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Abstract

In this thesis, we introduce our works on charmed baryon interactions from

lattice QCD simulation. Additionally, we also present recent developments of

numerical algorithms for the partial wave decomposition on the lattice.

In order to calculate the interaction on the lattice, we employ the HAL QCD

method for the charmed baryon system. For the partial wave decomposition on

the lattice, we employ Misner’s method. By combining the HAL QCD method

and Misner’s method, we study the interaction in three charmed baryon sys-

tems: ΛcN system, ΛcN -ΣcN coupled channel system and ΛcΛc-ΞccN coupled

channel system.

We first introduce results for the application of Misner’s method to the HAL

QCD method. We show some improvements of the numerical data for the

potential on the lattice.

In the analysis of the ΛcN system, we find that the interaction is weakly

attractive and spin-independent. While we observe no ΛcN bound state, our

results indicate a possibility to form Λc hypernuclei. From the obtained ΛcN

system, therefore, we construct effective potential between Λc and a nucleus,

and find that Λc hypernuclei can exist for light or medium-heavy nuclei.

We then extend our consideration to the ΛcN -ΣcN coupled channel. For the

coupled channel potentials, we utilize the HAL QCD method expanded to the

inelastic scattering. From the obtained potentials, we discuss the inelastic

effects in the ΛcN system.

We also investigate the ΛcΛc-ΞccN coupled channel system. We find that the

attraction in the ΞccN is sufficiently strong to form a resonance state in the

ΛcΛc scattering.
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Chapter 1

Introduction

A study of baryon-baryon interactions is one of the most important subjects to investi-

gate the properties of hadronic matters because the baryon-baryon interactions are uti-

lized as a basic input in nuclear physics. For example, the low-energy nucleon-nucleon

(NN) interaction, which has been severely constrained by the NN scattering data and

the properties of finite nuclei [1], has been applied extensively to investigations of yet

unknown hadronic matters such as neutron-rich nuclei. Together with the NN interac-

tion, the hyperon-nucleon (Y N) and the hyperon-hyperon (Y Y ) interactions constructed

phenomenologically to reproduce the properties of hypernuclei and hyperon-nucleon scat-

tering data [2] have also been employed to investigate unknown hypernuclei and also the

neutron star interiors.

As an extension, the charmed baryon interactions have been investigated to study pos-

sible charmed hypernuclei [3] just after the discovery of the Λc baryon. At that time, the

one-boson-exchange potential (OBEP) model for the YcN (Yc = Λc,Σc) was constructed

[4], where the couplings are determined by assuming the flavor SU(4) symmetry, which

is an extension of the flavor SU(3) symmetry for the Y N interaction. The study was

motivated by the fact that the kinetic energy is suppressed due to the heavy charmed

baryon mass so that the charmed hypernuclei are likely to form bound states. In fact,

based on flavor SU(4) symmetry, Refs. [5, 6, 7] show the number of bound states in Λc

hypernuclei is larger than that in Λ hypernuclei due to heavy Λc mass although the depth

of the effective potential for Λc in the G-matrix calculation is about 2/3 of that for Λ.

However, the charm quark is much heavier than other three quarks (up, down, strange),

so that the flavor SU(4) symmetry may not give a good description of the YcN interaction.
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2 CHAPTER 1. INTRODUCTION

In recent works, the charmed baryon interaction has been investigated more widely by

relatively new models, such as the OBEP model based on the heavy quark effective

theory [8], the constituent quark model [9, 10, 11] and the quark-meson coupling model

[12, 13]. One can find that, however, some of the results shown in these works are

contradictory although they are consistent in the NN interactions. In particular, as

discussed in Ref. [14], it is suggested that the ΛcN two-body system forms bound states in

Refs. [8, 11] with relatively large binding energies, while there is no such a binding solution

in Ref. [14]. Since there are no experimental data in any charmed baryon scattering and

charmed hypernuclei so far, the charmed baryon interaction is still inconclusive.

Under these circumstances, in order to shed new light on the problem, we investi-

gate the charmed baryon interaction from first-principle lattice QCD simulations. The

lattice QCD simulation is a powerful tool to calculate low-energy quantities in QCD

non-perturbatively, which has been successfully applied to the single-hadron masses [15,

16, 17]. The most advantageous point in the lattice QCD simulation is that it requires

no phenomenological parameters so that the applications to the charmed systems are

straightforward. In fact, several charmed baryon masses have been investigated from lat-

tice QCD simulation in Ref. [18], in which the results are consistent with experimental

values. Furthermore, the authors have predicted masses of doubly charmed baryons which

have not been measured experimentally in those days. A remarkable point here is that a

doubly charmed baryon Ξ++
cc has been actually found in recent experiment in LHCb [19]

with the mass mΞ++
cc

≃ 3621 MeV, which is consistent to the numerical results in Ref. [18].

There have been proposed two methods to analyze the hadron-hadron interactions

on the lattice, Lüscher’s finite volume method [20] and the HAL QCD method [21]. By

Lüscher’s finite volume method, we obtain phase shifts in the infinite space from effective

energies for the hadron-hadron system in a cubic lattice with the periodic boundary

condition through Lüscher’s formula. On the other hands, in the HAL QCD method, we

obtain the phase shifts through hadron-hadron “potentials” calculated from the Nambu-

Bethe-Salpeter (NBS) wave functions on the cubic lattice. Although these two methods

are equivalent theoretically, the HAL QCD method is more suitable for the purpose in

this thesis because the resultant potentials can be applied directly to several calculations

in nuclear physics to investigate the properties of few-body charmed baryon systems as

well as charmed hypernuclei. It will help us not only to understand the charmed baryon

interactions but also to give useful information to the experiments on forthcoming facilities
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such as GSI-FAIR and J-PARC.

As a first step for studying the charmed baryon interaction, we have investigated 2-

body interaction between the lightest charmed baryon, Λc, and a nucleon in Refs. [22, 23].

In Ref. [23], we also estimate binding energies for charmed nuclei by using obtained

lattice QCD potentials. We have expanded our consideration to an inelastic scattering

for ΛcN in Refs. [24, 25], in which we have also investigated ΣcN interaction. In recent

work, we have calculated 2-body interaction between a doubly charmed baryon and a

nucleon in spin-isospin J(I) = 0(0) channel, which relates to charm version of the H-

dibaryon. Furthermore, very recently we have employed algorithms for the partial wave

decomposition on a cubic lattice to remove lattice artifacts on the potential data [26].

The aim of this thesis is to introduce our works on the charmed baryon interactions and

to present recent developments of the algorithms for potential analysis.

This thesis is organized as follows. In chapter 2, we briefly review basic concepts

in the lattice QCD theory and procedures of practical lattice QCD simulations. The

methodology of the HAL QCD method is given in chapter 3. In chapter 4 we present

recent developments of the partial wave decomposition on a cubic lattice. The numerical

results for the charmed baryon interaction are shown on a section by section in chapter 5.

We not only show the potentials calculated by the HAL QCD method, but also present

physical observables such as the phase shift calculated from the obtained HAL QCD

potentials to discuss the 2-body interaction on the charmed baryon systems. In Sec. 5.2,

after we discuss the application of the new algorithm, namely Misner’s method, for the

partial wave decomposition of the wave function on the cubic lattice, we present and

discuss the numerical results of interactions for ΛcN in the elastic scattering. All of the

HAL QCD potentials shown in this thesis are calculated with Misner’s method. The

inelastic scattering for ΛcN system is given in Sec. 5.3, in which the ΣcN interactions are

also discussed. In Sec. 5.4, we show the numerical results for the doubly charmed baryon

interaction in J(I) = 0(0) channel and discuss the fate of the charm version of the H-

dibaryon in nature. We extend our consideration to the Λc hypernuclei in chapter 6, and

we discuss the possible Λc hypernuclei from the HAL QCD potentials. Finally, summary

and conclusion are presented in chapter 7.





Chapter 2

Lattice QCD

First of all, we briefly review the methodology of lattice quantum chromodynamics (lattice

QCD), which is one of the regularizations of QCD proposed by K. Wilson [27]. The most

important utility of the lattice QCD is that path integrals in QCD can be estimated

non-perturbatively by Monte-Carlo simulations.

This chapter is organized as follows. In Sec. 2.1, we first introduce the naive dis-

cretization of the QCD action in Euclidian space-time, namely naive lattice QCD action.

We next show a problem in the naive lattice QCD action in Sec. 2.2, and then we intro-

duce an improved fermion action to overcome the problem. We also present several gauge

and fermion actions which improve discretization errors in Sec. 2.3. Finally, we show the

procedure of Monte-Carlo simulations to calculate correlation functions on the lattice in

Sec. 2.4.

2.1 Lattice QCD action

We start from the QCD Lagrangian in Minkowski space-time 1:

L = ψ̄fi
[
iγµD

µ
ij −mf

]
ψfj −

1

4
F a
µνF

a,µν , (2.1)

where ψfi is a quark field with a flavor f = u, d, s, c, t, b and a color i = 1, 2, 3, mf is

the quark mass of flavor f , Dµ
ij denotes a gauge covariant derivative, and F a

µν stands for

a gluon field strength tensor with a space-time index µ, ν = 0, 1, 2, 3. We use Einstein

1The metric of Minkowski space-time in our convention is gµν = diag(+1,−1,−1,−1)

5



6 CHAPTER 2. LATTICE QCD

summation convention for a set of indices in a single term. In our convention, the gamma

matrices are defined as

γ0 =


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 , (2.2)

γi =

(
0 τ i

−τ i 0

)
, (i = 1, 2, 3) (2.3)

where τ i is a Pauli matrix. The covariant derivative Dµ
ij and the gluon field strength

tensor F a
µν are defined by

Dij,µ = ∂µ − igsT
a
ijG

a
µ, (2.4)

F a
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν , (2.5)

where Ga
µ denotes a gluon field with its coupling constant gs. T

a
ij and f

abc stand for the

generator and the structure constant of SU(3), respectively.

We next show the naive lattice QCD action Slat by discretizing the QCD action in

Euclidian space-time. To this end, we first consider the Wick rotations:

t ≡ x0 → −ix(E)
4 ,

xi → x
(E)
i (i = 1, 2, 3),

∂0 → i∂
(E)
4 ,

∂i → ∂
(E)
i ,

γ0 → γ
(E)
4 ,

γi → iγ
(E)
i ,

G0 → −iG(E)
4 ,

Gi → G
(E)
i , (2.6)

where (E) denotes for variables in Euclidian space-time. The QCD Lagrangian (Eq. (2.1))
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is then rewritten as

L → −L(E),

L(E) = ψ̄fi

[
γ(E)
µ D

(E)
ij,µ +mf

]
ψfj +

1

4
F (E)a
µν F (E)a

µν , (2.7)

where D
(E)
µ and F

(E)a
µν are defined by

D
(E)
ij,µ = ∂(E)

µ + igsT
a
ijG

(E)a
µ , (2.8)

F (E)a
µν = ∂µG

(E)a
ν − ∂νG

(E)a
µ − gsf

abcG(E)b
µ G(E)c

ν . (2.9)

In this time, the QCD action in Euclidian space-time S(E) is defined as

d4x → −id4x(E),

iS → −S(E),

S(E) =

∫
d4x(E)L(E). (2.10)

We omit the superscript (E) in following discussions for simplicity.

Let us next consider the discretization of the space-time as

xµ → anµ (nµ = (n1, n2, n3, n4), nµ ∈ Z), (2.11)

where a is a lattice spacing. In order to retain the gauge invariance in the Lagrangian,

we introduce following link variables

U(x, y) = P exp

[
igs

∫ y

x

Gµ(z)dz
µ

]
≡ lim

N→∞

N−1∏
n=0

[1 + igsGµ(x+ n∆x)∆xµ] , (2.12)

where |∆x| = |y−x|
N

. Under the gauge transformationGµ(x) → 1
igs

Ω(x)∂µΩ
†(x)+Ω(x)Gµ(x)Ω

†(x),

while the link variables defined in Eq. (2.12) transform as gauge covariant

U(x, y) → Ω(x)U(x, y)Ω(y)†, (2.13)

and thus ψ̄(x)U(x, y)ψ(y) is gauge invariant. Therefore, it is useful to define the quark
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field ψ(x) on a site, and the link variable between the two quark fields, as shown in

Fig. 2.1. When the lattice spacing is sufficiently small (a ≪ 1), the link variable can be

a : lattice spacing

ν

µ

^

^

ψ(na) ψ( (n+µ)a )^

na (n+µ)a^

^(n+ν)a

U(na, (n+µ)a)^

Figure 2.1: A schematics of the definitions of quark fields and link variables in two di-
mensional lattice.

expressed as

U(na, (n+ µ̂)a) = P exp

[
igs

∫ (n+µ̂)a

na

Gν(z)dz
ν

]

≈ exp

[
igsaδ

ν
µGν((n+

µ̂

2
)a)

]
= exp

[
igsaGµ((n+

µ̂

2
)a)

]
≡ Un,µ, (2.14)

where µ̂ denotes a unit vector in the µ direction. Note that the link variable for inverse

direction is defined by

Un+µ̂,−µ ≡ U †
n,µ. (2.15)
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Using the link variables (Eq. (2.14)) and quark fields ψ(na) ≡ ψn, the most simple gauge

invariant QCD action in discrete Euclidean space-time Slat can be defined as

Slat = S
(plaq)
G + S

(naive)
F ,

S
(plaq)
G = −

∑
n,µ ̸=ν

β tr
[
Un,µUn+µ̂,νU

†
n+ν̂,µU

†
n,ν

]
, (2.16)

S
(naive)
F = a4

∑
n

ψ̄n

[∑
µ

γµ
Un,µψn+µ̂ − U †

n−µ̂,µψn−µ̂

2a
+mψn

]
, (2.17)

where S
(plaq)
G is so-called plaquette gauge action with β = 1/g2s , and S

(naive)
F is naive fermion

action. These actions reproduce the QCD action (Eqs. (2.7) and (2.10)) for a → 0. In

the practical calculation, we employ dimensionless variables for convenience:

ψ′
n = a

3
2ψn,

M = ma, (2.18)

where the fermion action S
(naive)
F is rewritten as

S
(naive)
F =

1

2

∑
nµ

[
ψ̄nγµUn,µψn+µ̂ − ψ̄n+µ̂γµU

†
n,µψn

]
+M

∑
n

ψ̄nψn, (2.19)

where we rewrite the quark field ψ′
n as ψn for simplicity.

2.2 Doubling problem and Wilson fermion action

We have defined the naive lattice QCD action in the previous section. The action, however,

has a well-known problem, namely doubling problem. In order to see the problem, we

carry out the Fourier transformation of the fermion action (Eq. (2.19)) for ∀U = 1.

S
(naive)
F =

1

2

∑
nµ

[
ψ̄nγµψn+µ̂ − ψ̄n+µ̂γµψn

]
+M

∑
n

ψ̄nψn

=
1

2

∑
nµ

∫
d4p

(2π)4
d4q

(2π)4
[
ψ̄(p)γµψ(q)e

−i(p+q)·nae−iqµa

−ψ̄(p)e−ipµaγµψ(q)e−i(p+q)·na
]
+M

∑
n

∫
d4p

(2π)4
d4q

(2π)4
ψ̄(p)ψ(q)e−i(p+q)·na
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=

∫
d4p

(2π)4
ψ̄(p)

[
1

2

∑
µ

γµ(e
ipµa − e−ipµa) +M

]
ψ(−p)

=

∫
d4p

(2π)4
ψ̄(p)

[∑
µ

iγµsin(pµa) +M

]
ψ(−p). (2.20)

From the action, the free quark propagator is obtained as

G
(naive)
F (p) =

1∑
µ iγµsin(pµa) +M

=
−
∑

µ iγµsin(pµa) +M∑
µ sin

2(pµa) +M2
, (2.21)

and the dispersion relation of the quark is given by

∑
µ

sin2(pµa) +M2 = 0. (2.22)

In the continuum limit (a → 0), one obtains a ”physical” pole so that it satisfies the

correct dispersion relation. Due to the properties of the sine function, however, one

can also have ”unphysical” poles for ∃pµ ∼ π/a. These extra degrees of freedom are

called fermion doubler, and this problem is the so-called doubling problem. Nielsen and

Ninomiya [28] show that the fermion doubler appears when the lattice theory has the

following properties:

• Hermiticity

• Translational invariance

• Chiral symmetry

• Locality

This fact implies that the one cannot avoid the doubling problem unless the chiral sym-

metry is broken.

In order to avoid the doubling problem, several improved fermion actions have been

proposed and employed extensively in practical calculations. We introduce here the Wil-

son fermion action, which is probably the most basic improved action proposed by Wilson

[27]. The Wilson fermion action is defined by adding the following second derivative term

(so-called Wilson term) to the naive lattice QCD action (Eq. (2.10)).

−ar
∫
d4x ψ̄(x)D2ψ(x), (2.23)



2.3. IMPROVED ACTIONS FOR DISCRETIZATION ERRORS 11

where r is an arbitrary constant. Since the Wilson term clearly depends on lattice spacing

a, the Wilson fermion action is identical with the original QCD action in the continuum

limit. Discretizing the Wilson term, we have

−r
2

∑
n,µ

[
ψ̄nUn,µψn+µ̂ − ψ̄n+µ̂U

†
n,µψn − 2ψ̄nψn

]
, (2.24)

and the Wilson fermion action in the momentum space for ∀U = 1 is written as

S
(Wilson)
F =

∫
d4p

(2π)4
ψ̄(p)

[∑
µ

iγµsin(pµa) +M + r
∑
µ

(1− cos(pµa))

]
ψ(−p). (2.25)

The free quark propagator is then obtained as

G
(Wilson)
F (p) =

1∑
µ iγµsin(pµa) +M(p)

=
−
∑

µ iγµsin(pµa) +M(p)∑
µ sin

2(pµa) +M(p)2
,

M(p) = M + r
∑
µ

(1− cos(pµa)). (2.26)

In the continuum limit, the momentum-dependent mass M(p) becomes the original mass

M for a ”physical pole”, while M(p) becomes M + 2rc (c = 1, 2, 3, 4) for a doubler

(∃pµ ∼ π/a). Since dimensionful doubler mass m+2rc/a diverges in the continuum limit,

the doubler does not contribute to the low energy physics.

2.3 Improved actions for discretization errors

The discretized lattice action with a lattice spacing a is identical to the continuum action

when the a goes to zero. For a finite a, however, the two actions are different and the dis-

cretized lattice action has systematic errors with the lattice spacing a. The Wilson fermion

action defined in the previous section, for instance, has O(a) discretization errors. The

discretization errors can be improved by considering well-known procedure, Symanzik’s

improvement programme [29, 30]. According to Symanzik’s improvement programme, the

discretization errors are reduced order by order by the introduction of higher dimensional

terms into the action. The general form of the improved action is written as

Simp = S0 +
∑
k>0

ak
∫
d4x

∑
i

c4+k,i(x)O4+k,i(x), (2.27)
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where S0 is the standard (continuum) QCD action, cd,i(x) stands for an arbitrary constant,

and Od,i(x) represents a local operator with dimension d which consists of quark masses,

quark and gauge fields. The operator Od,i(x) is determined to satisfy symmetries in QCD,

that is invariance under gauge, rotations, parity and charge-conjugation transformations.

The on-shell O(a) improved fermion action was first proposed by Sheikholeslami and

Wohlert in Ref. [31] using up to dimension five terms in Eq. (2.27). They found that

there are two terms in the action with dimension five:

O5,a(x) = ψ̄(x)D2ψ(x) (2.28)

O5,b(x) = i
∑
µν

ψ̄(x)σµνFµν(x)ψ(x), (2.29)

where σµν ≡ [γµ, γν ]/2. On the lattice, the field strength Fµν(x) is expressed with link

variables as

Fµν(x) =
1

4

4∑
i=1

1

2i

(
Ui(x)− U †

i (x)
)

(2.30)

U1(x) = Ux,µUx+µ̂,νU
†
x+ν̂,µU

†
x,ν (2.31)

U2(x) = Ux,νU
†
x−µ̂+ν̂,µU

†
x−µ̂,νUx−µ̂,µ (2.32)

U3(x) = U †
x−µ̂,µU

†
x−µ̂−ν̂,νUx−µ̂−ν̂,µUx−ν̂,ν (2.33)

U4(x) = U †
x−ν̂,νUx−ν̂,µUx+µ̂−ν̂,νU

†
x,µ, (2.34)

Obviously, the first term of the action with dimension five O5,a(x) is the Wilson term

shown in Eq. (2.23). The second term, O5,b(x), is a new term introduced to eliminate the

O(a) discretization errors, which is called Sheikholeslami-Wohlert (SW) term or Clover

term. Discretizing these terms, the O(a) improved fermion action, which is called SW

action or Wilson-clover action, is obtained as

S
(Clover)
F =

∑
nm

ψ̄nD
(Clover)
nm ψm,

D(Clover)
nm = δnm − κq

∑
µ

[
(r − γµ)Un,µδn+µ̂,m + (r + γµ)U

†
n,µδn,m+µ̂

]
−κq

[
cSW

∑
µ,ν

iσµνFµν

]
δn,m, (2.35)
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where the coefficient cSW can be determined non-perturbatively by imposing suitable

so-called improvement conditions [32].

We next show the improved gauge action, namely renormalization-group (RG) im-

proved Iwasaki gluon action [33], which is proposed to improve a cutoff scaling. This

gauge action is defined by

S
(Iwasaki)
G = β

(
c0
∑
n,µ,ν

tr
[
W 1×1
µν (n)

]
+ c1

∑
n,µ,ν

tr
[
W 1×2
µν (n)

])
, (2.36)

where W 1×1
µν (n) denotes a 1× 1 Wilson loop (plaquette) on the µ− ν plane starting and

ending at n, and W 1×2
µν (n) is a 1 × 2 rectangular Wilson loop with the side of length 2

in the ν direction on the µ − ν plane. The coefficients are defined as c0 = 1 − 8c1 and

c1 = −0.331. Note that the action is identical to the plaquette gauge action if c1 = 0.

