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Abstruct

N = Z odd-odd nuclei are singular subjects in nuclear physics. There are competing
isovector (T = 1) and isoscalar (T = 0) states in the low-lying spectra. In mean field
theories and shell models, it is pointed out that isovector and isoscalar proton-neutron cor-
relations are important to understand these low-lying states. The isoscalar proton-neutron
correlations show different natures from the isovector correlations which are analogous to
like-particle correlations such as two-neutron correlations in Jπ = 0+ states of even-even
nuclei. Spin degree of freedom is alive in the isoscalar states and thus the proton-neutron
correlations have different two components; aligned type [jj]J=2j;T=0 and deuteron type
[jj]J=1;T=0. Traditionally, the former case was discussed in the relation to high-spin nu-
clear physics. Recently, it has been found that the latter J = 1;T = 0 proton-neutron
correlations showed characters of the LS-coupling proton-neutron pairs.

The degeneracy of isovector and isoscalar states was defined as SU(4) symmetry.
Searches for SU(4) symmetry in the neutron-rich nuclei have been known as giant Gamow-
Teller resonance near the isobaric analog state. However, recent theoretical and experi-
mental investigations give new features on SU(4) symmetry. The mean-field calculations
for 42Ca → 42Sc using isoscalar proton-neutron pairings as well as isovector ones find
the strong Gamow-Teller (GT) strengths near the isobaric analog state in the low-lying
regions. The similar features have been found in experimental spectra and these are
called low-energy super Gamow-Teller (LeSGT) transitions which correspond to SU(4)
symmetric phases in the nuclei.

In the real nuclei, deformation effects are not negligible if the core nuclei are off the
doubly magic numbers. The relations between proton-neutron correlations and deforma-
tions were investigated before the suggestion of LeSGT. In the most cases, deformations
disturb proton-neutron parings and make the Gamow-Teller strengths into many frag-
ments. These effects shall cause SU(4) symmetry breaking.

The theoretical frameworks for treating proton-neutron pairing using mean field the-
ories were developed. However, these methods are not stable for describing quantum
correlations such as formation of di-nucleons and clusters, which are broadly found in the
light nuclei. These are characteristic phenomena that some nucleons form units like nn
(di-neutron), 4He, and 12C inside the nuclei. Therefore, it is hesitated to investigate the
the light N = Z odd-odd nuclei using the mean-field theories. Reflecting this fact, there
are no works discussing the light N = Z odd-odd nuclei in the context of SU(4) symmetry
by proton-neutron correlations and SU(4) symmetry breaking because of deformation.

The purpose of this thesis is to extend the idea of proton-neutron pairing and SU(4)
symmetry in the Gamow-Teller transitions in the light nuclei. To this end, we have to
develop a new framework which can deal with proton-neutron correlations and clustering
in the same footing. Firstly, I have extended antisymmtrized molecular dynamics (AMD)
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with constraints on quadrupole deformation to that with isospin projection before energy
variation. The problems of isospin competitions between isoscalar and isovector states in
the low-lying spectra of N = Z odd-odd nuclei have been solved with this method called
Tβγ-AMD. I have succeeded in reproducing low-lying spectra and nuclear properties of
10B, which is the light deformed N = Z odd-odd nuclei.

I have investigated Gamow-Teller transitions from the N = Z+2 nuclei to the N = Z
odd-odd nuclei in the p-shell regions using the Tβγ-AMD. I have found the strong Gamow-
Teller transitions exhausting 50% of the sum-rule in 6He(0+1 1) → 6Li(1+1 0),

10Be(0+1 1) →
10B(1+1 0), and

14C(0+1 1) → 14N(1+2 0). These are signatures of the LeSGT related to SU(4)
symmetry because of the T = 0, S = 1 proton-neutron pairs in the final states 6Li(1+1 0),
10B(1+1 0), and

14N(1+2 0). The LS-coupling proton-neutron pairs and cluster formations
play important role to support SU(4) symmetry in these systems.

I have applied the Tβγ-AMD to 22Na comparing with 10B and comprehensively investi-
gated SU(4) symmetry in the light deformed N = Z odd-odd nuclei. The proton-neutron
pairs are formed at surfaces of the prolately deformed cores (20Ne = 16O + α, 8Be = 2α)
in both nuclei. I have obtained the Gamow-Teller strengths 22Ne(0+1 1) → 22Na(1+1,20)
whose summation exhausts 50% of the sum-rule value, but the strengths are fragmented
into the half. This is consistent with the results of the mirror Gamow-Teller transitions
22Mg(0+1 1) → 22Na(1+1,20) which show fragmentation into two final states. The 22Na(1+1,20)
have different K-quanta, which are defined in the deformed state, with K = 0 and K = 1.
Each state contains a proton-neutron pair with anti-aligned spin (Sz = 0) and with aligned
spin (Sz = 1), respectively. This indicates that the fragmentation is a result of spin-orbit
interactions on quadrupole deformations, that is, SU(4) symmetry breaking.
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Chapter 1

Background

1.1 N = Z nuclei

Most of the nuclei, even stable ones, have more numbers of neutrons than those of protons.
To investigate the quantum many-body correlations, enormous sophisticated methods
have been developed and applied to many systems. These methods established the typical
concepts of parings and deformations for each fermionic ingredient. However, the nuclei
are constructed by two components; protons and neutrons. The interaction between a
proton and a neutron is well known as the origin of the isoscalar bound state of a deuteron.
This interaction also causes the proton-neutron correlation not only in a deuteron but also
in the N = Z nuclei.

The singularity of the N = Z nuclei was recognized at the first stage of nuclear
physics as “odd-even staggering” and “Wigner energy” [4]. “odd-even staggering” is the
phenomenon on the binding energies of nuclei with |N = Z| ≈ 0 that the values of odd-
odd nuclei do not equal to the average of the two neighbor even-even nuclei. The reason is
considered as the proton-neutron (pn) pairing and their blocking effect [5,6]. The pn pairs
are separated into two channels, that is, the isoscalar (T = 0) and the isovector (T = 1).
If the T = 1 pn pairs are formed but the T = 0 ones are not formed, this unpaired channel
blocks the formation of the T = 1 pn pair and reduces the pairing energy. After the nuclear
structure theories were developed, the problem has been discussed from the microscopic
view point. In the mean field theory, it is recognized both pairing and deformation effects
are important to understand this problem [7,8].

“Wigner energy” is the extra-binding energy proportional to |N = Z| in N = Z
nuclei suggested by Wigner’s super multiplet theory [9]. Initially, it was considered that
the T = 0 pn pairing majorly contributed to this anomalous feature [10], but the recent
study of Bentley and Frauendorf suggests that “Wigner Energy” is apparent behavior of
binding energy [11]. They argued that “Wigner energy” is originated from a consequence
of restoring isospin symmetry which adds the T (T + 1) term into the Hamiltonian not
from the T = 0 pn correlations.

These concepts were invented in the phenomenology of N = Z nuclei. In order to reach
the comprehensive understanding of N = Z nuclei, modern nuclear structure theories,
which contain collective motions such as pairing and deformations, need to be developed.
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Figure 1.1: Low-Lying spectra of N=Z odd-odd nuclei. The triangles, circles, and squares
refer to T = 1, J = 0 states, T = 0, J = 1 states, and T = 0 states, respectively. The
numbers in the squares represent total angular momenta J .

1.1.1 N = Z odd-odd nuclei

Few attentions have been paid to the theoretical studies of the odd-odd nuclei though
the even-even nuclei usually have Jπ = 0+ ground states and it is easily explained by
introducing like-particle pair correlation in the mean field theories. In 1970’s, high-spin
states in the nuclei were focused to find the new phases of nuclei. These states were
investigated by the shell models based on the strong coupling scheme of deformation. For
example, on the N > Z odd-odd nuclei (190,192,194Au [12], 198Tl [13], 120Cs [14], 72As [15]),
the alignments of the unpaired proton and neutron were discussed. The high-spin state
search reached out to the N = Z line and the N = Z odd-odd nucleus 58Cu was discussed
in the experiment [16]. After that, a number of studies on proton-neutron correlations
have been produced along the N = Z line.

The spectra of N = Z odd-odd nuclei are specified as competing isospin states in the
low-lying regions (see Fig. 1.1). We can find three types of spectra with JπT = 0+1,
1+0, and J+0 (J ≥ 1). The 0+1 state are analogous states to the 0+ ground stats of
even-even nuclei. In fact, the ground states of N = Z odd-odd A > 30 nuclei are 0+1.
This indicates that the like-particle and the isovector (T = 1) proton-neutron pairings are
important even in N = Z odd-odd nuclei. On the other hand, the isoscalar states (T = 0)
exists in the low-lying spectra. This refers to significance of the isoscalar proton-neutron
pairings as well as isovector pn pairings. In the lighter nuclei (A < 30), indeed, all the
N = Z odd-odd nuclei have the isoscalar ground states. This is a singular feature for
N = Z odd-odd nuclei.
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1.1.1.1 Proton-neutron correlation in N = Z odd-odd nuclei

The importance of the proton-neutron correlations in nuclear structure was recognized
in 1970’s and the Hartree-Fock-Bogoliubov method with the T = 0, 1 pn pairings were
applied to even-even nuclei in pf -shell (44Ti, 48Cr, 52Fe, 56Ni, 60Zn [17–20] and 76Sr, 80Zr,
84Mo, 88Ru, 92Pd, 96Cd [21,22]).

Simple shell model calculations were performed on N = Z odd-odd nuclei including
the T = 0 pn pair correlations and the quadrupole correlations in the g9/2-shell [23] and
in the fpg-shell [24, 25]. These studies presented that the high-J spectra in low-lying
states of N = Z odd-odd nuclei were reproduced by introducing T = 0 pn correlations in
the shell model orbits. In short, the T = 0 high-J states contain a so-called aligned pair
with a proton and a neutron in the same �j-orbit and they are coupled to the [jj]J=2j;T=0

states. These are not surprising results, but it suggested that it is not necessary to use the
sophisticated method to understand the low-lying spectra in N = Z odd-odd nuclei. This
type of proton-neutron pair was also found in 70Br as a Jπ = 9+ isomer in the low-lying
states [26]. In this study, however, the authors also argued that there were only weak
T = 0 proton-neutron pairings because the other T = 0 pairings [jj]J=1;T=0 were not
found in the low-lying states though many Jπ = 1+ states had been found in the lighter
N = Z odd-odd nuclei; 46V, 50Mn, and 54Co.

Another side of the proton-neutron pairing was found in the rotational alignment.
This is a phenomenon that the T = 1 pn pairs are broken into the T = 0 pn pairs as the
angular momenta increase because only the J = 0 two-body correlations are allowed in
the T = 1 states, but there are high-J channels gaining energies in the T = 0 states. To
discuss this breaking of the pn pair, some theoretical frameworks were applied to N = Z
even-even nuclei such as cranked HFB in 48Cr [27], isospin cranked mean-field in 48Cr [28],
cranked pf -shell model [29], cranked HFB in 80Zr [30], and projected shell model in 72Kr,
76Sr, 80Zr [31].

The recent studies on proton-neutron pairing are based on the re-coupling scheme. In
this picture, there are more than one [jj]J=2j;T=0 pn pairs are formed in the ground states
and the low-lying excitations arise from re-coupling of these pairs. Friedman and Bertsch
pointed out their importance in DFT on N = Z odd-odd nuclei [32] and the concept is
taken into the fpg-shell model in 92,94,96Pd [33]. The validity of this scheme is examined
in some experiments about 92,94,96Pd [34] and 40K [35].

However, T = 0, J = 1 pn pairing, which corresponds to deuteron formation, had not
been paid attention though aligned pn pairs [jj]J=2j;T=0 were investigated as seen above.
Recently, this type of proton-neutron correlation has been discussed as a LS-coupling pn
pair. Sagawa, Tanimura, and Hagino performed the systematical studies of the N = Z
odd-odd nuclei focusing on the changes of the jj coupling scheme into the LS coupling
scheme in the valence proton and neutron. In the first study [36], the three body model
of core+p+n in the 1f2p-shell was applied to fp-shell nuclei seeking for the T = 0 spin-
triplet pairing correlations. They concluded that such types of pairing were weakened in
the 1f -shell and, on the other hand, T = 0 spin-triplet pairing in the 2p-shell overcame
the T = 1 spin-singlet pairing because the spin-orbit splitting was smaller in the 2p-shell
than in the 1f -shell. This 2p-shell nucleus was realized as 58Cu and they managed to
obtain the magnetic dipole moment (μ) value of its ground state (JπT = 1+0) consistent
with the experimental one by changing the ratio of pairing interaction between T = 0 and
T = 1.
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In the next study [37], the model was applied to the lighter nuclei; 14N, 18F, 30P,
34Cl, 42Sc, 58Cu. They obtained the lowest JπT = 0+1 and JπT = 1+0 spectra with the
consistent level-ordering with the experimental spectra. The spin-orbit splitting disturbed
the T = 0 spin-triplet pairing and the ground states of 34Cl and 42Sc have JπT = 0+1.
In contrast, the lowest 1+0 states of 18F and 42Sc have well-developed T = 0 spin-triplet
pairing. As a result, M1 transitions from the lowest 0+1 states and Gamow-Teller (GT)
transitions from the 0+1 ground states of the neighbor N = Z + 2 nuclei; 18O and 42Ca,
are sufficiently strong to exhaust the major parts of the sum-rule values. After that, the
model was extended to relativistic one and it was applied to 102Sb which is the unobsurved
N = Z odd-odd nucleus with the heaviest doubly-magic 100Sn core [38]. Unfortunately,
the valence proton and neutron in the relativistic model favored occupation of the g7/2-
shell rather than formation of the LS-coupling T = 0 pn pair. Moreover, there are
problems that these three-body models are based on the spherical cores and lack effects
of deformation.

