 represents the expectation value of O(x) under the action S(N, k, ζ1 = 0, ζ2).

Then, we evaluate the ratio†11 by Hybrid Monte Carlo simulation†12 by taking samples gen-

erated with the probability ∼ e−S
∣∣
ζ1=0

. We note that to study the ratio is sufficient for our

purpose since Z(N, k, 0, ζ2) is real positive and we are interested only in the sign of the partition

function.†13 Since we take samples of the oscillating function, whose frequency of the oscillation

is determined by ζ1/k, in general, more statistics are required for larger ζ1/k to obtain precise

approximations. The reason why we employ the S-dual representation (4.3.13) is that it has

much milder oscillation than the original matrix model (4.1.5) as in [105].

Results

Then, we would like to show numerical results for the ratio ZMC (6.2.13), which has the same

sign as the partition function Z(N, k, ζ1, ζ2) itself. Fig. 6.1 plots ZMC for (N, k, ζ2) = (4, 1, 1)

†11This is the so-called reweighting method.
†12The application to a similar system is explained in app. A of [105].
†13Of course we can also compute Z(N, k, ζ1, ζ2) itself by combining ZMC(N, k, ζ1, ζ2) with Z(N, k, 0, ζ2) com-

puted in another way. For example, we know the exact values of Z(N, k, 0, ζ2) for various (N, k, ζ2) obtained

in sec. (C.1.1) and Monte Carlo simulation of Z(N, k, 0, ζ2) is much easier than the ζ1 ̸= 0 case if we use the

algorithm in [105].
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Figure 6.1: The ratio (6.2.13) computed by Monte Carlo simulation is plotted against ζ1 for

(N, k, ζ2) = (4, 1, 1). The right panel is the zoom-up of the left panel around the negative peak

of the partition function. (These figures are cited from our paper [3])

as a function of ζ1. In these results, the statistical errors are estimated by Jackknife method

although they are practically almost invisible in the figures. The right figure of fig. 6.1 is the

zoomup of the left figure in the range ζ1 ∈ [0.1, 0.2]. From the right figure, we can find that the

partition function takes negative values when ζ1 = 0.110, 0.115, · · · , 1.14 even if we take into

account the errors. Therefore, we claim that there is a zero of the partition function and the

zero are located at 0.105 < ζ1 < 0.110.

We also have found similar results for other values of (N, k, ζ2) whose plots are shown in

fig. 6.2. These figures show that the partition function also has the zeroes at finite ζ1/k for

various (N, k, ζ2). We note that we sometimes encounter subtle cases. For example, in the case

of (N, k, ζ2) = (4, 2, 1) shown in the right-bottom of fig. 6.2, the minimum is consistent with

both positive and negative Z within the numerical errors.†14 It can be expected that this type

of behavior will appear when the partition function is positive semidefinite but has zeroes as

in the case of (N, k) = (2, 2) of which analytic result is given in the second line of (6.2.7). For

this kind of cases, any numerical simulation with nonzero errors cannot lead to the existence of

zeroes because numerical values at the zeroes must be consistent with all the possible signs of

Z within errors. Therefore, for this type of cases, all things we can do by numerical simulation

are to confirm that points consistent with Z = 0 exist. For all values of (N ≥ 2, k, ζ2) which

we have analyzed, we have confirmed that there exists at least one value of ζ1 consistent with

the zeros of Z within errors. For the cases for which we have conformed existence of first

zeroes of Z, bounds on the zeroes are shown in tables 6.1, 6.2 and 6.3 for fixed (k, ζ2) (see also

tab. 6.4 for ZMC at the first negative peaks and their errors). We also estimate their locations

†14Similar behaviors have been observed for (N, k, ζ2) = (3, 1, 1), (4, 2, 2), (5, 2, 1), (5, 2, 2).
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Figure 6.2: The numerical plots of ZMC as functions of ζ1 for various (N, k, ζ2) with their

zoomups around the minima. (These figures cited from our paper [3]. )
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N Bounds on the zeroes Estimate of the zeroes

2 ζ1 = 0.125 ζ1 = 0.125

4 0.105 < ζ1 < 0.11 ζ1 = 0.108084± 0.000016

5 0.105 < ζ1 < 0.11 ζ1 = 0.105249± 0.000041

7 0.095 < ζ1 < 0.1 ζ1 = 0.0975822+0.0004201
−0.0003715

9 0.085 < ζ1 < 0.095 ζ1 = 0.0898839+0.0003752
−0.0004039

Table 6.1: Bounds on first zeroes of the partition function and estimate of their precise locations

by interpolating functions for (k, ζ2) = (1, 1). The value for N = 2 is the exact value.

N Bounds on the zeroes Estimate of the zeroes

2 ζ1 = 0.0625 ζ1 = 0.0625

4 0.055 < ζ1 < 0.0575 ζ1 = 0.0565766± 0.0000060

5 0.0525 < ζ1 < 0.055 ζ1 = 0.0543974± 0.0000068

7 0.05 < ζ1 < 0.0525 ζ1 = 0.0518753+0.0000324
−0.0000320

9 0.0475 < ζ1 < 0.05 ζ1 = 0.0496673+0.0000700
−0.0000677

Table 6.2: Bounds and estimate of first zeroes of the partition function for (k, ζ2) = (1, 2).

by constructing†15 interpolating functions of all the data points of ZMC for fixed (N, k, ζ2) and

finding zeroes of the interpolating functions. Then, we will discuss implications of these values

in sec. 6.2.4.

6.2.3 Physical origins of the zeroes from Fermi gas formalism

In this subsection, we discuss the physical origins of the zeroes of the partition function. By

applying Fermi gas formalism, we attempt to investigate which effects trigger the zeros of Z.

We emphasize that some techniques in the Fermi gas formalism are not available for ζ1 ̸= 0

because the Hamiltonian is not Hermitian. However, there exists a technique which is still

available, which is a formal ℏ-expansion of Trρ̂n through Wigner transformation where Trρ̂n

is described as a phase-space integration of a function whose explicit form can be determined

by acting differential operators on ρ(q, p). In this technique, the problem is reduced to the

computation of a perturbative series of the explicit two-dimensional integral with respect to ℏ

†15This can be done by the command “Interpolation” in Mathematica. The values without “±” are first

zeroes of the interpolating functions for the average values of ZMC. The values including “±” describe zeroes

of interpolating functions for the average values plus/minus the errors.
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N Bounds on the zeroes Estimate of the zeroes

2 ζ1 = 0.025 ζ1 = 0.025

4 0.0023 < ζ1 < 0.024 ζ1 = 0.0238516± 0.0000102

5 0.023 < ζ1 < 0.024 ζ1 = 0.023177± 0.000007

7 0.022 < ζ1 < 0.023 ζ1 = 0.022638+0.000042
−0.000039

9 0.021 < ζ1 < 0.023 ζ1 = 0.0218204+0.0000247
−0.0000241

Table 6.3: Bounds and estimate of first zeroes of Z for (k, ζ2) = (1, 5).