Another motivation to employ the gauge action is shown in Refs. [34, 35]. The authors

had done three-flavor QCD simulation with the Wilson-clover fermion action, and then

they found an unphysical first-order phase transition at zero-temperature for the plaquette

gauge action, which was not found if the Iwasaki gauge action is employed.

As an application of the Wilson-clover fermion action, we next present an improved

fermion action for heavy quarks. If we employ the Wilson-clover fermion action for the

heavy quarks, the discretization errors are expected to be O((amQ)
n) with the heavy

quark mass mQ. Under this circumstance, the systematic errors coming from the cutoff

effects are sizable for a massive quark. In order to overcome the problem, Tsukuba group

has proposed an improved fermion action, namely Relativistic Heavy Quark (RHQ) action

[36]. The RHQ action is given by

S
(RHQ)
F =

∑
nm

ψ̄nD
(RHQ)
nm ψm,

D(RHQ)
nm = δnm − κQ

3∑
i=1

[
(rs − νγi)Un,iδn+î,m + (rs + νγi)U

†
n,iδn,m+î

]
−κQ

[
(rt − γ4)Un,4δn+4̂,m + (rt + γ4)U

†
n,4δn,m+4̂

]
−κQ

[
cB
∑
i,j

σijFij + cE
∑
i

σi4Fi4

]
δnm, (2.37)

where κQ is a hopping parameter for the heavy fermion, rs, rt, ν, cB and cE are parameters
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to improve the discretization errors. This formulation corresponds to dividing the time

component and the spatial components in the Wilson-clover term with different coeffi-

cients. The leading O((amQ)
n) discretization errors in the RHQ action can be removed

by adjusting the parameter ν and quark field renormalization factor. Furthermore, the

next-leading discretization errors of O((amQ)
naΛQCD) can also be removed by adjusting

parameters rs, cE, cB [37]. Finally, the remaining discretization errors are improved to

O((aΛQCD)
2), which are comparative order with the light quarks. Note that the rt is a

redundant parameter so that we take rt = 1.

The three actions shown in this subsection will be employed in the numerical calcula-

tions in this thesis.

2.4 Correlation function on the lattice

In this section, we show the procedure to calculate correlation functions on the lattice.

Let us start from the path integral formalism for the expectation value of an observable

O:

⟨O(ψ, ψ̄, U)⟩ =
∫
DUDψ̄Dψ O(ψ, ψ̄, U) e−Slat∫

DUDψ̄Dψ e−Slat
, (2.38)

where Slat is the lattice QCD action defined in Eq. (2.16). An important point here is

that the factor e−Slat can be regarded as a probability distribution function and we can

calculate the path integral numerically by Monte-Carlo method. To this end, we integrate

out the fermion fields by introducing source fields η, η̄.

⟨O(ψ, ψ̄, U)⟩ =

∫
DUDψ̄Dψ O(ψ, ψ̄, U) e−Slat∫

DUDψ̄Dψ e−Slat

=

∫
DU e−SG(U)O( ∂

∂η̄
,− ∂

∂η
, U)

∫
Dψ̄Dψ e−ψ̄D(U)ψ+ψ̄η+η̄ψ∫

DU e−SG(U)
∫
Dψ̄Dψ e−ψ̄D(U)ψ

∣∣∣∣∣
η=η̄=0

=

∫
DU detD(U)e−SG(U)O( ∂

∂η̄
,− ∂

∂η
, U)eη̄D(U)−1η∫

DU detD(U)e−SG(U)

∣∣∣∣∣
η=η̄=0

≡
∫
DU detD(U)e−SG(U)ZO(U)∫

DU detD(U)e−SG(U)
, (2.39)

where we write the fermion action as SF (ψ, ψ̄, U) = ψ̄D(U)ψ. In the last line of Eq. (2.39),

we define ZO(U) as O( ∂
∂η̄
,− ∂

∂η
, U)eη̄D(U)−1η

∣∣∣
η=η̄=0

which is constructed from some quark
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propagators. In the case of pion two-point correlation, for instance, we obtain

Oab(ψ, ψ̄) ≡ πa(x)πb(y) (πa(x) = ψ̄γ5τ
aψ),

Zab
ππ(U) = πa(x)πb(y) eη̄D(U)−1η

∣∣∣
η=η̄=0

=

(
− ∂

∂η(x)
γ5τ

a ∂

∂η̄(y)

)(
− ∂

∂η(y)
γ5τ

b ∂

∂η̄(y)

)
eη̄D(U)−1η

∣∣∣∣
η=η̄=0

= −tr
(
γ5D(U)−1

xy γ5D(U)−1
yx

)
δab + tr

(
γ5D(U)−1

xx

)
tr
(
γ5D(U)−1

yy

)
δa0.

(2.40)

We next consider the integrals for link variables in Eq. (2.39). In a finite lattice, one

can carry out the integrals numerically in principle. In practice, however, it is difficult to

calculate all of the variables in a realistic time due to a limited computational resource.

Therefore, we utilize the Monte-Carlo method with the importance sampling to obtain

the approximate solution of the integrals. The procedure is briefly summarized as follow:

(1) Create some gauge fields with the probability

P (U) ∝ detD(U)e−SG(U), (2.41)

by the Markov-chain Monte-Carlo method. The gauge fields obtained here are called

gauge configuration.

(2) Calculate quark propagators using the created gauge configurations. The quark

propagator D(U)−1
yx0

≡ ϕx0(y) can be obtained by solving the following linear equa-

tion.

D(U)xyϕx0(y) = δxx0 . (2.42)

(3) Construct the observable ZO(U) from the quark propagators like Eq. (2.40).

(4) Take an average for the set of observables {ZO(U)}. When the number of configu-

rations is sufficiently large, one obtains

lim
N→∞

1

N

N∑
i=1

ZO(Ui) →
∫
DUdetD(U)e−SG(U)ZO(U)∫

DUdetD(U)e−SG(U)
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= ⟨O(ψ, ψ̄, U)⟩. (2.43)

In the practical calculations, the uncertainty of the expectation value is estimated

as the statistical errors for {ZO(U)}, as we discuss in Appendix A.

2.4.1 Effective mass

In this subsection, we discuss the relation between a hadron two-point correlation function

and a mass of the hadron, which is extensively applied to the practical lattice QCD

simulation. In order to simplify the discussion, we focus on the following pion two-point

correlation function Fππ:

Fππ(t) =
∑
x⃗

⟨0|π(x⃗, t)π(⃗0, 0)|0⟩, (2.44)

where π(x) is a pion field defined in Eq. (2.40). Inserting the complete set between two

pion fields in Eq. (2.44), one obtains

Fππ(t) =
∑
n

Zπ
2mn

e−mnt + · · · , (2.45)

where mn is a mass of n-th excited state, Zπ denotes a renormalization factor of the pion

field, and an ellipsis represents the contributions from states with more than two particles.

From Eq. (2.45), it is clear that the contribution of the ground state becomes dominant

for sufficiently large t where contributions from excited states can be negligible. In the

limit t→ ∞, therefore, the pion two-point correlation function can be expressed as

Fππ(t) =
Zπ
2mπ

e−mπt. (2.46)

In the practical calculation, it is useful to define an ”effective mass” m(t):

amπ(t) = − log
Fππ(t+ a)

Fππ(t)
, (2.47)

where, obviously, mπ(t) → mπ for t → ∞. The effective mass is useful because one can

estimate the mass by plotting them(t) against the t. One can also know from the effective

mass the information about the value of t where contributions from excited states can be
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negligible.





Chapter 3

HAL QCD method

In this chapter, we review the basic idea of the HAL QCD method, which has been

proposed by HAL QCD Collaboration [21, 38, 39, 40].

The key quantity in the HAL QCD method is the equal-time Nambu-Bethe-Salpeter

(NBS) wave function. The NBS wave function (also referred to as Bethe-Salpeter ampli-

tude) satisfies the Bethe-Salpeter equation [41] which describes the two particle scattering

in field theory. In the center-of-mass frame, the NBS wave function for two particle system

with spin 1/2 baryons at Euclidean time t is defined as

ψ
(W )
αβ (r⃗)e−Wt =

1√
ZB(1)

√
ZB(2)

∑
x⃗

⟨0|B(1)
α (r⃗ + x⃗, t)B

(2)
β (x⃗, t)|B = 2;W ⟩, (3.1)

where α and β are the spin indices, and B
(i)
α (x⃗, t) (i = 1, 2) is the local interpolating

operator for a baryon B(i) with its renormalization factor
√
ZB(i) . The state |B = 2;W ⟩

stands for a QCD asymptotic in-state for two baryon system at the total energy of W

which is defined by W =
√
|⃗k|2 +m2

B(1) +
√
|⃗k|2 +m2

B(2) with baryon masses mB(i) and

a relative momentum k⃗. The NBS wave function has two important properties: (1)

it satisfies the Helmholtz equation (k2 +∆)ψ
(W )
αβ (r⃗) = 0 with the relative momentum

k = |⃗k| at r = |r⃗| → ∞, and (2) it carries the information of the scattering amplitude

in QCD and its asymptotic behavior at large r is identical to that of the scattering

wave in quantum mechanics. These properties have been discussed and confirmed in

several different systems [39, 42, 43, 44, 45, 46]. In Refs. [42, 43], two body systems

for complex scalar fields in the elastic scattering have been discussed by using the LSZ

reduction formula. By the same way, the discussion has been extended to the two body

19
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systems with spin 1/2 in the elastic scattering [39], and in the inelastic scattering [44].

N-body non-relativistic systems for complex scalar fields have been considered using the

Lippmann-Schwinger equation in Ref. [45]. Recently, the asymptotic behavior in complex

scalar systems with one bound state has been discussed [46].

These two properties of the NBS wave function motivate us to define a ”potential”

from NBS wave functions through the Schrödinger equation, which is faithful to the QCD

S-matrix. From the next section, we show the detail of the HAL QCD method and the

derivation of the potential in the lattice QCD. In particular, we focus the interaction in

a two-particle system with spin 1/2 baryons.

We divide this chapter into two sections. In Sec. 3.1, we present the HAL QCD method

in the case of elastic scattering. Next, we show the extension to an inelastic scattering

process in Sec 3.2, which is used to extract coupled channel potentials.

3.1 Elastic scattering case

In this section, we present the extraction of interactions in the elastic scattering on the

lattice. Throughout this section, we assume the total energy W lies below the inelastic

threshold. In Sec. 3.1.1, we define a ”potential” from the NBS wave functions. In general,

the defined potential is energy-independent and non-local. We then present how to handle

the non-locality of the potential in Sec. 3.1.2. Next, we discuss the extraction of the NBS

wave functions on the lattice in Sec. 3.1.3. We then also present difficulties to extract

the ground state NBS wave function in lattice QCD simulation, and show the improved

method for potential extraction in Sec. 3.1.4.

3.1.1 Energy-independent non-local potential

Let us show how to define the ”potential” in the infinite volume. We first define a function

Kαβ(r⃗, k⃗) by multiplying the NBS wave function by (|⃗k|2 + ∇⃗2):(
|⃗k|2 + ∇⃗2

)
ψ

(W )
αβ (r⃗) ≡ Kαβ(r⃗, k⃗), (3.2)

which corresponds to the projecting out the plane-wave component in the NBS wave func-

tion so that the functionKαβ(r⃗, k⃗) is localized in r-space below the inelastic threshold [39].

When we assume that the interaction for two body system is exponentially suppressed at
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large |r⃗| and it is zero in |r⃗| > R, the NBS wave function satisfies the Helmholtz equation(
|⃗k|2 + ∇⃗2

)
ψ

(W )
αβ (r⃗) = 0, (3.3)

in |r⃗| > R. Note that ”asymptotic momentum” k⃗ in Eq. (3.3) is determined from the

relativistic total energy W . Let us next consider the spacial region in |r⃗| < R, where

the interaction of two baryon system is present. In this region, we define the energy-

independent non-local potential from NBS wave functions, which reproduces the correct

scattering phase shift in QCD due to the asymptotic property of the NBS wave function.

First, we introduce the dual basis for NBS wave functions:

ψ̃
(Wk)
αβ (r⃗) =

∑
α′β′

∫
d3q η−1

αβ;α′β′(k⃗, q⃗) ψ
† (Wq)
α′β′ (r⃗), (3.4)

where we writeWp =
√

|p⃗|2 +m2
B(1)+

√
|p⃗|2 +m2

B(2) for p = k, q. The function ηαβ;α′β′(k⃗, q⃗)

is defined as

ηαβ;α′β′(k⃗, q⃗) =

∫
d3r ψ

† (Wk)
αβ (r⃗)ψ

(Wq)
α′β′ (r⃗). (3.5)

From Eqs. (3.4) and (3.5), we can see that the dual basis satisfies∫
d3r ψ̃

(Wk)
αβ (r⃗)ψ

(Wq)
α′β′ (r⃗) = δαα′δββ′δ(3)(k⃗ − q⃗). (3.6)

We then define the non-local potential by using the dual basis and Eq. (3.2) as

Uαβ;α′β′(r⃗, r⃗′) ≡
∫
d3k Kαβ(r⃗, k⃗)ψ̃

(Wk)
α′β′ (r⃗′), (3.7)

where the non-local potential Uαβ;α′β′(r⃗, r⃗′) is energy-independent due to the integral of

k in the right-hand side of Eq. (3.7). By using Eqs. (3.6) and (3.7), we finally obtain the

following equation.

Kαβ(r⃗, k⃗) =
(
|⃗k|2 + ∇⃗2

)
ψ

(W )
αβ (r⃗) =

∑
α′β′

∫
d3r′Uαβ;α′β′(r⃗, r⃗′)ψ

(W )
α′β′(r⃗′). (3.8)
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When we rescale the potential as U = 2µŨ and rewrite Ũ → U , the Eq. (3.8) can be

written as the Schrödinger equation for non-local potential:

(Ek −H0)ψ
(W )
αβ (r⃗) =

∑
α′β′

∫
d3r′Uαβ;α′β′(r⃗, r⃗′)ψ

(W )
α′β′(r⃗′), (3.9)

where Ek = k2/2µ and H0 = −∇2/2µ. The important point here is that we don’t need

any non-relativistic approximations for the derivation of Eq. (3.9).

3.1.2 Derivative expansion of non-local potential

In principle, the energy-independent non-local potential can be extracted from the NBS

wave functions through Eq. (3.7). In practice, however, it is difficult to have all energy

states of the NBS wave function in the lattice QCD simulation. We therefore introduce

the derivative expansion (also referred to as velocity expansion) of the non-local potential

as

U(r⃗, r⃗′) = V (r⃗, ∇⃗)δ(3)(r⃗ − r⃗′), (3.10)

where V (r⃗, ∇⃗) is then expanded in terms of ∇⃗. The structure of V (r⃗, ∇⃗) can be determined

by imposing several conditions that the potential should satisfy. In the case of a two-

baryon system with spin 1/2, we have [47]

V (r⃗, ∇⃗) = V0(r) + Vσ(r)(σ⃗1 · σ⃗2) + VT(r)S12 + VLS(r)L⃗ · S⃗ +O(∇⃗2), (3.11)

where r = |r⃗|, σ⃗i is the Pauli matrix acting on the spin index of i-th baryon, S⃗ = (σ1+σ2)/2

is the total spin operator, L⃗ = r⃗× i∇⃗ is the angular momentum operator, and S12 stands

for the tensor operator defined as

S12 = 3
(r⃗ · σ⃗1)(r⃗ · σ⃗2)

r2
− σ⃗1 · σ⃗2. (3.12)

If the baryons in the system have non-zero isospin, each local potential is further de-

composed into isospin-independent and isospin-dependent potential, as VX(r⃗) = V τ
X(r) +

V τ
X(r)(τ⃗1 · τ⃗2) with the Pauli matrix τ⃗i acting on the isospin index if i-th baryon. The

first three terms in Eq. (3.11) are the 0-th order of the derivative and we call these terms

as the leading order (LO) of the derivative expansion, while the fourth term is the next-
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to-leading order (NLO) which is the first order of the derivative. The local potentials in

LO term such as V0, Vσ, VT which give the spin-independent force, the spin-spin force and

the tensor force are commonly used in nuclear physics. We can obtain the LO potential

VLO(r) = V0(r)+Vσ(r)(σ⃗1 · σ⃗2)+VT(r)S12 from the NBS wave function at one value of W

as long as the contributions from higher order term are negligible. In the case of S-wave

spin-singlet state of the NBS wave function ψW1S0
(r⃗), for instance, we have

V
1S0
LO (r) =

(Ek −H0)ψ
(W )
1S0

(r⃗)

ψ
(W )
1S0

(r⃗)
, (3.13)

where V
1S0
LO (r) = V0(r) − 3Vσ(r) since S12ψ

(W )
1S0

= 0 and (σ⃗1 · σ⃗2)ψ(W )
1S0

= −3ψ
(W )
1S0

. In

general, a truncation of the derivative expansion of the non-local potential up to the

LO may generate the energy dependence in the LO potential. The convergence of the

derivative expansion can be checked by examining theW dependence of the LO potential.

[48]. If we confirm that the derivative expansion of the non-local potential is a reasonably

good approximation, we can use the local potentials to investigate the several scattering

problems.

3.1.3 Extraction of NBS wave functions on the lattice

In this section, we present how to extract the NBS wave functions on the lattice. As dis-

cussed in Sec. 2.4, quantities that we can calculate on the lattice are correlation functions

for quarks. The best quantities to obtain the NBS wave functions are baryon four-point

correlation function given by

Gαβ(r⃗, t− t0) =
∑
x⃗

⟨0|B(1)
α (r⃗ + x⃗, t)B

(2)
β (x⃗, t)J (JP )(t0)|0⟩, (3.14)

where the baryon operator B
(i)
α (x⃗, t) (i = 1, 2) is a composite operator constructed from

three quark operators, which is the same definition with one in Eq. (3.1). The source

operator J (JP )(t0) is defined so that it creates two baryon states with the total angular

momentum J and the parity P at t = t0. Explicitly, the source operator is defined as

J (JP )(t0) = P
(JP )
αβ B

(2)
β (t0)B

(1)
α (t0), (3.15)
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where P
(JP )
αβ stands for the projection operator to the total angular momentum J and the

parity P . Here B
(i)
α (t0) (i = 1, 2) is obtained by replacing the quark operator q(x⃗, t) in

the B
(i)
α (x⃗, t) with a smearing quark operator given by

q(t0) =
∑
x⃗

fsmear(x⃗)q(x⃗, t0), (3.16)

where fsmear(x⃗) is a smearing function. In this thesis, we exclusively employ the wall-

source for the source operator, given by fwall(x⃗) = 1/V with the lattice volume V . Note

that since the gauge covariance is broken by quark smearing, we need a gauge fixing at

t = t0.

The baryon four-point correlation function can be expanded in term of the NBS wave

functions as follows. We first consider the complete set of the QCD eigenstates for two

baryon system in a finite box

1 =
∑
n

|B = 2;Wn⟩⟨B = 2;Wn|+ · · · , (3.17)

where |B = 2;Wn⟩ stands for the n-th energy eigenstate in the elastic scattering with the

energy Wn, and the ellipses represent contributions from inelastic states. Inserting the

complete set between the two baryon operators and the source operator in the Eq. (3.14),

we obtain

Gαβ(r⃗, t− t0) =
∑
n

∑
x⃗

⟨0|B(1)
α (r⃗ + x⃗, t)B

(2)
β (x⃗, t)|Wn⟩⟨Wn|J (JP )(t0)|0⟩+ · · ·

=
√
ZB(1)

√
ZB(2)

∑
n

ψ
(Wn)
αβ (r⃗)e−Wn(t−t0)An + · · · , (3.18)

with a constant An = ⟨Wn|J (JP )(0)|0⟩, where we use |Wn⟩ to represent |B = 2;Wn⟩ for
simplicity. Here ψ

(Wn)
αβ (r⃗) is indeed the NBS wave function with the energy Wn defined

in Eq. (3.1). When the time separation t − t0 is sufficiently large, the baryon four-point

function is dominated by the NBS wave function of the ground state:

Gαβ(r⃗, t− t0) →
√
ZB(1)

√
ZB(2)ψ

(W0)
αβ (r⃗)e−W0(t−t0)A0 +O(e−W1(t−t0)). (3.19)

Therefore, the LO potential can be extracted by using the baryon four-point correlation
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function at large t− t0. For example, in the case of S-wave spin-singlet state, we obtain

V
1S0
LO (r) =

(Ek −H0)G1S0
(r⃗, t− t0)

G1S0
(r⃗, t− t0)

→
(Ek −H0)ψ

(W0)
1S0

(r⃗)

ψ
(W0)
1S0

(r⃗)
, (3.20)

at t− t0 → ∞.

We can observe from Eqs. (3.18) and (3.20) that a choice of source operator does

not change the potential obtained from the baryon four-point correlation function at

t − t0 → ∞. In practice, however, the time separation t − t0 is finite and the choice of

source operator is related to the domination of the ground state NBS wave function in

the baryon four-point correlation function: the domination of ψ(W0) is reasonably good in

large t − t0 if A0 ≫ A1, while the non-negligibly contamination from the higher energy

states ψ(W1) may remain even in very large t − t0 if A0 ≪ A1. In other words, the good

choice of the source operator generates better signals for the ground state NBS wave

function (also for the potential).