Recently, proton-neutron pairings on the deformed N = Z even-even nuclei have been
discussed by using shell-model like diagonalization [39] and BCS on the deformed orbits
obtained from the self-consistent mean-field calculation [40, 41]. These calculations did
not focus on the relation between deformation and proton-neutron correlations since the
shell-model orbits were determined before introducing paring correlations, but enable us
to discuss the competition of T = 0 and T = 1 proton-neutron parings on the deformed
nuclei. They found the consistent results in 44Ti, 48Cr, 52Fe, 56Ni, 60Zn, 64Ge [39] and in
64−76Ge [40] that deformation reduces the pairing correlations especially for the T = 1
channel in 56Ni [39] and it does for all shapes and species of 64−76Ge [39]. The latter
method was applied to lighter nuclei, 24Mg(prolate), 28Si(oblate), and 32S(prolate) [41].
In these cases, there can be a coexistence of the T = 0 and T = 1 pairings in largely
deformed states and more importantly the pairing energies change the positions of energy
minimums for the quadrupole deformation parameters. Despite many efforts have been
made for these N = Z even-even nuclei, there are few studies for N = Z odd-odd nuclei
focusing on deformation.

1.1.2 Light N = Z nuclei

The idea of proton-neutron pairings in N = Z nuclei have been succeeded, but it is
hesitated to apply the concept immediately to the the lighter nuclei (A < 30) because
the pn pairing was invented in HFB theory which were applied to heavier nuclei (A > 30)
where mean field approximation were valid. In the light nuclei, the quantum many-
body correlation such as paring and deformation might be realized as the formation of
di-nucleons and clusters as seen in Sec. 1.3.

1.2 Gamow-Teller transitions

Gamow-Teller (GT) transition is one of the allowed β transitions derived from the weak
interaction. I write about the role of GT transitions for the nuclear structures. Firstly,
the GT transitions were investigated by Wigner using the SU(4) supermultiplet model [9].
The model assumes SU(4) symmetry on the two-body interaction in the S = 1, T = 0 and
S = 0, T = 1 channel that the six components in these channel have the same energies.
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Figure 1.2: SU(4) multiplets in N = Z odd-odd nuclei and N = Z ± 2 neighbors.

Since the GT operator is written as

Y ± =
∑
i

σiτ
±
i , (1.1)

which does not contain the spatial parts, the overlap between the initial state |Φ〉 and
the final state

∑
i σiτ

±
i |Φ〉 is exactly unit. This extremely simplified model succeeded in

reproducing the strong GT transition such as 6He(0+1 1) → 6Li(1+1 0) qualitatively, but it
did not quantitatively as the model did not consider the nuclear structure such as paring
and deformation.

Schematically, the SU(4) multiplets are described as the spectra in the N = Z odd-odd
nuclei and the N = Z ± 2 neighbors (see Fig. 1.2). Each state corresponds to isovector
(T = 1) states nn, pn+np, pp and an isoscalar (T = 0) state pn−np in the two-body NN
systems. These states are connected with allowed beta decays such as Fermi transitions
(τ) and Gamow-Teller transitions (στ).

This ideal SU(4)-symmetry is explicitly broken because the nuclear force depends
on the intrinsic spin such as a tensor force and a spin-orbit force. However, Ikeda and
J.I. Fujita suggested that such strong GT transitions between Wigner’s supermultiplets
can be realized in heavier N > Z nuclei not as state-to-state transitions but as giant
resonances [42]. If the neutron numbers exceed to the proton numbers, there are some
single particle orbits �j which are occupied for neutrons and opened for protons. The GT
transitions can be considered as the excitation that the operator στ± changes the neutrons
in some single particle orbits into the protons with the difference of ΔT = 1 and ΔS = 1.
These one neutron-hole and one proton-particle states are convoluted coherently and make
resonant states. This phenomenon is called Gamow-Teller Giant Resonance (GTGR) and
it was direcly observed in the charge-exchange experiments (48Ca, 90Zr, 120Sn, 208Pb) [43].
Afterwards, theoretical works have been made pursuing the precise description for the
peak position of the energy and the lacks of the sum-rule values [44–49].
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Figure 1.3: SU(4) symmetry in GT transition strengths.

1.2.1 Gamow-Teller transitions in N = Z nuclei

Apparently, the GTGR cannot be found in N = Z nuclei because the Fermi surfaces for
protons and neutrons are almost equivalent. Nevertheless, GTGR is not forbidden even
in N = Z nuclei (56Ni, 64Ge, 76Sr, 100Sn [50],52Fe, 94Ag [51]) because the GT operators
can change the intrinsic spin with ΔS = 1 unlike Fermi transitions (

∑
i τ

±
i ).

1.2.1.1 Proton-neutron pairing and Gamow-Teller transitions

The relation between GT transitions and proton-neutron pairing has been investigated in
the N = Z nuclei. Bai et al. investigated the role of isoscalar spin-triplet (T = 0, S = 1)
pairing interaction in the N = Z even-even nuclei 48Cr, 52Fe, 56Ni, 60Zn, and 64Ge by using
the HFB+QRPA [52]. They found that some strengths in the GTGR were isolated into
the lower energy region by changing T = 0, S = 1 interaction to T = 1, S = 0 one with
the ratio f . Such double peak structure had been observed in 56Ni and the ratio should be
f ≈ 1.5 in order to reproduce this experimental B(GT) spectra. By using this ratio, the
strength of the lower peak and that of the higher peak had comparable values especially
for 48Cr and 52Fe. In these nuclei, the pf -shell configurations coherently contributed to
forming the lower peak, and they concluded that the low-energy GT transitions 48Cr →
48Mn and 52Fe → 52Co could be considered as the super-allowed transitions in SU(4)
supermultiplet.

This model was applied to the N = Z odd-odd sd-shell nuclei 42Sc, 46V, 50Mn, and
54Co [53]. These nuclei also had double peaks at the low- and high-energy regions and the
lower peaks grew up to the comparable values to the the higher peaks as the f increased
(see Fig. 1.3). However, the ratio was not necessary to excessively larger than f = 1.0 and
the lower peak height in 42Ca → 42Sc was reproduced with f = 1.05. Because one side of
the proton orbits j≷ ≡ �j=�±1/2 is opened in the N = Z odd-odd nuclei, Fermi β transitions
from the N = Z+2 nuclei to N = Z odd-odd ones are also allowed, where the final states
are generally called isobaric analog states (IAS). In their calculation, each lower peak of
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Figure 1.4: Deformation in nuclei.
Figure 1.5: Angular momenta in the de-
formed nuclei.

GT transition was found near the IAS and this indicated that the SU(4) supermultiplet
was exactly formed because of T = 0 paring force comparable with T = 1 one (f ≈ 1.0).
Though the strong GT transition strengths to the lower peaks were reproduced, there are
some problems that the experimental GT strengths are fragmented into the second and
the above states except for 42Ca → 42Sc. They pointed out that deformation in 50Cr, 54Fe,
and 58Ni might cause the fragmentation in 50Cr → 50Mn, 54Fe → 54Co, and 58Ni → 58Cu,
respectively.

1.2.1.2 Deformation and Gamow-Teller transitions

Deformation in the nuclei is defined as fluctuations on the spherical nuclear surfaces with
the radius R0 > 0

R (θ, φ) = R0

[
1 +

2∑
μ=−2

α∗
μY2μ (θ, φ)

]
, (1.2)

where θ, φ and Y2μ (θ, φ) denote spherical coordinates and spherical harmonic functions,
and the coefficients {αμ}2μ=−2 are the parameters for deformations. If we use the body-
fixed frame, the surface is symmetric for z-axis, x = 0 plane, and y = 0 plane. Therefore,
the parameters have the conditions

α−1 = α1 = 0, (1.3)

α−2 = α2. (1.4)

The residual two parameters α0,2 determine the shapes of nuclei in the body-fixed frame.
For convenience, we usually use β and γ parameters defined as

α0 = β cos γ, (1.5)

α2 =
1√
2
β sin γ. (1.6)

Because of cyclic symmetry about x-, y-, and z-axis, γ parameter is restricted to γ ∈
[0◦, 60◦]. I call this parameter space a βγ-plane in this thesis. The ideal shapes in the nuclei
are called prolate (γ = 0◦) and oblate (γ = 60◦) (see Fig. 1.4). In the nuclear systems, z
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Figure 1.6: Fragmentations of GT transition strengths by deformation.

components of the angular momenta J are good quantum numbers and denoted as M in
the space-fixed frame (see Fig. 1.5). K-quanta are the z components of J defined in the
body-fixed frame. The wavefunctions of the deformed nuclei in the body-fixed frame are
usually called intrinsic states.

The deformation in N ≈ Z ≈ 40 nuclei is complicated because of prolate-oblate shape
coexistence for 68Se and 72Kr. In order to clarify the existence of such strange phenomena,
the experimental GT accumulated strengths

f(E) =
∑
Ef<E

B(GT; i → f) (1.7)

have been compared with those from the deformed (oblate or prolate) bases calculations.
This method was applied to N = Z even-even nuclei and revealed the shape for 72Kr
(oblate [54]), 76Sr(prolate [55]) , 78Sr (prolate [56]). Recent comprehensive theoretical
studies for neutron-rich nuclei are seen in [57](Zr, Mo) and [58](Ge, Se, Kr, Sr, Ru, Pd).
Sarriguren et al. applied the deformed HF+RPA to the GT transition 74Kr → 74Br and
found that the accumulated GT strength in Eq. (1.7) strongly depends on quadrupole
deformation [59]. If the initial state is oblately deformed, the accumulated GT strength
becomes the half of prolately deformed one for each E. They found that the deformation
caused the decouple of the K-quanta. In the prolately deformed case, the K = 1 state
constructed the peak and K = 0 component was hindered, which also made a small peak
at higher energy. On the other hand, in the oblately deformed case, K = 0, 1 components
were also decoupled, but the strengths were fragmented into many single particle states
and the peaks were not formed in any energy region (see Fig. 1.6). The experimental
accumulated GT strength [60] showed clearly intermediate features of oblate and prolate.
This can be one of the evidences for the prolate-oblate shape coexistence in 74Kr.

The accumulated GT strength was also discussed by Bai et al. [53] and their values
for 46Ti → 46V, 50Cr → 50Mn, and 54Fe → 54Co insufficiently match to experimental
ones though that for 42Ca → 42Sc is good agreement with the data. Recently, the answer
to this problem has been given by another group [61] from the view point of SU(4)-
symmetry breaking caused by a spin-orbit force on the quadrupole deformed states. They
performed the pf -shell model calculation and reproduced the B(GT; 0+1 1 → 1+1 0) of nuclei
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listed above by introducing the spin-orbit force, T = 1, J = 2 pairing interaction, and
QQ interaction combined with T = 0, J = 1 and T = 1, J = 0 paring interactions. The
important point was that without QQ interaction, B(GT; 0+1 1 → 1+1 0) of 46Ti → 46V
and 50Cr → 50Mn were estimated twice larger. This indicates that deformation plays
a decisive role to define the low-lying states of N = Z odd-odd nuclei. Moreover, the
accumulated GT strengths of their model agree with the experimental ones for 46Ti → 46V
and 50Cr → 50Mn, but that of 54Fe → 54Co does not. The effect of deformation on B(GT)
fragmentation is limited in 54Fe → 54Co where many particle-hole excitations or particle-
vibration coupling also contribute to B(GT) fragmentation [53].

Ha and Cheoun investigated GT transitions in the lighter deformed nuclei 30,32,34Mg
by using the deformed QRPA method without proton-neutron pairing interaction [62].
In their results, prolate deformations pushed the B(GT) spectra, which were already
fragment into many states near the spherical case, up to the higher energy. They also
studiedN ≈ Z nuclei 24,26Mg [63] with proton-neutron pairing interaction. The conclusion
is that the proton-neutron pairing enhanced the low-lying GT strengths, but the effect
of deformation was much stronger than pn pairing because the energy minimums on the
deformation parameter β was not determined by pn pairing and the accumulated GT
strengths were not changed between with and without the pn pairing. They also applied
the same model including pn pairing and deformation to 24Mg, 28Si, and 32S [64]. The
results were consistent with the above cases. Deformation was more important than pn
pairings in order to understand the broadly distributed GT strengths.

1.2.1.3 Low-Energy Super Gamow-Teller transitions

Recently, the low-lying states near the N = Z line have been systematically discussed
in the experiments and clear SU(4) symmetry was found in the real spectra. The low-
lying states of the N = Z odd-odd f7/2-shell nuclei were measured at Research Center of
Nuclear Physics (RCNP), Osaka by using Grand Raiden spectrometer; 42Ca → 42Sc [65],
46Ti → 46V [66], 50Cr → 50Mn [67], 54Fe → 54Co [68], 58Ni → 58Cu [69–71]. The high-
energy resolution with ΔE = 45 keV for GT transition has been achieved for charge-
exchange (3He, t) reaction (see [72]) by detecting the forward scattering near the 0◦,
which corresponds to ΔL = 0 derived from the GT transition operator Eq. (1.1). These
improvements of detecting technology give us the detailed information about Gamow-
Teller transitions 0+1 1(g.s.) → 1+n 0.