N ζ2 ζ1 ZMC Errors

4 1 0.12 −0.00242055 7.70257× 10−6

2 0.0625 −0.00536328 0.0000115859

5 0.025 −0.00206855 0.000035207

5 1 0.115 −0.000807839 7.76448× 10−6

2 0.06 −0.00579732 0.0000125459

5 0.025 −0.00481262 0.000036708

7 1 0.105 −0.0000473376 7.52208× 10−6

2 0.055 −0.000501799 0.0000102382

5 0.035 −0.00411775 0.000018267

9 1 0.1 −0.0000167033 2.0722× 10−6

2 0.0525 −0.000239292 0.0000109368

5 0.035 −0.00176051 0.0000142852

Table 6.4: ZMC at the first negative peaks and their statistical errors for various (N, ζ2) with

k = 1.

with no relation to the hermiticity of the Hamiltonian. This analysis has been already done

in [77] for imaginary (ζ1, ζ2) in the context of the R-charge deformation and then, we can apply

the results to our case simply by taking analytic continuation in [77] assuming the parameter ζ1

and ζ2 are sufficiently small for the singular behavior not to appear.†16 First, we compute Trρ̂n

approximated in this way and then, we can obtain the grand potential J(µ) by the following

Mellin-Barnes expression

J(µ) = −
∫ ϵ+i∞

ϵ−i∞

dt

2πi
Γ(t)Γ(−t)Z(t)etµ (0 < ϵ < 1), (6.2.14)

†16This analysis was done in sec. 4 of [77]. The result in our notation can be obtained by taking p→ 1, q → 1,

ξ → 4i
k ζ1 and η → 4i

k ζ2.
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where Z(t) = Trρ̂t and the canonical partition function determined by J(µ) as

Z(N) =

∫
dµ eJ(µ)−µN . (6.2.15)

The ℏ-expansion of Z(n) takes the form

Z(n) =
∞∑
s=0

ℏ2s−1Z2s(n) +O(e−
♯
ℏ ) (6.2.16)

where the second term denotes non-perturbative effects of the ℏ-expansion which we are ignor-

ing. The large-N behavior of Z(N) can be derived by the large-µ expansion of J(µ), which are

determined as follows:

J(µ) = Jpert(µ) +O
(
e
− 2µ

1±4iζ1/k , e
− 2µ

1±4iζ2/k , e−µ
)
+O

(
e−

♯
ℏµ
)
, (6.2.17)

where we define

Jpert(µ) =
C(ζ1, ζ2, k)

3
µ3 +B(ζ1, ζ2, k)µ+ A(ζ1, ζ2, k). (6.2.18)

We would like to make several comments. First, the ℏ-expansions for the coefficients C and B

are terminated at leading and sub-leading orders respectively:

C =
2

π2k(1 + 16ζ21/k
2)(1 + 16ζ22/k

2)
,

B =
π2C

3
− 1

6k

(
1

1 + 16ζ21/k
2
+

1

1 + 16ζ22/k
2

)
+

k

24
. (6.2.19)

The coefficient A are corrected by all order contributions and it has been conjectured in [77]

that the exact answer for A is determined by

A =
1

4

[
AABJM(k + 4iζ1) + AABJM(k − 4iζ1) + AABJM(k + 4iζ2) + AABJM(k − 4iζ2)

]
, (6.2.20)

where [99,105]

AABJM(k) =
2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞

0

dx
x

ekx − 1
log(1− e−2x). (6.2.21)

If the approximation by Jpert(µ) is valid, then the canonical partition function is approximated

as follows:

Z ≃ Zpert, Zpert =

∫
dµ eJpert(µ)−µN = eAC− 1

3 Ai
[
C− 1

3 (N −B)
]
. (6.2.22)
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Then, we can evaluate the large N limit of Z(N) and it exhibits N
3
2 behavior as †17

− logZ =
2

3
C−1/2N3/2 +O(N1/2) =

π
√
2k

3

√(
1 +

16ζ21
k2

)(
1 +

16ζ22
k2

)
N3/2 +O(N1/2),

(6.2.23)

which agrees with (4.3.29) for ζ1 = 0 and the result of [2] for ζ1 = ζ2 = ζ.

The second term in (6.2.17) is non-perturbative corrections of the large-µ expansion whose

exponents can be explicitly derived by the ℏ-expansion (6.2.16). These corrections for the

massless case have been interpreted as membrane instanton effects whose type IIA picture is

D2-branes wrapping (warped) RP3 in AdS4×CP3 [106]. The third term in (6.2.17) denotes the

non-perturbative correction of the ℏ-expansion in (6.2.16). However, their exponents cannot

be determined by the above arguments. In [77], it has been conjectured that the exponent for

imaginary (ζ1, ζ2) is given by

O(e
− 4µ
k(1±4iζ1/k)(1±4iζ2/k) ) (double signs correspond). (6.2.24)

These corrections for the massless case have been identified with worldsheet instanton effects

arising from fundamental strings wrapping CP1 [107].

Assuming approximation by the perturbative part Jpert(µ) in the large-µ expansion (6.2.18)

is valid, or equivalently the canonical partition function is well approximated by (6.2.22), The

second term in (6.2.18) is always exponentially suppressed for any (ζ1, ζ2) and therefore we can

ignore the second term in the large-N limit. As we find in what follows, the third term which

arises from non-perturbative effects of the ℏ-expansion can break the perturbation. We assume

that the exponent of the third term for real (ζ1, ζ2) should be the same as the naive analytic

continuation of the one for imaginary (ζ1, ζ2) in the domain on which the partition function is

holomorphic with respect to (ζ1, ζ2). Then, we have the following correction in (6.2.18) for real

(ζ1, ζ2):

O
(
e
− 4µ
k(1±4iζ1/k)(1±4iζ2/k)

)
= O

(
e
− 4µ

k(1+16ζ21/k
2)(1+16ζ22/k

2)

[
1− 16ζ1ζ2

k2
∓ 4i(ζ1+ζ2)

k

])
, (6.2.25)

where the double signs are in the same order. This implies that this correction is no longer

exponentially suppressed for
ζ1ζ2
k2

≥ 1

16
, (6.2.26)

and the estimation of the grand potential J(µ) by Jpert(µ) is not valid in this region. This

also implies that the holomorphy of the partition function with respect to (ζ1, ζ2) is no longer

†17In the large-N limit, the µ-integral is dominated by µ =
√

N−B
C . Therefore, the non-perturbative effects in

(6.2.17) contribute to Z like ∼ O(e−
√
kN ), O(e−

√
N/k).

112



Figure 6.3: The quantity − logZMC with ZMC(N, k, ζ1, ζ2) =
Z(N,k,ζ1,ζ2)
Z(N,k,0,ζ2)

is plotted against N3/2

for ζ1ζ2
k2

< 1
16
. The symbols are the numerical results obtained by the Monte Carlo simula-

tion. The red line denotes the result computed by the Airy function formula (6.2.22), namely

− log Zpert(N,k,ζ1,ζ2)

Zpert(N,k,0,ζ2)
. (These figures are cited from our paper [3].)

valid in the region (6.2.26) at least in the large-N limit. If we take the large-N limit first, in

the domain ζ1ζ2
k2

≥ 1
16

the free energy is very likely different from (6.2.23) obtained by analytic

continuation to real (ζ1, ζ2).

We emphasize that the above estimate is consistent with our numerical results obtained in

sec. 6.2.2. In fig. 6.3, we compare the ratio ZMC(N, k, ζ1, ζ2) =
Z(N,k,ζ1,ζ2)
Z(N,k,0,ζ2)

obtained numerically

with the one computed by the approximation (6.2.22) for some cases where we expect (6.2.22)

to be good approximation. From the plots, we can see that our numerical results are nicely

approximated with the Airy function formula (6.2.22) and exhibit the N3/2-law. Here, we

explicitly present only the four cases, but we have observed similar results for various other

values of (k, ζ1, ζ2) satisfying
ζ1ζ2
k2

< 1
16
. Figure 6.4 describes similar plots for ζ1ζ2

k2
≥ 1

16
where

(6.2.22) is expected not to be valid due to the correction (6.2.25). We also emphasize that in

contrast to fig. 6.3, it can be seen that the numerical results do not agree with (6.2.22) and

no longer exhibit the N3/2-law. We have also found similar behaviors for various other values

of (k, ζ1, ζ2) with ζ1ζ2
k2

≥ 1
16
. Thus, our numerical results support our expectation that the
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Figure 6.4: Similar plots to fig. 6.3 for ζ1ζ2
k2

≥ 1
16
. (These figures are cited from our paper [3])

approximation by (6.2.22) is valid for ζ1ζ2
k2

< 1
16

and a different phase can be realized outside of

the region.

6.2.4 Conjecture on phase structure in the large-N limit

Here, we discuss the phase structure of the mass deformed ABJM theory in the large-N limit.