We next consider a rough estimation of t − t0 that the ground state domination is

achieved. In the case of a two-nucleon system, the signal to noise ratio of the four-point

correlation function is estimated by

S/N ∼
√
Nstat exp

[
−2(mN − 3

2
mπ)(t− t0)

]
, (3.21)

where Nstat is the number of statistics for the four-point correlation function. The energy

separation of each energy eigenstate is calculated as

δW = Wn+1 −Wn ∼ δk2

mN

, (3.22)

δk2 =

(
2π

L

)2

. (3.23)

When a lattice size is L ∼ 8 fm and the nucleon mass is mN ∼ 1000 MeV, the energy

separation is calculated as δW ∼ 20 MeV. Under the assumption that A0 ∼ Ai (i > 0)

and
√
ZN ∼ 1, the four-point correlation function is written as

Gαβ(r⃗, t− t0) ∼ ψ
(W0)
αβ (r⃗) +O(e−δW (t−t0)). (3.24)

We then obtain the ground state NBS wave function ψ
(W0)
αβ (r⃗) with the contamination from
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higher energy states at O(e−1) at t−t0 = 10 fm, where S/N ∼
√
Nstat×10−32. Therefore,

we need Nstat > 1064 even though the signal to noise ratio is equal to one. Although these

are rough estimations, one may see the difficulty of the ground state domination in the

NBS wave function with a reasonable S/N . Especially, it is more difficult to achieve

the ground state domination in the larger volume since the energy separation of each

energy eigenstate becomes smaller. In fact, large statical noises of the baryon four-point

correlation function in the large t− t0 are common problems in the lattice QCD [49, 50].

3.1.4 Time-dependent HAL QCD method

In the previous section, we present the extraction of the potential from baryon four-point

correlation function calculated on the lattice and show that the ground state domination of

the NBS wave function is needed to extract the potential but it is difficult in the practical

simulation due to large statistical noises. In this section, we introduce the improved

method proposed in Ref. [51] to extract the potential without assuming the ground state

domination.

We first define the normalized baryon four-point correlation function, so-called R-

correlator, as

Rαβ(r⃗, t− t0) ≡ Gαβ(r⃗, t− t0)

e−mB(1) (t−t0)e−mB(2) (t−t0)

=
∑
n

ψ
(Wn)
αβ (r⃗)e−∆Wn(t−t0)An + · · · , (3.25)

where ∆Wn = Wn − (mB(1) + mB(2)) =
√
k2n +m2

B(1) +
√
k2n +m2

B(2) − (mB(1) + mB(2)).

We omit the Z-factors here for simplicity. In the case of mB(1) = mB(2) ≡ m, we can find

the following relation about the ∆Wn.

(∆Wn)
2 =

(
2
√
k2n +m2 − 2m

)2
= 4k2n + 4m2 − 8m

√
k2n +m2 + 4m2

= 4k2n − 4m
(
2
√
k2n +m2 − 2m

)
= 4k2n − 4m∆Wn.

⇒ k2n
m

= ∆Wn +
1

4m
(∆Wn)

2. (3.26)
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Since

∂

∂t
Rαβ(r⃗, t− t0) =

∑
n

ψ
(Wn)
αβ (r⃗)

∂

∂t
e−∆Wn(t−t0)An + · · ·

=
∑
n

ψ
(Wn)
αβ (r⃗) (−∆Wn) e

−∆Wn(t−t0)An + · · · , (3.27)

we can extract the potential from the R-correlator as follows.[
− ∂

∂t
+

1

4m

∂2

∂t2
−H0

]
Rαβ(r⃗, t− t0)

=
∑
n

[
− ∂

∂t
+

1

4m

∂2

∂t2
−H0

]
ψ

(Wn)
αβ (r⃗)e−∆Wn(t−t0)An + · · ·

=
∑
n

[
∆Wn +

1

4m
(∆Wn)

2 −H0

]
ψ

(Wn)
αβ (r⃗)e−∆Wn(t−t0)An + · · ·

=
∑
n

[En −H0]ψ
(Wn)
αβ (r⃗)e−∆Wn(t−t0)An + · · ·

=
∑
n

∫
d3r′Uαβ;α′β′(r⃗, r⃗′)ψ

(Wn)
α′β′ (r⃗′)e

−∆Wn(t−t0)An + · · ·

=

∫
d3r′Uαβ;α′β′(r⃗, r⃗′)Rα′β′(r⃗′, t− t0) + · · · (3.28)

where we use Eqs. (3.26) and (3.9). One of the most important points here is that the

energy-independent potential is defined not only from the ground state NBS wave function

but also from all of the momentum excited (elastic) states. That is, the excited states are

no longer “contaminations” but we can use them as “signals” of the potential. Therefore,

we don’t need the ground state domination of the NBS wave function and we can obtain

the potential at moderately large t− t0 where contributions from the inelastic states can

be neglected. Since we use the time-derivative for the R-correlator, this method is called

by time-dependent HAL QCD method.

In order to see how much the signal to noise ratio is improved, let us again estimate

t− t0 that contributions from the inelastic states can be neglected. We assume that the

contributions from inelastic states for the potential are regarded as O(e−δWth(t−t0)), where

δWth is an energy separation between the ground state and the first inelastic threshold.

In the case of a two-nucleon system, the first inelastic contribution may be coming from

NNπ. When the pion mass is mπ = 200 MeV, we obtain the potential at t − t0 = 2 fm

with the contaminations from inelastic states at O(e−1). At this time, the signal to noise
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ratio (Eq. (3.21)) is estimated as S/N ≃
√
Nstat × 10−2. Therefore, we need Nstat > 104

for S/N ≃ 1, which is an enormous improvement compared to the case of the ground

state domination.

We next consider the meaning of the time derivatives in Eq. (3.28). In the non-

relativistic approximation (k2n ≪ m2), ∆Wn is estimated by

∆Wn = 2
√
k2n +m2 − 2m

= 2m

√
1 +

k2n
m2

− 2m

≃ 2m

(
1 +

k2n
2m2

)
− 2m

=
k2n
m
. (3.29)

Comparing with Eq. (3.26), we find that the ∆Wn corresponds to the non-relativistic

energy and 1
4m

(∆Wn)
2 is a relativistic correction term. In other words, the second time

derivative term 1
4m

∂2

∂t2
in Eq. (3.28) corresponds to the relativistic correction for the po-

tential.

In the case of mB(1) ̸= mB(2) , Eq. (3.26) becomes complicated as (see Appendix B for

detailed derivations)

k2n
2µ

= ∆Wn +
1 + 3δ2

8µ
(∆Wn)

2 +O
(
(∆Wn)

3) , (3.30)

where δ = (mB(1) −mB(2))/(mB(1) +mB(2)). Up to O ((∆Wn)
2), we obtain the following

equation for R-correlators by the same procedure as Eq. (3.28),[(
1 + 3δ2

8µ

)
∂2

∂t2
− ∂

∂t
−H0

]
Rαβ(r⃗, t− t0) =

∫
d3r′Uαβ;α′β′(r⃗, r⃗′)Rα′β′(r⃗′, t− t0),

(3.31)

for moderately large t−t0 (where contributions from the inelastic states can be neglected).

The higher order terms in Eq. (3.30) can be calculated by corresponding time derivative.

They are, however, expected to be small at low energies and the effects of higher-derivative

terms, as well as the contribution from inelastic states, are regarded as the systematic

errors and estimated by the time-dependence of potentials. Note that Eq. (3.31) becomes

identical to Eq. (3.28) for mB(1) = mB(2) .
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3.1.5 Effective central potential and Operator basis potential

We present here how to calculate the central and tensor potentials in the case of two

baryon system with spin 1/2, which are practically used for analysis in this thesis. Since

we use only the time-dependent HAL QCD method in the analysis, we define the potential

in this section by the time-dependent HAL QCD method. As we shown in Sec. 3.1.2 (for

the infinite volume) and in Sec. 3.1.3 (for a finite volume), the leading order potential in

an S-wave spin-singlet system is defined by

V
1S0
LO (r) =

1

R1S0
(r⃗, t− t0)

[(
1 + 3δ2

8µ

)
∂2

∂t2
− ∂

∂t
−H0

]
R1S0

(r⃗, t− t0), (3.32)

for sufficiently large t− t0, where R1S0
(r⃗, t− t0) is defined as

R1S0
(r⃗, t− t0) ≡ P (L=0)P

(S=0)
βα Rαβ(r⃗, t− t0), (3.33)

with projection operators to the total spin S = 0 and the orbital angular momentum L =

0. In the continuum space, the projection operator P (L=0) corresponds to the spherical

surface integral. On the lattice, however, we instead employ the cubic transformation

group for the projection because the integral cannot be carried out. We then define the

projection P (L=0) as

P (L=0)R(r⃗, t− t0) ≡
1

24

∑
g∈SO(3,Z)

R(g−1r⃗, t− t0), (3.34)

where g is one of 24 elements in SO(3, Z) group. This projection picks up an A+
1 rep-

resentation of SO(3, Z) group, which contains not only L = 0 component but also the

higher components with L ≥ 4 [48]. We expect, however, that contributions from L ≥ 4

states are negligible at low energies, as seen in Chap. 4.

Next, we consider the leading order potential in an S-wave spin-triplet system. Using

the projection operator to the S = 1, we define the potential as

V
3S1
LO (r) =

1

R3S1
(r⃗, t− t0)

[(
1 + 3δ2

8µ

)
∂2

∂t2
− ∂

∂t
−H0

]
R3S1

(r⃗, t− t0), (3.35)

where R3S1
(r⃗, t− t0) is

R3S1
(r⃗, t− t0) ≡ P (L=0)P

(S=1)
βα Rαβ(r⃗, t− t0). (3.36)
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In this system, the 3D1 state couples with the 3S1 state because the angular momentum is

not a good quantum number in QCD. Therefore, the potential V
3S1
LO (r) here is an effective

central potential which implicitly includes the effect of the tensor potential through the

virtual processes such as 3S1 →3 D1 →3 S1. If the tensor potential is sufficiently weak,

the interaction in 3S1 system is described well by the effective potential V
3S1
LO (r). If

the tensor potential is large, however, It is better to use the tensor potential directory

to solve the Schrödinger equation. To this end, we introduce the D-wave projection as

P (L=2) ≡ (1−P (L=0)), and construct the coupled channel equation for S-wave and D-wave

by acting P (L=0) and P (L=2) to Eq. (3.31) with U(r⃗, r⃗′) ≃ VLO(r⃗)δ
(3)(r⃗ − r⃗′),

K
[
PL=0Rαβ(r⃗)

]
= V 1+

C (r⃗)
[
PL=0Rαβ(r⃗)

]
+ VT (r⃗)

[
PL=0(S12R)αβ(r⃗)

]
K
[
PL=2Rαβ(r⃗)

]
= V 1+

C (r⃗)
[
PL=2Rαβ(r⃗)

]
+ VT (r⃗)

[
PL=2(S12R)αβ(r⃗)

]
, (3.37)

where K is the operator in the left-hands of Eq. (3.31), given by

K ≡
(
1 + 3δ2

8µ

)
∂2

∂t2
− ∂

∂t
−H0, (3.38)

and we omit t−t0 in R-correlator for simplicity. We define V 1+
C (r⃗) as the central potential

part in the VLO which is given V 1+
C (r) = V0(r) + Vσ(r) since (σ⃗1 · σ⃗2)ψ(W )

3S1
= ψ

(W )
3S1

. From

Eq. (3.37), we have

(
V 1+
C (r⃗)

VT (r⃗)

)
=

(
PL=0Rαβ(r⃗) PL=0(S12R)αβ(r⃗)

PL=2Rαβ(r⃗) PL=2(S12R)αβ(r⃗)

)−1(
K
[
PL=0Rαβ(r⃗)

]
K
[
PL=2Rαβ(r⃗)

] ) , (3.39)

for given α.β.

Finally, we show conversions of the central potentials into the operator basis potentials,

such as V0 and Vσ. From the definitions of the V
1S0
LO (r) and V 1+

C (r), the spin-independent

potential V0 and spin-spin potential Vσ are extracted as(
V0(r⃗)

Vσ(r⃗)

)
=

1

4

(
1 3

−1 1

)(
V

1S0
LO (r⃗)

V 1+
C (r⃗)

)
, (3.40)

for systems with an isospin 0 particle. If the particles in the system have non-zero

isospin, the potentials are further decomposed into isospin-independent part and isospin-

dependent part. In the case of ΣcN system which has isospin 1/2 and 3/2, the operator
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basis potentials are given as
V 0
0 (r⃗)

V 0
σ (r⃗)

V τ
0 (r⃗)

V τ
σ (r⃗)

 =
1

24


2 6 4 12

−2 2 −4 4

−1 −3 1 3

1 −1 −1 1




V
1S0, I=1/2
LO (r⃗)

V
1+, I=1/2
C (r⃗)

V
1S0, I=3/2
LO (r⃗)

V
1+, I=3/2
C (r⃗)

 , (3.41)

for central potentials, and(
V 0
T (r⃗)

V τ
T (r⃗)

)
=

1

6

(
2 4

−1 1

)(
V
I=1/2
T (r⃗)

V
I=3/2
T (r⃗)

)
, (3.42)

for tensor potentials.

3.2 Inelastic scattering case

In this section, we briefly review the HAL QCD method extended to an inelastic scattering

process [44, 52], such as a+b→ c+d, where a, b, c, and d are arbitrary one-particle states.

We assume here that the total energyW is larger than the mass threshold of each channel,

namely W > mc +md > ma +mb. As in the case of the elastic scattering in Sec. 3.1, we

focus two particle system with spin 1/2 baryons. Although this method can be applied

to arbitrary multi-particle scattering processes [45], we present the formulation for the

two-channel case for simplicity. In Sec. 3.2.1, we define the coupled channel Schrödinger

equation for non-local potentials from NBS wave functions. The extraction of the coupled

channel potentials from NBS wave functions on the lattice is presented in Sec. 3.2.2. As

shown in Sec. 3.1.3, one of the problems in the practical simulation is that it is difficult to

obtain the ground state NBS wave function due to large statistical noises. The improved

method, time-dependent HAL QCD method, can overcome such a problem as shown in

Sec. 3.1.4. In Sec. 3.2.3 we apply the time-dependent HAL QCD method to the coupled

channel Schrödinger equation.
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3.2.1 Coupled channel Schrödinger equation for non-local po-

tentials

We first define NBS wave functions for channel X = [ab], [cd] in the center of mass frame,

ψ
(W )
X,ξ (r⃗)e

−Wt =
1√

ZX1

√
ZX2

∑
x⃗

⟨0|BX1,ξ1(r⃗ + x⃗, t)BX2,ξ2(x⃗, t)|B = 2;W ⟩ (3.43)

where BXi,ξi(x⃗, t) (Xi = a, b, c, d) is the local interpolating operator for a baryon Xi with

its renormalization factor
√
ZXi

, and |B = 2;W ⟩ stands for a QCD asymptotic in-state

for two baryon system at the total energy of W which is defined by W =

√
|⃗kab|2 +m2

a+√
|⃗kab|2 +m2

b =

√
|⃗kcd|2 +m2

c +

√
|⃗kcd|2 +m2

d with the baryon mass mXi
and the relative

momentum k⃗X for the channel X. Here ξ represents quantum numbers other than W ,

such as spin. In the infinite volume, the energy eigenstate |B = 2;W ⟩ can be expressed

in terms of the asymptotic in-states in channel [ab] and [cd] as

|B = 2;W ⟩ = cab|ab;W ⟩+ ccd|cd;W ⟩+ · · · , (3.44)

|ab;W ⟩ = |a; k⃗ab⟩in ⊗ |b;−k⃗ab⟩in, (3.45)

|cd;W ⟩ = |c; k⃗cd⟩in ⊗ |d;−k⃗cd⟩in, (3.46)

where cX is arbitrary constant, and |Xi; k⃗X⟩in denotes an asymptotic state for a baryon

Xi with the momentum k⃗X . We then define the function KX,ξ(r⃗, k⃗) multiplying the NBS

wave functions by
(
|⃗kX |2 + ∇⃗2

)
:

(
|⃗kX |2 + ∇⃗2

)
ψ

(W )
X,ξ (r⃗) ≡ KX,ξ(r⃗, k⃗). (3.47)

For |r⃗| > R in which all of two body interactions are absent, the NBS wave functions

satisfy the Helmholtz equation(
|⃗kX |2 + ∇⃗2

)
ψ

(W )
X,ξ (r⃗) = 0, (3.48)

and the NBS wave functions carry the information of scattering amplitude until the new

channel opens and their asymptotic behaviors are similar to those of scattering waves in

Quantum mechanics even without non-relativistic approximation [44].

For |r⃗| < R, on the other hand, we define non-local potentials through the coupled-
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channel Schrödinger equation as the same procedure in the case of elastic scattering. First,

we introduce the dual basis for NBS wave function in channel X:

ψ̃
(Wk)
X,ξ (r⃗) =

∑
ζ

∫
d3q η−1

ξ,ζ (k⃗, q⃗) ψ
† (Wq)
X,ζ (r⃗), (3.49)

where Wp =
√

|p⃗|2 +m2
X1

+
√
|p⃗|2 +m2

X2
for p = k, q. The function ηξ,ζ(k⃗, q⃗) is defined

as

ηξ,ζ(k⃗, q⃗) =
∑
X

∫
d3r ψ

† (Wk)
X,ξ (r⃗)ψ

(Wq)
X,ζ (r⃗). (3.50)

From Eqs. (3.49) and (3.50), we can see that the dual basis satisfies

∑
X

∫
d3r ψ̃

(Wk)
X,ξ (r⃗)ψ

(Wq)
X,ζ (r⃗) = δξ,ζδ

(3)(k⃗ − q⃗). (3.51)

We then define the non-local potential by using the dual basis and Eq. (3.47) as

UX,Y ;ξ,ζ(r⃗, r⃗′) ≡
∫
d3k KX,ξ(r⃗, k⃗)ψ̃

(Wk)
Y,ζ (r⃗′), (3.52)

where the non-local potential UX,Y ;ξ,ζ(r⃗, r⃗′) is energy-independent due to the integral of

k in the right-hand side of Eq. (3.52). By using Eqs. (3.51) and (3.52), we finally obtain

the following equation.

KX,ξ(r⃗, k⃗) =
(
|⃗k|2 + ∇⃗2

)
ψ

(W )
X,ξ (r⃗) =

∑
Y,ζ

∫
d3r′UX,Y ;ξ,ζ(r⃗, r⃗′)ψ

(W )
Y,ζ (r⃗′). (3.53)

When we rescale the potential as U = 2µXŨ with a reduced mass µX = mX1mX2/(mX1 +

mX2) and rewrite Ũ → U , the Eq. (3.53) can be written as the Schrödinger equation for

non-local potential:

(EX −H0,X)ψ
(W )
X,ξ (r⃗) =

∑
Y,ζ

∫
d3r′UX,Y ;ξ,ζ(r⃗, r⃗′)ψ

(W )
Y,ζ (r⃗′), (3.54)

where EX = |⃗kX |2/(2µX) and H0,X = −∇⃗2/(2µX). The important point here is that

we don’t need any non-relativistic approximations for the derivation of Eq. (3.54) and

the relative momentum k⃗X is determined from the total energy W =

√
|⃗kX |2 +mX1 +
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√
|⃗kX |2 +mX2 . Furthermore, by construction in Eq. (3.54), the energy-independent non-

local potentials defined from NBS wave functions reproduce the correct scattering ampli-

tude below the new channel threshold.

We next consider the extraction of the leading order potentials of the derivative expan-

sion for non-local potentials. For simplicity, we omit the spin indices in this discussion.

To this end, we need two pairs of NBS wave functions which have different total energy,

namely ψ
(W )
X and ψ

(W ′)
X (W ̸= W ′). Using Eq. (3.10), we can rewrite the Eq.(3.54) as a

simple 2× 2 matrix form:(
Kab(r⃗,⃗k)
2µab

Kab(r⃗,k⃗′)
2µab

Kcd(r⃗,⃗k)
2µcd

Kcd(r⃗,k⃗′)
2µcd

)
=

(
Vab,ab(r⃗) Vab,cd(r⃗)

Vcd,ab(r⃗) Vcd,cd(r⃗)

)(
ψ

(W )
ab (r⃗) ψ

(W ′)
ab (r⃗)

ψ
(W )
cd (r⃗) ψ

(W ′)
cd (r⃗)

)
.

(3.55)

Thus the leading order potentials VX,Y can be extracted by solving the inverse problem

of Eq. (3.55).

We now discuss the non-locality of the potential. As shown in this section (see also

Sec. 3.1.1), the non-local potential is defined as energy-independent until the new thresh-

old opens. The local potential, however, may be energy-dependent below the inelastic

threshold because the non-locality of the potential becomes larger as the total energy W

approaches the inelastic threshold. In order to see the non-locality of the potential, let us

consider an effective potential for a channel [ab] from coupled channel potentials. Assum-

ing the coupled channel potentials UX,Y (r⃗, r⃗′) can be approximated as the local potential

VX,Y (r⃗)δ
(3)(r⃗ − r⃗′), we define the effective potential for the channel [ab]:

U eff
ab (r⃗, r⃗

′) = Vab,ab(r⃗)δ
(3)(r⃗ − r⃗′) + Vab,cd(r⃗)

1

Ecd −H0,cd − Vcd,cd
(r⃗, r⃗′)Vcd,ab(r⃗′), (3.56)

where the non-locality of the effective potential comes from the second term. In order

to estimate the magnitude of non-locality, we omit the Vcd,cd in Eq. (3.56) for simplicity.

When the total energy W is below the inelastic threshold (i.e. ma+mb < W < mc+md),

we have

1

Ecd −H0,cd

(r⃗, r⃗′) =
2µcd

4π|r⃗ − r⃗′|
e−q|r⃗−r⃗

′|, (3.57)

where q2 = −|⃗kcd|2. Therefore, the non-locality caused by channel couplings is exponen-



3.2. INELASTIC SCATTERING CASE 35

tially suppressed as long as the q is sufficiently large. However, if the q becomes small

(which is equivalent that the total energy W approaches the inelastic threshold from be-

low), the non-locality of the effective potential becomes large. Note that larger transition

potentials Vab,cd, Vcd,ab also make the non-locality larger. In practical calculations, we

have to remember this observation when the scattering energies are close to the inelastic

threshold. In such a case, we can check the non-locality of the potential by comparing

the coupled channel potential with the single channel potential.

3.2.2 Extraction of the coupled channel potentials on the lattice

In the previous section, we define the coupled channel Schrödinger equation for non-local

potentials and we show that one needs two sets of NBS wave functions with different total

energy, namely ψ
(W )
X (X = ab, cd) and ψ

(W ′)
X with W ̸= W ′. In a finite volume, |ab;W ⟩

and |cd;W ⟩ in Eq. (3.44) are no longer energy eigenstates of the Hamiltonian. These

energy eigenvalues are shifted from W to W +O(L−2) with L being the spacial extension.