The authors argued that the lowest 1+0 state at 0.611 MeV of 42Sc corresponded
to the Wigner’s SU(4)-supermultiplet state because there were negligible GT strengths
above this state [73]. This GT strengths distribution is especially characteristic compared
with the B(GT) spectra of 46Ti → 46V and 50Cr → 50Mn because these strengths are
fragmented into the Gamow-Teller resonances around 6–11 MeV. They also compared the
accumulated GT strengths with the shell-model calculations and obtained good agree-
ments. The lowest 42Sc(1+1 0) is named “low-energy super GT” (LeSGT) state in this
paper as a SU(4)-multiplet state assisted by T = 0 proton-neutron effective residual
interactions. The systematicity of LeSGT is observed in 6He → 6Li and 18O → 18F.
Consequently, LeSGT is unique phenomena when the N = Z + 2 nuclei have N = Z
even-even closed core such as 4He, 16O, and 40Ca. These closed core nuclei are inert on
GT transitions since both orbits j≷ are occupied and the transitions between these sates
are clearly forbidden.
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However, little attention has been paid to transitional nuclei 46V and 50Mn even though
there are a few strong GT strengths in the low-lying region of 46Ti → 46V and 50Cr → 50Mn
which are not found in 54Fe → 54Co, which is near the closed shell (N = Z = 28).
Recently, it is pointed out that deformation and spin-orbit interactions play an essential
role to reproduce the low-lying GT strengths in these transitional nuclei [61]. Moreover,
such fragmentation has already been measured in 26Mg → 26Al [72] and compared with the
spectra obtained by the spherical HFB+QRPA method [74]. The theoretical GT spectra
were succeeded in forming the low-lying peak but it did not predict the fragmentation
of them into the two states; 26Al(1+1,20). For another example, in the measument of
GT; 34S → 34Cl [75], the strengths toward lowest states (1+1,20) were hindered as B(GT) ≈
0.019, 0.064 though those to the next states (1+3,40) were sufficiently strong with B(GT) ≈
0.299, 1.369. These facts support that LeSGTs are not always found in the lowest 1+1 0
states but in the higher 1+n>10 states. Therefore, it is necessary to refine nuclear structure
theory for the low-lying but not the lowest 1+0 states of N = Z odd-odd nuclei.

The enhancement of an energy resolution on charge-exchange reactions gives us op-
portunities to see the details of the J = 1 state in the low-lying and high-lying states
in N = Z odd-odd nuclei. However, the theoretical treatment of these nuclei is limited
as QRPA phonon excitations from the neighbor N = Z + 2 nuclei in mean field theo-
ries [52–59,62–64,74]. In order to reveal the identity of these 1+0 states, it is necessary to
perform the direct calculations obtaining 1+0 states not as phonons on N = Z +2 nuclei.
This challenge has been done by Konieczka et al. but the model lacks proton-neutron
pairing and there are rooms for futher development [76]. Shell models are succeeded in re-
producing low-lying and high-lying 1+0 states in N = Z odd-odd nuclei [77], but physical
descriptions are ambiguous because these shell models include all the effects on the inter-
action and the collective motions at the same time. There are rooms to do complementary
studies that reveals the essential correlations in these 1+0 states [61].

1.2.2 Gamow-Teller transitions in light nuclei

There are theoretical limitations for the lower sd-shell nuclei (18F, 22Na, 26Al) and p-
shell nuclei (6Li, 10B, 14N) in mean field theories and shell-model calculations because
degree of freedom of the α clusters plays a crucial role and the like-particle and proton-
neutron parings are questionable as shown in the next section. The heaviest N = Z
odd-odd and A < 30 nucleus 26Al was treated as the final states of QRPA calculations for
26Mg → 26Al transitions in Ref. [63]. However, for these extremely light nuclei, the mean
field approximations may be not suitable to describe deformation as well as pn pairing
because deformation in these region might be caused by cluster correlations.

The GT transition 14C(0+1 1) → 14N(1+1 0) shows interesting feature that the strength
is extremely hindered B(GT) = 1.90 × 10−6 which is in the same magnitude of the
first forbidden transition. After the development of radiocarbon dating using this long
life time of 5730 year in 1947, Jancovici and Talmi discussed this problem in 1954 by
using the LS-coupling shell model [78] and obtained the anomalous hindrance by tuning
spin-orbit and tensor force to cancel out the matrix element. From this first attempt,
many theoretical and experimental have been performed pursuing the real wavefunction
of 14C(0+1 1) and

14N(1+1 0). In the most recent, the GT spectra of 14N(1+1 0) → 14C(2+n 1)
have been systematically measured [79] and they have obtained the fragmented spectra

16



for 14C(2+1,2,31). This is not consistent with the theoretical result by a no-core shell model
(NCSM) that predicts the GT strengths is concentrated into the lowest 14C(2+1 1) state
withB(GT) = 2.609 [80]. The same feature is obtained in the calculation where the cluster
correlations are taken into account, but the concentration 14N(1+1 0) → 14C(2+1 1) is found
with B(GT) = 2.4 [81]. The NCSM with a three-nucleon force of chiral perturbation
theory achieved the vanishment of the GT strength of 14C(0+1 1) → 14N(1+1 0) [82], but
this problem remains a state-of-art challenge for the low-lying GT transitions in the
N = Z odd-odd light nuclei because it has not been revealed what nuclear correlations
are important to understand the ground state of the heaviest stable N = Z odd-odd
nucleus 14N(1+1 0).

1.3 Clustering of light nuclei

For the light nuclei (A < 30), the N = Z even-even nuclei (8Be, 12C, 16O, 20Ne, 24Mg, 28Si)
have been enthusiastically investigated after the suggestion of the α cluster correlation
which is the four-particle correlations of p ↑, p ↓, n ↑, n ↓ forming 4He units inside the
nuclei. The original purpose of this idea is to find theoretical description for the low-lying
Jπ = 0± excitations and the rotational K = 0 bands in 12C = 3α, 16O = 12C + α, and
20Ne = 16O+α [83–91]. The α clustering was called “molecular-like structure” at first [93]
and the rough conjecture that such states would be found near the thresholds was given
for the light N = Z even-even nuclei by Ikeda et al. [92] (see Fig. 1.7). After that, much
higher excited 0+n≥2 states and strongly deformed 0+ states have been discussed. The
former states are called “α condensation” [94–105] which are the states described by the
picture that many α particles are trapped in the harmonic oscillator potential. The latter
states are named “linear chain” [106–118], where strings of beads made by α are formed
in their intrinsic states.

1.3.1 Theoretical approaches for clustering

Many models have been developed in order to solve the relative motions between the
clusters, which correspond to the molecular-like structures. In the simplest method, the
α particles are theoretically treated as point particles without internal structures under
the assumption that the relative motions are determined by orthogonality conditions to
the lower states (12C [119], 20Ne [120–122]).

However, the modern studies of clustering have been mostly based on the antisym-
metrized molecular dynamics (AMD). This is a microscopic method without assumption
of the clusters, where the nuclear dynamics are solved in the scale of nucleons by using
Gaussian wavepackets (see Sec. 2.1). These Gaussians are suitable to describe α clusters
in S-wave. The definition of the AMD was given by Ono et al. for description of low-
energy heavy-ion reactions [123]. After that, this model was applied to nuclear structure
calculations in the light nuclei (Li, Be [124], B [125], 12C [126], 20Ne [127]). This method
has been developed into various extensions in order to incorporate the quantum many-
body correlations. For example, multi-Slater determinants are used in [128], constraint
on the distances between clusters are introduced in [129], and Brueckner theory is applied
in [130]. Cluster structure in the odd-A nuclei was also investigated with AMD because
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Figure 1.7: Clustering structures near the thresholds in the N = Z even-even nuclei
predicted by Ikeda et al [92]. The black dots show α particles. The numbers near the
pictures represent the threshold energies for each channel.
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the method can deal with nucleon’s spins and it is not limited to J = 0 states of even-even
nuclei (11B, 11C [131], 9,11Li, 9,11Be [132], 9Li [133]).

These light nuclei have been investigated also with ab initio frameworks. No-core
shell model (NCSM) is notable one where harmonic oscillator bases up to large principal
quantum numbers are diagonalized with effective or realistic interactions including those
derived from the chiral effective theories. However, some states in the light nuclei are
insufficiently described because of clustering. The first excited 0+ state of 12C and 16O
are typical examples showing the limitations for these ab initio calculations, in which
enormous shell orbits are needed in order to reproduce cluster structures. In fact, it was
pointed out that 12C(0+2 ) = 3α was not obtained [134–138] and 16O(0+2 ) =

12C + α was
also difficult [139].

1.3.2 Deformation on cluster structures

Quadruple deformation and clustering are closely related to each other. For instance, 28Si
has prolately deformed Kπ = 0+ bands corresponding to the cluster 16O + 12C [140, 141]
and 24Mg + α [140]. Similarly, 32S has prolately deformed bands of 16O + 16O cluster
structure [141]. Oblate deformations are also found as clustering. Kπ = 5− and 3− bands
of 28Si and 12C are described by 7α and 3α clusters placed to make pentagon and triangle
shapes in their intrinsic states, respectively [142].

The AMD can describe deformation and clustering in the same footing. The deformed
bases AMD is a method using deformed Gaussian wavepackets for the single-particle
orbits [143]. The merit is that this method can deal with both deformed mean-field
structures found in the low-lying states and cluster structures in the highly excited states.
In the results of application to 20Ne, it is found that Jπ = 1− (Kπ = 0−) and Jπ = 2−

(Kπ = 2−) energy surfaces correspond to 16O+α and a deformed mean-field-like character,
respectively.

In principle, the AMD without deformed bases can also describe the mean-field struc-
tures because the AMD is one of the Hartree Fock methods that uses Gaussian wavepack-
ets as single-particle orbits instead of the solutions of the self-consistent one-body potential
problem. Another extension called βγ-AMD is based on this fact [144]. This is a method
performing energy variation under the constraint on quadrupole deformation parameters
β and γ, but the basis wavefunctions are spherical Gaussian wavepackets. It is succeeded
in finding mean-field-like structures and cluster structures of N = 6 isotones (9Li, 10Be,
11B, 12C) in the small and large β regions, respectively. Because the method puts con-
straint on γ as well as β, the prolately deformed structures (γ = 0◦) in 10Be and oblately
deformed structures (γ = 60◦) in 11B and 12C are obtained in the same framework.

1.3.3 Di-neutron correlation

The light neutron-rich nuclei have been investigated to search a new physics near the
neutron-drip line [145] and the neutron magic numbers [146].

Neutron halo is one of the most characteristic phenomena in the light neutron-rich
nuclei. This phenomenon was firstly observed in 11Li as a ground state with an extremely
large radius. 11Li was enthusiastically studied by experimental and theoretical methods
pursuing the origin of such a strange ground state [147,148]. The essential reason why such
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a large radius is realized in 11Li is that the nucleus is well described as 11Li = 9Li + n+ n
and these two excessed neutrons are loosely bound near the neutron threshold energy.
Halo structures are also found in proton orbits in 8B [149]. Recently, the halo structures
have been extended into a deformed state in 37,38Mg [150].

Neutron skin is another interesting phenomenon for neutron rich nuclei. This is also
defined as a ground state with a large radius. The examples are 6,8He [151] and neutron-
rich Na isotopes [152]. The different point from the neutron halo is that not only valence
neutrons but also neutrons in the core nuclei should be considered. Namely, the neutron
skin is caused by the deviation between the proton and neutron Fermi surfaces because
of excessed neutrons.

The theoretical interests for neutron halo and skin have been paid into the correla-
tions of these excessed neutrons. The di-neutron correlations in these excessed neutrons
have been investigated in some theoretical methods. Usually, two nucleon correlations
are described as residual interactions forming two nucleons pairs in the same shell or-
bits: (�j)

2
J=0. This types of two-neutron correlations are investigated in 11Li [153, 154].

The authors performed shell model calculations with the assumption of the 9Li core and
found that many neutron shell orbits (p1/2)

2
J=0, (s1/2)

2
J=0, (d5/2)

2
J=0, (d3/2)

2
J=0, (p3/2)

2
J=0,

(f7/2)
2
J=0, (f5/2)

2
J=0, (g9/2)

2
J=0, and (g7/2)

2
J=0 are necessary to produce the reasonable bind-

ing energy of 11Li. However, they also pointed out that this model space was insufficient
to reproduce the binding energy and di-neutron cluster moving around the 9Li core might
be needed.

These insufficiency of the model spaces were also pointed out in the mean-field theories
[155, 156]. These calculations suggested that the two-neutron pairings in the continuum
states of the single-particle orbits were important to understand the neutron halo. This
phenomenon is called continuum coupling.

The three body model calculation including the continuum states, where the relative
motion among 9Li + n + n clusters were solved, established a comprehensive description
of two valence neutrons in the halo and skin structures [157,158]. In the model, the two-
neutron density distributions were shown for 11Li = 9Li + n+ n and 6He = 4He + n+ n.
The authors found two types of two-neutron configurations are enable in these systems.
One is the BCS-type configuration, which have been already investigated in the mean field
theories, and the other is the di-neutron configuration, where the two neutrons are located
close to each other. Such di-neutron configurations dominate in both 11Li and 6He. In
these systems, the di-neutron configuration is specified as a dominant S = 0 component
in the LS-coupling scheme and a long-tail amplitude about a distance between the core
nucleus (9Li, 4He) and the residual two neutrons.