We shall recall the results obtained so far by the various methods:

• In the case of ζ1 = ζ2 = ζ, the partition function in the representation (4.1.5) has been

analyzed by the saddle-point method in Section 2 of Part II as reviewed in sec. 6.1. The

saddle-point configuration exhibits the O(N3/2) behavior of the free energy and becomes

singular at ζ/k = 1/4.

• In sec. 4.3.1, we constructed the saddle-point solution for ζ1 = 0 in the S-dual represen-

tation, which gives the O(N3/2) free energy (4.3.29). This behavior is consistent with the

exact results for finite N obtained in sec. C.1.1. We note that we can obtain the result

for ζ1 ̸= 0, ζ2 = 0 by the replacement ζ2 → ζ1 in (4.3.29) since the partition function is

symmetric under ζ1 ↔ ζ2.

• In sec. 6.2.1, we showed the exact results for N = 1, 2 and arbitrary (k, ζ1, ζ2) obtained

in [104]. we saw that the partition function for N = 2 has the zeroes at finite (ζ1, ζ2)

while the one for N = 1 does not.

• In sec. 6.2.2, we have performed the Monte Carlo simulation for higher N . The numerical

result showed that the partition function has zeroes at finite (ζ1, ζ2) given (N, k). The

bounds and estimates on the zeroes given in tables 6.1, 6.2 and 6.3. These results have
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implied that the first zeroes do not increase by N . It is reasonable to expect that the

partition function becomes zero at some finite (ζ1, ζ2) also in the large-N limit.

• In sec. 6.2.3, we have argued when one can trust the approximation in terms of the

perturbative grand potential (6.2.18) in the Fermi gas formalism, which gives the O(N3/2)

free energy in the large-N limit. We have found that the approximation is reliable for
ζ1ζ2
k2

< 1
16

while in the other regime ζ1ζ2
k2

≥ 1
16
, the expected non-perturbative effects

(6.2.25) of the ℏ-expansion are no longer exponentially suppressed. we emphasize that

for ζ1 = ζ2 = ζ, the approximation becomes invalid at ζ/k = 1/4. the same condition has

appeared as that the introduced in the previous section.

Considering the above results, we propose the following scenario

(i) For small (ζ1, ζ2), the large-N free energy exhibits the N3/2 behavior whose explicit ex-

pression is given by (6.2.23). We expect that this formula is valid for ζ1ζ2
k2

< 1
16
, and

becomes invalid for ζ1ζ2
k2

≥ 1
16
.

(ii) The partition function vanishes at some finite values of (ζ1, ζ2). We expect that this

occurs at the boundary of the validity of (6.2.23): ζ1ζ2
k2

= 1
16
. We interpret this as the

SUSY breaking at this point.

Our results strongly support the first point by the saddle-point analysis for ζ1 = ζ2 in [2]

and Fermi gas analysis in sec. 6.2.3. Then, we attempt to provide further evidence for the

second point. Tables 6.1, 6.2 and 6.3 show that locations of the first zero decrease slowly as N

increases. Therefore, it is plausible that the first zeroes in the large-N limit are at some finite

values of (ζ1, ζ2). However, it would be nontrivial whether or not the first zero in the large-N

limit coincides with our expected bound ζ1ζ2
k2

= 1
16
. Thus, we performed consistency checks of

this through fitting analysis of our numerical data in [3].

Moreover, the correlation between the supersymmetry breaking and the singularity in the

saddle-point approximation was argued for the pure Chern-Simons theory [92, 108]. Hence it

would be more than just a minimal scenario for our theory to relate the singularity in the

saddle-point approximation with the supersymmetry breaking. It would be interesting to test

this conjecture by studying the partition function for larger N in future.

6.3 Discussion

In this chapter, we have interpreted the singular behavior of the mass deformed ABJM theory

on the three-sphere at the finite value of the mass. Based on the argument in sec. 6.1, we expect
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that this theory exhibits spontaneous supersymmetry breaking in large-N limit at ζ1 = ζ2 =

k/4. To gain evidence for this conjecture we have analyzed the partition function of the mass

deformed ABJM theory for finite k and N by using the Monte Carlo simulation. As a result, we

have found that the partition function vanishes at some finite values of ζ1, ζ2. The numerical

results also indicate that the zeroes exist for general N , and that the locus of the first zero

stays finite as N increases. These observations are consistent with the expectation at the end

of sec. 6.1 from the large-N supersymmetry breaking. We also found a saddle-point solution

for a new slice ζ1 = 0 by using the S-dual representation of the matrix model. In contrast to

the situation for ζ1 = ζ2 this solution exists for an arbitrary value of ζ2. This is again consistent

with our argument in sec. 6.1 where the supersymmetry breaking does not occur in this case.

Our result would shed new light to the phase structure of the mass deformed ABJM theory in

the M-theory limit, which was unclear in the previous works [1, 2].

Another direction is to improve the algorithm of the numerical simulation. In this paper,

we have treated the oscillation factor of (4.3.13) in the quite naive way where we just regard

the factor as the observable in the system with ζ1 = 0. In this approach, we need much more

statistics than simulations without oscillating factors so that the simulation at large-N becomes

harder. It is nice if one can find a more appropriate algorithm such as complex Langevin method

and Lefschetz thimble.
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Chapter 7

Conclusion and Future directions

In this thesis, we have summarized our successive works [2–5], in which we have mainly studied

the partition function in the large N or the infinite mass limit employing the localization

methods. We have found that the partition function exhibits non-trivial behaviors.

We have discussed decoupling of massive matter fields in the infinite mass limit. We have

found that in the infinite mass limit a point of the Coulomb branch dominantly contributes to

the partition function and decoupling of matter fields and an effective theory can be determined

with respect to this point. We note that the definition of the Coulomb branch employed here is

valid only on flat space, not on the three-sphere. In my work [5], we conclude that we specify

the vacuum and an interacting superconformal phase (with decoupled massive free theories)

are realized for some theories in the infinite mass limit. Our result implies that the massive

good theory cannot be employed as a UV regularization of a bad theory because in the infinite

mass limit a dominant point of the Coulomb branch is selected such that the mass-deformed

good theory become a good theory as an effective theory. Therefore, it is still difficult an open

problem in this research field to investigate a bad theory from localization methods.

We have also discussed that for theories whose supersymmetric vacua is composed of discrete

points, such as a pure Chern-Simons theory and mass-deformed ABJM theory, the ellipsoid

partition function can exhibit the supersymmetry breaking phase in the large N limit since

the partition function is represented by the integration over the parameter describing its vacua

including the metastable one. It is important to interpret this result in terms of the gravity side

in the sense of understanding of the gauge/gravity correspondence. A real mass deformation

corresponds to a flux background in the gravity side. In particular, the gravity dual of the

mass-deformed ABJM theory on flat space and of R-charge-deformed ABJM theory have been

studied [39,73]. In our work, we could not obtain enough knowledge about the meaning of this

phenomenon in the gravity side. We hope that the gravity dual corresponding to our case and
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the singular structure at the threshold are found and some interesting results will be discovered.

We also have argued the phases which can be realized in the largeN limit by the saddle-point

analysis and found a special kind of solution of saddle-point equation. The confinement-like

phase realized with the saddle-point solution we obtained may be related to supersymmetry

breaking phase with considering the result [35, 36]. We note that because the theories we

consider in this thesis defined on the ellipsoid, the spontaneous symmetry breaking can make

sense in the large N or the decompactified limit.