Under this circumstance, we can obtain the two sets of NBS wave functions as follows.

First, we prepare two source operators defined by

Jab(t0) = Ba(t0)Bb(t0), (3.58)

Jcd(t0) = Bc(t0)Bd(t0), (3.59)

which create eigenstates on the lattice as

Jab(t0)|0⟩ = Ca|B = 2;W0⟩+ Cb|B = 2;W1⟩+ · · · , (3.60)

Jcd(t0)|0⟩ = Cc|B = 2;W0⟩+ Cd|B = 2;W1⟩+ · · · , (3.61)

where Ci (i = a, b, c, d) is arbitrary constant. The state |B = 2;Wn⟩ stands for the n-th
energy eigenstate with the energy Wn. The constants Ci can be determined from baryon

two-point correlation functions by diagonalization method in lattice QCD simulations.

Using Ci, we next define optimized source operators as(
JW1(t0)

JW2(t0)

)
=

(
Ca Cb

Cc Cd

)−1(
Jab(t0)
Jcd(t0)

)
, (3.62)
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where JWn(t0) (n = 0, 1) creates the states as

JW1(t0)|0⟩ = |B = 2;W0⟩+ · · · , (3.63)

JW2(t0)|0⟩ = |B = 2;W1⟩+ · · · . (3.64)

Finally, we extract the NBS wave functions from baryon four-point correlation functions

at large t− t0, as shown in Sec. 3.1.3.

G
JWn
ab (r⃗, t− t0) =

∑
x⃗

⟨0|Ba(r⃗ + x⃗, t)Bb(x⃗, t)JWn(t0)|0⟩

→
√
Za
√
Zb ψ

(Wn)
ab (r⃗)e−Wn(t−t0) +O(e−W2(t−t0)), (3.65)

G
JWn
cd (r⃗, t− t0) =

∑
x⃗

⟨0|Bc(r⃗ + x⃗, t)Bd(x⃗, t)JWn(t0)|0⟩

→
√
Zc
√
Zd ψ

(Wn)
cd (r⃗)e−Wn(t−t0) +O(e−W2(t−t0)), (3.66)

where n = 0, 1.

From those baryon four-point correlation functions, the leading order of the derivative

expansion for coupled channel potentials (Eq. (3.55)) can be derived:(
Vab,ab(r⃗) Vab,cd(r⃗)

Vcd,ab(r⃗) Vcd,cd(r⃗)

)

=

( √
Za

√
Zb 0

0
√
Zc

√
Zd

)−1

×

 (
E

(W0)
ab − (H0)ab

)
G

JW0
ab (r⃗, t− t0)

(
E

(W1)
ab − (H0)ab

)
G

JW1
ab (r⃗, t− t0)(

E
(W0)
cd − (H0)cd

)
G

JW0
cd (r⃗, t− t0)

(
E

(W1)
cd − (H0)cd

)
G

JW1
cd (r⃗, t− t0)


×

(
G

JW0
ab (r⃗, t− t0) G

JW1
ab (r⃗, t− t0)

G
JW0
cd (r⃗, t− t0) G

JW1
cd (r⃗, t− t0)

)−1( √
Za

√
Zb 0

0
√
Zc

√
Zd

)
, (3.67)

for sufficiently large t − t0 where contributions from states with the total energies W ≥
W2 can be negligible. Here (H0)X is defined as (H0)X = ∇⃗2/(2µX) with the reduced

mass for channel X, and E
(Wn)
X is defined as E

(Wn)
X = |(k⃗X)n|2/(2µX), where the discrete

relative momentum (k⃗X)n for channel X is determined from Wn. Z-factors in Eq. (3.67)
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can be calculated from the baryon two-point correlation function, as we will explain in

Appendix C.

3.2.3 Time-dependent HAL QCD method for coupled channel

potentials

In practical lattice QCD calculation, we have a difficulty to obtain the ground state NBS

wave function due to large statistical noise at large t − t0, as we discussed in Sec. 3.1.3.

We then explained an improved method to extract the potential without the ground state

domination of the NBS wave function in Sec. 3.1.4 for an elastic scattering case, namely

the time-dependent HAL QCD method. The time-dependent HAL QCD method can

be extended straightforwardly to the case of inelastic scatterings. In this subsection, we

present the coupled channel formalism of the time-dependent HAL QCD method.

Let us start from the normalized baryon four-point correlation function R in channel

X defined as

RJY
X (r⃗, t− t0) ≡ GJY

X (r⃗, t− t0)

e
−mBX1

(t−t0)e
−mBX2

(t−t0)

=
∑
n

√
ZX1

√
ZX2 ψ

(Wn)
X (r⃗)e−∆WX

n (t−t0)AJY
n + · · · , (3.68)

where mBXi
(i = 1, 2) is a baryon mass in channel X, the ∆WX

n is defined as ∆WX
n =

Wn − (mBX1
+ mBX2

), and AJY
n = ⟨Wn|JY (0)|0⟩. The baryon four-point correlation

functions are defined using original source operator JY (Y = ab, cd) instead of JWn (i.e.,

one doesn’t need the diagonalization of source operators). The ellipses in Eq. (3.68) denote

inelastic contributions coming from channels above the channel X.

In the case of mBX1
= mBX2

≡ mX , the ∆WX
n satisfies

k2n
mX

= ∆WX
n +

1

4mX

(
∆WX

n

)2
. (3.69)

Using above relation and Eq. (3.52), we obtain the time-dependent coupled channel

Schödinger equation for R-correlator:[
− ∂

∂t
+

1

4m

∂2

∂t2
− (H0)X

]
RJY
X (r⃗, t− t0)
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=
∑
n

√
ZX1

√
ZX2

[
− ∂

∂t
+

1

4m

∂2

∂t2
− (H0)X

]
ψ

(Wn)
X (r⃗)e−∆WX

n (t−t0)AJY
n

=
∑
n

√
ZX1

√
ZX2

[
∆Wn +

1

4m
(∆Wn)

2 − (H0)X

]
ψ

(Wn)
X (r⃗)e−∆WX

n (t−t0)AJY
n

=
∑
n

√
ZX1

√
ZX2

[
E

(Wn)
X − (H0)X

]
ψ

(Wn)
X (r⃗)e−∆WX

n (t−t0)AJY
n

=
∑
n

√
ZX1

√
ZX2

[ ∑
X′=ab,cd

∫
d3r′UX,X′(r⃗, r⃗′)ψ

(Wn)
X′ (r⃗′)

]
e−∆WX

n (t−t0)AJY
n

=
∑

X′=ab,cd

∫
d3r′ ∆X,X′ UX,X′(r⃗, r⃗′)RJY

X′ (r⃗′, t− t0), (3.70)

for moderately large t− t0 where inelastic contributions from channels other than the [ab]

and the [cd] can be neglected. A factor ∆X,X′ in Eq. (3.70) is defined by

∆X,X′ =

√
ZX1

√
ZX2e

−(mB
X′

1

+mB
X′

2

)(t−t0)√
ZX′

1

√
ZX′

2
e
−(mBX1

+mBX2
)(t−t0)

. (3.71)

In the case of mBX1
̸= mBX2

, as shown in Sec. 3.1.4, the R-correlators satisfy[(
1 + 3δ2X
8µX

)
∂2

∂t2
− ∂

∂t
− (H0)X

]
RJY
X (r⃗, t− t0)

=
∑

X′=ab,cd

∫
d3r′ ∆X,X′ UX,X′(r⃗, r⃗′)RJY

X′ (r⃗′, t− t0), (3.72)

up to O ((∆Wn)
2), where δX = (mBX1

−mBX2
)/(mBX1

+mBX2
).



Chapter 4

Partial wave decomposition on the

lattice

As we reviewed in the previous chapter, we can define non-local energy-independent po-

tential from NBS wave functions through the Schrödinger equation by the HAL QCD

method. In practice, we have to calculate the potential in the desired spin-isospin chan-

nel to see the interaction of the corresponding system. This potential is constructed from

the spin-isospin projected NBS wave function as we presented in Sec. 3.1.5. At this time,

we employ the cubic transformation group for projection to the orbital angular momentum

L = 0 (Eq. (3.34)) on the lattice because the spherical surface integral cannot be carried

out on the discrete space. This projection picks up an A+
1 representation of SO(3, Z)

group, which contains not only L = 0 component but also the higher components with

L ≥ 4 [48]. If the L ≥ 4 components of the NBS wave function are completely zero,

the NBS wave function (and also the potential) should be isotropic. We often observe,

however, the comb-like structures in the potential on the radial coordinate (e.g. see Fig. 2

in Ref. [53]) which represent the anisotropy of the potential. This observation implies

that the L ≥ 4 components remain in the NBS wave functions and contaminate the po-

tential. In order to construct more robust potential, removing the L ≥ 4 components

from the NBS wave function is mandatory. In this chapter, we propose three methods to

remove the L ≥ 4 components from the NBS wave function. From Sec. 4.1 to Sec. 4.3,

we present the method section by section. Throughout this chapter, we write the NBS

39
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wave function as ψ(x⃗) with x⃗ = (x, y, z) or (r, θ, ϕ)1 , which is expanded in term of the

spherical harmonics Ylm(θ, ϕ) as

ψ(x⃗) =
∞∑
l=0

l∑
m=−l

glm(r)Ylm(θ, ϕ), (4.1)

where glm(r) represents a radial function for an (l,m) component 2. Also, we assume that

the lattice spacing is scaled to unity.

4.1 r-binning method

Let us consider the extraction g00(r) for given r = R from the NBS wave function. In the

continuum space, we can get g00(R) by taking the spherical surface integral at r = R as

g00(R) =

∫
S

dΩ Y ∗
00(θ, ϕ)ψ(x⃗; r = R), (4.2)

because of the orthogonality of the spherical harmonics,∫
S

dΩ Y ∗
lm(θ, ϕ)Yl′m′(θ, ϕ) = δll′δmm′ . (4.3)

In the discrete space, the spherical surface integrals in Eqs. (4.2) and (4.3) are replaced

by the average of the lattice data located on {x⃗|r = R} as

1

4π

∫
S

dΩ =⇒ 1

Np

∑
x⃗∈{x⃗|r=R}

, (4.4)

with a number of data points Np, where the orthogonality of the spherical harmonics does

not hold completely.

In order to retain the orthogonality approximately, we propose the binning method

1The relation between the coordinates (x, y, z) and (r, θ, ϕ) is defined as

x = r sin θ cosϕ

y = r sin θ sinϕ

z = r cos θ.

2We often call it “Spherical harmonics amplitude”.
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of the radial coordinate for the NBS wave functions. We consider a spherical shell SR,∆

with thickness ∆ surrounding the sphere surface r = R defined by

SR,∆ ≡ {x⃗|R−∆ ≤ r ≤ R +∆} , (4.5)

and define a radial binned NBS wave function ψrbin(R) by the average of the data in SR,∆

as

ψrbin(R) ≡
√
4π

Nrbin

∑
x⃗∈SR,∆

ψ(x⃗), (4.6)

where Nrbin stands for a number of all data points in SR,∆. Here ψrbin(R) corresponds to

g00(R). In this approach, compared to Eq. (4.4), possible angle to use for average the NBS

wave function increases and the average value is approximated to the spherical surface

integral. It should be noted that fluctuation of g00(r) in R −∆ ≤ r ≤ R +∆ is must be

small, otherwise the average in Eq. (4.6) hides the detailed structure of the g00(r). The

advantage point of this approach is that the numerical cost is small so that it can easily

be applied to large scale data.

4.2 Decomposition from A+
1 projected data in fixed r

In this subsection, we propose an alternative method to extract g00(R) from the NBS

wave function. We here use the A+
1 projected NBS wave function defined by

ψA
+
1 (x⃗) ≡ PA+

1 ψ(x⃗)

= Y
A+

1
00 (θ, ϕ)g00(r) +

∑
m=0,±4

Y
A+

1
4m (θ, ϕ)g4m(r) + · · · , (4.7)

where PA+
1 is the projection operator intoA+

1 representation defined in Eq. (3.34), Y
A+

1
00 (θ, ϕ)

and Y
A+

1
4m (θ, ϕ) stand for the A+

1 projected spherical harmonics, and the ellipses show the

higher angular momentum components such as L = 6, 8. L = odd integer and L = 2 com-

ponents are removed by the A+
1 projection. Since the property of the rotation transforma-

tion, the spherical harmonics Y4m(θ, ϕ) with m = ±1,±2 and ±3 are also removed while

the components with m = 0,±4 remain non-zero values. The definitions of Y
A+

1
00 (θ, ϕ) and
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Y
A+

1
4m (θ, ϕ) in the orthogonal coordinate system are as follows:

Y
A+

1
00 (x, y, z) = Y00(x, y, z) =

1√
4π

(4.8)

Y
A+

1
40 (x, y, z) =

7

8
√
π

x4 + y4 + z4 − 3(x2y2 + y2z2 + z2x2)

r4
(4.9)

Y
A+

1
4,+4(x, y, z) = Y

A+
1

4,−4(x, y, z) =

√
5

14
Y
A+

1
40 (x, y, z). (4.10)

Since Y
A+

1
40 (also Y

A+
1

4,±4) has an angular dependence, the NBS wave function at given r = R

has multi-values, which make comb-like structures in the potential on the radial coor-

dinate. Let us consider there are N points of the A+
1 projected NBS wave function

{ψA+
1 (x⃗i)} (i = 1, · · · , N) for |x⃗i| = R which have different values each other. Neglecting

the components of L ≥ 6, each NBS wave function is written as

ψA
+
1 (x⃗i) = Y

A+
1

00 g00(r) +
∑

m=0,±4

Y
A+

1
4m (x⃗i)g4m(r),

≡ Y
A+

1
00 g00(r) + Y

A+
1

4 (x⃗i)g4(r), (4.11)

where we omit the arguments for Y
A+

1
00 since it is just a constant, and we write together

the L = 4 components because Y
A+

1
40 (x⃗) and Y

A+
1

4,±4(x⃗) have the same angular dependence.

Eq. (4.11) can be rewritten using the matrix form as
ψA

+
1 (x⃗1)
...

ψA
+
1 (x⃗N)

 =


Y
A+

1
00 Y

A+
1

4 (x⃗1)
...

...

Y
A+

1
00 Y

A+
1

4 (x⃗N)


(
g00(r)

g4(r)

)
, (4.12)

where the matrix in the right-hand side is an N × 2 rectangle matrix. When N ≥ 2,

we can solve the Eq. (4.12) by using the Singular Value Decomposition (SVD) for the

rectangle matrix. When we write the SVD for an M ×N (M > N) rectangle matrix A as

A = UΣV † with unitary matrixes U, V and a diagonal matrix for the singular values Σ,

the generalized inverse matrix is defined as A−1 = V Σ−1U †, where Σ and Σ−1 are defined

by

Σ ≡

(
diag(σ1, · · · , σN)

0(M−N)×N

)
(4.13)



4.2. DECOMPOSITION FROM A+
1 PROJECTED DATA IN FIXED R 43

Σ−1 ≡
(

diag(σ−1
1 , · · · , σ−1

N ) 0N×(M−N)

)
, (4.14)

where 0M×N represents the M ×N zero matrix3. Note that the SVD corresponds to the

Eigen Value Decomposition (EVD) for the square matrix.

Advantages of this approach are as follows. First, we can obtain the radial function not

only for L = 0 component but also for L = 4 component. By comparing these components,

we can see the magnitude of L = 4 contamination in the NBS wave function. Second, the

extraction of higher angular momentum components is easily applicable. Including the

L = 6 component, for instance, we can extract the radial functions for L = 0, 4, and 6 by

solving the equation
ψA

+
1 (x⃗1)
...

ψA
+
1 (x⃗N)

 =


Y
A+

1
00 Y

A+
1

4 (x⃗1) Y
A+

1
6 (x⃗1)

...
...

...

Y
A+

1
00 Y

A+
1

4 (x⃗N) Y
A+

1
6 (x⃗N)




g00(r)

g4(r)

g6(r)

 , (4.15)

where the matrix in the right-hand side is an N × 3 rectangle matrix. Note that we need

at least 3 points of the NBS wave function at given |x⃗i| = R which are not related by A+
1

projection.

We next consider the extraction of the Laplacian for the radial function such as g00(r)

in order to construct the potentials. When we neglecting the components of L ≥ 6 again,

the Laplacian of the NBS wave function (Eq. (4.11)) is shown as

∇⃗2ψA
+
1 (x⃗i) = Y

A+
1

00 ∇⃗2g00(r) + ∇⃗2
[
Y
A+

1
4 (x⃗i)g4(r)

]
. (4.16)

where the second term can be calculated in the continuum space as

∇⃗2
[
Y
A+

1
4 (x⃗i)g4(r)

]
= Y

A+
1

4 (x⃗i)

[
∇⃗2 − 4(4 + 1)

r2

]
g4(r). (4.17)

3We assume here that all singular values have a non-zero value, otherwise the generalized inverse
matrix cannot be defined.
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Using Eqs. (4.11) and (4.16), we have



ψA
+
1 (x⃗1)

∇⃗2ψA
+
1 (x⃗1)
...

ψA
+
1 (x⃗N)

∇⃗2ψA
+
1 (x⃗N)


=



Y
A+

1
00 0 Y

A+
1

4 (x⃗1) 0

0 Y
A+

1
00 −4(4+1)

r2
Y
A+

1
4 (x⃗1)

...
...

...
...

Y
A+

1
00 0 Y

A+
1

4 (x⃗N) 0

0 Y
A+

1
00 −4(4+1)

r2
Y
A+

1
4 (x⃗N)




g00(r)

∇⃗2g00(r)

g4(r)

∇⃗2g4(r)

 , (4.18)

which can be solved by SVD. Note that the Eq. (4.17) has O(an) (n > 1) discretized

errors in a discrete space.

4.3 Misner’s method

In this subsection, we present a method to get spherical harmonics amplitudes proposed

by C. W. Misner [54], which has been employed for extracting gravitational waveforms

from simulations of radiating systems. The idea of this method is similar to the r-binning

method we propose in Sec. 4.1, that is the spherical harmonics amplitude is calculated

from the NBS wave function data in a spherical shell SR,∆ by using the orthogonality of

the spherical harmonics. He employs, however, not only the spherical harmonics but also

orthonormal basis functions in the radial coordinate GR,∆
n (r) (n = 0, · · · ,∞) which are

orthonormal with respect to integration over the radial interval [R−∆, R +∆], as∫ R+∆

R−∆

dr r2 GR,∆
n (r)GR,∆

m (r) = δnm, (4.19)

where the overline represents the complex conjugate. One of the candidates for GR,∆
n (r)

is given by

GR,∆
n (r) =

1

r

√
2n+ 1

2∆
Pn

(
r −R

∆

)
, (4.20)

where Pn(r) is the Legendre polynomial, which obviously satisfies Eq. (4.19).

Let us consider the extraction glm(R) for given r = R from the NBS wave func-

tion (Eq. (4.1)) in the continuum space. Here we introduce orthonormal basis functions
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YR,∆
nlm (r, θ, ϕ) ≡ GR,∆

n (r)Ylm(θ, ϕ) which obey∫
SR,∆

d3x YR,∆
nlm (r, θ, ϕ)YR,∆

n′l′m′(r, θ, ϕ) = δnn′δll′δmm′ , (4.21)

where the integral over SR,∆ is defined as∫
SR,∆

d3x =

∫ R+∆

R−∆

dr

∫
S

dΩ. (4.22)

Using the orthonormal basis functions, the NBS wave function is expanded by

ψ(x⃗) =
∞∑
n=0

∞∑
l=0

l∑
m=−l

cR,∆nlm YR,∆
nlm (r, θ, ϕ), (4.23)

in a spherical shell SR,∆ with coefficients cR,∆nlm . From the definitions in Eqs. (4.21) and

(4.23), we can get the coefficients cR,∆nlm as

cR,∆nlm =

∫
SR,∆

d3x YR,∆
nlm (r, θ, ϕ) ψ(x⃗), (4.24)

and spherical harmonics amplitude glm(R) can be given by

glm(R) =
∞∑
n=0

cR,∆nlm GR,∆
n (R). (4.25)

One of the advantages in this method is that Eq. (4.24) is defined as a volume integral

which can be simply replaced by the sum of a unit cube on the lattice. In a discrete space,

the volume integral is rewritten by∫
SR,∆

d3x =⇒
∑
x⃗

ωR,∆(x⃗), (4.26)

where ωR,∆(x⃗) stands for a weight which corresponds to overlap between the shell SR,∆

and a unit cube around the point x⃗. If the unit cube lies entirely inside the shell SR,∆, the

weight is given by ωR,∆(x⃗) = a3 with a lattice spacing a, while ωR,∆(x⃗) = 0 when the unit

cube lies entirely outside the shell. For other points, however, the overlap is complicated

and difficult to calculate. In Ref. [54], the author has used following simple definition for
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the weight:

ωR,∆(x⃗) =


a3

0

a2
(
∆+ 1

2
a− |R− r|

)
for |r −R| < ∆− 1

2
a

for |r −R| > ∆+ 1
2
a

otherwise

, (4.27)

which corresponds to the overlap of a unit cube parallel to the axis in the radial direction.