The di-neutron can be considered as one of the cluster structures of two neutrons
around the core nuclei. From such a point of view, 6,8He were investigated using AMD
and its extensions [159–161]. In these studies, 8He(0+1 ) showed both the p3/2 sub-shell
closed feature and the LS coupling feature because of the di-neutron correlation. 8He(0+2 )
was also investigated and this state corresponded to the 4He + 2n + 2n state analogous
to the 3α structure in 12C(0+2 ). In this state, the two di-neutrons are moving around the
4He core in S-wave with dilute density. Di-neutron correlation, which is S = 0 spatial
two-neutron correlation, is rather stronger in 6He(0+1 ) than

8He(0+1 ) by seeing two-neutron
densities [162].

Kobayashi et al. developed the framework directly treating the di-neutron configura-
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tions in the light neutron-rich nuclei [163,164]. In the application to 10Be, the deformation
effects of the core nuclei on di-neutron formation were investigated in detail. In this sys-
tem, the core nucleus is 8Be which is deformable by forming 2α structure. They found
that the two neutrons were in the p3/2 orbit with the undeformed 8Be core and they
favored the di-neutron configuration with the deformed 2α core.

Despite possibility for finding the counterpart of the di-neutron correlation, there are
few theories treating proton-neutron correlations in the light nuclei (A < 30). Proton-
neutron correlations are limitedly discussed in the A > 30 region for the N = Z odd-odd
nuclei (see Sec. 1.1.1.1). It might be worthwhile to construct the theoretical methods
focusing on proton-neutron correlations in the light nuclei considering di-neutron corre-
lations are different from two-neutron correlations.

1.3.4 Light N = Z odd-odd nuclei

The N = Z odd-odd nuclei (6Li, 10B, 14N, 18F, 22Na, 26Al) have not been paid attention.
However, as we have seen above, the counterpart of di-neutron correlation in proton-
neutron correlations may be found in these nuclei. Moreover, the relation between the
deformation and the Gamow-Teller transition can be discussed as is done in heavier nuclei
(see Sec. 1.2.1.2). In the light nuclei, the deformation accompanied by clusters and the
GT transition will relate to each other.
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Chapter 2

Theoretical methods in the light
N = Z odd-odd nuclei

In this chapter, I introduce the methods used in this thesis. An extension of the anti-
symmtrized molecular dynamics (AMD) is constructed in the first section. In the pre-
ceding sections, I formulate Gamow-Teller transitions and their sum-rule in the extended
method. The analysis techniques to investigate proton-neutron correlations in the light
nuclei are also given.

2.1 Isospin-projected AMD+GCM

The isospin symmetry is explicitly broken in nuclei because of charge-dependent interac-
tion such as Coulomb force. However, isospin has been approximated as T ≈ |N − Z|/2,
Tz ≈ (N − Z)/2 in the most of theoretical frameworks considering the low-lying excita-
tions off the N = Z line. On the N = Z line, actually, we can find the competing isoscalar
and isovector spectra in the low-lying regions (see Fig. 1.1).

Recently, the density functional theory (DFT) has been extended to study the unique
phenomena on the N = Z line including odd-even staggering, pn pairing correlations, and
superallowed Fermi β decays. For the first attempt, the density functionals were made by
rediagonalization of the Hamiltonian including isospin-breaking terms such as Coulomb
force [165]. After that, the method was sophisticated into using isospin projection before
the rediagonalizations [166]. This framework was succeeded in evaluatting the Cabibbo-
Kobayashi-Maskawa matrix element |Vud| from the ft values of the superallowed Fermi
β decays with a precision of better than 0.1% [167, 168]. Nevertheless, there are rooms
for further improvements because pn-pairing correlations and particle-hole interactions
were not taken into account and the configuration mixing and time-odd current densities
in odd-odd nuclei were not considered. The latter problems were solved [169] and the
method was applied to calculate the GT transition strengths near the N = Z line [76],
where pn correlations had been still ignored.

In the light nuclei, the pn correlations shall be realized as formation of di-nucleon
cluster though competitions of T = 0 and T = 1 states in the low-lying spectra and
isospin symmetry-breaking by Coulomb interaction also occur as well as in the heavier
nuclei. In order to discuss these types of pn correlations in the N = Z odd-odd nuclei,
I extended the AMD combined with the Generator Coordinate Method (GCM) on the
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quadrupole deformation parameters (βγ-AMD+GCM) [144] to the isospin-projected one
before energy variation.

The AMD wavefunction is a Slater determinant of single-particle orbits as in the HF
method

|Φ〉 = A |φ1〉 |φ2〉 · · · |φA〉 , (2.1)

where a Gaussian wavepacket is used as the ansatz of a cluster state which contains
spatially localized nucleons

|φi〉 = |Zi〉 |ξi〉 |ni〉 , (2.2)

with

〈r |Zi〉 =
(
2ν

π

) 3
4

exp

[
−ν

(
r − Zi√

ν

)2

+
1

2
Z2

i

]
, (2.3)

|ξi〉 = ξi↑ |↑〉+ ξi↓ |↓〉 , (2.4)

|ni〉 ∈ {|p〉 , |n〉} . (2.5)

Here, Zi is the centroid in C
3 and real number ν is introduced as the width of the harmonic

oscillator potential, in which the 〈r |Zi = 0〉 becomes the ground state. ξi↑ and ξi↓ denote
the arbitrary spin parameters in the SU(2) space, but the isospin is fixed into a proton or
a neutron in order to conserve the particle numbers Z and N .

The parameters {Zi, ξi}i=1,2,...,A are determined by energy variations. The variations
should be performed after some projections on the good quantum numbers because the
nuclear forces allow to conserve parity π, angular momentum J , and approximately isospin
T . In usual cases, the variation after parity projection P π is applied so as to reproduce
the parity-broken intrinsic states. More precisely, the variation after parity and angular
momentum projection P Jπ

is necessary and this is uesd to study the light nuclei compre-
hensively [170]. However, the competing isoscalar (T = 0) and isovector (T = 1) spectra
in N = Z odd-odd nuclei request to separate isospin T by projection. Hence, I use the
variation after parity and isospin projections P πT in my framework:

δ

[〈
Φ
∣∣P πT †HP πT

∣∣Φ〉
〈Φ |P πT †P πT |Φ〉

]
= 0. (2.6)

The isospin projection is numerically performed in my framework as in DFT [166–168].
However, because no T > 1 states have been found in the low-lying stats of N = Z odd-
odd nuclei satisfying A < 30, I approximate the isospin projection operator as

P T ≡ 1

2
(1 + πTPpn), (2.7)

where πT is the parameter for separating T = 0 and T = 1 states with (−1)Z (T = 0)
and −(−1)Z (T = 1) and Ppn is an operator exchanging a proton and a neutron for all
nucleons in the |Φ〉.

The AMD wavefunction is limited to a single Slater determinant. However, configu-
ration mixing is also necessary to describe collective motions such as deformations and
pair formations. The treatment of quadrupole deformation on the AMD was initiated
by Suhara et al. [144]. They introduced the constraint on the quadrupole deformation
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parameter β and γ besides physical Hamiltonian H0 to obtain the optimum wavefunction
for (β, γ) = (βa, γa) as

〈H〉 = 〈H0〉+ η
[
(β cos γ − βa cos γa)

2 + (β sin γ − βa sin γa)
2] , (2.8)

where η denotes the sufficiently large positive real number corresponding to the penalty
on violating the rule (β, γ) = (βa, γa). The definition of β and γ is given as

β cos γ =

√
5π

3

2 〈z2〉 − 〈x2〉 − 〈y2〉
R2

, (2.9)

β sin γ =

√
5π

3

〈x2〉 − 〈y2〉
R2

, (2.10)

R2 =
5

3

[〈
x2
〉
+
〈
y2
〉
+
〈
z2
〉]

. (2.11)

This method is called βγ-AMD, but I use an expectation value on the parity and isospin
projected state;

〈•〉 ≡
〈
Φ
∣∣P πT † • P πT

∣∣Φ〉
〈Φ |P πT †P πT |Φ〉 . (2.12)

Hence, I define this method as isospin-projected βγ-AMD (Tβγ-AMD).
By superposing the wavefunctions on the βγ-plane, quantum fluctuations of quadrupole

deformations are incorporated into the model. To this end, the GCM is performed as a
subsequent procedure in the βγ-AMD and the Tβγ-AMD. The complete wavefunction
for the (T )βγ-AMD combined with GCM ((T )βγ-AMD+GCM) is

|Ψ(JπT ;M)〉 =
∑
a

J∑
K=−J

gJ
πT

aK P J
MKP

πP T |Φ(βa, γa)〉 , (2.13)

where gJ
πT

aK is the coefficient on the superposition determined by solving the discretized
Hill-Wheeler equation [171]:

∑
a

J∑
K=−J

gJ
πT

aK

[HJπT
bK′;aK − E(JπT )N JπT

bK′;aK
]
= 0 (2.14)

with the Hamiltonian and norm kernels:

HJπT
bK′;aK =

〈
Φ(βb, γb)

∣∣∣P J†
MK′P

π†P T †HP J
MKP

πP T
∣∣∣Φ(βa, γa)

〉
, (2.15)

N JπT
bK′;aK =

〈
Φ(βb, γb)

∣∣∣P J†
MK′P

π†P T †P J
MKP

πP T
∣∣∣Φ(βa, γa)

〉
. (2.16)

2.2 Gamow-Teller transitions

Gamow-Teller transition operator is defined in Eq. (1.1). The expectation value between
the initial |Ji〉 state and the final |Jf〉 state has the form

B(GT±; Ji → Jf ) =
1

2Ji + 1

∣∣∣∣∣〈Jf ||
∑
i

σiτ
±
i ||Ji〉

∣∣∣∣∣
2

, (2.17)
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where the initial and final states correspond to the GCMwavefunctions defined in Eq. (2.13)
in the preceding chapters.

Gamow-Teller transition strengths satisfy the Ikeda sum-rule [172]∑
n

B(GT−; 0+1 1 → 1+n 0) = 3(N − Z) (2.18)

for the given nuclei having the neutron and proton numbers of N and Z. The proof of
this theorem is given as follows. The summation of the GT strengths is transformed as∑

n

B(GT±; 0+1 1 → 1+n 0) =
∑
n

〈0+1 1|Y ∓|1+n 0〉〈1+n 0|Y ±|0+1 1〉

= 〈0+1 1|Y ∓Y ±|0+1 1〉.

Therefore, the left side of the sum-rule has the form∑
n

B(GT−; 0+1 1 → 1+n 0)

= 〈0+1 1|Y +Y −|0+1 1〉 − 〈0+1 1|Y −Y +|0+1 1〉+
∑
n

B(GT+; 0+1 1 → 1+n 0)

= 3(N − Z) +
∑
n

B(GT+; 0+1 1 → 1+n 0).

If the initial nuclei have the condition N > Z, the GT+ strengths are sufficiently small
because the final states of the protons are already occupied by the neutrons. Thus, the
second term of the equation can be ignored and we obtain Eq. (2.18).

2.3 Proton-neutron pair densities

Proton-neutron correlations in the light nuclei might be realized as cluster formations of
the proton-neutron pairs. These types of two-body correlations can be seen in the two-
body densities corresponding proton-neutron channels. In this thesis, I use the two-body
density for the given intrinsic wavefunction:

ρST (r) =

〈
Φ (β, γ)

∣∣P T †ρ̂ST (r)P T
∣∣Φ (β, γ)

〉
〈Φ (β, γ) |P T †P T |Φ (β, γ)〉 , (2.19)

where
ρ̂ST (r) =

∑
ij

P̂ S
ij P̂

T
ij δ (r − r̂i) (r − r̂j) . (2.20)

Because the core nuclei have same numbers of S = 0, T = 1 and S = 1, T = 0 pairs in most
cases, the difference ρNN (r) ≡ ρ10 (r)− ρ01 (r) correspond to valence NN pair densities.
In this definition, S = 0, T = 1 pairs are found in negative regions and S = 1, T = 0 pairs
are found in positive regions.
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Chapter 3

Validity of the Tβγ-AMD+GCM

In order to check validity of the Tβγ-AMD+GCM, I applied the method to 10B, which is
the lightest deformed N = Z odd-odd nuclei. The issues needing confirmation are divided
into three points; (i) the isospin projection is necessary or not, (ii) the approximation on
isospin projection operator is appropriate or not, and (iii) the low-lying spectra in 10B are
reproduced or not.