Lastly, we would like to conclude this thesis by giving some comments on the analysis using

a localization technique. Localization techniques are very powerful tools to compute quantities

non-perturbatively. To apply this, we should define the theory on a compact manifold to

subtract IR divergence. Then, it is subtle to identify the obtained result with that on flat space

except for a superconformal field theory on a conformally flat manifold. Thus, in our successive

works, we have attempted to interpret the results of mass-deformed theories in terms of the

language of theories on flat space.
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Appendix A

Appendix for chapter 3

A.1 A brief summary of resolvent methods

In this section, we give brief review of resolvent methods and further details of the calculation

of a density function in this paper. We follow the argument on resolvent method for the Chern-

Simons matrix model in [109–111]. First, we assume that the eigenvalues become dense in the

large N limit and we can take the continuous limit as follows:

i

N
→ s ∈ [0, 1], xi → x(s),

1

N

N∑
i=1

→
∫
ds. (A.1.1)

We define the density function ρ(x) as

ρ(x) ≡ ds

dx
, (A.1.2)

and impose the normalization condition on it as∫
I

ρ(x) = 1, (A.1.3)

where I is an interval on which ρ(x) is defined. In this thesis, we consider only the following

type of the saddle-point equation, given as a singular integral equation:

α

(
P

∫
I

dyρ(y) coth π(x− y)

)
= V ′(x), (A.1.4)

where α is a constant. It is useful for us to define X = e2πx and Y = e2πy as in this case various

techniques are available. The saddle-point equation is written as

α

(
1 + P

∫
C

dY

π

ρ(y)

X − Y

)
= V ′(x), (A.1.5)
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where X ∈ C = [b, a]. We define an auxiliary function ω(Z) as

ω(X) ≡ α

(
1 +

∫
C

dY

π

ρ(y)

X − Y

)
. (A.1.6)

This function is defined on all of the complex plane except on C, where ω(X) has a discontinuity

when we across the interval C. The function satisfies the following properties:

lim
X→0

ω(X) = −α, lim
X→∞

ω(X) = α, (A.1.7)

ρ(x) =− 1

2αi
lim
ϵ→0

(ω(X + iϵ)− ω(X − iϵ)) , X ∈ C, (A.1.8)

V ′(x) =
1

2
lim
ϵ→0

(ω(X + iϵ) + ω(X − iϵ)) , X ∈ C. (A.1.9)

Then, we would like to give a proof of (A.1.8) and (A.1.9), which arise from the discontinuity

of ω(X). We obtain the following relation by changing the integral contour:∫
C

dY

π

ρ(y)

X + iϵ− Y
=

(∫ X−ϵ

b

+

∫ a

X+ϵ

)
dY

π

ρ(y)

X − Y
+

∫
C−
ϵ

dY

π

ρ(y)

X − Y
, (X ∈ C), (A.1.10)

where C−
ϵ is a circle with radius ϵ around Y = X in the lower half plane, which is oriented

counterclockwise. From the definition of the principal value integral and the residue theorem,

we finally obtain

lim
ϵ→0

ω(X + iϵ) =α

(
1 + P

∫
C

dY

π

ρ(y)

X − Y
− iρ(x)

)
, (A.1.11)

lim
ϵ→0

ω(X − iϵ) =α

(
1 + P

∫
C

dY

π

ρ(y)

X − Y
+ iρ(x)

)
. (A.1.12)

Therefore, the equations (A.1.8) and (A.1.9) are proved.

From the analyticity†1, the resolvent is given by

ω(X) =

∮
C

dZ

2πi

V ′(z)

X − Z

√
(X − a)

√
(X − b)√

(Z − a)
√

(Z − b)
, Z = e2πz, (A.1.13)

where C is a circle which encloses C. This implies that the density function is determined once

the potential V ′(z) is given. When ni degree poles X0i, (i = 1, . . . n0) of V ′(x) exist outside

of C, we can deform the integral contour C to infinity and pick up the poles Z = X and

Z = X0i, (i = 1, . . . n0). Thus, the resolvent is determined as

ω(X) = −
∮
∞

dZ

2πi

V ′(z)

X − Z

√
(X − a)

√
(X − b)√

(Z − a)
√
(Z − b)

†1We should consider the resolvent ω(X) such that its branch cut is on [b, a] and it satisfies the asymp-

totic equations (A.7). Then, we should take the resolvent ω(X) that has the product of the square root√
X − a

√
X − b, not

√
(X − a)(X − b) because indeed,

√
(X − a)(X − b) has the branch cut on [b, a], but does

not satisfy the asymptotic behavior at X → 0
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= V ′(x)−
n0∑
i=1

Res

(
V ′(z)

X − Z

√
(X − a)

√
(X − b)√

(Z − a)
√
(Z − b)

, X0i

)
. (A.1.14)

To determine the cut C, we simply solve the equation (A.1.7) with the resolvent ω(X) obtained

in (A.1.14).

A.2 Mixed Chern-Simons terms

It is known that the various Chern-Simons terms exist in three dimensions, which do not consist

only of dynamical gauge fields, but also of background fields which couple with a current of a

global symmetry of the theory, which we call mixed Chern-Simons term. These Chern-Simons

terms are induced in the infinite mass limit because there are one-loop effects by integrating

out massive fermions charged under the corresponding symmetries. In particular, on S3 we can

consider a background vector field that couple with the R-symmetry current and Chern-Simons

terms including the background field. These terms are important to understand what remains

in the partition function after taking the infinite mass limit [62–64]. Mixed Chern-Simons terms

that will appear are flavor-R and gauge-R mixed Chern-Simons terms given by

SFR
CS ∼kFR

2π

∫
S3

√
gd3x (σf + iDf) , (A.2.1)

SGR
CS ∼kGR

2π
Tr

∫
S3

√
gd3x (σ + iD) , (A.2.2)

where σf and Df represent the scalar and auxiliary fields of the background vector superfields,

respectively. Here, we only write parts that contribute to the partition function after applying

localization methods. The induced Chern-Simons levels are given by integrating out a Majorana

fermion ψ as

kFRψ =
∆ψ

2
sgn(Mψ)

∑
f

qψ,f, (A.2.3)

kGR
ψ =

∆ψ

2
sgn(Mψ)

∑
i

qψ,i, (A.2.4)

where qf, qg and ∆ correspond to flavor, gauge and R charges respectively. Furthermore, Mψ

is an effective mass of the fermions at a point of the Coulomb branch. The effective mass

is written as Mψ =
∑

f qfσf +
∑

i qiσi, where i labels the U(1) gauge groups on the Coulomb

branch.

We use the terms (A.2.1) and (A.2.2) after applying a localization technique. These are

given by

eS
FR
CS = e2πkFRσf , (A.2.5)
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eS
GR
CS = e2πkGRσ, (A.2.6)

where the supersymmetric configuration of the background fields and the localization locus are

required:

Df = −iσf , D = −iσ, (Other fields) = 0. (A.2.7)

The real mass is given by the expectation value of the background field σf = m. Thus, the

flavor-R Chern-Simons terms (A.2.1) induced in the infinite mass limit corresponds to the

contributions from the free massive degrees of freedom. The induced gauge-R Chern-Simons

term (A.2.2) corresponds to FI terms and contributions from massive degrees of freedom when

we shift σ by m.

As an example, we attempt to derive the decoupled free massive sector of the partition

function and FI terms of U(2) SQCD described in Section 3.2.1 from induced Chern-Simons

terms†2. We assume that the classical Coulomb branch parameters (σ1, σ2) are written as

(−m − δσ1,m − δσ2). Then, the gauge group U(2) is broken down to U(1)L× U(1)R. The

effective mass and charges of the massive gauginos and Majorana fermions of chiral multiplets
†3 are summarized in Table A.1 †4.

effective mass U(1)R U(1)L × U(1)R

λ+ σ1 − σ2 1 (1,−1)

λ− σ2 − σ1 1 (−1, 1)

ψ1± ±m+ σ1 −1
2

(1, 0)

ψ2± ±m+ σ2 −1
2

(0, 1)

ψ̃1± ±m− σ1 −1
2

(−1, 0)

ψ̃2± ±m− σ2 −1
2

(0,−1)

Table A.1: The effective mass, R-charge and gauge charge of the fermions under U(1)×U(1).

Here, λ± denote gauginos and ψ (ψ̃) is a Majorana fermion in the chiral multiplet in the

fundamental (anti-fundamental) representation.