Here we define an inner product of functions f(x⃗) and g(x⃗) in the shell SR,∆ for both

continuum and discrete spaces as

⟨f |g⟩contSR,∆
=

∫
SR,∆

d3x f(x⃗) g(x⃗) (4.28)

⟨f |g⟩discSR,∆
=

∑
x⃗

ωR,∆(x⃗) f(x⃗) g(x⃗). (4.29)

In these notations, Eqs. (4.21) and (4.24) are simply rewritten by

⟨YR,∆
A |YR,∆

B ⟩contSR,∆
= δAB (4.30)

⟨YR,∆
A |ψ⟩contSR,∆

= cR,∆A , (4.31)

where A,B ≡ (n, l,m). Since the basis functions YR,∆
A are not orthonormal in the discrete

space, however, a hermitian matrix defined as GAB ≡ ⟨YR,∆
A |YR,∆

B ⟩discSR,∆
is no longer unit

matrix. In this case, the coefficients cR,∆nlm can be determined only approximately. In order

to overcome this problem, one can define the following dual basis functions ỸR,∆
A using

the inverse of matrix GAB:

ỸR,∆
A (x⃗) ≡

∑
B

YR,∆
B (x⃗) G−1

BA, (4.32)

where the index B runs over a finite set of (n, l,m), which satisfy

⟨ỸR,∆
A |YR,∆

B ⟩discSR,∆
=

∑
C

G−1
AC⟨Y

R,∆
C |YR,∆

B ⟩contSR,∆
=
∑
C

G−1
ACGCB = δAB (4.33)

⟨ỸR,∆
A |ψ⟩discSR,∆

∼ cR,∆A . (4.34)

Once we obtain the coefficients cR,∆A , the spherical harmonics amplitude glm(R) can be

calculated from Eq. (4.25). We note that when we consider only nmax = lmax = 0 and
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define the basis function in the radial coordinate and the weight function as

GR,∆
0 (r) = constant

ωR,∆(x⃗) =

{
a3

0

for x⃗ ∈ SR,∆

otherwise
, (4.35)

one can find that the method is equivalent to the r-binning method proposed in Sec. 4.1.

We next consider the calculation of the Laplacian for the spherical harmonics am-

plitude glm(r) which will be used for calculating potentials in the HAL QCD method.

In a conventional way, we define the Laplacian for lattice data as a second-order finite

differential which has some discretization errors. In Misner’s method, however, we can

estimate the Laplacian for glm(r) in analytically. For example, when the orthonormal

basis functions in the radial coordinate are given by Eq. (4.20), we have

∇⃗2glm(r) =
1

r

∂2

∂r2
[rglm(r)]

=
∞∑
n=0

cR,∆nlm

1

r

∂2

∂r2
[
rGR,∆

n (r)
]

=
1

r

∞∑
n=0

cR,∆nlm

∂2

∂r2

[√
2n+ 1

2∆
Pn

(
r −R

∆

)]

=
1

r∆2

√
2n+ 1

2∆

∞∑
n=0

cR,∆nlm P ′′
n

(
r −R

∆

)
, (4.36)

where P ′′
n shows the second-order derivative for the Legendre polynomial.

Before finishing this subsection, we present some comments for applying this method

to lattice QCD data. First, we cannot calculate the dual orthonormal function with all

of the set of (n, l,m), so that the Eq. (4.34) is approximate. In this case, as we discuss in

the next subsection, the mean square error between ⟨ỸR,∆
A |ψ⟩discSR,∆

and cR,∆A is minimized

by the dual basis function

ỸR,∆
nlm (x⃗) ≡

nmax∑
n′=0

lmax∑
l′=0

l∑
m′=−l

YR,∆
n′l′m′(x⃗) G−1

n′l′m′,nlm, (4.37)

for given nmax and lmax. These parameters are determined from a balance between repro-

ducibility of NBS wave functions and numerical instability. If the variation of the NBS

wave function in the radial coordinate is large, for instance, one should increase nmax to
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reproduce correct spherical harmonics amplitude glm(r), while the inverse of the matrix

GAB may cause numerical instability due to its small determinant4. Second, the most

costly calculation in practice is the construction of the matrix GAB. Once we calculate

the matrix, however, we can use it for different lattice data (e.g. NBS wave functions

calculated on different gauge samples). Therefore, it is better to calculate the dual basis

functions (Eq. (4.37)) once before the calculation of the spherical harmonics amplitude

from NBS wave functions and use them for later analysis. Finally, the dual basis functions

consume large memory to store. For example, when the lattice size is L = 32 and the

number of the basis is given by nmax = 4 and lmax = 6, required memory for ỸR,∆
nlm (x⃗) is

323 × 5× (1 + 3 + 5 + 7 + 9 + 11 + 13)× 16 (bytes) = 122.5 MB. In order to reduce the

memory, it is better to calculate the following function:

GR,∆
lm (x⃗) ≡

nmax∑
n=0

GR,∆
n (R) ỸR,∆

nlm (x⃗), (4.38)

which required only 323× (1+3+5+7+9+11+13)×16 (bytes) = 24.5 MB in memory.

Using this function, the spherical harmonics amplitude glm(R) can be calculated directory

as

⟨GR,∆
lm |ψ⟩discSR,∆

=
nmax∑
n=0

GR,∆
n (R) ⟨ỸR,∆

nlm |ψ⟩discSR,∆

∼
nmax∑
n=0

GR,∆
n (R) cR,∆nlm

∼ glm(R). (4.39)

Furthermore, since the weight function ωR,∆(x⃗) has non-zero values at points only around

the shell SR,∆, it enough to store the GR,∆
lm (x⃗) in memory only at points where the weight

function is non-zero.

4This situation is similar to the parameter fitting by the least squares method. When we employ a
test function with a large number of parameters for a small number of data points, the fitting may have
strong numerical instability.



4.4. CONSIDERATION FROM THE LEAST SQUARE METHOD 49

4.4 Consideration from the least square method

We have presented two different approaches to extract spherical harmonics amplitudes in

Secs. 4.2 and 4.3. The method in Sec. 4.2, we solve the simultaneous equation for the A+
1

projected NBS wave function as Eqs. (4.12) and (4.15) in a fixed r. If we consider the

extraction up to L = 4 component, the equation can be solved exactly for a number of

points at the same r N = 2. For N > 2, however, the solution is given as approximately

because a number of the solution is smaller than a number of the equation. In this

case, we can minimize mean square errors of the solution by using the SVD. In order to

see how the SVD minimizes the error, it is useful to consider this inverse problem on a

least square aspect. Furthermore, the consideration from the least square method also

gives us knowledge how the dual basis function defined in Eq. (4.37) for Misner’s method

minimizes the mean square errors [55]. From these considerations, we will find that the

method in Secs. 4.2 and 4.3 can be regarded as one of the parameter fittings by the least

square method for the spherical harmonics amplitudes.

4.4.1 The case of the decomposition from A+
1 projected data in

fixed r

Let us consider that there are N data points of the A+
1 projected NBS wave function at

fixed r, and we write them as N × 1 column vector ΨA+
1 ≡ (ψA

+
1 (x⃗1), · · · , ψA

+
1 (x⃗N))

T ,

where |x⃗i| = r for i = 1, · · · , N . We assume that each NBS wave function is decomposed

as

ψA
+
1 (x⃗i) = Y

A+
1

00 g00(r) + Y
A+

1
4 (x⃗i)g4(r) + Y

A+
1

6 (x⃗i)g6(r) + · · · , (4.40)

where Y
A+

1
l (x⃗i) represents the A

+
1 projected spherical harmonics for an angular momentum

l. For the spherical harmonics amplitudes gl(r), let us define G as M × 1 column vector

G = (g00(r), g4(r), g6(r), · · · )T . We finally define the design matrix Y A+
1 as an N ×M

rectangle matrix which consists of the A+
1 projected spherical harmonics, which is given
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by

Y A+
1 =


Y
A+

1
00 Y

A+
1

4 (x⃗1) Y
A+

1
6 (x⃗1) · · ·

...
...

...

Y
A+

1
00 Y

A+
1

4 (x⃗N) Y
A+

1
6 (x⃗N) · · ·

 . (4.41)

When we write an approximate solution of the spherical harmonics amplitudes G̃, the

sum of squared residuals F (G̃) between ΨA+
1 and the given solution vector Ψ̃A+

1 ≡ Y A+
1 G̃

is defined by

F (G̃) =
(
Ψ̃A+

1 −ΨA+
1

)† (
Ψ̃A+

1 −ΨA+
1

)
=

(
Y A+

1 G̃−ΨA+
1

)† (
Y A+

1 G̃−ΨA+
1

)
, (4.42)

which is minimized at dF (G̃min)/dG̃ = 0. G̃min is calculated by

G̃min =
(
(Y A+

1 )†Y A+
1

)−1

(Y A+
1 )† ΨA+

1 . (4.43)

Here
(
(Y A+

1 )†Y A+
1

)−1

(Y A+
1 )† is nothing but the generalized inverse matrix defined by the

SVD. In order to see this, we decompose Y A+
1 by the SVD as Y A+

1 = UΣV † with unitary

matrixes U, V and a diagonal matrix for the singular values Σ defined in Eq. (4.13), then

we have

G̃min =
(
(UΣV †)†UΣV †)−1

(UΣV †)† ΨA+
1

=
(
V Σ†U †UΣV †)−1

V Σ†U † ΨA+
1

= V (Σ†Σ)−1V †V Σ†U † ΨA+
1

= V (Σ†Σ)−1Σ†U † ΨA+
1 , (4.44)

where (Σ†Σ)−1Σ† equals to Σ−1 defined in Eq. (4.14) since the singular values defined

in positive real values. Obviously, G̃min = V Σ−1U † ΨA+
1 is the solution calculated from

SVD.

We here discuss in the viewpoint of a parameter fitting by the least square method.

The forms of the equations (4.42) and (4.43) are equivalent to those in the parameter

fitting. In this context, we regard ΨA+
1 ,G, and Y A+

1 as data points, fit parameters, and
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fit functions, respectively. Therefore, we can consider the method in Sec. 4.2 as fitting for

the spherical harmonics amplitudes by the fit function Y A+
1 .

4.4.2 The case of the Misner’s method

We give here the consideration from the viewpoint of the least square method for Misner’s

method discussed in Ref. [55]. Let us consider N × 1 column vector Ψ as N data points

of the NBS wave functions in/around the shell SR,∆ in which the weight ωR,∆(x⃗) has a

non-zero value. Each NBS wave function is decomposed as Eq. (4.23). Similarly, let us

define an N ×M rectangle matrix Y as N points of the M basis functions YR,∆
nlm . For

example, for nmax = 2 and lmax = 2, Y is given by

Y =


YR,∆

0,0,0(x⃗1) YR,∆
0,1,−1(x⃗1) YR,∆

0,1,0(x⃗1) · · · YR,∆
2,2,2(x⃗1)

...
...

...
...

YR,∆
0,0,0(x⃗N) YR,∆

0,1,−1(x⃗N) YR,∆
0,1,0(x⃗N) · · · YR,∆

2,2,2(x⃗N)

 , (4.45)

where the number of rows is M = 3 × (1 + 3 + 5) = 27. When we define an N × N

diagonal matrix W for the weight ωR,∆(x⃗), the matrix GAB introduced in Eq. (4.32) is

simply written by G = Y †WY . Using above matrixes, let us estimate the sum of squared

residuals F (G̃) between the Ψ and an approximate solution vector Ψ̃ ≡ Y G̃, where G̃

is M × 1 column vector for an approximate solution of the coefficient in Eq. (4.23). Since

we have weights W , F (G̃) is better to estimate as the weighted sum of squared residuals

defined by

F (G̃) =
(
Ψ̃−Ψ

)†
W
(
Ψ̃−Ψ

)
=

(
Y G̃−Ψ

)†
W
(
Y G̃−Ψ

)
, (4.46)

which is minimized at dF (G̃min)/dG̃ = 0 with

G̃min =
(
Y †WY

)−1
Y †W Ψ

= G−1Y †W Ψ. (4.47)

This solution is equivalent to Eq. (4.34) for a finite number of the basis function. We

find, indeed, that the dual basis function defined in Eq. (4.37) minimizes the mean square
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error between ⟨ỸR,∆
A |ψ⟩discSR,∆

and cR,∆A for given nmax and lmax.

In the context of the least square method, we can consider Misner’s method as a fitting

for the spherical harmonics amplitudes by fit functions Y with the weight W in/around

the shell SR,∆.



Chapter 5

Numerical results

5.1 Simulation setup

For numerical simulations in this thesis, we employ the (2 + 1)-flavor full QCD config-

urations generated by PACS-CS Collaboration with the renormalization-group improved

Iwasaki gluon action and a nonperturbatively O(a) improved Wilson-clover quark action

at β = 6/g2 = 1.90 on a L3 × T = 323 × 64 lattice [16]. The improved clover coefficient

is determined nonperturbatively in Ref. [56] as cSW = 1.715. The corresponding lattice

spacing is a = 0.0907(13) fm and physical lattice size is La = 2.902(42) fm. This gauge

ensemble data are available on the website of the Japan Lattice Data Grid (JLDG) [57].

There are six ensembles, which cover the pion mass from 700 MeV to 156 MeV. Due

to the limited computational resources, we utilize the heavier quark masses in our lattice

simulation. In order to see the quark mass dependence of observables, we employ three

ensembles. Table. 5.1 show that hopping parameters and corresponding pion masses and

kaon masses for each gauge ensemble which is used in this thesis.

Table 5.1: Hopping parameters and corresponding pion masses and kaon masses for gauge
ensembles we used in this thesis. The pion masses and the kaon masses are referred to
Ref. [16].

κud κs mπ [MeV] mK [MeV]
Ensemble 1 0.13700 0.13640 701 790
Ensemble 2 0.13727 0.13640 570 713
Ensemble 3 0.13754 0.13640 411 635

53
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For the charm quark, we employ the relativistic heavy quark (RHQ) action [36] to

avoid the leading O ((mQa)
n) and the next-to-leading O ((mQa)

n(aΛQCD)) discretization

errors due to the charm quark mass mQ. We take the improved parameters κQ, rs, ν, cB

and cE determined in Ref. [18] so as to reproduce the experimental value of the mass and

the relativistic dispersion relation for the charmonium in spin-averaged 1S state. The

RHQ parameters are listed in Table 5.2. Note that charm quark creation and annihilation

Table 5.2: RHQ parameters in our simulations. These parameters are determined in Ref.
[18] so as to reproduce the experimental value of the mass and the relativistic dispersion
relation for the charmonium in spin-averaged 1S state.

κQ rs ν cB cE
0.10959947 1.1881607 1.1450511 1.9849139 1.7819512

effects are not included in the gauge configuration. That is, we treat the charm quark in

the quenched approximation. The effects of charm loops for charmed baryons, however,

are expected to be small as studied e.g. in Refs. [58, 59]. Nevertheless, the effect to

the charmed baryon interaction is an interesting open question to be investigated in the

future.

We calculate quark propagators with the periodic boundary condition for the spatial

directions, while the Dirichlet boundary condition is imposed on the temporal direction

at the time-slice t = 32+ t0. The reason for imposing the Dirichlet boundary condition is

that we independently treat correlation functions for forward propagation and backward

propagation in time to take an average them for increasing the statistics. The correlation

functions are calculated using the unified contraction algorithm [60]. For the source

operator, we employ the wall source defined below Eq. (3.16) to get better signals. We

take 64 different time-slices for each configuration as the wall source location. The total

statistics of each ensemble are given in Table 5.3.

For all analyses in this thesis, we employ the Jackknife method to estimate statistical

errors. The methodology of the Jackknife method is summarized in Appendix A.2. The

binsize of Jackknife samples is taken to 57, 40 and 45 for the Ensemble 1, 2 and 3,

respectively. We confirm that change of binsize does not affect the errors for hadron

masses as well as the errors for potentials and phase shifts.

Various hadron masses are calculated by fitting hadron two-point correlation functions



5.1. SIMULATION SETUP 55

Table 5.3: The number of configurations and sources. The factor of two in # of sources
means forward and backward propagations in time.

# of gauge configs. # of sources
Ensemble 1 399 64 × 2
Ensemble 2 400 64 × 2
Ensemble 3 450 64 × 2

with the exponential type fit function. The results are summarized in Table 5.4.

Table 5.4: Calculated hadron masses in unit of [MeV] for each ensemble. The fit range in
t− t0 is [10, 20] for π in Ensemble 2, [10, 15] for π in Ensemble 3, [19,24] for Ξcc and [15,
20] for all other cases.

Ensemble 1 Ensemble 2 Ensemble 3
mπ 702(2) 570(1) 412(2)
mK 789(2) 713(1) 637(2)
mD 1999(1) 1949(2) 1904(2)
mN 1581(6) 1399(9) 1215(9)
mΛ 1642(6) 1493(7) 1342(6)
mΣ 1657(6) 1522(8) 1395(9)
mΞ 1709(5) 1599(7) 1500(7)
mΛc 2685(3) 2555(5) 2434(6)
mΣc 2780(5) 2674(7) 2575(9)
mΞcc 3801(2) 3727(3) 3673(4)

For the local interpolating operators in Eq. (3.14), we employ the following form for

a nucleon, Λc, Σc, and Ξc as

Bα(x) = ϵijk
[
qTi (x)Cγ5qj(x)

]
qk,α(x), (5.1)

where x = (x⃗, t), and i, j, k are color indices. C is the charge conjugation matrix defined

by C = γ2γ4, and q = u, d, c stand for quark operators for up-, down- and charm-quarks,

respectively. Flavor structures are given by

N =

(
p

n

)
=

(
[ud]u

[ud] d

)
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Λc =
1√
6
([cd]u+ [uc] d− 2 [du] c)

Σc =


Σ++
c

Σ+
c

Σ0
c

 =


[cu]u

1√
2
([cd]u+ [cu] d)

[cd] d


Ξcc =

(
Ξ++
cc

Ξ+
cc

)
=

(
[cu] c

[cd] c

)
(5.2)

5.2 2-body interaction in ΛcN system

In this section, we show the numerical results of single channel potentials for the ΛcN

system and discuss the ΛcN interaction. In order to investigate all of the leading order

potentials in the velocity expansion defined in Sec. 3.1.5, we calculate the ΛcN potentials

in both 1S0 channel and 3S1 −3 D1 channel. These potentials are constructed from the

NBS wave functions for the ΛcN system projected into the desired spin channel. For

the angular momentum projection, we employ Misner’s method explained in Sec. 4.3.

Before we show the results of the potential, we present the numerical results of applying

Misner’s method to the R-correlator. The discussion of applying Misner’s method is based

on Ref. [26], while the discussion of the ΛcN interaction is based on Refs. [22, 23].

5.2.1 R-correlator for the ΛcN system in 1S0 channel with Mis-

ner’s method

We first present numerical results of the R-correlator (normalized baryon four-point corre-

lation function) defined as Eq. (3.25) for ΛcN system in the 1S0 channel. The R-correlator

is calculated at t− t0 = 13 for mπ ≃ 700 MeV case. The projection to the 1S0 channel is

given in Eq. (3.33). This quantity corresponds to the NBS wave function for the ΛcN sys-

tem in the 1S0 channel. As we discussed in Sec. 3.1.5, however, the A+
1 projection leaves

L ≥ 4 components in the wave function, which may make comb-like structures in the R-

correlator plot as a function of the radial r. In order to see the effects of the higher partial

wave components, we apply Misner’s method to decompose the L = 0 component (the

spherical harmonics amplitude for Y0,0) directly from the non-A+
1 projected R-correlator.

For Misner’s method, we employ the parameters ∆, nmax, and lmax as a (lattice spacing)
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Figure 5.1: R-correlator (normalized baryon four-point correlation function) for ΛcN
system in the 1S0 channel. The R-correlator is calculated at t − t0 = 13 for mπ ≃ 700
MeV case. The blue line shows the R-correlator with A+

1 projection divided by Y00, and
the orange line corresponds to the spherical harmonics amplitude for Y0,0 calculated by
Misner’s method.

, 3, and 5, respectively. Misner’s method is applied for a spherical shell around given

r = R. We calculate each R in unit of 0.2a from 2a to 16a for radial coordinates of the

spherical harmonics amplitude, so that some data are repeatedly used to calculate the

spherical harmonics amplitude. When we apply Misner’s method for R < 2a, the solution

cannot be obtained due to few data points. For R > 16a, on the other hands, we may

obtain insufficient solution because the spherical shell becomes too large to enclose in

a finite spatial extension. Misner’s method is applied to each Jackknife sample for the

R-correlators and we estimate the statistical errors for the spherical harmonics ampli-

tude. Fig. 5.1 shows the R-correlator with A+
1 projection as well as the L = 0 component

calculated by Misner’s method. From Fig. 5.1, we find small comb-like structures in the

R-correlator, which are not appeared in the L = 0 component by Misner’s method. This

observation shows that the L ≥ 4 components are small but exist so that they make

comb-like structures in the R-correlator plot.

Next, we give results for Laplacian of the R-correlator in Misner’s method, which affect

the structure of the potential. In the conventional method, the Laplacian is defined by a

finite second-order difference. In Misner’s method, however, it is calculated analytically as

the second-order derivative defined in Eq. (4.36). We give their results in Fig. 5.2, which
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Figure 5.2: The Laplacian of R-correlator (normalized baryon four-point correlation func-
tion) for ΛcN system in the 1S0 channel. The R-correlator is calculated at t − t0 = 13
for mπ ≃ 700 MeV case. The blue line shows the Laplacian of the R-correlator with A+

1

projection divided by Y00, and the orange line corresponds to the Laplacian of the spheri-
cal harmonics amplitude for Y0,0 calculated by Misner’s method. The former Laplacian is
defined by a finite second-order difference, while the latter is calculated as in Eq. (4.36).

shows that the comb-like structures in the Laplacian of the R-correlator are reduced in

Misner’s method. From their observations, we find that the L ≥ 4 components in the

wave function may produce large comb-like structures in the Laplacian (also in potential)

even the amplitude of the L ≥ 4 components is small. Since the comb-like structures

are unphysical (i.e. lattice artifacts), it is better to use Misner’s method to calculate the

Laplacian of the R-correlator.