3.1 Hamiltonian

The Hamiltonian used in this section has the form

H = K −Kcm + Vcentral + V�s + VCoulomb, (3.1)

where the K, Kcm, Vcentral, V�s, and VCoulomb are kinetic energy, kinetic energy of center
of mass motion, central force, spin-orbit force, and Coulomb force, respectively. As the
central force, I adopt the Volkov No.2 force [173]

Vcentral =
∑
i<j

∑
k=1,2

vk exp

[
−
(
ri − rj
ak

)2
]
(W + BPσ −HPτ −MPσPτ ) , (3.2)

with the parameters of v1 = −60.65 MeV, v2 = 61.14 MeV, a1 = 1.80 fm, and a2 =
1.01 fm. W = 0.40 and M = 0.60 are determined α-α scattering phase shift. B = 0.06
and H = 0.06 are modified to reproduce relative energies between T = 0 and T = 1
spectra in [174]. These corrections correspond to changing T = 0, S = 1 interaction to
T = 1, S = 0 interaction with the ratio f = 1.27. The spin-orbit interaction is based on
the Gaussian three-range soft-core (G3RS) force [175,176]

V�s =
∑
i<j

∑
k=1,2

uk exp

[
−
(
ri − rj

bk

)2
]
1 + Pσ

2

1 + Pτ

2
�ij · sij, (3.3)

where

�ij = (ri − rj)× pi − pj

2
(3.4)

and
sij = si + sj. (3.5)

The parameters are b1 = 0.60 fm, b2 = 0.447 fm, and u1 = −u2 = 1300 MeV which were
modified to fit the energy difference between 3/2− and 1/2− states in 9Be [174].
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Figure 3.1: Energy surfaces on the βγ plane obtained by the Tβγ-AMD. The panel (a)
and (b) refer to the T = 0 and T = 1 energy surfaces of 10B . The energy minimum of
each energy surface is shown by a dot.

3.2 Results

After performing the Tβγ-AMD, I obtained the energy surfaces on the βγ parameters
for each isospin T = 0 and T = 1. The figure 3.1 shows the energy surfaces of the
positive parity states in 10B. The energy minimum is found at prolately deformed point
(β, γ) = (0.38, 0◦) in the π = +, T = 0 surface and that is found at (β, γ) = (0.41, 14.0◦)
in the π = +, T = 1 surface. It is expected that quantum fluctuations along deformation
play crucial role in the low-lying states of 10B because the states on the surfaces are
smoothly changed along β and γ.

When I perform the energy variations before isospin projection, I cannot obtain such
proper energy surfaces. In the figure 3.2 (a), the π = + energy surface obtained without
isospin projection is shown. The energy minimum is located near that in the π = +, T = 0
surface, but the surface is drastically changed between small and large β region. Even
if I project the π = + states to the isospin eigenstates, the smoothly connected surfaces
cannot be obtained as shown in the figure 3.2 (b)(c). The major reason why the βγ-
AMD cannot work in the N = Z odd-odd system like 10B is isospin competition. This
is confirmed by checking the percentages of T = 1 states in the intrinsic wavefunctions
obtained with the βγ-AMD shown in the figure 3.3. In the largely deformed states, the
proton-neutron pair spatially develops isolated from the residual nuclei. As a result,
the states without isospin projection contain the T = 0 and T = 1 pair with the same
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Figure 3.2: Energy surfaces of 10B on the βγ plane obtained with the βγ-AMD. (a)
The π = + energy surface without the isospin projection, and (b) T = 0 and (c) T = 1
projected π = + energy surfaces are shown. The energy minimum of each energy surface
is shown by a dot.
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Figure 3.3: The ratios of the norms for the πT = +1 states to those for the π = +.
These values are calculated using the βγ-AMD on the βγ plane for 10B.
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Figure 3.4: Spectra of 10B with the Tβγ-AMD+GCM. The experimental data are also
shown (Ref. [177]). The minimum energies in the Jπ-projected energy surfaces of the
Tβγ-AMD measured from the 3+1 0 energy of the Tβγ-AMD+GCM are also shown.

amplitudes preserving SU(4) symmetry. On the other hand, the T = 0 states dominate
the small deformed states because of intrinsic spins of the proton-neutron pairs that allow
additional binding energy of spin-orbit interactions.

The approximation in isospin projection operator (2.7) sufficiently works. I evaluated
the expectation values T 2 of the states from the Tβγ-AMD and obtained 〈T 2〉 < 0.070
for the T = 0 states and 2 < 〈T 2〉 < 2.015 for the T = 1 states. This is reasonable to
recognize the operator (2.7) as isospin projection in the AMD.

The energy spectra in the low-lying region are well reproduced (see Fig. 3.4). There
are isovector states (0+1 1, 2

+
1 1) and isoscalar states (1+1,2,30, 2

+
1,20, 3

+
1,20) below 6 MeV.

The level orderings in each isospin are reproduced except for the 1+3 0. The 0+1 1 state
is an isobaric analog state of 10Be(0+1 1). The ground state of 3+1 0 is notable one for
N = Z odd-odd nuclei because this state is the [jj]J=2j;T=0 state with j = 3/2 that is
systematically found high-spin state in heavier nuclei (see Sec. 1.1.1.1). The 1+1,2,30 states
can be candidates for the deuteron-type proton-neutron correlation which is considered
as [jj]J=1;T=0 in the heavier nuclei.
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Chapter 4

Gamow-Teller transition strengths in
the light N = Z odd-odd nuclei

In this chapter, I show the calculated values of Gamow-Teller transition strengths by using
Tβγ-AMD+GCM in the lightN = Z odd-odd nuclei. Spectra, electro-magnetic moments,
and electro-magnetic transition strengths are also shown in order to check reliability for
each result.

4.1 Hamiltonian

I use the same Hamiltonian as that in the previous chapter (see Sec. 3.1) but the
parameters are modified to study the p-shell and sd-shell nuclei systematically. I use
B = H = 0.125 (f = 1.67) for 6Li that reproduces S-wave NN scattering lengths both
in the T = 0 and T = 1 channel and B = H = 0.06 (f = 1.27) for 10B, 14N, and 22Na,
which are same as the previous parameters.

4.2 p-shell nuclei

I have obtained the energy spectra for the p-shell odd-odd nuclei as shown in the figure
4.1. Those of 6Li and 10B are consistent with the experimental data but that of 14N has
many inconsistent results, that is, missing 0+2 1, 1

+
3 0, 3

+
1,20, 5

+
1 0, and 2+2 0. These low-lying

spectra in 14N are also calculated with the NCSM using the interaction from the chiral
effective theory but they are not sufficiently reach to reproducing experimental spectra
(see Sec. 1.2.2). However, the obtained spectra except for 3+1 0 apparently show agreement
with experimental ones, thus there are rooms to discuss the details of these states.

I show the nuclear properties in Table 4.1. Because GT transitions are sensitive to
the spin configurations, it should be examined whether Tβγ-AMD+GCM can reproduce
magnetic moments μ and M1 transition strengths. μ of 6Li(1+1 0),

10B(3+1 0, 1
+
1 0), and

14N(1+1 0) agree with the experimental data. B(M1; 0+1 1 → 1+1 0) of 6Li is well repro-
duced but B(M1; 0+1 1 → 1+1,20) of

10B do not quantitatively agree with the experimental
data. However, B(GT) is sufficiently reproduced to discuss relative strengths because
B(M1; 0+1 1 → 1+1 0) is larger than B(M1; 0+1 1 → 1+2 0). I have also obtained qualitatively
consistent results for 14N that B(M1; 0+1 1 → 1+2 0) is larger than B(M1; 0+1 1 → 1+1 0) and
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Table 4.1: Binding energies, μ and Q moments, and M1 and E2 transition strengths
of 6Li, 10B, and 14N. The calculated values obtained by Tβγ-AMD+GCM are shown.
For comparison, the values calculated by shell models are shown. Experimental data are
taken from [177–179].

Observable Tβγ-AMD+GCM SM Exp
6Li∣∣E(1+1 0)
∣∣ (MeV) 29.55 31.036 [180] 31.994

μ(1+1 0) (μN) 0.87 0.840 [180] 0.82205
Q(1+1 0) (fm

2) 0.09 -0.025 [180] -0.0818(17)
B(E2; 3+1 0 → 1+1 0) 3.79 3.040 [180] 10.7(8)
B(M1; 0+1 1 → 1+1 0) 13.73 15.374 [180] 15.4(3)
B(E2; 2+1 0 → 1+1 0) 5.15 3.129 [180] 4.4(23)
B(M1; 2+1 1 → 1+1 0) 0.01 0.113 [180] 0.15(3)

10B∣∣E(3+1 0)
∣∣ (MeV) 60.35 60.567 [180] 64.751

μ(3+1 0) (μN) 1.83 1.847 [180] 1.8006
μ(1+1 0) (μN) 0.84 0.802 [180] 0.63(12)
Q(3+1 0) (fm

2) 8.45 5.682 [180] 8.47(6)
B(E2; 1+1 0 → 3+1 0) 4.03 1.959 [180] 4.147(20)
B(M1; 0+1 1 → 1+1 0) 14.98 14.3 [181] 7.5(34)
B(M1; 1+2 0 → 0+1 1) 0.05 0.09 [182] 0.192(20)
B(E2; 1+2 0 → 1+1 0) 9.23 3.384 [180] 15.6(17)
B(E2; 1+2 0 → 3+1 0) 2.02 1.010 [180] 1.70(20)
B(E2; 2+1 0 → 3+1 0) 0.34 1.0 [182] 1.2(4)
B(E2; 3+2 0 → 1+1 0) 10.56 3.543 [180] 19.7(17)
B(M1; 2+1 1 → 2+1 0) 1.84 3.1 [182] 2.52(68)
B(M1; 2+1 1 → 1+2 0) 2.60 2.0 [182] 3.06(82)
B(M1; 2+1 1 → 1+1 0) 0.31 0.2 [182] 0.32(9)

14N∣∣E(1+1 0)
∣∣ (MeV) 108.60 108.41 [82] 104.66

μ(1+1 0) (μN) 0.34 0.347 [82] 0.40376
Q(1+1 0) (fm

2) 0.53 1.19 [82] 1.93(8)
B(M1; 0+1 1 → 1+1 0) 0.76 0.29 [82] 0.047(2)
B(M1; 1+2 0 → 0+1 1) 3.72 – 1.8(11)
B(E2; 1+2 0 → 1+1 0) 3.25 – 4.4(24)
B(E2; 2+1 0 → 1+1 0) 2.95 – 3.6(8)
B(M1; 2+1 1 → 2+1 0) 4.65 – 1.7(3)
B(M1; 2+1 1 → 1+1 0) 0.00 – 0.59(4)
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Figure 4.1: Spectra of 6Li, 10B, and 14N calculated by Tβγ-AMD+GCM and those of the
experimental data [177–179].

B(M1; 2+1 1 → 2+1 0) is larger than B(M1; 2+1 1 → 1+1 0).

One of the advantages to use the Tβγ-AMD to the p-shell nuclei is that the method
offers the model spaces to describe deformation as cluster formation. This can be seen
in the quadrupole moments Q and B(E2) values. Q(3+1 0) is a close value to an experi-
mental datum than that from the shell model. Moreover, it is succeeded in reproducing
B(E2; 1+1 0 → 3+1 0), B(E2; 1+2 0 → 1+1 0), B(E2; 1+2 0 → 3+1 0), and B(E2; 3+2 0 → 1+1 0)
though these values from the shell models are underestimated to the experimental data.
This discrepancy is majorly from the clustering of 10B into the 2α + pn states and the
shell model spaces is even insufficient to describe such strong correlation.

In the table 4.2, I show the GT strengths defined in Eq. (2.17). In the table, some
final states exhaust the large fraction of the sum rule value

∑
n B(GT; 0+1 1 → 1+n 0) =

3(N − Z) = 6. This indicates that these final states approximately equal to the initial
states rotated in the spin-isospin SU(4) space. These pairs of the T = 1 states inN = Z+2
nuclei and the T = 0 states in theN = Z odd-odd nuclei are found as [6He(0+1 1),

6Li(1+1 0)],
[10Be(0+1 1),

10B(1+1 0)], and [14C(0+1 1),
14N(1+2 0)] corresponding to the LeSGT in the f7/2-

shell nuclei.

The transition B(GT; 6He(0+1 1) → 6Li(1+1 0)) exhausts 88.5% of the sum rule though
the strength to 6Li(1+2 0) is weak enough. From the excited state 6He(2+1 1), the strengths
are fragmented into 6Li(1+2 0, 2

+
1 0, 3

+
1 0). Concentration of the strengths is also found in

10Be(0+1 1) → 10B(1+1 0) exhausting 82.5% of the sum rule. Two excited sates 10Be(2+1,21)
have their counterparts. The GT strengths from 10Be(2+1 1) are fragmented into 10B(1+2 0, 2

+
1,20, 3

+
2 0)

and those from 10Be(2+2 1) are fragmented into 10B(1+3 0, 2
+
1,20, 3

+
1 0). The strength from

14C(0+1 1) is not concentrated into the ground state 14N(1+1 0) but into the excited state
14N(1+2 0). This strength is upto 72.0% of the sum rule value. However, the anomalously
small B(GT) value for 14C(0+1 1) → 14N(1+1 0) is not reproduced (see Sec. 1.2.2) though this
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Table 4.2: Gamow-Teller transition strengths of 6He → 6Li, 10Be → 10B, and 14C →
14N. Calculated values of B(GT) defined in Eq. (2.17) are shown. For comparison,
the B(GT) values calculated by shell models are shown. Experimental data are taken
from [179,183–186]. The values in the parenthesis are for the mirror transitions.