The contributions of massive gauginos to induced Chern-Simons terms as follows:

λ+ : eπ∆λsign(−2m−δσ1+δσ2)(−m−δσ1−(−δσ2+m)) (A.2.8)
†2We would like to thank Masazumi Honda for giving me useful comments and discussion on this point.
†3three-dimensional N = 2 vector and chiral multiplet have a Majorana fermion on the on-shell formalism

instead of a complex fermion on the off-shell formalism.
†4An N = 4 gauge theory has a chiral multiplet in the adjoint representation of the gauge group. It seems

that we must consider the contributions from the chiral multiplets. However, because the canonical R-charge

of the chiral multiplet is 1, the R-charge of the fermion component is 0 and it does not contribute to gauge-R

mixed Chern-Simons level.
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λ− : eπ∆λsign(2m+δσ1−δσ2)(−(−m−δσ1)+(−δσ2+m)). (A.2.9)

Thus, total contributions of massive gauginos when m→ ∞ are determined as

e2π∆λ(2m+δσ1−δσ2). (A.2.10)

The first term can be interpreted as the massive free part and the second and third terms are

induced FI terms associated with U(1)L and U(1)R.

The contributions of the massive matter fermions are summarized as follows:

ψ1− :eπ∆ψ sgn(−2m−δσ1)(−2m−δσ1) (A.2.11)

ψ2+ :eπ∆ψ sgn(2m−δσ2)(2m−δσ2) (A.2.12)

ψ̃1+ :eπ∆ψ sgn(2m+δσ1)(2m+δσ1) (A.2.13)

ψ̃2− :eπ∆ψ sgn(−2m+δσ2)(−2m+δσ2). (A.2.14)

Then, the total contribution of the massive matter fermions to the induced Chern-Simons term

is given by

eπ
Nf
2

∆ψ(8m+2δσ1−2δσ2). (A.2.15)

The first term can be interpreted as contributions from the massive free sector and the second

and third can be interpreted as FI terms. Then, we conclude that in this case the total

contributions from the free massive sectors when m→ ∞ is given by

e2mπ(2−Nf), (A.2.16)

and total induced FI terms are given by

e
π
(
2−

Nf
2

)
δσ1 , for U(1)L, (A.2.17)

e
−π

(
2−

Nf
2

)
δσ2 , for U(1)R. (A.2.18)

These results are same as those obtained in Section 3.2.1 from the calculation of the matrix

model. Thus, the effects that appear in the infinite mass limit in the matrix model can indeed

be regarded as induced mixed Chern-Simons terms. The result can easily be generalized to

other theories in this paper. These consequences are not surprising because one-loop parts of

the vector and chiral multiplets in the matrix model must inherit such one-loop effects after

integrating out massive fermions.

125



A.3 Convergence bound of matrix models

In this section, we discuss the convergence of the matrix models. The convergence bound of

the matrix model of SQCD was first discussed in [59]. In [112], it is also pointed out that the

convergence bound is indistinguishable from the unitarity bound of the monopole operator in

the Veneziano limit.

We consider the convergence of the matrix model introduced in (3.1.1):

Z =
1

N !

∫ N∏
i=1

dxi
eπζ

∑
i xi
∏

i<j 4 sinh
2 (π(xi − xj))∏

i

(
2 cosh π(xi)

)Nf . (A.3.1)

To investigate whether the integral is convergent, it is sufficient to know the asymptotic behavior

of the integrand when we take one of the integral valuables |xi| → ∞. Therefore, we focus on x1

and study the asymptotic behavior of the integrand. When |x1| → ∞, the part of the integrand

related to convergence is evaluted as

eπ|x1|(sign(x1)ζ+2(N−1)−Nf). (A.3.2)

Thus, for the matrix model to converge the relation

|ζ|+ 2(N − 1)−Nf < 0 (A.3.3)

must hold. This threshold corresponds to the condition that the solution of the saddle-point

equation in (3.1.1) in the large N limit exists. We note that the partition function of the

effective theories (3.1.33) and (3.1.67) satisfy the above relation and converge. In fact, each

matrix model narrowly satisfies the convergence bound. For example, for the case of (3.1.33),

the left-hand side of the bound (A.3.3) is −2, which does not depends on any parameter.

Therefore, This implies that the convergence of the matrix model restricts the theory that

appears in the infinite mass limit. In fact, in the subsection 3.1.2 we assume that the solution

of the saddle-point equation where the gauge group U(N) is broken down to U(N1)× U(N2)

(N1 > N2)
†5 is allowed. Then, the convergence bound of the partition function corresponding

to the effective theory is given by

0 >
Nf

2
− 2N2 + 2(N1 − 1)− Nf

2
= 2(N1 −N2)− 2, (A.3.4)

0 >

∣∣∣∣Nf

2
− 2N1

∣∣∣∣+ 2(N1 − 1)− Nf

2
. (A.3.5)

†5We assume this situation without loss of generality.
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The first line is not satisfied when N1 > N2. Therefore, only the case that N1 = N2 is allowed

owing to the convergence of the matrix model of the effective theory†6. By the same argument

concerning the convergence bound, we can also understand why N1, N2 and N3 satisfy the

relation (3.1.61).

†6We would like to thank Tomoki Nosaka for pointing out and discussing this point.
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Appendix B

Appendix for chapter 5

B.1 Dominant saddle-point solution

We have studied the large N saddle-point solution associated with the confining phase. In

general,if there are solutions of the saddle-point equation, then we should determine which

solution will really give the dominant contribution to the partition function in the large N

limit. In this appendix, we will focus on SU(N) SUSY Chern-Simons Yang-Mills theory with

Nf adjoint massive hypermultiplets on S3 as an example in which we have the confinement

solution and other solutions. We find that in the large N limit with N ≫ k and km
N

finite

and large, the solution associated with confinement phase is expected to give the dominant

contribution.

First, we will consider the case in which the Chern-Simons level is vanishing. Here, the

matrix model is given by

Z =
1

N !

∫
dNaδ(

N∑
i

ai)
N∏
i>j

4 sinh2 π(ai − aj)

(2 cosh π(ai − aj +m)2 cosh π(ai − aj −m))Nf
, (B.1.1)

where δ(
∑N

i ai) denotes the condition of SU(N). This matrix model converges when we take

Nf ≥ 2. Then, we take Nf ≥ 2. The saddle-point equation of this matrix model is difficult

to solve analytically. However, we can find a numerical solution of the saddle-point equation.

we find two solutions of the saddle-point equation, one of which is associated with confinement

phase. The other solution is the real valued one while the confinement solution is complex

valued. These two types of solution are showed in figure B.1 and B.2. We find that the free

energy for the real solution is smaller than that for the confinement one. Then, the confinement

phase cannot be realized in the large N limit. We will show some numerical values of the free
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energy for the two solutions in the following tables†1:

ma = 1 ma = 2 ma = 5 ma = 8

Nf = 2 49746 94563 233023 372313

Nf = 3 83582 160235 337392 632638

Nf = 5 148258 287081 699586 1125850

Nf = 10 306535 600494 1486380 2379170

Table B.1: The free energies correspond to the real solution.

ma = 1 ma = 2 ma = 5 ma = 8

Nf = 2 61742 123947 310557 497168

Nf = 3 92844 186150 466066 745982

Nf = 5 155047 310557 713310 1243610

Nf = 10 310555 621575 1554630 2487680

Table B.2: The free energies correspond to the confinement solution.

Thus, the numerical results strongly suggest that the confinement solution is not the dom-

inant saddle-point solution in any regions of m and Nf . However, naively considering, in the

infinite mass limit the theory become pure SU(N) SYM since the matter fields become de-

coupled and then the supersymmetry phase could appear. As we discussed for N = 4 case, in

Chapter 1 of Part II, this naive expectation is not always true. This is because the naive discus-

sion of decoupling is based on the assumption that the theory is on the origin of the Coulomb

branch. In fact, the numerical results suggest that the dominant solution of the saddle-point

equation does not correspond to the origin of the Coulomb branch of the flat space. We will

discuss this from the numerical result with the case Nf ≥ 3 in the next subsection.