5.2.2 R-correlator for the ΛcN system in 3S1 −3 D1 channel with

Misner’s method

We next show numerical results of the R-correlator for ΛcN system in the 3S1 −3 D1

channel. The R-correlator is calculated at t − t0 = 13 for mπ ≃ 700 MeV case. Since

the wall source is A+
1 symmetric, the total angular momentum in the source is fixed to

JP = 1+ by projecting the total spin to S = 1. In this case, S-wave component and

D-wave component are mixed in t − t0 > 0 because the spin and the orbital angular

momentum are not preserved in QCD. In order to extract individual components, we

define the D-wave projection by (1− P (A+
1 )) with the A+

1 projection P (A+
1 ). Since the A+

1
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Figure 5.3: R-correlator (normalized baryon four-point correlation function) for ΛcN
system in the 3S1 −3 D1 channel. The R-correlator is calculated at t − t0 = 13 for
mπ ≃ 700 MeV case. The blue line shows the original R-correlator data and the orange
line corresponds to the spherical harmonics amplitude calculated by Misner’s method.

projection cannot remove L ≥ 4 components, the (1−P (A+
1 )) projection also leaves L ≥ 4

components into D-wave R-correlator. Fig. 5.3 shows that the R-correlators in the 3S1

and the 3D1 channels as well as the L = 0 and the L = 2 components of the spherical

harmonics amplitudes extracted by Misner’s method. The numerical setup for Misner’s

method is the same as in the 1S0 channel case. We find comb-like structures in original

R-correlator data for both channels, where the contaminations from higher partial waves

in D-wave channel seem larger than those in S-wave channel.

The Laplacians of the R-correlator are also calculated by a finite second-order differ-

ence for original R-correlator data while they are calculated analytically for the spherical

harmonics amplitudes extracted by Misner’s method, as shown in Fig. 5.4. The comb-

like structures in the Laplacian of the R-correlator are reduced as in the case of the 1S0

channel.

Hereafter, we employ Misner’s method to calculate all of the results on the lattice

simulation.
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Figure 5.4: The Laplacian of R-correlator (normalized baryon four-point correlation func-
tion) for ΛcN system in the 3S1−3D1 channel. The R-correlator is calculated at t−t0 = 13
for mπ ≃ 700 MeV case. The blue line shows the Laplacian of the original R-correlator
data and the orange line corresponds to the Laplacian of the spherical harmonics ampli-
tude calculated by Misner’s method. The former Laplacian is defined by a finite second-
order difference, while the latter is calculated as in Eq. (4.36).

5.2.3 Potentials for the ΛcN system in 1S0 channel

Using the R-correlators calculated with Misner’s method, we next construct the central

potentials for the ΛcN system. The left figure in Fig. 5.5 shows the ΛcN central potential

in the 1S0 channel for each gauge ensemble. We employ the time-dependent HAL QCD

method defined in Sec. 3.1.4 to construct the potentials. The potentials are calculated

at t − t0 = 13 (Ensemble 1: mπ ≃ 700 MeV), t − t0 = 11 (Ensemble 2: mπ ≃ 570

MeV) and t − t0 = 9 (Ensemble 3: mπ ≃ 410 MeV). We confirm the stability of the

potential against the time separations t− t0, which indicates that the contributions from

inelastic channels can be neglected. We find a repulsive core at a short distance (r ≲ 0.5

fm) and an attractive pocket at an intermediate distance (0.5 ≲ r ≲ 1.5 fm) in the ΛcN

potential. We also observe that the height of the repulsive core increases and the minimum

of the attractive pocket shifts outward, as u, d quark masses decrease. A variation of the

repulsive core against u, d quark masses may be explained by the fact that the color

magnetic interaction is proportional to the inverse of the constituent quark mass [61].

For comparison, we calculate the interactions for the ΛN system in 1S0 channel, which

are also shown in the right figure in Fig. 5.5. From the comparison, we notice that the

attraction of the ΛcN potential seems weaker than that of the ΛN potential.
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Figure 5.5: The ΛcN central potential (Left figure) and the ΛN central potential (Right
figure) in the 1S0 channel for each gauge ensemble. The potentials are calculated at
t − t0 = 13 for mπ ≃ 700 MeV case (Blue), t − t0 = 11 for mπ ≃ 570 MeV case (Green)
and t− t0 = 9 for mπ ≃ 410 MeV case (Red).

5.2.4 ΛcN central and tensor potentials in 3S1 −3 D1 channel

The upper two figures in Fig. 5.6 show the central potential (Left figure) and the tensor

potential (Right figure) for the ΛcN system with JP = 1+. In the lower two figures, we also

show the potentials for the ΛN system with JP = 1+. Each potential is calculated by the

time-dependent HAL QCD method defined in Sec. 3.1.4. These potentials are calculated

at t− t0 = 13 (Ensemble 1: mπ ≃ 700 MeV), t− t0 = 11 (Ensemble 2: mπ ≃ 570 MeV)

and t − t0 = 9 (Ensemble 3: mπ ≃ 410 MeV). It is confirmed that these potentials are

stable against the change of t − t0 within the statistical errors, as was observed in the

central potential in the 1S0 channel. We notice that the central potential is similar to

the one in the 1S0 channel except at short distance (r ≲ 0.5 fm). The tensor potential of

the ΛcN system is weak compared to that of the ΛN system. We also find that the u, d

quark mass dependence of the tensor potentials is weak for the ΛcN system.

The weaker ΛcN potential than ΛN could be explained by the following facts: (i)

The long-range contribution is expected to be caused by the K meson exchange for ΛN

interaction [6]. In the ΛcN system, however, the K meson (strange quark) exchange

is replaced by the D meson (charm quark) exchange, and this contribution is highly

suppressed due to the much larger D meson mass than the K meson mass. (ii) The one-

pion-exchange in the ΛN − ΣN transition is considered to give a sizable contribution to

the effective ΛN interaction. In the ΛcN system, however, this contribution is expected

to be suppressed due to the large mass difference between ΛcN and ΣcN .
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Figure 5.6: The central potential VC and the tensor potential VT for the ΛcN system
(Upper two figures) and the ΛN system (Lower two figures) in the 3S1 −3 D1 channel
for each ensemble. The potentials are calculated at t − t0 = 13 for mπ ≃ 700 MeV case
(Blue), t − t0 = 11 for mπ ≃ 570 MeV case (Green) and t − t0 = 9 for mπ ≃ 410 MeV
case (Red).

5.2.5 Spin-independent potential and spin-spin potential for ΛcN

system

The upper two figures in Fig. 5.7 show the ΛcN spin-independent central potential V0

(Left figure) and the spin-dependent one Vσ (Right figure) defined in Eq. (3.40), while

we show those potentials for ΛN system in the lower two figures. It is easy to see that

the spin-dependent potential Vσ for ΛcN system is negligibly small compared to one for

ΛN system, and the spin-independent central potential gives a significant contribution for

ΛcN potentials. The observation of the small spin-dependent potential Vσ for ΛcN system

can be explained by the heavy D-meson mass and the large separation of the ΛcN −ΣcN

threshold, as we discussed in the previous subsection.
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Figure 5.7: The spin-independent central potential V0 and the spin-dependent one Vσ
for the ΛcN system (Upper two figures) and the ΛN system (Lower two figures). The
potentials are calculated at t − t0 = 13 for mπ ≃ 700 MeV case (Blue), t − t0 = 11 for
mπ ≃ 570 MeV case (Green) and t− t0 = 9 for mπ ≃ 410 MeV case (Red).

5.2.6 Phase shifts for ΛcN elastic scattering

We have calculated the Λ(c)N potentials in the previous three subsections and find that

the ΛcN potentials seem weaker than the ΛN potentials. We also observe that the spin-

independent ΛcN potential gives a significant contribution. Since the potential is not

observable, however, we should discuss the interaction using physical observables such

as scattering phase shifts. For this purpose, we interpolate the potential data with fit-

functions and solve the Schrödinger equation with the fitted potentials in the infinite

volume. For the fit-function for the ΛcN central potentials, we employ the following

functional form:

VC;fit(r) = a1e
−
(

r
a2

)2

+ a3e
−
(

r
a4

)2

+ a5

[(
1− e−a6r

2
) e−a7r

r

]2
, (5.3)
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where two Gaussians describe the repulsive core, while the third term reproduces an

attractive pocket in the potential. The form of the third term is employed by respecting

the fact that the long-range attraction in the ΛcN system is caused by the two-pion

exchange. For the ΛcN tensor potentials, we employ the following functional form:

VT ;fit(r) = a1

(
1− e−a2r

2
)(

1− 3

a3r
− 3

(a3r)2

)
e−a3r

r
, (5.4)

which is the phenomenological functional form for the tensor potential. We use the

potential data at r ∈ [2a, 16a] fm for the fitting.

In order to solve the Schrödinger equation, we employ a finite difference method start-

ing from r ∼ 0, and extract phase shifts from the asymptotic behavior of the wave

function. Fig. 5.8 shows the phase shift for the ΛcN system in the 1S0 channel for each
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Figure 5.8: The phase shift for the ΛcN system in the 1S0 channel.

ensemble. Results show that the net interaction in the 1S0 channel is attractive for all

cases at ECM ≲ 40 MeV but not strong enough to form bound states. We also notice that
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the attraction at low energies becomes stronger as the pion mass decreases.
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Figure 5.9: The phase shifts in the 3S1 channel (Left figure), the 3D1 channel (Middle
figure) and the inelasticity (Right figure) for the ΛcN system in 3S1 −3 D1 channel.

Fig. 5.9 shows the phase shifts for the ΛcN system in the 3S1 −3 D1 channel for each

ensemble. In this case, we solve the coupled channel Schrödinger equation for S−D wave

coupling. We find that the phase shift in the 3S1 channel is almost the same to the one in

the 1S0 channel. The inelasticity, a strength of the S −D coupling, is extremely small so

that the S-wave and the D-wave are decoupled in the ΛcN system. These observations

are coming from the fact that both of spin-spin potential and tensor potential for the ΛcN

system are weak.

Note that the leading order approximation of the ΛcN potential may have sizable sys-

tematic errors around the ΣcN threshold (ECM ≃ 95, 119 and 141 MeV for mπ ≃ 700, 570

and 410 MeV case, respectively) due to the truncation of the derivative expansion of the

non-local potential as we discussed in Sec. 3.2.1. Size of such systematic uncertainties of

the ΛcN interactions near the ΣcN threshold can be estimated even at the leading order

if the coupled-channel HAL QCD method is employed. This effect is discussed in the next

section.

We next calculate low-energy parameters, the scattering length a0 and the effective

range reff , defined by the effective range expansion:

k cot δ0(k) =
1

a0
+
reff
2
k2 +O(k4), (5.5)

which give us significant information for interactions at low energies. Note that we employ

the particle physics convention for the definition of scattering length which has opposite

sign from the historical sign convention of the baryon-baryon interaction. The scattering
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length and the effective range are determined by fitting k cot δ0(k) data at k ∈ (0, 0.5] MeV

with Eq. (5.5) as the fit-function. The results for ΛcN system are listed in Tables 5.5 and

5.6. From two results, we find the low-energy parameters for ΛcN system in 1S0 channel

Table 5.5: The scattering length for the ΛcN system. We employ the particle physics con-
vention for the definition of scattering length which has opposite sign from the historical
sign convention of the baryon-baryon interaction.

mπ
1S0 channel 3S1 channel

412(2) MeV 0.50 (17) fm 0.51 (16) fm
570(1) MeV 0.25 (13) fm 0.28 (16) fm
702(2) MeV 0.13 (11) fm 0.17 (11) fm

Table 5.6: The effective range for the ΛcN system.

mπ
1S0 channel 3S1 channel

412(2) MeV 5.59 (1.24) fm 5.33 (0.96) fm
570(1) MeV 6.02 (3.37) fm 5.16 (2.34) fm
702(2) MeV 11.6 (11.3) fm 6.92 (4.45) fm

and 3S1 channel are almost identical within the statistical errors, which suggest that

the ΛcN interaction is almost spin-independent at low energies. In order to investigate

the spin-independency, we calculate the low-energy parameters by only using the spin-

independent central potential V0(r) and compare with the values in Tables 5.5 and 5.6,

which are shown in Fig. 5.10. The figure suggests that the spin-independent central

potential well reproduces ΛcN interaction.

We have discussed the interpretations for the weak strength of both the tensor potential

and the spin-spin potential from the point of view of the meson exchange interactions in

secs. 5.2.4 and 5.2.5. In another point of view, the similarity of the ΛcN phase shifts in 1S0

and 3S1 may be understood by the heavy quark spin symmetry [62], which is fundamental

symmetry of the heavy quark in QCD. First, in the heavy quark limit, the spin of the

heavy quark can be considered as the conserved quantity and decouples from the total spin

of other components made of light quarks and gluons. In this situation, a heavy hadron

system including one heavy quark with total angular momentum J can be interpreted as

|[L]jQ⟩J , where Q is a heavy quark and [L]j stands for the light components of the heavy
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Figure 5.10: Scattering lengths (Left figure) and effective ranges (Right figure) for the
ΛcN system. These values are calculated by using the central potential in 1S0 channel,
the central potential in 3S1 channel and the spin-independent central potential V0(r).
For the scattering lengths, we employ the particle physics convention for the definition
of scattering length which has opposite sign from the historical sign convention of the
baryon-baryon interaction.

hadron system with total spin j. Since the total angular momentum is conserved, the

total spin of light components is also conserved in heavy quark mass limit. The compound

state in J = j + 1/2 and J = j − 1/2 channel are degenerated because the spin direction

of the heavy quark is irrelevant to the total energy in the heavy quark mass limit. This

consideration can be applied to not only a single heavy hadron but also multi-hadron

systems with a heavy quark [63]. In the case of the two baryon system with single charm

quark in total angular momentum J = 0, the total spin of light-components should be

j = 1/2, which degenerates with the system in total angular momentum J = 1 in the

heavy quark mass limit. Next, in a finite volume, an energy eigenstate has a discrete total

energy. When we denote the total energy for the n-th energy eigenstate in J = 0 (J = 1)

asWn (W̃n), the NBS wave function with the total energyWn (W̃n) is defined in Eq.(3.1),

denoted by ψWn
J=0 (ψW̃n

J=1). A plausible assumption that the heavy quark spin symmetry

holds also in the finite volume leads to Wn = W̃n, which implies that the phase shifts for

J = 0 and J = 1 states agree at Wn = W̃n, according to Lüscher’s finite volume formula

[20]. Since this argument holds for an arbitrary volume, the scattering phase shifts agree

between J = 0 and J = 1 states at all energy below the inelastic threshold. Note that

the breaking of the heavy quark symmetry due to the heavy but finite charm quark mass
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generates a small spin-dependent in the phase shifts and scattering lengths.

We finally discuss the differences between values of physical observables calculated

from the potentials constructed with Misner’s method and those in Ref. [23] in which

the observables are calculated from the conventional HAL QCD potential constructed

from the A+
1 projected R-correlator data. The comparisons of scattering lengths with
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Figure 5.11: Comparisons of the scattering lengths in 1S0 channel (Left figure) and 3S1

channel (Right figure) for the ΛcN system. For the scattering lengths, we employ the
particle physics convention for the definition of scattering length which has opposite sign
from the historical sign convention of the baryon-baryon interaction.

the conventional calculation are given in Fig. 5.11, which show consistent results within

statistical errors. This suggests that the potential fitting reproduces the L = 0 component

well although the higher partial wave contributions are included. Note that since the fit-

range of the potentials is different between the analysis in this section and in Ref. [23],

there may exist systematic errors in the values of scattering lengths due to this difference.

5.3 Inelastic scattering in ΛcN system and ΣcN inter-

action in I = 1/2 channel

As we discussed in Sec. 3.2.1, the non-locality of the ΛcN single channel potential may be-

come sizable when the energy approaches an inelastic threshold, that is the ΣcN threshold.

In this section, we calculate the coupled channel potential for ΛcN -ΣcN system to inves-

tigate inelastic scattering effects. Furthermore, from the coupled channel potential, we

can also study interactions for the ΣcN system with the isospin I = 1/2. The NBS wave
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function for the ΣcN system in I = 1/2 channel is obtained by the following projection:

ψΣcN(I=1/2)(x⃗) =

√
1

3
ψΣ+

c p
(x⃗)−

√
2

3
ψΣ++

c n(x⃗). (5.6)

The discussion in this section is based on Refs. [24, 25].

5.3.1 Coupled channel potential for ΛcN-ΣcN system in 1S0 chan-

nel
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Figure 5.12: The ΛcN -ΣcN coupled channel potential in 1S0 channel. The potentials are
calculated at t− t0 = 13 for mπ ≃ 700 MeV case (Blue), t− t0 = 11 for mπ ≃ 570 MeV
case (Green) and t − t0 = 9 for mπ ≃ 410 MeV case (Red). Left and middle figures
correspond to the diagonal potentials for the ΛcN and the ΣcN channels, and the right
figure shows the averaged off-diagonal potential.

We first show the coupled channel potential for the ΛcN -ΣcN system in 1S0 channel.

The potentials are calculated by time-dependent HAL QCD method for the coupled chan-

nel potential presented in Sec. 3.2.3. We employ Misner’s method to extract the L = 0

component of the NBS wave function for each Jackknife sample. For Misner’s method,

we employ the parameters ∆, nmax, and lmax as a (lattice spacing) , 3, and 5, respectively.

We calculate each R in unit of 0.2a from 2a to 20a for radial coordinates of the spherical

harmonics amplitude, so that some data are repeatedly used to calculate the spherical

harmonics amplitude. The numerical results are shown in Fig. 5.12. The potentials are

calculated at t−t0 = 13 (Ensemble 1: mπ ≃ 700 MeV), t−t0 = 11 (Ensemble 2: mπ ≃ 570

MeV) and t− t0 = 9 (Ensemble 3: mπ ≃ 410 MeV).

From the results, we find that the tail of the potentials deviates from the zero (espe-

cially in the ΣcN potential and off-diagonal potential). Furthermore, we observe that the
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time-dependence of the potentials is still large. These observations suggest that the time-

separation between the source operator and the sink operator (t− t0) is not large enough

so that the inelastic states cannot be negligible. When we take more large t− t0, we need

more large statistics because the statistical errors increase for large t − t0. However, we

cannot have further statistics due to the limited number of the gauge configurations in

our numerical setup. In the future calculation, we should employ a more large number of

gauge configurations to investigate the ΛcN -ΣcN system in 1S0 channel.

5.3.2 Coupled channel potential for ΛcN-ΣcN system in 3S1−3D1

channel
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Figure 5.13: The coupled channel potential for the ΛcN -ΣcN system in 3S1−3D1 channel.
Upper three figures show the central potentials while the lower three figures show the
tensor potentials for each component. The potentials are calculated at t − t0 = 13 for
mπ ≃ 700 MeV case (Blue), t− t0 = 11 for mπ ≃ 570 MeV case (Green) and t− t0 = 9 for
mπ ≃ 410 MeV case (Red). Left and middle figures correspond to the diagonal potentials
for the ΛcN and the ΣcN channels, and the right figure shows the averaged off-diagonal
potential.

We next show the coupled channel potential for the ΛcN -ΣcN system in 3S1 −3 D1
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channel. The potentials are calculated by time-dependent HAL QCD method with Mis-

ner’s method as in the previous subsection. In order to calculate both central and tensor

potentials, we combine Eqs. (3.37) and (3.72). Fig. 5.13 shows the numerical results of the

potentials calculated at t− t0 = 13 (Ensemble 1: mπ ≃ 700 MeV), t− t0 = 11 (Ensemble

2: mπ ≃ 570 MeV) and t − t0 = 9 (Ensemble 3: mπ ≃ 410 MeV). These potentials are

confirmed that they are stable against the change of t − t0 within the statistical errors,

which indicates that the inelastic contributions from channels other than the ΛcN and the

ΣcN can be neglected. In the figures, we write V ΛcN
C , V ΛcN

T , V ΣcN
C , V ΣcN

T , V ΛcN−ΣcN
C , and

V ΛcN−ΣcN
T as ΛcN central potential, ΛcN tensor potential, ΣcN central potential, ΣcN

tensor potential, off-diagonal (transition) central potential, and off-diagonal (transition)

tensor potential, respectively.

From the results, we observe that the central potentials for ΛcN channel (V ΛcN
C ) are

almost identical to the ΛcN potentials in the single channel analysis (i.e. the potentials in

Fig. 5.6) within the statistical errors. We also find a strong attraction in the ΣcN central

potential. Fig. 5.14 shows the comparison between the ΣcN and ΣN central potential for
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Figure 5.14: The comparison between the central potential for the ΣcN channel and the
ΣN channel in the 3S1 channel. The potentials are calculated at t− t0 = 13 for mπ ≃ 700
MeV case.

mπ ≃ 700 MeV case. The figure shows the tails of these potentials are comparable, which

might be a manifestation of the one-pion-exchange. Furthermore, we observe that the

height of the repulsive core in the ΣcN potential is smaller than that in the ΣN potential.

As the result, the region of the attraction in ΣcN potential is extended. This motivates us

to search the ΣcN two-body bound state. For the off-diagonal (transition) potential, we
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find that the central potential (V ΛcN−ΣcN
C ) is negligibly weak while the tensor potential

(V ΛcN−ΣcN
T ) is strong. This suggests that if there exists a would-be ΣcN bound state,

it becomes a resonance in the D-wave ΛcN state through the strong transition tensor

potential.

5.3.3 Phase shifts for the ΛcN and the ΣcN channel in 3S1 −3 D1

channel
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Figure 5.15: The phase shifts of S-wave ΛcN system (Upper left figure), S-wave ΣcN
system (Upper right figure), D-wave ΛcN system (Lower left figure), D-wave ΣcN system
(Lower right figure) for each pion mass case. The phase shift is defined as Eq. (5.8).

We then calculate physical observables such as scattering phase shifts from the po-

tentials. For this purpose, we fit the potential data with the functional form defined

in Eq. (5.3) for the ΛcN central potentials, while the ΣcN central potentials and the



5.3. INELASTIC SCATTERING IN ΛCN SYSTEM AND ΣCN
INTERACTION IN I = 1/2 CHANNEL 73

off-diagonal central potentials are fitted with the following functional form:

VC;fit(r) = a1e
−
(

r
a2

)2

+ a3e
−
(

r
a4

)2

+ a5

(
1− e−a6r

2
) e−a7r

r
, (5.7)

where the third term is employed by respecting the fact that the long-range attraction in

the ΣcN system is caused by the one-pion-exchange. For the tensor potentials, we employ

the fit-function defined in Eq. (5.4). We use the potential data at r ∈ [2a, 16a] fm for the

fitting.