Initial→Final Tβγ-AMD+GCM SM Exp
6He → 6Li
0+1 1 → 1+1 0 5.31 5.213 [180] 4.809(8)
0+1 1 → 1+2 0 0.00 – –
2+1 1 → 1+1 0 0.01 – –
2+1 1 → 3+1 0 0.97 – –
2+1 1 → 2+1 0 1.00 – –
2+1 1 → 1+2 0 1.10 – –
10Be → 10B
0+1 1 → 1+1 0 4.95 (4.331) [180] (3.5101(57))
0+1 1 → 1+2 0 0.15 (0.497) [187] (<0.813)
0+1 1 → 1+3 0 0.00 – –
2+1 1 → 3+1 0 0.63 0.092 [180] 0.11(4)
2+1 1 → 1+1 0 0.06 – –
2+1 1 → 1+2 0 0.81 – –
2+1 1 → 2+1 0 0.77 – –
2+1 1 → 3+2 0 1.71 – –
2+1 1 → 1+3 0 0.26 – –
2+1 1 → 2+2 0 0.86 – –
2+2 1 → 3+1 0 1.54 1.807 [180] 1.3(2)
2+2 1 → 1+1 0 0.01 – –
2+2 1 → 1+2 0 0.23 – –
2+2 1 → 2+1 0 0.71 – –
2+2 1 → 3+2 0 0.26 – –
2+2 1 → 1+3 0 0.82 – –
2+2 1 → 2+2 0 0.79 – –
14C → 14N
0+1 1 → 1+1 0 0.30 0.0175 [187] 3.53(2)× 10−6

1.69× 10−4 [82]
0+1 1 → 1+2 0 4.32 (4.445) [187] 2.76(11)
2+1 1 → 1+1 0 1.13 – 0.27
2+1 1 → 2+1 0 1.77 – –
2+1 1 → 3+1 0 2.35 – –
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Figure 4.2: The spectra of 22Ne in the
K = 0, 2 bands below 8 MeV. For each
band, calculated and experimental spec-
tra [188] are shown in the left and right,
respectively.

Figure 4.3: The spectra of 22Na in the
T = 1 K = 0, 2 bands below 8 MeV. For
each band, calculated and experimental
spectra [188] are shown in the left and
right, respectively.

strength is rather smaller than that to 14N(1+2 0), but it is not quantitatively insufficient.
The ground state 14N(1+1 0) corresponds to

14C(2+1 1) together with
14N(2+1 0, 3

+
1 0).

4.3 22Ne and 22Na

4.3.1 Spectra and nuclear properties

Firstly, I show the energy spectra of 22Ne and 22Na in the low-lying states (E < 8 MeV).
In the spectra of T = 1 states in 22Na (Fig. 4.3), there are K = 0 and K = 2 bands in
the low-lying states. This is analog feature of 22Ne (Fig. 4.2) which contains only T = 1
states.

There are three bands with K = 0, 1, and 3 in the T = 0 spectra (see Fig. 4.4).
The ground state shows K = 3 nature and 3+1 0, 4

+
1 0, 5

+
1 0 states are members of this

band. The internal band E2 transitions 5+1 0 → 4+1 0, 4
+
1 0 → 3+1 0, and 5+1 0 → 3+1 0 are

significantly strong as shown in Table 4.3 because of prolate deformation of the K = 3
band head. The wavefunction of the band head has the largest overlap of 89.7% with the
(β, γ) = (0.29, 0.19) state which contains dominant K = 3 component rather than the
other K values.

The 1+1 0 state is the K = 0 bandhead with rotational members of 1+1 0, 3+2 0, and
5+2 0 which show the strong internal band E2 transitions 5+2 0 → 3+2 0 and 3+2 0 → 1+1 0
(see Table 4.3). B(E2; 3+2 0 → 1+1 0) is consistent with the experimental datum, but
B(E2; 5+2 0 → 3+2 0) seems to correspond to the experimental B(E2; 5+3 0 → 3+2 0). The
bandhead 1+1 0 state has the largest overlap of 82.7% with the (β, γ) = (0.31, 0.11) state
which has dominant K = 0 component.
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Table 4.3: The electric and magnetic moments and transition strengths in 22Na. The
calculated Q (e fm2) and μ (μN) moments, B(E2) (e2 fm4), and B(M1) (μ2

N) are shown
together with the experimental data from [188] and with the shell-model values from [189].
The binding energy (MeV) of the ground state 22Na(3+1 0) is also shown.

Observable SM Tβγ-AMD Exp
+GCM

binding energy – 173.041 174.1456
Q(3+1 0) – 17.66 18.0(11)
μ(3+1 0) – 1.784 1.746(3)
μ(1+1 0) – 0.622 0.535(10)
K = 3

B(E2; 5+1 0 → 4+1 0) 76.9 49.9 58(18)
B(E2; 4+1 0 → 3+1 0) 87.9 56.8 91(3)
B(E2; 5+1 0 → 3+1 0) 20.1 12.0 19.0(15)
B(M1; 4+2 1 → 5+1 0) – 2.29 –
B(M1; 3+1 1 → 4+1 0) – 3.35 –
B(M1; 2+2 1 → 3+1 0) – 3.97 –

K = 0
B(E2; 3+2 0 → 1+1 0) 65.9 35.5 69(7)
B(E2; 5+2 0 → 3+2 0) 51.3 41.2 51(22); 5+3 0 → 3+2 0
B(M1; 0+1 1 → 1+1 0) 5.37 5.00 4.96(18)
B(M1; 2+1 1 → 3+2 0) – 3.28 –
B(M1; 4+1 1 → 3+2 0) 2.33 0.27 > 5.37
B(M1; 4+1 1 → 5+2 0) 3.06 3.02 2.2(9); 4+1 1 → 5+3 0

K = 1
B(E2; 2+1 0 → 1+2 0) – 43.9 –
B(E2; 3+3 0 → 2+1 0) – 10.2 –
B(E2; 3+3 0 → 1+2 0) – 13.9 –
B(E2; 4+2 0 → 3+3 0) – 14.0 –
B(E2; 4+2 0 → 2+1 0) 65.9 24.4 –
B(M1; 0+1 1 → 1+2 0) 4.46 4.12 4.3(13)
B(M1; 2+1 1 → 2+1 0) – 2.21 1.22(16)
K = 0, 1 inter-band
B(E2; 2+1 0 → 1+1 0) – 4.1 0.10(7)
B(E2; 3+2 0 → 1+2 0) – 1.7 –
B(E2; 1+1 0 → 1+2 0) – 7.81 –
B(E2; 2+1 0 → 3+2 0) – 9.42 –
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Figure 4.4: The spectra of 22Na in the T = 0 K = 0, 1, 3 bands below 8 MeV. Calculated
and experimental spectra [188] are shown in the left and right, respectively.

The 1+2 0 and 2+1 0 states make K = 1 band with strong B(E2; 2+1 0 → 1+2 0). The band-
head 1+2 0 has the largest overlap of 76.6% with the (β, γ) = (0.29, 0.19) state containing
dominant K = 1 component. The deformation parameters for these three bandheads
3+1 0, 1

+
1 0, and 1+2 0 are almost similar each other. This indicates that the low-lying spec-

tra and band structures are dominated by spin configuration of valence proton-neutron
pairs. Supporting this fact, the inter-band E2 transitions are significantly small as shown
in Table 4.3.

M1 transition strengths and their reproductions must be carefully checked because
these values directly correspond to the spin configurations related to GT transitions. (see
Sec. 4.2). TheM1 transition strengths are compared with the shell-model calculations and
the experimental data (see Table 4.3). Many strongM1 transitions from the T = 1, K = 0
band to the T = 0, K = 0, 1 band are found and they are consistent with the shell model
and the experiment except for the B(M1; 4+1 1 → 3+2 0).

The Gamow-Teller transition operator is defined in Eq. (2.17). This is a rotational
operator in the spin-isospin spaces, but in principle, the spin operator σ can be coupled
to orbital angular momenta because of spin-orbit interactions. As a result, if the core
nuclei are strongly deformed system like 10B and 22Na, the rotation in the spin-isospin
space can be partially broken into the transitions corresponding to the spin-flip operator
σ± ∝ σz±iσy causing ΔSz = 1 and the spin-conserving operator σ0 = σz causing ΔSz = 0.

The B(GT; 22Ne → 22Na) values are shown in Table 4.4. I obtained significantly
strong strengths from the K = 0, 2 states to the K = 0, 1, 3 states though there are
poor experimental data besides mirror transitions 22Mg → 22Na. The strengths from
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Table 4.4: The GT transition strengths defined by Eq. ((2.17)). of 22Ne → 22Na. The
experimental data are taken from [188].

Observable Tβγ-AMD+GCM Exp
K = 2 → K = 3

B(GT; 4+2 1 → 5+1 0) 0.95 –
B(GT; 3+1 1 → 4+1 0) 1.27 –
B(GT; 2+2 1 → 3+1 0) 1.51 –
K = 0 → K = 0

B(GT; 0+1 1 → 1+1 0) 1.98 (0.949(28))
B(GT; 2+1 1 → 1+1 0) 0.30 –
B(GT; 2+1 1 → 3+2 0) 1.24 –
B(GT; 4+1 1 → 5+2 0) 1.12 –
K = 0 → K = 1

B(GT; 0+1 1 → 1+2 0) 1.55 (1.43(8))
B(GT; 2+1 1 → 1+2 0) 0.37 –
B(GT; 2+1 1 → 2+1 0) 0.82 –
B(GT; 4+1 1 → 3+2 0) 0.12 –
K = 0 → K = 3

B(GT; 2+1 1 → 3+1 0) 0.0015 0.00022

the K = 0 ground bandhead 22Ne(0+1 1) are fragmented into the K = 0, 1 bandheads of
22Na(1+1,20) reproducing the mirror transition strengths B(GT; 22Mg(0+1 1) → 22Na(1+1,20)).
Also from the excited states of K = 0 ground band, the strengths are fragmented into
22Na(2+1 0, 3

+
2 0). The strengths from the K = 0 ground band of 22Ne are mostly found

in the K = 0, 1 bands of 22Na, and thus SU(4) symmetry is preserved if K = 0, 1
bands are summed up. However, the GT strengths are fragmented into the half inside the
K = 0, 1 bands. The essential point is that Sz ≈ 0 nn pair in 22Ne(0+1 1) state becomes into
Sz ≈ 0, 1 pn pair in 22Na(1+1,20) by the operators σ0 and σ±, respectively. Therefore, SU(4)
symmetry is partially broken into different K states as a result of spin-orbit interaction
on the prolate deformation as shown in the succeeding sections.

From the K = 2 band of 22Ne, the strengths are concentrated into the K = 3 band
of 22Na. The initial K = 2 states contain Sz = 0 nn pairs with Lz = 2. The GT
transition changes the Sz = 0 nn pair into the Sz = 1 pn pair. In this final state, spin-
orbit interaction contributes additional binding energy when Sz = 1 is aligned to Lz = 2.
Thus, the ground state in 22Na has 3+0.

4.3.2 Single-particle and Nilsson orbits

In order to see the details ofK = 0, 1, 3 bands in 22Na, I have calculated the single-particle
orbits of AMD wavefunction at (β, γ) = (0.29, 0.19) which has substantially large overlap
with the K = 0, 1, 3 bandheads. Single-particle energies, squared angular momenta,
squared orbital angular momenta, and positive parity probabilities are obtained from the
single-particle orbits (see Table 4.5). The Nilsson orbits [NnzΛΩ] are used to describe
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the states of deformed states. N is a harmonic oscillator quantum and nz is a z quantum
of the harmonic oscillator. The z components of the angular momenta in the deformed
system are defined as

Ω =

√〈
φs.p.
i

∣∣∣ ĵ2z ∣∣∣φs.p.
i

〉
, (4.1)

Λ =

√〈
φs.p.
i

∣∣∣ �̂2z ∣∣∣φs.p.
i

〉
, (4.2)

where the |φs.p.
i 〉 is an orthonormal base obtained by diagonalizing the Hamiltonian with

the single-particle AMD base |φi〉. The lower 20 orbits for 10 protons and 10 neutrons
form the 20Ne core and a proton and a neutron occupy the last two orbits. The 20Ne
core contain doubly-magic 16O and the residual four nucleons in the sd-shell. These four
nucleons are neither in the spherical d5/2 orbits nor in the Nilsson [NnzΛΩ] = [2201/2]
orbits. This is due to the formation of α cluster at the surface of the 16O.

The last valence proton and neutron are in the spin-orbit favored Nilsson orbit [2113/2]
in the prolate deformation. These nucleons make the ground K = 3 bandhead with the
[211 + 3/2]p[211 + 3/2]n configuration. However, this orbit is not exactly equivalent to
[2113/2] orbit but it contains the minor [2111/2] component. After the JπK projection,
the K = 0 and K = 1 bandheads 1+1,20 are produced by [211 + 3/2]p[211 − 3/2]n and
[211+ 3/2]p[211− 1/2]n, respectively. The intrinsic spin in the [211+ 3/2]p[211− 3/2]n is
equal to Sz = 0, which is a spin anti-aligned state and that in the [211+3/2]p[211−1/2]n

is a spin-aligned state with Sz = 1.
Similarly, 20Ne core is found in 22Ne as well as in 22Na and the two valence neutrons

with [211+3/2]n[211− 3/2]n configuration, which make the K = 0 band, are found. This
is consistent with another calculation using AMD [190].