B.1.1 The dominant saddle-point solutions

As we discussed in Chapter 1 of Part II, it is plausible to consider that in the large N limit

the specific point of the Coulomb branch is selected. This means that in the large N limit

we can argue which massive hypermultiplets are effectively massless based on the saddle-point

solution.

Let us consider the meaning of the real solution we introduced above. Our numerical results

has shown that when we take mass sufficiently large, the real valued saddle-point solution splits
†1The free energy is estimated by the saddle-point approximation with the numerical solution obtained here.
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Figure B.1: The left figure shows the numerical solution which corresponds to the confinement

phase plotted on the Complex plane with the parameters (N,Nf ,m) = (100, 3, 8). The solution

actually lies on the Imaginary axis. The right one shows the density function of it. We can

check that the solution does not depend on the parameters. (These figures are cited from [4].)
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Figure B.2: The left figure shows the other numerical solution plotted on the Complex plane

with (N,Nf ,m) = (100, 3, 8). The solution actually lies on the real axis. The right one shows

the density function of it. (These figures are cited from [4].)

into two parts and the half of the N eigenvalues are distributed around −m
2
and the others are

around m
2
. This solution means that a non-trivial point of the Coulomb branch is selected in

the large N limit. Following from the same consideration in Section 3, we can determine the

corresponding point of the Coulomb branches of the original SU(N) theory on the flat space

as:

σ =

(
−m

2
1N

2
×N

2
0

0 m
2
1N

2
×N

2

)
. (B.1.2)

Then, it is natural to expect that the gauge group SU(N) is broken to S[U(N
2
)×U(N

2
)] and the

Nf massive adjoint hypermultiplets become effectively massless around this vacuum.

For k = 0 case, we have found that the massive multiplets cannot simply decouple so
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that the theory becomes in the SUSY breaking phase as we found in 3 that a good theory

cannot become a bad theory since the effectively massless multiplets appear and the non-trivial

superconformal fields theory is realized in the infinite mass limit on S3.

In the next subsection, we propose the theory where the confinement solution is the dominant

saddle-point solution by adding the Chern-Simons term to the theory considered here. With

the CS term, the eigenvalues feel the central force in the sense that we regard the saddle-point

equation as the E.O.M of the mechanics of the eigenvalues. Then, the eigenvalues tend not to

be split and the solution is forbidden.

B.1.2 A theory in which confinement solution is dominant

Here, we consider the SU(N) Chern-Simons Yang-Mills theory with Nf massive adjoint hyper-

multiplets. The matrix model is given by

Z =
1

N !

∫
dNaδ(

N∑
i

ai)e
iπk

∑
i a

2
i

N∏
i>j

4 sinh2 π(ai − aj)

(2 cosh π(ai − aj +m)2 cosh π(ai − aj −m))Nf
. (B.1.3)

The saddle-point equation is

0 = 2ikai + 2
∑
j ̸=i

cothπ(ai − aj)−Nf

∑
j

(tanhπ(ai − aj +m) + tanh π(ai − aj −m)) + µ,

(B.1.4)

where the first term of the R.H.S of the above equation is from the Chern-Simons term and

causes the central force in the real and imaginary parts of the saddle-point equation. With the

help of the Chern-Simons term the split type solution no longer can exist.

We will argue that the confinement solution is dominant for the large N limit with N ≫ k

with km
N

finite and large. To do this in detail we repeat the same argument in the previous sub-

section. The saddle-point equation under the assumption that the eigenvalues are distributed

around two points ±m
2
becomes as

0 =2i
k

N

(
λi −

m

2

)
+

(
Nf

2
− 1

)
+

2

N

∑
j∈I−

cothπ(λi − λj)−
Nf

N

∑
j∈I+

tanhπ
(
λi − λ̃j

)
+ µ, i ∈ I−,

(B.1.5)

0 =2i
k

N

(
λ̃i +

m

2

)
+

(
1− Nf

2

)
+

2

N

∑
j∈I+

cothπ(λ̃i − λ̃j)−
Nf

N

∑
j∈I−

tanhπ(λ̃i − λj) + µ, i ∈ I+.

(B.1.6)

131



Here, we consider a strong t’ Hooft coupling limit k
N

≪ 1 and m
N

≪ 1 in order to make the

confining solution valid. When a combination of the parameters km
N

is small, then the Chern-

Simons term can be neglected and the split type solution is valid. When km
N

= O(N0), the

solution should be deformed. Then, assuming that km
N

is large, we expect the split type solution

cannot exist. We will not explicitly determine how large km
N

should be for the confinement phase

to be realized because it is difficult analytically. The numerical analysis shown below suggests

that the critical value of km/N is in 2 ⪅ km/N ⪅ 4. In figure 4, we show the density functions

of some examples for these saddle-point solutions.
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Figure B.3: These figure show that density functions of the real part of saddle-point solution for

N = 100. The left one is with parameter (k,ma) = (10, 10). The right one is with parameter

(k,ma) = (150, 10). The horizontal line means the value of the real part of the eigenvalue.

(These figures are cited from [4]).

To show the behavior of the solution as the Chern-Simons level become large we summarize

the value of the Wilson loop WR (2.6.31) and the free energy − log |Z| from the numerical

analysis in the following tables:

These values are evaluated by the saddle-point approximation with the solution numerically

obtained. The result has shown the value of the Wilson loop is drastically changed for 20 ⪅
k ⪅ 40 when N = 100,m = 10. The numerical analysis also suggests that the solution of the

saddle-point equation no longer splits in this region although we still call this the split type

solution. The solution sits around the origin when k is bigger than 30, however, the solution

looks different from the confinement solution, but have similar structures with one associated

with confinement phase. †2 When k ≥ 30, we have found only the solutions independent on

the mass, which also become close to the weak ’t Hooft solution as the Chern-Simons level k

becomes large †3. However, the value of the Wilson loop which is evaluated by the each of the

†2For k = 30, the value of − log |Z| for the split solution seems to be strange. We expect that there are some

accidental reasons for this singular behavior because N is finite.
†3Our claim is subtle because this argument is based on the numerical analysis of the saddle-point equation.
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(N,m) = (100.10) WR − log |Z|
k = 10 2.60356× 1015 − 2.87161× 1015i 834190

k = 20 11.3867− 0.10577i 965491

k = 30 4.29052× 1014 − 2.57048× 1015i 53126

k = 40 22.56929− 3.50511i 940792

k = 50 −0.914496 + 0.185339i 935889

k = 60 −3.46485− 3.57006i 939455

k = 70 1.0154 + 0.434397i 935684

Table B.3: The value of Wilson loop and free energy corresponding to the split solution discussed

in the previous subsection from numerical analysis.

(N,m) = (100.10) WR − log |Z|
k = 10 −0.000341459− 1.60786i 932650

k = 20 −0.00133768− 3.21552i 932824

k = 30 −0.00289594− 4.82279i 933113

k = 40 −0.00484618− 6.42953i 933518

k = 50 0.0468883− 7.95619i 933976

k = 60 0.0197115− 9.61648i 934642

k = 70 −0.075207− 8.80006i 934371

Table B.4: The value of Wilson loop and free energy corresponding to the confinement type

saddle solution (5.3.6) from numerical analysis.

two solutions is O(N0) which means there are some cancellations in TrR in the definition of the

Wilson loop in the fundamental representation. This is nothing but a characteristic property

of the confinement phase.