Using the fitted potentials, we solve the coupled channel Schrödinger equation by the

finite difference method and calculate the S-matrix from an asymptotic behavior of wave

functions. From the obtained S-matrix, we define the phase shifts for the coupled channel

system as:

δj(k) ≡
1

2i
log

(
Sjj
|Sjj|

)
, (5.8)

where j represents an index for the channel.

Fig. 5.15 shows the phase shifts of each channel. From the figures, we first find that

there are no bound states for both ΛcN and ΣcN channels at all pion masses, even though

the attraction of the S-wave ΣcN system at low energies is rather strong. In the results of

the D-wave ΛcN phase shift, we observe a cusp-like structure around the ΣcN threshold,

which is induced by the strong transition tensor potential. On the other hand, there

exist no such a structure in the S-wave ΛcN phase shift, which suggests that the strong

attraction in the S-wave ΣcN interaction does not affect the S-wave ΛcN interaction.

This observation is understood from the weak off-diagonal part of the central potential

(V ΛcN−ΣcN
C ).

5.3.4 Non-locality of the single channel ΛcN potential

In order to investigate the non-locality of the single channel potential calculated in

Sec. 5.2.4, we compare the phase shifts for the ΛcN system (Left two figures in Fig. 5.15)

with those calculated in the single channel analysis (i.e. Fig. 5.9). The results of the

comparison are given in Fig. 5.16. From the upper three figures, we find that the S-wave

phase shifts in the single channel analysis and coupled channel analysis are almost iden-

tical, which imply that the non-locality of the ΛcN central potential in the single channel

analysis is small. Furthermore, we observe that these phase shifts are almost the same
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Figure 5.16: Comparisons of the ΛcN phase shifts calculated from single channel potential
(Red) and coupled channel potential (Blue).

even above the ΣcN threshold. This observation suggests that the S-wave ΛcN system is

almost decoupled from the ΣcN system. In the lower figures, on the other hand, we find

that the D-wave phase shifts are different around the ΣcN threshold although these are

almost identical in the low-energies. This implies that the non-locality of the ΛcN tensor

potential in the single channel analysis is large near and above the ΣcN threshold.

5.4 ΞccN interaction in I = 0 channel

The Ξcc baryon is a doubly charmed baryon whose spin-isospin is J(I) = 1/2 (1/2).

Recently, the Ξ++
cc baryon has been found in the LHCb experiment [19] and the mass is

estimated as mΞ++
cc

≃ 3621 MeV.

In this section, we present the 2-body interaction between Ξcc baryon and a nucleon in

spin-isospin J(I) = 0(0) channel. Since this system couples to spin-singlet ΛcΛc system,

we should consider the coupled channel system for ΞccN − ΛcΛc.

The ΞccN system with spin-isospin J(I) = 0(0) is interesting because this system

relates to the charm version of the H-dibaryon. The H-dibaryon is a candidate of the

six-quark (uuddss) exotic state in a spin and isospin singlet state first proposed by Jaffe

[64]. In the recent work in the HAL QCD Collaboration [74], we found that the strength
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of ΞN attraction is key to clarify the fate of H-dibaryon in nature. As a natural extension,

the investigation of the ΞccN interaction is important to study the charm version of the

H-dibaryon.

In order to construct the ΛcΛc-ΞccN(I = 0) coupled channel potential, we calculate

the NBS wave function for the ΞccN system in I = 0 channel obtained by the following

projection:

ψΞccN(I=0)(x⃗) =

√
1

2
ψΞ+

ccp
(x⃗)−

√
1

2
ψΞ++

cc n(x⃗). (5.9)

5.4.1 Coupled channel potential for ΛcΛc-ΞccN system in 1S0 chan-

nel
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Figure 5.17: The ΛcΛc-ΞccN(I = 0) coupled channel potential in 1S0 channel. The
potentials are calculated at t − t0 = 13 for mπ ≃ 700 MeV case (Blue), t − t0 = 11 for
mπ ≃ 570 MeV case (Green) and t − t0 = 9 for mπ ≃ 410 MeV case (Red). Left and
middle figures correspond to the diagonal potentials for the ΛcΛc and the ΞccN(I = 0)
channels, and right figure shows the averaged off-diagonal potential.

We show the coupled channel potential for the ΛcΛc-ΞccN(I = 0) system in 1S0 chan-

nel. The potentials are calculated by time-dependent HAL QCD method for the coupled

channel potential presented in Sec. 3.2.3. We employ Misner’s method to extract the

L = 0 component of the NBS wave function for each Jackknife sample with the param-

eters ∆ = a (lattice spacing), nmax = 3, and lmax = 5. We calculate each R in unit of

0.2a from 2a to 16a for the radial coordinate of the spherical harmonics amplitude, so

that some data are repeatedly used to calculate the spherical harmonics amplitude. The

numerical results are shown in Fig. 5.17. The potentials are calculated at t − t0 = 13

(Ensemble 1: mπ ≃ 700 MeV), t− t0 = 11 (Ensemble 2: mπ ≃ 570 MeV) and t− t0 = 9
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(Ensemble 3: mπ ≃ 410 MeV). We confirm that their potentials are stable against the

change of t − t0 within the statistical errors, which indicates that inelastic contributions

from channels other than the ΛcΛc and the ΞccN can be neglected.

From the results, we find the strong attraction in the ΞccN(I = 0) potential, while

the attraction ΛcΛc is weak. We also observe the interaction range of the off-diagonal

potentials is short. The shot interaction range of the off-diagonal potentials is understood

from the following fact. The transition between ΛcΛc and ΞccN(I = 0) is induced by a

charm quark exchange. Since the charm quark is heavy, this contribution is suppressed

in long-distances.

5.4.2 Phase shifts for the ΛcΛc and the ΞccN(I = 0) system in 1S0

channel
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Figure 5.18: The phase shifts of S-wave ΛcΛc system (Left figure), S-wave ΞccN(I = 0)
system (Middle figure) and the inelasticity defined as |SΛcΛc | (Right figure) for each pion
mass case. The phase shifts are defined as Eq. (5.10).

We next calculate the scattering phase shifts from the potentials. For this purpose,

we fit the potential data with the functional form defined in Eq. (5.3) for the ΛcΛc central

potentials, while the ΞccN(I = 0) central potentials and the off-diagonal central potentials

are fitted with the functional form defined in Eq. (5.7). We use the potential data at

r ∈ [2a, 16a] fm for the fitting.

Using the fitted potentials, we solve the coupled channel Schrödinger equation by the

finite difference method and calculate the S-matrix from an asymptotic behavior of wave

functions. From the obtained S-matrix, we define the phase shifts for the coupled channel
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system as(
SΛcΛc,ΛcΛc SΛcΛc,ΞccN

SΞccN,ΛcΛc SΞccN,ΞccN

)
≡

(
eiδ̄ΛcΛc 0

0 eiδ̄ΞccN

)(
cos 2θ̄ i sin 2θ̄

i sin 2θ̄ cos 2θ̄

)(
eiδ̄ΛcΛc 0

0 eiδ̄ΞccN

)
,

(5.10)

where δ̄ is so-called the bar phase shift and θ̄ is the mixing angle proposed in Ref. [66].

We show the numerical results for the phase shift of each channel and inelasticity

defined as |SΛcΛc,ΛcΛc | = cos 2θ̄ in Fig. 5.18. The inelasticity corresponds to the strength

of the transition between ΛcΛc and ΞccN(I = 0). From these figures, we find the ΛcΛc

phase shift cut through 90◦ below the ΞccN(I = 0) threshold, which corresponds to the

resonance state. This resonance state is induced by strong ΞccN(I = 0) attraction and

transition between ΛcΛc and ΞccN(I = 0). The sharpness of the resonance indicates the

strength of the transition is weak. This weak transition between ΛcΛc and ΞccN(I = 0)

is also seen as small deviations of inelasticity from unity in Fig. 5.18.

Finally, we discuss the fate of the charm version H-dibaryon in nature. In the physical

mass, the threshold of ΛcΛc (mΛcΛc ≃ 4570) is just above the ΞccN threshold (mΞccN(I=0) ≃
4560), so that the ΞccN(I = 0) is the ground state for the two baryon system with

two charm quarks in J(I) = 0(0) channel. Therefore, if the ΞccN(I = 0) attraction

is sufficiently strong, the charm version of H-dibaryon appears as a bound state in the

system. Our numerical results support this assumption that the ΞccN(I = 0) attraction

is sufficiently strong to form the bound state.





Chapter 6

Λc hypernuclei from HAL QCD

potential

Since the ΛcN interaction is dominated by the spin-independent central force, as we

discussed in the previous chapter, the spectrum of Λc hypernuclei, if they exist, would

be simple. In order to investigate Λc hypernuclei, we employ the single-folding potential

which is an S-wave effective potential between a single particle and spherical nuclei. We

construct the folding potential from the lattice potential and discuss the possible Λc

hypernuclei including the effects of Coulomb repulsion.

6.1 Single-folding potential

The single-folding potential for Λc hypernuclei is defined by

VF (r⃗) =

∫
d3r′ρA(r⃗′)VΛcN(r⃗ − r⃗′), (6.1)

where ρA(r⃗) denotes nuclear density distributions with the atomic number A. Since the

ΛcN interaction is dominated by the spin-independent central force, we take VΛcN(r⃗) =

V0(r⃗).

For the nuclear density distribution function, we use the two-parameter Fermi form

given by

ρA(r⃗) = ρ0

[
1 + exp

(
r − c

a

)]−1

,

∫
d3r ρA(r⃗) = A, (6.2)

79
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where r ≡ |r⃗|. We employ the parameters ρ0, c, a given in Ref. [67] for spherical nuclei

such as 12C, 28Si, 40Ca, 58Ni, 90Zr, and 208Pb, which are determined from the electron-

nucleus elastic scattering experiments. Strictly speaking, the nuclear density distributions

are deformed by the interaction with Λc baryon. We assume, however, the deformation

is negligible because the ΛcN interaction is weak. Fig. 6.1 shows the nuclear density
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Figure 6.1: Nuclear density distribution functions defined in Eq. (6.2).

distribution functions ρA(r) we used in this thesis.

Fig. 6.2 shows the folding potential for Λc-
208Pb for each ensemble. We observe that

the folding potential becomes deeper as the u, d quark masses decrease and becomes as

large as −10 to −20 MeV at the origin. This observation is the consequence of the fact

that the ΛcN two-body interaction becomes more attractive as the u, d quark masses

decrease.
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Figure 6.2: Λc-
208Pb folding potentials calculated from the spin-independent central po-

tential of the ΛcN system (Fig. 5.7) for mπ ≃ 700, 570, and 410 MeV cases.

6.2 Gaussian expansion method

Using this folding potential, we calculate the binding energy of the Λc hypernuclei by the

Gaussian expansion method [68] for the S-wave potential, with the physical masses for

Λc and nuclei. We briefly explain the Gaussian expansion method in this section.

We start from the Schrödinger equation for two particle system with the reduced mass

µ:

(H0 + V (r⃗))ψn(r⃗) = Enψn(r⃗) H0 = −∇⃗2

2µ
. (6.3)

We then expand the wave function ψn(r⃗) using some Gaussian functions as

ψn(r⃗) =
N∑
i=1

∑
l,m

cn,l,m,i ϕ
G
l,i(r) Yl,m(

ˆ⃗r), (6.4)
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ϕGl,i(r) = rl exp

[
−
(
r

νi

)2
]
, (6.5)

where ˆ⃗r = (θ, ϕ), Yl,m(ˆ⃗r) is a spherical harmonic function, and cn,l,m,i stands for a coef-

ficient for expansion. The range of the Gaussian νi is determined by νi = r0a
i−1 with

arbitrary constants r0 and a. In the case of S-wave, we obtain the following general-

ized eigenvalue problem by multiplying a Gaussian function (Eq. (6.5)) from the left in

Eq. (6.3) and carry out the integration for r⃗.

HG C⃗n = En ΦG C⃗n, (6.6)

where C⃗n is an N dimensional vector and HG, ΦG are N ×N matrices, which are defined

as

C⃗n ≡


cn,1

cn,2
...

cn,N

 , (6.7)

[
HG
]
ij

≡
∫
d3r ϕGi (r)H

G
j (r⃗)ϕ

G
j (r), (6.8)[

ΦG
]
ij

≡
∫
d3r ϕGi (r)ϕ

G
j (r), (6.9)

ϕGi (r) ≡ exp

[
−
(
r

νi

)2
]
, (6.10)

HG
j (r⃗) ≡ 1

µν2j

(
3− 2r2

ν2j

)
+ V (r⃗). (6.11)

Except for the potential term, the explicit form of the HG and the ΦG are given by

[
ΦG
]
ij

=

(
πν2i ν

2
j

ν2i + ν2j

)3/2

, (6.12)

[
HG
]
ij

=
3

µ
(
ν2i + ν2j

) ( πν2i ν
2
j

ν2i + ν2j

)3/2

+ [V G]ij, (6.13)



6.3. NUMERICAL RESULTS OF THE BINDING ENERGY FOR ΛC
HYPERNUCLEI 83

where [V G]ij is defined as

[V G]ij ≡
∫
d3r exp

[
−
(
r

νi

)2
]
V (r⃗) exp

[
−
(
r

νj

)2
]
. (6.14)

The binding energies, as well as the wave functions for the two body system, can be

obtained by solving Eq. (6.6) with sufficiently large N and plausible r0 and a. The

parameters N , r0, and a can be determined so as to minimize the binding energies.

6.3 Numerical results of the binding energy for Λc

hypernuclei
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Figure 6.3: Binding energies of Λc in spherical nuclei such as 12C, 28Si, 40Ca, 58Ni, 90Zr and
208Pb for each ensemble. The binding energies are calculated from the folding potentials
for Λc hypernuclei by using the Gaussian expansion method. The folding potentials are
constructed from the spin-independent central potential of the ΛcN system (Fig. 5.7) for
mπ ≃ 700, 570 and 410 MeV cases. In the calculation of the binding energies, we adjust
the masses of Λc and nuclei to those of physical values.
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Fig. 6.3 shows the binding energy of several Λc hypernuclei for each ensemble. As we

expected, the binding energy |Eb| increases as the atomic number increases. Furthermore,

as the ΛcN potential approaches to the physical one (as the u, d quark masses decrease

toward physical values), the binding energy increases. These results suggest that Λc

hypernuclei may exist if their binding energy is larger than the Coulomb repulsion. In

order to estimate the effect of Coulomb force, we calculate the expectation value for the

Coulomb potential using the binding solutions of Λc hypernuclei |ψb⟩ as

ECoulomb =
⟨ψb|V C

F |ψb⟩
⟨ψb|ψb⟩

, (6.15)

where V C
F is the single-folding Coulomb potential defined by

V C
F (r⃗) =

∫
d3r′ρch(r⃗′)VCoulomb(r⃗ − r⃗′), (6.16)

where VCoulomb(r⃗) is an ordinary Coulomb potential and ρch is charge density distribution

by the Fourier-Bessel coefficient obtained from elastic electron scattering [69]. Fig. 6.4

shows the expectation values of the folding potential for Coulomb force calculated by using

the binding solution of Λc hypernuclei for Ensemble 3 (mπ ≃ 410 MeV). For comparison,

we also plot the binding energy for Λc hypernuclei without Coulomb potential and the sum

of them in Fig. 6.4. We observe that the Coulomb repulsion is large for heavy nuclei and

Λc-
208Pb state becomes unbound with the Coulomb force. In the nuclei for A = 12− 58,

on the other hand, the expectation values of Coulomb force are not much stronger than

the binding energy of Λc hypernuclei. Since the binding energy increases as the attraction

of the ΛcN potential becomes stronger toward the physical quark mass, this observation

suggests a possibility that Λc hypernuclei may exist in light or medium-heavy nuclei.
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Figure 6.4: Expectation values of folding potential for Coulomb force in Λc hypernuclei
(Blue). The expectation values are calculated from the binding solution of the Λc hy-
pernuclei for Ensemble 3 (mπ ≃ 410 MeV). For comparison, the binding energy of Λc
hypernuclei (Orange) and the sum of them (Green) are also plotted.





Chapter 7

Summary and conclusions

In this thesis, we introduce our works on the charmed baryon interactions as well as

recent developments of the numerical algorithms for the partial wave decomposition on

the lattice. For the numerical simulation, we have employed the (2 + 1)-flavor full QCD

configurations generated by PACS-CS Collaboration with the renormalization-group im-

proved Iwasaki gluon action and a non-perturbatively O(a) improved Wilson-clover quark

action at β = 6/g2 = 1.90 on a L3 × T = 323 × 64 lattice (the corresponding lattice spac-

ing is a = 0.0907(13) fm and physical lattice size is La = 2.902(42) fm) [16]. In order

to investigate the u, d quark mass dependence, we have employed three ensembles of

the gauge configurations with mπ = 411(2), 570(1), 700(1) MeV. For the charm quark,

we have employed the relativistic heavy quark (RHQ) action [36] with the RHQ param-

eters determined in Ref. [18] to avoid the leading O ((mQa)
n) and the next-to-leading

O ((mQa)
n(aΛQCD)) discretization errors due to the charm quark mass mQ. The partial

wave decomposition for the NBS wave function has been carried out by using Misner’s

method [54]. We present the summary and conclusions for the application of Misner’s

method and the results of each charmed baryon interaction on a section by section. In

the last section, we also present the future prospect of our calculation.

7.1 Partial wave decomposition for the NBS wave

function by Misner’s method

In the conventional lattice simulation, we employ the cubic transformation group for

projection to the S-wave, which picks up an A+
1 representation of Oh group. Since the

87
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A+
1 representation contains not only L = 0 component but also L ≥ 4 components, the

resultant projected NBS wave function may have comb-like structures, which correspond

to the anisotropy of the wave function induced by L ≥ 4 components. We have employed

Misner’s method to extract the L = 0 component of the NBS wave function for ΛcN

system in JP = 0+ state in Sec. 5.2.1. We have also carried out the L = 0 and L = 2

projections by Misner’s method to the NBS wave function for ΛcN system in JP = 1+

state in Sec. 5.2.2. In both systems, we found the small comb-like structures in the

A+
1 projected NBS wave function, which have not appeared in the results with Misner’s

method. This observation shows that the L ≥ 4 components are small but exist so that

they make comb-like structures. We have next calculated the Laplacian of the NBS wave

function in both systems. In the conventional method, the Laplacian is defined by a finite

second-order difference, while it is calculated analytically as the second-order derivative

in Misner’s method. The results have shown that the large comb-like structures in the

conventional Laplacian of the NBS wave function are reduced in Misner’s method. From

their observations, we found that the L ≥ 4 components in the NBS wave function may

produce large comb-like structures in the Laplacian (also in potential) even the amplitude

of the L ≥ 4 components is small.

In Sec. 5.2.6, we have investigated the effect of the contamination of L ≥ 4 components

in potential to the physical observables in low energies, such as scattering length. To this

end, we have compared the scattering lengths for the ΛcN system given in Ref. [23] (which

may include L ≥ 4 contamination) and those calculated from the S-wave potential with

Misner’s method. The results have shown that the scattering lengths are almost the same

within the statistical errors, which suggest that the higher partial waves with L ≥ 4 don’t

affect the physical observables.

7.2 ΛcN interaction

In Secs. 5.2.3 and 5.2.4, we have shown the ΛcN potentials and discussed their interactions.

We have extracted the central potential in 1S0 channel while central and tensor potentials

in 3S1−3D1 channel. In the calculation for both potentials, we employ Misner’s method to

avoid L ≥ 4 components in the NBS wave function. From the results, we found a repulsion

at short distance and an attraction at the intermediate distance in the central potential

for both channels. The strength of the attraction seems weaker compared with that in
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the ΛN potential, and this weaker attraction is consistent with model calculations [3, 6].

In the tensor potential for the ΛcN system, we found that the (attractive) interaction

range becomes shorter and the strength of the attraction is weaker compared with those

for the ΛN system. Furthermore, as a consequence of the negligibly weak tensor force,

the central potential in the 3S1−3D1 channel and the effective central potential in the 3S1

channel are almost the same. In order to quantify the similarity of potentials between two

channels, we have decomposed the central potentials into the spin-independent and spin-

dependent ones. We found that the spin-dependent potential is negligibly weak except

at a short distance. The observation of the small tensor and spin-dependent potential for

ΛcN system can be understood by the heavy D-meson mass and the large separation of

the ΛcN − ΣcN threshold.

We then calculated phase shifts and scattering lengths using the potentials in the

infinite volume in Sec. 5.2.6, in which we found that the ΛcN interaction is attractive at

low energy in both 1S0 and 3S1 −3D1 channels. As in the case of potentials, strengths of

the attraction are comparable between both channels.

7.3 Inelastic effects for the ΛcN interaction and ΣcN

interaction in I = 1/2 channel

In order to investigate the inelastic effects for the ΛcN system, we have calculated the

ΛcN -ΣcN coupled channel potential with Misner’s method in Sec. 5.3. In the case of 1S0

channel, we have observed that the tail of the potential deviates from zero and the time

dependence of the potential is still large, which imply that the time separation between

sink operator and source operator (t − t0) is not large enough. Since statistical errors

increase for large t − t0, however, we need more large statistics to investigate the 1S0

channel. In the case of 3S1 −3 D1 channel, on the other hand, we have obtained reliable

results that the potentials are stable against the change of t − t0 within the statistical

errors. We have calculated the coupled channel potentials for both central and tensor

forces. Results of the potential matrix have shown that the central potential for ΛcN

channel is almost the same with the single channel potential. The central potential for

ΣcN channel has shown strong attraction. From the comparison with the ΣN potential,

we found that the attraction in ΣcN is stronger than that in ΣN . In the off-diagonal

element of the potentials, we have observed that the central potential is weak while the
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tensor potential is strong.