The GT transitions 22Ne(0+1 1) → 22Na(1+1,20) can be understood in the words of Nilsson
orbit. Namely, the GT transitions occur in the valence nucleons as nn → pn because the
α particle in the 20Ne core is inert on the GT transition. In the transition 0+1 1 → 1+1 0, the
spin-conserving transition with ΔSz = 0 is caused by

∑
i σ

i
zτ

i
± and the spin-flip transition

with ΔSz = 1 is caused by
∑

i σ
i
±τ

i
± in the transition 0+1 1 → 1+2 0. In the Nilsson orbits,

each transition corresponds to [211 + 3/2]n[211 − 3/2]n → [211 + 3/2]p[211 − 3/2]n and
[211+3/2]n[211−3/2]n → [211+3/2]p[211−1/2]n, respectively. This is SU(4) symmetry
breaking between the K = 0 and K = 1 band in 22Na.
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Chapter 5

SU(4) symmetry and its breaking in
the Gamow-Teller transitions

In the previous chapter, I have obtained the strong GT transitions exhausting 50% of
the Ikeda sum-rule;

∑
B(GT) = 3(N − Z) = 6 in 6He(0+1 1) → 6Li(1+1 0),

10Be(0+1 1) →
10B(1+1 0), and

14C(0+1 1) → 14N(1+2 0). This is a signature of SU(4) symmetry related to the
T = 0, S = 1 proton-neutron pairs in the final states 6Li(1+1 0),

10B(1+1 0), and
14N(1+2 0).

The symmetry corresponds to the LS-coupling of the proton-neutron pairs and cluster
formation in these light N = Z odd-odd nuclei.

On the other hand, deformation causes fragmentation in the GT strengths of 22Ne →
22Na. The GT strengths 22Ne(0+1 1) → 22Na(1+1,20) in the Tβγ-AMD+GCM are consistent
with those of the mirror nuclei 22Mg(0+1 1) → 22Na(1+1,20), which show significant frag-
mentation into two final states. This is related to spin-orbit interactions on quadrupole
deformations, that is, SU(4) symmetry breaking.

5.1 Proton-neutron correlation as spatial development

Proton-neutron correlation in the p-shell nuclei might be realized as spatial development
of the pn pair. To see this, I calculated the proton-neutron pair densities defined in
Sec. 2.3 of the single Tβγ-AMD wavefunctions which have the largest overlaps with the
ground states 6He(0+1 1),

10Be(0+1 1),
14C(0+1 1) and their GT final states 6Li(1+1 0),

10B(1+1 0),
14N(1+2 0), respectively. In the figure 5.1, these densities are shown together with the one-
body densities. 6Li(1+1 0) has α + pn cluster structures as shown in Fig. 5.1(a-2). The
pn pair has deuteron-like (S = 1, T = 0) nature and develops away from the α core.
6He(0+1 1) has similar structure to 6Li(1+1 0) (see Fig. 5.1(a-1)). There is a nn pair and
the distance to the α core is close to that of the pn pair in 6Li(1+1 0). Hence, the GT
transition between these states are caused by the transition of nn → pn (T = 0). In other
words, the di-nucleon structure in 6He(0+1 1) is also found in 6Li(1+1 0) as a proton-neutron
pair. This is one of realizations of SU(4) symmetry in the light nuclei, where two-nucleon
correlations occur not as pairing but as di-nucleon formation.

In 14N(1+2 0), the T = 0 pn pair is located near the oblately deformed 12C core and
there are no spatial developments (see Fig. 5.1(c-2)). Similarly, 14C(0+1 1) contains the
nn pair in the same p-orbit (see Fig. 5.1(c-1)). The GT transition occurs between these
states but the picture of nn → pn (T = 0) is ambiguous and rather it is a phenomenon
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Figure 5.1: The colored contours correspond to two-nucleon pair densities ρNN(r)
of (a-1)6He(0+1 1), (b-1)10Be(0+1 1), (c-1)14C(0+1 1), (a-2)6Li(1+1 0), (b-2)10B(1+1 0), and (c-
2)14N(1+2 0). The blue solid contours refer to the one-body density distribution ρ(r).
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Figure 5.2: The overlap amplitudes A(β, γ) of (a) 10Be(0+1 1), (b) 10B(1+1 0), and
(c) 10B(1+2 0) defined in Eq. (5.1). The maximum point is shown by a dot.

in the two-hole states of the 16O core.
10Be(0+1 1) and

10B(1+1 0) have 2α cores which are origins of deformation. The spatially
developed pn pair is found in 10B(1+1 0) as well as 6Li(1+1 0) (see Fig. 5.1(b-2)). This is
located at the point (x, z) = (−2, 0) (fm) whereas the nn pair in the 10Be(0+1 1) show
p-shell nature (see Fig. 5.1(b-1)).

Apparently, the GT transition between these 10Be(0+1 1) and 10B(1+1 0) cannot occur.
However, the nn pair in 10Be(0+1 1) can softly move away the 2α core. Therefore, the GT
transition between these states become large. To see this, I define overlap amplitudes on
the βγ surfaces as

A(βa, γa, J
πT ) =

∣∣∣∣∣
∑
n

〈βa, γa, n, J
πT ;M |Ψ(JπT ;M)〉

∣∣∣∣∣
2

(5.1)

=
∑

nKbK′
fn∗
aKN JπT

aKbK′gbK′ , (5.2)

where the nth orthogonal bases at each (β, γ) point is defined as

|βa, γa, n, J
πT ;M〉 =

∑
K

fn
aKP

J
MKP

TP π |Φ(βa, γa)〉 . (5.3)
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Figure 5.3: Restoration of SU(4) symmetry in the intrinsic states. The energy curves at
β cos γ = 0.40 of T = 0 and T = 1 states for 10B are shown. Results with isospin projection
before energy variations (solid lines, Fig. 3.1) and those without isospin projection before
energy variations (dashed lines, Fig. 3.2) are shown.

The overlap amplitudes for 10Be(0+1 1) are shown in Fig. 5.2(a). There are soft regions
along γ parameter from the maximum point towards γ = 60◦. This indicates that the nn
pair in 10Be(0+1 1) can move away from the 2α core. The di-neutron structures discussed
in 10Be(0+1 1) correspond to this softly elongated overlap amplitudes (see Sec. 1.3.3).

The overlap amplitudes for 10B(1+1,20) also have γ-elongated structures (see Fig. 5.2(b)(c)).
The proton-neutron pairs in these states also move softly to the oblate γ = 60◦ states. The
β and γ parameters of these maximum points are similar to each other. This is consistent
with that these states have the strong B(E2; 1+2 0 → 1+1 0) value, which corresponds to the
similar deformation parameters. These states are not simple deformed states as discussed
in the mean field approximations because I cannot find good K-quanta for these state
and K-mixing occurs in these states. However, these 1+0 states can be distinguished by
spatial angular momenta L of the core rotations as shown in the next section.

As the proton-neutron pairs develops away from the core nuclei, SU(4) symmetry is
somewhat restored. I show the one-dimensional energies surfaces of 10B with β cos γ =
0.40 in Fig. 5.3. In these surfaces, the parameter β sin γ corresponds to the distance
between 2α core nuclei and the pn pair. In the small limit, the T = 0 and T = 1
spectra are split into the different states, but in the large limit, these different isospin
states approach each other. This indicates restoration of SU(4) symmetry as spatial
development of the proton-neutron pair.

These spatial developments are weakened as the mass numberA increases (see Fig. 5.1).
For the nn pairs in the N = Z +2 nuclei, only in the A = 6 system spatially localized nn
pair is found. On the other hand, for the pn pairs in the N = Z odd-odd nuclei, A = 6, 10
system have T = 0 pn pair away from the core nuclei. This indicates that the T = 0
pn pairs in N = Z odd-odd nuclei are seriously robuster than nn pairs in the ordinal
even-even systems.
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5.2 LS-coupling proton-neutron pair and SU(4) sym-

metry

SU(4) symmetry between N = Z + 2 nuclei and N = Z odd-odd nuclei corresponds to
the LS-coupling pn pairs. To see this, I show the squared intrinsic spins and the orbital
angular momenta in Table 5.1.

In the obtained states of A = 6, 10, 14, the spin expectation values 〈S2〉 are almost
LS-coupling values 〈S2〉 = 2 for the T = 0 states and 〈S2〉 = 0 for the T = 1 states.
As the mass number A increases, LS-coupling is broken into jj-coupling because of the
spin-orbit potential. 6He(0+1 1) has almost pure S = 0 component with the 6% mixture of
S = 1 component. In 14C(0+1 1), mixture of the S = 1 component is upto 27% which shows
breaking into jj-coupling. On the other hand, S = 1, T = 0 pn pairs are not broken and
show robuster nature than nn pairs as mixture of S = 0 components are less than 6%.

The orbital angular momenta have 〈L2〉 ≈ 0 or 〈L2〉 ≈ 6. In the A = 6 and A = 14
system, the orbital angular momenta dominantly come from the valence NN pairs with
LNN = 0 or LNN = 2 because the cores of these nuclei are approximately spherical
with Lcore = 0. Thus, 6He(0+1 1),

6Li(1+1 0),
14C(0+1 1), and

14N(1+2 0) have the LNN = 0
NN pairs and 6He(2+1 1),

6Li(1+2 0, 2
+
1 0, 3

+
1 0),

14C(2+1 1), and
14N(1+1 0, 2

+
1 0, 3

+
1 0) have the

LNN = 2 pairs.

GT transitions in LNN = 0 and in LNN = 2 are different as seen in the figure 5.4. The
transitions in the LNN = 0 states occur as [LNN = 0, SNN = 0] → [LNN = 0, SNN =
1] and the strengths are concentrated into the single states. On the other hand, the
transitions in LNN = 2 states show fragmentations because the transition corresponds to
[LNN = 2, SNN = 0] → [LNN = 2, SNN = 1] and the final states are affected by spin-orbit
interaction.

In the A = 10 systems, the orbital angular momentum from the core rotation Lcore = 2
is produced because of deformation caused by the 2α clustering. As a result, [Lcore =
2, SNN = 0] → [Lcore = 2, SNN = 1] is found in addition to the transitions between
the LNN = 0 and LNN = 2 states. 10Be has two L = 2 states. One is 2+1 0 (K = 0)
and the other is 2+2 0 (K = 2). In the former state, L = 2 quantum is originated from
collective rotation Lcore = 2 and the latter corresponds to LNN = 2 as well as found in 6He
and 14N. By comparing GT transitions from these initial states, the energy splitting in
[Lcore = 2, SNN = 0] → [Lcore = 2, SNN = 1] is smaller than that in [LNN = 2, SNN = 0] →
[LNN = 2, SNN = 1]. In the final states of Lcore = 2 transitions, spin-orbit interactions do
not strongly affect the spectra because the rotation of the core does not directly couple
to the intrinsic spin SNN = 1.

SU(4) symmetry is realized as the LS-coupling NN pairs in the LNN = 0 states.
In fact, the 0+1 1 states in the N = Z + 2 nuclei which are analogous to 0+1 1 states
in N = Z odd-odd nuclei have large GT strengths to the 1+0 states with LNN = 0.
However, the GT strengths decrease as the mass number A increases because the LS-
coupling nn pair is broken into jj-coupling. In the LNN = 2 states, the GT strengths are
fragmented because the spin-orbit interaction between LNN = 2 and SNN = 1 is strong in
the N = Z odd-odd nuclei. In the A = 10 systems, we can find SU(4) symmetry not only
in [10Be(0+1 1),

10B(1+1 0)] but also in the excited states: [10Be(2+1 1),
10B(1+2 0, 2

+
1,20, 3

+
2 0)]. It

is important that rotation of the 2α core does not affect SU(4) symmetry in the valence
pn pairs.
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Figure 5.4: GT transitions 6He → 6Li, 10Be → 10B, and 14C → 14N calculated by Tβγ-
AMD+GCM. The number near each spectrum shows B(GT) value. The red solid arrows
and blue dashed arrows refer to LNN = 2 and Lcore = 2 states, respectively. The black
arrows are L = 0 states.

The LS-coupling pn pairs do not mean that these states are LS-coupling states in the
p-shell, but LS-coupling cluster states as shown in the two-body densities (see Sec. 5.1).
These states contain higher shell components as a result of proton-neutron and 2α cluster
formation. The expectation values of harmonic oscillator quanta

N̂�ω =
∑
i

â†i âi (5.4)

and the differences from the minimum values N�ω,min for the 0�ω configurations

ΔN�ω =
〈
N̂�ω

〉
−N�ω,min (5.5)

show how much the states have higher shell components. Here, a†i and ai are the creation
and annihilation operators of the harmonic oscillator with the width parameter ν. As
shown in Table 5.1, all T = 0 states in N = Z odd-odd nuclei have significant ΔN�ω

values and 10B has sufficiently large values to demonstrate importance of cluster formation.
Therefore, the pn pairs are coupled into good LS states but they are made not only by
the major shells but also by highly excited single particle orbits because of the quantum
many-body correlations.
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Figure 5.5: The GT transitions K = 2 → K = 3 with large B(GT) values are shown
with red solid arrows. The number near each spectrum shows the B(GT) value. The
energy is measured from each ground state.

5.3 GT transitions in the deformed systems: 10B and
22Na

We have already seen the different deformed N = Z odd-odd nuclei: 10B and 22Na. In the
GT transition 10Be → 10B, the strengths toward the ground 10B(3+1 0) state come from
the excited 10Be(2+2 1) state.

10Be(2+2 1) → 10B(3+1 0) was determined as [LNN = 2, SNN =
0] → [LNN = 2, SNN = 1] in the previous chapter (see Sec. 5.2) but this is also considered
as a K = 2 → K = 3 transition since 10Be and 10B are deformed systems. Therefore, the
GT transition strengths from the K = 2 side-bands of N = Z + 2 nuclei are universally
large with the K = 3 ground states for both A = 10 and A = 22 systems (see Fig. 5.5).