In the tables, we also showed the F = − log |Z|. The values for the two different solutions

are almost the same except k = 10, for which the density function splits for one solution. Thus,

we cannot say which solution is dominant because the 1/N corrections will be important. In

order to decide which solution is dominant, we need to compute them numerically for larger

N . We hope to do it in near future.

we note that we have assumed that the probe approximation of the Wilson loop is appro-

priate in this numerical computations. Indeed, the values of F are much larger than the values

However, we can confirm that the behavior of the solution of the saddle-point equation changes around k = 30

and we could not find any counterexample.
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of the logarithm of the Wilson loop. This fact justifies the probe approximation.
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Appendix C

Appendix for Chapter 6

C.1 Exact computation of Z(N, k, 0, ζ2)

In this appendix we explain details on how to compute Z(N, k, 0, ζ2) for integer k.

C.1.1 Exact partition function for finite (N, k)

We can also evaluate the exact values of the partition function for finite (N, k) by a slight

generalization [77, 78] of the technique employed in the ABJM theory [79, 80]. We will find a

good agreement with both results.

we compute the partition function for some finite (N, k) by the technique used in [77]. We

start with the partition function written in the Fermi gas formalism

Z(N, k, 0, ζ2) =
1

N !

∫
dNx

(2π)N
det
i,j

⟨xi|ρ̂(q̂, p̂)|xj⟩, (C.1.1)

where [q̂, p̂] = iℏ with ℏ = 2πk and†1

ρ̂ =

√
1

2 cosh q̂
2

e
2iζ2
k
p̂

2 cosh p̂
2

√
1

2 cosh q̂
2

. (C.1.2)

If we consider the generating function of the partition function or equivalently the grand par-

tition function
∑∞

N=0 z
NZ(N), we can show that it is written as the following Fredholm deter-

minant
∞∑
N=0

zNZ(N) = Det(1 + zρ̂) ≡ exp
[ ∞∑
n=1

(−1)n−1

n
znTr ρ̂n

]
. (C.1.3)

†1For a later convenience we have symmetrized the density matrix by another similarity transformation from

(4.3.11).
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Comparing the coefficient of zN on the both sides, we find that the partition function Z(N) is

determined by Tr ρ̂n with n ≤ N , as

Z(1) = Tr ρ̂, Z(2) =
1

2
(Tr ρ̂)2 − 1

2
Tr ρ̂2, Z(3) =

1

6
(Tr ρ̂)3 − 1

2
Tr ρ̂Tr ρ̂2 +

1

3
Tr ρ̂3, · · · .

(C.1.4)

We can compute Tr ρ̂n by completely the same way as that in the case of R-charge defor-

mation [77]. First we notice that the matrix element ⟨x|ρ̂|y⟩ has the following structure

⟨x|ρ̂|y⟩ = 1

2 cosh x
2

1

2k cosh x−y+4πζ2
2k

=
E(x)E(y)

k(αM(x) + α−1M(y))
, (C.1.5)

with

E(x) =
e
x
2k√

2 cosh x
2

, M(x) = e
x
k , α = e

2πζ2
k . (C.1.6)

For α = 1, this form is in the range of application of Tracy-Widom’s lemma [94] which has

been very powerful tool to systematically compute Trρ̂n in various M2-brane theories without

masses [80,95–102]. We can easily extend it to general α as follows. The structure (C.1.5) can

be expressed as a quasi-commutation relation for ρ̂

αM̂ρ̂+ α−1ρ̂M̂ = Ê|0⟩⟩⟨⟨0|Ê, (Ê = E(q̂), M̂ =M(q̂)), (C.1.7)

where |p⟩⟩ is momentum eigenstate satisfying

⟨x|x′⟩ = 2πδ(x− x′), ⟨⟨p|p′⟩⟩ = 2πδ(p− p′), ⟨x|p⟩⟩ = 1√
k
e
ixp
ℏ , ⟨⟨p|x⟩ = 1√

k
e−

ixp
ℏ . (C.1.8)

This relation can be generalized straightforwardly for ρ̂n as

αnM̂ρ̂n − (−1)nα−nρ̂M̂ =
n−1∑
ℓ=0

(−1)ℓαn−1−2ℓρ̂ℓÊ|0⟩⟩⟨⟨0|Êρ̂n−1−ℓ. (C.1.9)

This implies that we can compute the matrix element of ρ̂n from two sets of functions ϕℓ(x)

and ψℓ(x) as

⟨x|ρ̂n|y⟩ = E(x)E(y)

αnM(x)− (−1)nα−nM(y)

n−1∑
ℓ=0

(−1)ℓϕℓ(x)ψn−1−ℓ(y), (C.1.10)

where

ϕℓ(x) = α−ℓ⟨x|Ê−1ρ̂ℓÊ|0⟩⟩, ψℓ(x) = αℓ⟨⟨0|Ê−1ρ̂ℓÊ|x⟩⟩ = ϕℓ(x)|α→α−1 . (C.1.11)
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We can show that the function ϕℓ(x) satisfies the following recursion relation

ϕℓ+1(x) =

∫
dy

2π

1

E(x)
α−1ρ(x, y)E(y)ϕℓ(y)

=

∫
dy

2πk

1

e
y
k + α2e

x
k

e
y
k

e
y
2 + e−

y
2

ϕℓ(y), (C.1.12)

as well as ψℓ(x). In app. C.1, we explain how to practically solve the recursion relation for

integer k while their details are slightly different between odd k and even k cases. According

to the algorithm, we have computed Z(N, k, 1, ζ2) by Mathematica for (k = 1, N ≤ 12), (k =

2, N ≤ 9), (k = 3, N ≤ 5), (k = 4, N ≤ 5) and (k = 6, N ≤ 4). In app. C.2, we explicitly write

down a part of the results and also compare them with the result of saddle-point approximation

(4.3.29).

Even k

If k ∈ 2N, we can introduce a new variable u = e
x
k to rewrite the integration (C.1.12) as

ϕℓ+1(u) =
1

2π

∫ ∞

0

dv
v
k
2

(v + α2u)(vk + 1)
ϕℓ(v). (C.1.13)

If we assume that ϕℓ(u) can be expanded as the following finite series (inductively correct)

ϕℓ(u) =
∑
j≥0

ϕ
(j)
ℓ (u)(log u)j, (ϕ

(j)
ℓ (u) are some rational functions of u) (C.1.14)

we can compute the integration (C.1.13) as [80]

ϕℓ+1(u) =
1

2π

∑
j≥0

[
−(2πi)j

j + 1

∫
γ

v
k
2

(v + α2u)(vk + 1)
ϕ
(j)
ℓ (v)Bj+1

( log(+) v

2πi

)]
=

1

2π

∑
j≥0

[
−(2πi)j+1

j + 1

∑
w∈poles

Res
[ v

k
2

(v + α2u)(vk + 1)
ϕ
(j)
ℓ (v)Bj+1

( log(+) v

2πi

)
, v → w

]]
.

(C.1.15)

Here log(+) is logarithm function with the branch cat located on R+ and the integration contour

γ is as depicted in figure C.1. The poles to be collected in the step ϕℓ → ϕℓ+1 are at most

v = −α2u,

v = α−2ae
πi(2b+1)

k , (a = 0, 1, · · · , ℓ; b = 0, 1, · · · , k − 1), (C.1.16)

which can be seen from the same argument as in [77].
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v

Figure C.1: The integration contour γ in (C.1.15) (blue) and the deformed contour to use the

Cauchy theorem (green). The cut of log(+) is depicted by wavy red line. (This figure is cited

from our paper [3].)