The phase shifts extracted by solving the Schrödinger equation in the infinite volume

with the obtained potentials have shown that the S-wave ΣcN channel has rather strong

attraction at low energies but it does not have the two-body bound state at mπ ≥ 410

MeV. In the D-wave ΛcN phase shift, we have observed a cusp-like structure around the

ΣcN threshold, while there no such a structure in the S-wave ΛcN phase shift. The cusp-

like structure in the D-wave ΛcN phase shift is induced by strong attraction in S-wave

ΣcN channel through the strong tensor transition potential. However, the strong attrac-

tion in S-wave ΣcN does not affect the S-wave ΛcN because both the tensor potential

for ΛcN channel and central transition potential between ΛcN -ΣcN are weak.

Furthermore, in Sec. 5.3.4, we investigate the non-locality of the single channel ΛcN

potential by comparing the phase shifts in the single channel analysis and those in the

coupled channel analysis. From the results, we found that the two S-wave ΛcN phase

shifts are almost identical within the statistical errors, which suggest that the non-locality

of the ΛcN central potential in the single channel analysis is sufficiently small. In the

D-wave ΛcN phase shift, however, the two results are different even below the ΣcN

threshold, which imply that the ΛcN tensor potential in the single channel analysis has

large non-locality near and above the ΣcN threshold.

7.4 ΛcΛc-ΞccN coupled channel system in J(I) = 0(0)

channel

In Sec. 5.4, we have investigated the interaction between doubly charmed baryon Ξcc and

a nucleon in the J(I) = 0(0) channel, which relates a charm version of the H-dibaryon.

To do this, we calculate the ΛcΛc-ΞccN coupled channel potentials with Misner’s method.

The results of the potential have shown that the attraction in the ΞccN(I = 0) potential is

strong while the ΛcΛc and the off-diagonal potentials are weak. The phase shift analysis

given in Sec. 5.4.2 has shown that the ΞccN(I = 0) attraction is sufficiently strong to

form a resonance state in the ΛcΛc scattering. We also found that the resonance state

in the ΛcΛc scattering is very sharp, which indicates the weak strength of the transition

between the ΛcΛc and ΞccN(I = 0).

In the physical mass, the mass threshold of the ΞccN is below the ΛcΛc threshold.

Therefore, the charm version of the H-dibaryon appears as a bound state of the ΞccN if
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the ΞccN attraction is sufficiently strong. Our numerical results suggest the possibility of

such a state in the physical mass.

7.5 Λc-hypernuclei

In the analysis for the ΛcN 2-body interaction, we found that the ΛcN interaction is

weakly attractive and spin-independent, which indicates Λc baryon can be bound in nuclei

with sufficiently large atomic number. Since Λc baryon has a charge +1, however, large

Coulomb repulsion occurs when the number of the proton is large. In order to investigate

possible Λc hypernuclei, we have constructed an S-wave effective potential between Λc

and nuclei. Since the dominant contribution of the ΛcN interaction comes from the

spin-independent central potential, the single-folding potential for Λc hypernuclei can be

constructed from the ΛcN potential obtained in our calculation. For the nuclear density

distribution function, we employed the two-parameter Fermi form for symmetric nuclei

such as 12C, 28Ni, 40Ca, 58Ni, 90Zr, and 208Pb. By the Gaussian expansion method, we got

binding solutions for Λc hypernuclei. We found that the binding energy of Λc hypernuclei

becomes larger as the nucleon number increases and/or the u, d quark mass decreases.

This suggests the possibility of Λc hypernuclei at the physical u, d quark mass if their

binding energy is larger than the Coulomb repulsion. In order to estimate the strength of

Coulomb repulsion, we have calculated the expectation value for the Coulomb force using

the binding solution of Λc hypernuclei. The results show that the expectation values for

the Coulomb force are much stronger than the binding energy for heavy nuclei, while they

are comparable in light or medium-heavy nuclei. These observations suggest possible Λc

hypernuclei with light or medium-heavy nuclei in nature.

7.6 Future prospect

Very recently, we have started to carry out (2 + 1)-flavor full QCD simulations near the

physical quark masses [70] (mπ ≃ 146 MeV and mK ≃ 525 MeV) for charmed hadron

interactions. This gauge configuration has already been employed for several hyperon

interactions [71, 72, 73, 74, 75]. We expect to make definite conclusions on the charmed

baryon interactions and charmed hypernuclei in this near future work.
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Appendix A

Analysis for statistical uncertainty

In the lattice QCD calculation, we obtain observables (such as a two-point correlation

function and a four-point correlation function) as statistical data due to the Monte-Carlo

simulation. One can estimate the statistical uncertainty for the observables using a statis-

tical method. The uncertainty of more “complex” observables (such as an effective mass

and a potential) can be estimated by an error propagation. Since each statistical data for

the observable is correlated in the Monte-Carlo simulation, however, one may overestimate

the uncertainty. In order to estimate correct uncertainty, we utilize the Jackknife method

which is useful to estimate the statistical errors for correlated data. The Jackknife method

has an advantage that it can be applied to “complex” observables straightforwardly. In

this chapter, we briefly present the methodology of the Jackknife method.

A.1 Basic statistical error estimation and error prop-

agation

First of all, we show the formalism for basic statistics. Assume that we have N number of

observable data {Oi} (i = 1, · · · , N). The mean value ⟨O⟩ and the statistical error δ⟨O⟩
are given by

⟨O⟩ =
1

N

N∑
i=1

Oi, (A.1)

δ⟨O⟩ =

√
⟨O2⟩ − ⟨O⟩2

N − 1
, (A.2)
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where ⟨O2⟩ denotes the mean value for the square of the observable data.

We next considerN number of “complex” observable {f(O(1)
i , · · · ,O(M)

i )} (i = 1, · · · , N)

which is a function constructed from theM set of observable data {O(a)
i } (a = 1, · · · ,M).

The statistical errors for the “complex” observable are obtained from an error propagation.

δ⟨f(O)⟩ =
∑
a

∣∣∣∣⟨ ∂f

∂O(a)
⟩ δ⟨O(a)⟩

∣∣∣∣ . (A.3)

It is noted that the statistical errors for the “complex” observable f(O) estimated by the

error propagation are maybe overestimated due to correlated data. Since some statistical

errors are canceled each other when the observables are correlated, the “true” statistical

errors could be small.

A.2 Jackknife method

In order to estimate the correlated data correctly, we first define the average of the ob-

servable {Oi} without i-th data as

⟨O⟩i =
1

N − 1

N∑
k ̸=i

Ok, (A.4)

which is a so-called Jackknife sample with the binsize (i.e., number of data to remove)

of one. Using the Jackknife samples, the mean value and the statistical error for the

“complex” observable f(O) are given by

⟨f(O)⟩ =
1

N

N∑
i=1

f(⟨O⟩(1)i , · · · , ⟨O⟩(M)
i ), (A.5)

δ⟨f(O)⟩ =
√
(N − 1)(⟨f 2(O)⟩ − ⟨f(O)⟩2). (A.6)

One of the advantages of the Jackknife method is that it can be easily applied to an

arbitrary function f(O). Another advantage is that one can estimate the auto-correlation

for the statistical data by increasing the number of data to remove in Eq. (A.4).

In order to estimate the auto-correlation, we generalize the above discussion to the

case of binsize of n. We assume that the binsize and the number of statistics satisfy

N = n×Nb, where Nb is a number of bins. Therefore, the size of the resultant Jackknife
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sample is Nb. The b-th Jackknife sample is defined by

⟨O⟩b =
1

N − n

 N∑
k=1

Ok −
nb∑

k=1+(b−1)n

Ok

 , (b = 1, · · · , Nb) (A.7)

and the mean value and the statistical error for the “complex” observable f(O) are given

as

⟨f(O)⟩ =
1

Nb

Nb∑
b=1

f(⟨O⟩(1)b , · · · , ⟨O⟩(M)
b ), (A.8)

δ⟨f(O)⟩ =
√
(Nb − 1)(⟨f 2(O)⟩ − ⟨f(O)⟩2). (A.9)





Appendix B

Time-dependent HAL QCD method

for two-body system with different

mass

In this appendix, we derive the relation

k2n
2µ

= ∆Wn +
1 + 3δ2

8µ
(∆Wn)

2 +O
(
(∆Wn)

3) , (B.1)

where

∆Wn = Wn − (mB(1) +mB(2)) , (B.2)

Wn =
√
k2n +m2

B(1) +
√
k2n +m2

B(2) , (B.3)

µ =
mB(1)mB(2)

mB(1) +mB(2)

, (B.4)

δ =
mB(1) −mB(2)

mB(1) +mB(2)

, (B.5)

andmB(1) ̸= mB(2) . For simplicity, we denotemB(i) (i = 1, 2) asmi in following discussions.
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APPENDIX B. TIME-DEPENDENT HAL QCD METHOD FOR

TWO-BODY SYSTEM WITH DIFFERENT MASS

We first calculate (∆Wn)
2:

(∆Wn)
2 =

(√
k2n +m2

1 +
√
k2n +m2

2 − (m1 +m2)

)2

= 2k2n +m2
1 +m2

2 + (m1 +m2)
2 + 2

√
k2n +m2

1

√
k2n +m2

2

− 2(m1 +m2)
√
k2n +m2

1 − 2(m1 +m2)
√
k2n +m2

2

= 2k2n +m2
1 +m2

2 − (m1 +m2)
2 − 2(m1 +m2)∆Wn

+ 2
√
k2n +m2

1

√
k2n +m2

2

= 2

(
k2n −m1m2 − (m1 +m2)∆Wn +

√
k2n +m2

1

√
k2n +m2

2

)
,

(B.6)

thus we obtain√
k2n +m2

1

√
k2n +m2

2 =
(∆Wn)

2

2
− k2n +m1m2 + (m1 +m2)∆Wn.

(B.7)

Next, we take the square of both sides in Eq. (B.7).

(lhs)2 =

[√
k2n +m2

1

√
k2n +m2

2

]2

= k4n + (m2
1 +m2

2)k
2
n +m2

1m
2
2, (B.8)

(rhs)2 =

[
(∆Wn)

2

2
− k2n +m1m2 + (m1 +m2)∆Wn

]2

= k4n − 2

(
(∆Wn)

2

2
+m1m2 + (m1 +m2)∆Wn

)
k2n +m2

1m
2
2

+ 2m1m2(m1 +m2)∆Wn +m1m2(∆Wn)
2

+ (m1 +m2)
2(∆Wn)

2 + (m1 +m2)(∆Wn)
3 +

(∆Wn)
4

4
, (B.9)
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then we move kn-dependent terms to the left-hand side, while kn-independent terms are

moved to the right-hand side.

(lhs) = (m2
1 +m2

2)k
2
n + 2

(
(∆Wn)

2

2
+m1m2 + (m1 +m2)∆Wn

)
k2n

=
(
(∆Wn)

2 + (m1 +m2)
2 + 2(m1 +m2)∆Wn

)
k2n

= (∆Wn + (m1 +m2))
2 k2n = W 2

n k
2
n, (B.10)

(rhs) = 2m1m2(m1 +m2)∆Wn +m1m2(∆Wn)
2

+ (m1 +m2)
2(∆Wn)

2 + (m1 +m2)(∆Wn)
3 +

(∆Wn)
4

4
, (B.11)

thus we obtain

4W 2
nk

2
n = 8m1m2(m1 +m2)∆Wn + 4m1m2(∆Wn)

2

+ 4(m1 +m2)
2(∆Wn)

2 + 4(m1 +m2)(∆Wn)
3 + (∆Wn)

4.

(B.12)

Eq. (B.12) can be summarized as follows.

4W 2
nk

2
n = 8m1m2(m1 +m2)∆Wn + 4m1m2(∆Wn)

2

+ 4(m1 +m2)
2(∆Wn)

2 + 4(m1 +m2)(∆Wn)
3 + (∆Wn)

4

= −4m1m2(m1 +m2)
2

+
[
(m1 +m2)

2 + 2(m1 +m2)∆Wn + (∆Wn)
2
]
4m1m2

+ 3(m1 +m2)
2(∆Wn)

2 + 2(m1 +m2)(∆Wn)
3

+
[
(m1 +m2)

2 + 2(m1 +m2)∆Wn + (∆Wn)
2
]
(∆Wn)

2

= −4m1m2(m1 +m2)
2 + 4W 2

nm1m2 +W 2
n(∆Wn)

2

− 2(m1 +m2)
3∆Wn − (m1 +m2)

2(∆Wn)
2
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+
[
(m1 +m2)

2 + 2(m1 +m2)∆Wn + (∆Wn)
2
]
2(m1 +m2)∆Wn

= −4m1m2(m1 +m2)
2

+ 4W 2
nm1m2 + 2W 2

n(m1 +m2)∆Wn +W 2
n(∆Wn)

2

+ (m1 +m2)
4

−
[
(m1 +m2)

2 + 2(m1 +m2)∆Wn + (∆Wn)
2
]
(m1 +m2)

2

= −4m1m2(m1 +m2)
2 + (m1 +m2)

4

+ 4W 2
nm1m2 −W 2

n(m1 +m2)
2 + 2W 2

n(m1 +m2)∆Wn +W 2
n(∆Wn)

2

= (m2
1 +m2

2)
2 −W 2

n(m1 −m2)
2 + 2W 2

n(m1 +m2)∆Wn +W 2
n(∆Wn)

2.

(B.13)

Dividing Eq. (B.13) by W 2
n , we have

4k2n =
(m2

1 +m2
2)

2

W 2
n

− (m1 −m2)
2 + 2(m1 +m2)∆Wn + (∆Wn)

2.

(B.14)

Here, we assume that ∆Wn is sufficiently small and we consider the following expansion

for the first term of right-hand side in Eq. (B.14).

(m2
1 +m2

2)
2

W 2
n

=
(m2

1 +m2
2)

2

(∆Wn + (m1 +m2))2

=
(m2

1 +m2
2)

2

(m1 +m2)2

[
1 +

∆Wn

m1 +m2

]−2

= (m1 −m2)
2

∞∑
n=0

(n+ 1)

[
− ∆Wn

m1 +m2

]n

= (m1 −m2)
2 − 2

(m1 −m2)
2

m1 +m2

∆Wn + 3

(
m1 −m2

m1 +m2

)2

(∆Wn)
2

+ (m1 −m2)
2

∞∑
n=3

(n+ 1)

[
− ∆Wn

m1 +m2

]n
. (B.15)
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Using Eq. (B.15), we can evaluate Eq. (B.14) as

4k2n =

(
2(m1 +m2)− 2

(m1 −m2)
2

m1 +m2

)
∆Wn +

(
1 + 3

(
m1 −m2

m1 +m2

)2
)
(∆Wn)

2

+ (m1 −m2)
2

∞∑
n=3

(n+ 1)

[
− ∆Wn

m1 +m2

]n

= 8µ∆Wn +
(
1 + 3δ2

)
(∆Wn)

2 + (m1 −m2)
2

∞∑
n=3

(n+ 1)

[
− ∆Wn

m1 +m2

]n
.

(B.16)

Finally, we obtain Eq. (B.1) as follows.

k2n
2µ

= ∆Wn +
1 + 3δ2

8µ
(∆Wn)

2 +
(m1 −m2)

2

8µ

∞∑
n=3

(n+ 1)

[
− ∆Wn

m1 +m2

]n
= ∆Wn +

1 + 3δ2

8µ
(∆Wn)

2 +O
(
(∆Wn)

3) (B.17)





Appendix C

Extraction of the Z-factor

As we expressed in Chapter 3, the NBS wave function is defined as a correlation function

for local interpolating operators with their renormalization factor
√
Z, namely Z-factor.

Here the Z-factor for the baryon operator B(x)1 is defined by

√
ZB ≡ ⟨0|B(0)|B⟩, (C.1)

where |B⟩ stands for the grand state of baryon B. In the HAL QCD method for a single

channel system, we have not to estimate the Z-factors because they are common to the

numerator and denominator in the equation for the potential (e.g. see Eq. (3.13)) so that

they are reduced. In the coupled channel system, however, the Z-factors give a correction

in the off-diagonal potentials as Eq. (3.67). In this appendix, we present how to extract

the Z-factors from the correlation functions and show the numerical results which have

been employed to construct the coupled channel potentials in this thesis.

C.1 Z-factor extraction from 2pt-correlation functions

The Z-factor for the baryon B can be extracted from the 2pt-correlation function on the

lattice. In our numerical setup, the source operator is defined as “Wall-type smearing

operator” which is one of the smearing operators defined in just after Eq. (3.16), while

we don’t take any smearing in the sink operator (we here call it “Point-type operator”).

1We omit the spin index in the baryon operator for simplicity.
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In this case, the 2pt-correlation function is defined as

CPW
B (t− t0) =

∑
x⃗

⟨0|BP (x⃗, t)BW (t0)|0⟩

= ⟨0|BP (0)|B⟩⟨B|BW (0)|0⟩e
−mB(t−t0)

2mB

+ · · ·

=
√
ZP
B

√
ZW
B

e−mB(t−t0)

2mB

+ · · · , (C.2)

where BP (x⃗, t) (BW (t0)) corresponds to the point-type (wall-type smearing) operator for

the baryon B, mB is the mass of baryon B, and the ellipses represent contributions from

excited states.
√
ZP
B and

√
ZW
B stand for the Z-factors for the point-type operator and

the wall-type smearing operator, respectively. In order to extract each Z-factor, we also

calculate the 2pt-correlation function with the wall-type smearing operator in both sink

and source defined as

CWW
B (t− t0) =

∑
x⃗

⟨0|BW (x⃗, t)BW (t0)|0⟩

=
√
ZW
B

√
ZW
B

e−mB(t−t0)

2mB

+ · · · . (C.3)

Using these 2pt-correlation functions and given mB
2, the Z-factors are calculated from

√
ZP
B =

CPW
B (t− t0)√
CWW
B (t− t0)

√
2mB

e−mB(t−t0)
(C.4)

√
ZW
B =

√
CWW
B (t− t0)

√
2mB

e−mB(t−t0)
, (C.5)

at t − t0 → ∞. In the practical calculation, these Z-factors are estimated by plotting

the right-hand side in Eqs. (C.4) and (C.5) against the t − t0 in the same manner as

the effective mass plot. We note that it is useful to see the following relation for the

consistency check of extracted Z-factors:

CPW
B (t− t0)

CWW
B (t− t0)

=

√
ZP
B√

ZW
B

, (C.6)

2The baryon mass mB is also extracted from the 2pt-correlation function on the lattice as we shown
in Sec. 2.4.1.
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which are realized at t− t0 → ∞.

C.2 Numerical results of Z-factor extraction

In this section, we show three figures for each baryon. The first figure of them is a plot

of the right-hand side in Eqs. (C.4) against the t − t0 and the result of fitting for
√
ZP
B

with its fit-range. The second one is a plot of the right-hand side in Eqs. (C.5) against

the t − t0 and the fitting results for
√
ZW
B with its fit-range. The third one is a plot of

the left-hand side in Eqs. (C.6) against the t − t0 with the ratio of extracted Z-factors,√
ZP
B/
√
ZW
B . The summary of the Z-factors is given in Table C.1. Note that we employ

values of the baryon masses mB shown in Sec. 5.1 for extracting the Z-factors.

Table C.1: The summary of the Z-factors for each hadron and the fit-range.

Ensemble 1 (mπ ≃ 700 MeV case)

√
ZP
B

√
ZW
B tfit

N 0.06310 (83) 0.0000852 (15) 12-17
Λ 0.06697 (78) 0.0000856 (14) 12-17
Λc 0.11395 (95) 0.0000890 (13) 12-17
Σ 0.06640 (83) 0.0000855 (14) 12-17
Σc 0.10018 (112) 0.0000871 (14) 12-17
Ξ 0.07071 (77) 0.0000857 (13) 12-17
Ξcc 0.20195 (341) 0.0000760 (14) 15-20

Ensemble 2 (mπ ≃ 570 MeV case)

N 0.04817 (79) 0.0000866 (14) 12-17
Λ 0.05346 (94) 0.0000882 (17) 12-17
Λc 0.09237 (116) 0.0000954 (4) 12-17
Σ 0.05317 (127) 0.0000877 (20) 12-17
Σc 0.08320 (103) 0.0000934 (11) 12-17
Ξ 0.05888 (89) 0.0000886 (14) 12-17
Ξcc 0.17206 (266) 0.0000821 (9) 15-20

Ensemble 3 (mπ ≃ 410 MeV case)

N 0.03769 (139) 0.0000889 (21) 12-17
Λ 0.04257 (113) 0.0000906 (15) 12-17
Λc 0.07713 (145) 0.0001049 (16) 12-17
Σ 0.04298 (165) 0.0000910 (28) 12-17
Σc 0.06683 (231) 0.0001032 (25) 12-17
Ξ 0.04953 (108) 0.0000924 (14) 12-17
Ξcc 0.15713 (168) 0.0000914 (14) 15-20
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Figure C.1: The fitting results of the Z-factors for a nucleon. Upper three figures cor-
respond to the results for the ensemble 1 (mπ ≃ 700 MeV case). Middle three figures
correspond to the results for the ensemble 2 (mπ ≃ 570 MeV case). Lower three figures
correspond to the results for the ensemble 3 (mπ ≃ 410 MeV case).
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Figure C.2: The fitting results of the Z-factors for Λc. Upper three figures correspond to
the results for the ensemble 1 (mπ ≃ 700 MeV case). Middle three figures correspond to
the results for the ensemble 2 (mπ ≃ 570 MeV case). Lower three figures correspond to
the results for the ensemble 3 (mπ ≃ 410 MeV case).
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Figure C.3: The fitting results of the Z-factors for Σc. Upper three figures correspond to
the results for the ensemble 1 (mπ ≃ 700 MeV case). Middle three figures correspond to
the results for the ensemble 2 (mπ ≃ 570 MeV case). Lower three figures correspond to
the results for the ensemble 3 (mπ ≃ 410 MeV case).
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Figure C.4: The fitting results of the Z-factors for Ξcc. Upper three figures correspond to
the results for the ensemble 1 (mπ ≃ 700 MeV case). Middle three figures correspond to
the results for the ensemble 2 (mπ ≃ 570 MeV case). Lower three figures correspond to
the results for the ensemble 3 (mπ ≃ 410 MeV case).
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