After obtaining ϕℓ for ℓ = 0, 1, · · · , n− 1, we can compute Tr ρ̂n by

Tr ρ̂n =
1

2π(αn − (−1)nα−n)

∫ ∞

0

du
u
k
2
−1

uk + 1
Ψn(u)

(
Ψn(u) =

n−1∑
ℓ=0

(−1)ℓϕℓ(u)ψn−1−ℓ(u)
)

=
1

2π(αn − (−1)nα−n)

∑
j≥0

[
−(2πi)j+1

j + 1

∑
w∈poles

Res
[ u k2−1

uk + 1
Ψ(j)
n (u)Bj+1

( log(+) u

2πi

)
, u→ w

]]
,

(C.1.17)

where Ψn =
∑

j≥0Ψ
(j)
n (u)(log u)j and poles are (at most)

u = α−2ae
πi(2b+1)

k . (a = −(n− 1),−(n− 2), · · · , n− 1; b = 0, 1, · · · , k − 1) (C.1.18)

Odd k

For odd k, we define u = e
x
2k to obtain the following formulas

ϕℓ+1(u) =
1

π

∑
j≥0

[
−(2πi)j+1

j + 1

∑
v∈poles

Res
[ 1

v2 + α2u2
vk+1

v2k + 1
ϕ
(j)
ℓ (v)Bj+1

( log(+) v

2πi

)
, v → w

]]
,

(C.1.19)

where ϕ
(j)
ℓ (u) are the rational functions given by ϕℓ(u) =

∑
j≥0(log u)

jϕ
(j)
ℓ (u) and the poles to

be collected are

v = ±iαu,
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v = α−2ae
πi(2b+1)

2k ,
(
a = 0, 1, · · · ,

[ ℓ
2

]
; b = 0, 1, · · · , 2k − 1

)
v = α−(2a+1)e

πib
k .

(
a = 0, 1, · · · ,

[ℓ− 1

2

]
; b = 0, 1, · · · , 2k − 1

)
(C.1.20)

The traces of ρ̂n can be computed as

Tr ρ̂n =
1

π(αn − (−1)nα−n)

∑
j≥0

[
−(2πi)j+1

j + 1

∑
w∈poles

Res
[ uk−1

u2k + 1
Ψ(j)
n (u)Bj+1

( log(+) v

2πi

)
, u→ w

]]
(C.1.21)

where ψ(u) =
∑n−1

ℓ=0 (−1)ℓϕℓ(u)ψn−1−ℓ(u) =
∑

j≥0(log u)
jΨ

(j)
ℓ (u) and the poles are

u = α2ae
πi(2b+1)

2k ,
(
a = −

[n− 1

2

]
,−
[n− 1

2

]
+ 1, · · · ,

[n− 1

2

]
; b = 0, 1, · · · , 2k − 1

)
,

u = α±(2a+1)e
πib
k .

(
a = 0, 1, · · · ,

[n− 2

2

]
; b = 0, 1, · · · , 2k − 1

)
(C.1.22)

C.2 Exact expressions for Z(N, k, 0, ζ2)

The technique introduced in sec. C.1.1 allows us to compute the partition function of the

mass deformed ABJM theory Z(N, k, 0, ζ2) with ζ1 = 0 and for small integers N, k. We have

computed Z(N, k, 0, ζ2) for (k = 1, N ≤ 12), (k = 2, N ≤ 9), (k = 3, N ≤ 5), (k = 4, N ≤ 5)

and (k = 6, N ≤ 4). Here we display the first few results (α = e2πζ2/k).

Z(1, 1, 0, ζ2) =
α

2(1 + α2)
, Z(2, 1, 0, ζ2) = − ζ2α

3

(1 + α2)(1− α4)
,

Z(3, 1, 0, ζ2) =
α5(1 + 12ζ2α− α2)

8(1 + α2)(1− α4)(1 + α6)
, · · · (C.2.1)

Z(1, 2, 0, ζ2) =
α

4(1 + α2)
, Z(2, 2, 0, ζ2) =

ζ22α
4

(1− α4)2
,

Z(3, 2, 0, ζ2) =
α7(−1 + 4ζ22 + (2 + 32ζ22 )α

2 + (−1 + 4ζ22 )α
4)

32(1 + α4)(1− α4)2(1 + α6)
, · · · (C.2.2)

Z(1, 3, 0, ζ2) =
α

6(1 + α2)
,

Z(2, 3, 0, ζ2) =
α4(1 + (1 + 4ζ2)α + 4ζ2α

2 + (−1 + 4ζ2)α
7α3 − α4)

12(1 + α)(1 + α2)(1− α3)(1 + α6)
,
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Z(3, 3, 0, ζ2) = − α8

18
√
3(1 + α6)3(1− α6)

(2 +
√
3ζ2 − 3

√
3α + (4− 2

√
3ζ2)α

2 + 3
√
3ζ2α

4

+ (−4− 2
√
3ζ2)α

6 + 3
√
3α7 + (−2 +

√
3ζ2)α

8), · · · (C.2.3)

Z(1, 4, 0, ζ2) =
α

8(1 + α2)
, Z(2, 4, 0, ζ2) =

α4(1 + (−2− 8ζ22 )α
2 + α4)

64(1 + α4)(1− α4)2
,

Z(3, 4, 0, ζ2) =
α9

256(1− α2)2(1 + α2)2(1 + α4)2(1 + α6)(1 + α8)
(5 + 8ζ2 + 4ζ22 + (−7 + 8ζ2)α

2

+ (5− 8ζ2 + 4ζ22 )α
4 + (−6− 32ζ22 )α

6 + (5 + 8ζ2 + 4ζ22 )α
8 + (−7− 8ζ2)α

10

+ (5− 8ζ2 + 4ζ22 )α
12), · · · (C.2.4)

Z(1, 6, 0, ζ2) =
α

12(1 + α2)
, Z(2, 6, 0, ζ2) =

α4(1− 9α2 + 8(2 + 3ζ22 )α
4 − 9α6 + α8)

432(1− α4)(1− α12)
,

Z(3, 6, 0, ζ2) =
α9

5184(1 + α2)2(−1 + α6)2(1 + α6)(1 + α12)
(1 + (−54− 32

√
3ζ2 − 24ζ22 )α

2

+ (−15− 64
√
3ζ2)α

4 + (30− 32
√
3ζ2 + 96ζ22 )α

6 + (76 + 192ζ22 )α
8

+ (30 + 32
√
3ζ2 + 96ζ22 )α

10 + (−15 + 64
√
3ζ2)α

12 + (−54 + 32
√
3ζ2 − 24ζ22 )α

14

+ α16), · · · . (C.2.5)

C.2.1 Comparison with saddle-point approximation

Let us compare the exact partition function (C.2.1)-(C.2.5) with the result of the saddle-point

approximation (4.3.29). In figure C.2 we plot the difference between two results

Fsaddle−exact =
π
√
2k

3

√
1 +

16ζ22
k2

N
3
2 − (− logZ(N, k, 0, ζ2)) (C.2.6)

for k = 1, 2, 3, 4, 6 and ζ2 = 1. The plot indicates Fsaddle−exact ∼
√
N for large-N , hence the

leading part of the two results (∼ N3/2) agree with each other.

We can make a more refined comparison between the exact results and large-N expansion as

follows. First we notice that the saddle-point approximation (4.3.29) agree with the following

expression in the large-N limit

Zpert = eAC− 1
3 Ai[C− 1

3 (N −B)] (C.2.7)

where

C =
2

kπ2(1 +
16ζ22
k2

)
, B =

k

24
− 1

6k
+

1

2k(1 +
16ζ22
k2

)
,
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Figure C.2: Plot of Fsaddle−exact (C.2.6) for k = 1, 2, 3, 4, 6, ζ2 = 1. This is cited from our

paper [3].

A =
2AABJM(k) + AABJM(k + 4iζ2) + AABJM(k − 4iζ2)

4
, (C.2.8)

which is obtained from the partition function of the ABJM theory with R-charge deformation

by ignoring the large-N non-perturbative effects (e−
√
N) and replacing the real deformation

parameters ξ, η formally as ξ → 0, η → 4iζ2/k (see eq(1.4) in [77]). By comparing the numerical

values of (C.2.1)-(C.2.5) and (C.2.7) we find good agreement. As an example, in figure C.3 we

display the comparison of the free energy for ζ2 = 1.
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Figure C.3: Blue points: exact values of − logZ(N, k, 0, ζ2) (C.2.1)-(C.2.5); Red line:

− logZpert(N) (C.2.7).
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