On the other hand, the GT transitions from 0+1 to 1+0 states show different natures
between the A = 10 and A = 22 systems. GT transition strengths from 10Be(0+1 1) are
concentrated into the lowest 10B(1+1 0) state (see Fig. 5.6). This exhausts the most part
of the sum-rule value B(GT) = 6. From the excited state 10Be(2+1 1), the GT transition
strengths are fragmented into 10B(1+2 0, 2

+
1,20, 3

+
2 0) but there is sufficiently small strength

to the lowest 1+1 0 state. This fragmentation does not indicate SU(4) symmetry break-
ing because these final states have similar excitation energies to the initial state and
the LS-coupling proton-neutron pair is established in the final states with the core ro-
tation: [Lcore = 2, SNN = 1] (see Sec. 5.2). In deed, the summation of the strengths
B(GT; 10Be(2+1 1) → 10B(1+2 0, 2

+
1,20, 3

+
2 0)) = 4.15 exhausting the sum-rule value. This fact

indicates that SU(4) symmetry is preserved in the transitions from 10Be(0+1 1, 2
+
1 1).

GT transition strengths from 22Ne(0+1 1) are fragmented into the 22Na(1+1,20) (see

47



Figure 5.6: The spectra of initial and fi-
nal states in 10Be → 10B(T = 0). The
number near each spectrum shows the
B(GT) value. The energy is measured
from each ground state. The states hav-
ing large B(GT) are connected by ar-
rows.

Figure 5.7: The spectra of initial and fi-
nal states in 22Ne → 22Na (T = 0). The
number near each spectrum shows the
B(GT) value. The energy is measured
from each ground state. The states hav-
ing large B(GT) are connected by ar-
rows. The solid arrows correspond to
K = 0 → K = 0 transitions and the
dashed arrows are K = 0 → K = 1
ones.
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Figure 5.8: The two-nucleon pair density ρNN(r) of (a) 10Be(0+1 1), (b)
22Ne(0+1 1), (c)

10B(1+1 0), (d)
22Na(1+1 0), and (e) 22Na(1+2 0). The one-body density distribution ρ(r) is

also shown by (blue) solid contour lines.

Fig. 5.7). The summation of GT strengths is B(GT) = 3.53 which exhausts large
fraction of the sum-rule value. This indicates that SU(4) symmetry persists if both
22Na(1+1,20) states are summed up. However, 22Na(1+1 0) and 22Na(1+2 0) have different
K = 0 and K = 1 nature, respectively. Hence, SU(4) symmetry is broken by spin-
orbit interaction on the deformation and the GT strengths are fragmented into these
states. This type of fragmentation is also found in the transitions from 22Ne(2+1 1) which
belongs to the K = 0 band. The strengths are fragmented into 22Na(2+1 0, 3

+
2 0) and

B(GT; 22Ne(2+1 1) → 22Na(1+1,20)) are sufficiently small. This is different from GT transi-
tions of 10Be(2+1 1) because the strength to the 10B(1+2 0) is sufficiently strong.

The densities also show different nature between A = 10 and A = 22 systems as a
result of SU(4) symmetry and its breaking. I show one-body densities and proton-neutron
pair densities of A = 22 system defined in Sec. 5.1 (see Fig. 5.8). All systems are prolately
deformed but pn pair densities show differences. In 10B(1+1 0), the pn pair restores SU(4)
symmetry as a result of spatial development away from the 2α core. On the other hand, in
22Na(1+1,20), the proton-neutron pairs are broken into the Nilsson [2113/2] orbits. In these
states, the spin directions of the pn pairs are fixed into the z axis, which is a direction of
the prolate deformations.
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The origin of SU(4) symmetry breaking in 22Ne(0+1 1) → 22Na(1+1,20) is spin-orbit inter-
action on deformation. To see this in detail, I performed an analysis changing spin-orbit
interaction from the weak limit to the strong limit. The range is adopted as u�s = 0–
2600 MeV. To convenience, I define a parameter λ as the ratio to the default spin-orbit
interaction strength u0

�s = 1300 MeV in Sec. 4.1:

u�s = λu0
�s. (5.6)

In order to see the continuous transition on λ, I changed it only on diagonalization in GCM
but not on energy variations in the Tβγ-AMD. In other words, I used the same bases on
diagonalization in GCM for each λ as those obtained with λ = 1.0 in the Tβγ-AMD.

In the figure 5.9, the B(GT) spectra calculated with λ = 0.0, 0.5, 1.0, 1.5, 2.0 are
shown for 10Be → 10B and 22Ne → 22Na. In the λ = 0.0 limit, where are no spin-orbit
interactions, SU(4) symmetry is exactly realized. The GT strengths are concentrated
into the lowest 1+1 0 state with a large percentage above 50% of the sum-rule both for
10Be → 10B and for 22Ne → 22Na. As λ increases, the GT strengths from 22Ne(0+1 1)
are fragmented into a few 1+0 states. At the default strength λ = 1.0, the pn pair in
22Na is broken into Sz = 0, 1 states resulting 22Na(1+1,20). Because the summation of
these strengths are still over 50% of the sum-rule, SU(4) symmetry is broken only inside
the pn pair but not in the 20Ne core. In the strong limit of spin-orbit interaction with
λ = 2.0, the GT strengths are fragmented into many 1+0 states. The peak position is
pushed up into the higher energy and the strengths are widely distributed. jj-coupling
limit is favored with strong spin-orbit interaction and thus deformation is suppressed into
β = 0.23. In these states, six particles in the sd-shell participate in GT transitions and
construct fragments in the 1+0 final states.

SU(4) symmetry breaking is also found in 10Be → 10B as λ increases. However, this
occurs at λ = 1.5 which is larger than λ = 1.0 where SU(4) symmetry breaking occurs in
22Ne → 22Na. This refers to that SU(4) symmetry persists even with λ = 1.0 as a result
of clustering of the NN pairs around the 2α core.
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Figure 5.9: The B(GT) spectra obtained by the calculations with the modified spin-orbit
strengths with λ = 0.0, 0.5, 1.0, 1.5, 2.0. The λ = 1.0 corresponds to the default strength.
Each spectrum is smeared by Gaussian with σ = 0.4 in order to normalize the peak
height to the B(GT) value for the case of an isolate peak. The left and right panels show
B(GT; 10Be → 10B) and B(GT; 22Ne → 22Na), respectively. For each λ, the energies are
measured from 10B(3+1 0) and

22Na(3+1 0), respectively.
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Chapter 6

Conclusion

I have investigated SU(4) symmetry in the Gamow-Teller transitions and proton-neutron
correlation focusing on the extremely light nuclei. This is a complementary work to the
original idea of proton-neutron pairing and SU(4) symmetry in the heavier nuclei, in which
the mean-field theories and shell models are well established.

Firstly, the problems on isospin competition between isoscalar and isovector states
in the low-lying region are solved by isospin projection before energy variation in the
antisymmetrized molecular dynamics (AMD) with the constraint on deformation. The
method is named isospin-projected AMD (Tβγ-AMD). The treatment of the projection
operator is numerical and approximated, but it works in the light N = Z odd-odd nuclei.
By using this method, the proper intrinsic wavefunctions containing clusters and proton-
neutron pairs are obtained for each deformation parameter and isospin eigenvalue.

A signature of SU(4) symmetry in the light N = Z odd-odd nuclei has been found
in the p-shell nuclei. I have investigated the Gamow-Teller transition strengths from
the JπT = 0+1 states of N = Z + 2 nuclei and 1+0 states of N = Z odd-odd nuclei
with the Tβγ-AMD combined with generator coordinate method. I have obtained the
strong Gamow-Teller transitions exhausting 50% of the sum-rule in 6He(0+1 1) → 6Li(1+1 0),
10Be(0+1 1) → 10B(1+1 0), and

14C(0+1 1) → 14N(1+2 0), respectively. In these nuclei, SU(4)
symmetry in the A = 6 and 10 system is realized as spatially developed NN pair formed
in the intrinsic states. In other words, the GT transitions occur as the transition nn → pn
between the initial and final states. The proton-neutron pair densities in these nuclei show
the developed distances between the proton-neutron pairs and the core nuclei.

However, in the heavier nuclei 22Na, spin-orbit interaction on quadrupole deformation
breaks SU(4) symmetry. The proton-neutron pair is formed at the surface of the prolately
deformed 20Ne = 16O + α core, but 22Na(1+1,20) have different K-quanta with K = 0 and
K = 1. Each state contains proton-neutron pair with anti-aligned spin (Sz = 0) and with
aligned spin (Sz = 1), respectively. As a result, the strengths are fragmented into the half
though the summation of the Gamow-Teller strengths 22Ne(0+1 1) → 22Na(1+1,20) is upto
50% of the sum-rule value. This is consistent with the Gamow-Teller strengths from the
mirror nuclei 22Mg(0+1 1) → 22Na(1+1,20) which show fragmentation into two final states.

The idea of proton-neutron correlation has been extended into cluster formation of
proton-neutron pairs. This type of proton-neutron pair has not been discussed in the
context of proton-neutron correlation in the N = Z nuclei because clustering is considered
as a specific phenomenon in the extremely light nuclei. As shown in 22Na(1+1,20), the
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idea is not valid in the heavier system because spin-orbit interactions break the ideal
T = 0, S = 1 proton-neutron pairs. However, 10B(1+1 0) contains the proton-neutron
pair which is spatially developed away from the 2α core. This is another possibility for
proton-neutron correlation in the light N = Z odd-odd nuclei.

The low-lying states of N = Z odd-odd p-shell nuclei are constructed by LS-coupling
T = 0, SNN = 1 proton-neutron pairs. In these state, there are three groups of T =
0, SNN = 1 proton-neutron states such as L = 0, LNN = 2, and Lcore = 2. The L = 0 and
LNN = 2 states are found in all p-shell nuclei. The Gamow-Teller transition strengths
to the L = 0 states show SU(4) symmetric nature. On the other hand, the strengths to
the LNN = 2 states show SU(4) broken nature because the spin-orbit interaction between
LNN = 2 and SNN = 1 causes energy splittings.

Lcore = 2 states are found only in 10B because they have deformed 2α cores. The
Gamow-Teller transitions between Lcore = 2 states also show SU(4) symmetry nature;
10Be(2+1 1) → 10B(1+2 0, 2

+
1,20, 3

+
2 0). Therefore, SU(4) symmetry is found in the excited

states as well as in the ground states. It is important that rotation of the 2α core Lcore = 2
is not directly coupled to SNN = 1 of the proton-neutron pair with spin-orbit interaction.

SU(4) symmetry in the light nuclei is different from that in the heavier nuclei obtained
with mean-field theories containing proton-neutron pairing. Clustering of two-nucleon pair
can be another possibility for realizing SU(4) symmetry. These types of proton-neutron
pairs show robuster nature for deformation than those in the mean-field theories as found
in the rotational excited states of 10B. The fragmentation of the Gamow-Teller strengths
by spin-orbit interaction on deformation in 22Na is consistent with other calculations
in the heavier nuclei. This is a mechanism of SU(4) symmetry breaking discussed in
46Ti → 46V and 50Cr → 50Mn using shell models. This implies it is hopeless that we find
ideal proton-neutron pairs in the heavier nuclei except for 42Sc and the other LS-closed
core + pn systems. Therefore, we have to develop further theoretical investigations of the
light nuclei with the proper treatments on clustering phenomena of proton-neutron pairs.
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Appendix A

Expectation values in the Tβγ-AMD

In this chapter, I enumerate the analytical formalism of the expectation values of Hamil-
tonian and transition operators. For convenience, I define the bra parts of AMD wave-
functions in Eq. (2.1):

〈Ψ| = A [〈W1| 〈η1| 〈m1| 〈W2| 〈η2| 〈m2| · · · 〈WA| 〈ηA| 〈mA|] (A.1)

A.1 Overlaps and many-body operators

The overlaps of single-particle orbits for spacial, spin, and isospin parts are defined as

βij = 〈Wi |Zj〉

=
( π

2ν

) 3
2
exp

[
−(W ∗

i −Zj)
2

2

](
2ν

π

) 3
2

exp

[
+
1

2
W ∗2

i

]
exp

[
+
1

2
Z2

j

]

= exp (W ∗
i ·Zj) , (A.2)

Sij = η∗
i · ξj, (A.3)

Tij = δminj
. (A.4)

The overlap between two AMD wavefunctions are written in the form

〈Ψ |Φ〉 = detB, (A.5)

where
Bij = βijSijTij. (A.6)

The differentials of overlap matrices for spatial and spin coordinates are

∂Bij

∂W ∗
kμ

= BijZjμδik, (A.7)

∂Bij

∂η∗kμ
= βijδikξjμδminj

. (A.8)

The differentials of inverses of overlap matrices are

∂B−1
ij

∂W ∗
kμ

= B−1
ik Gjk;μ, (A.9)
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∂B−1
ij

∂η∗kμ
= B−1

ik gjk;μ, (A.10)

where
Gjk;μ = −

∑
�

Z�μBk�B
−1
�j , (A.11)

gjk;μ = −
∑
�

ξ�μβk�δmkn�
B−1

�j . (A.12)

The differentials of overlaps are

∂ 〈Ψ |Φ〉
∂W ∗

kμ

= −Gkk;μ 〈Ψ |Φ〉 , (A.13)

∂ 〈Ψ |Φ〉
∂η∗kμ

= −gkk;μ 〈Ψ |Φ〉 . (A.14)

The expectation values of one-body operators are written as

〈Ψ |O |Φ〉
〈Ψ |Φ〉 =

∑
ij

〈i | o | j〉B−1
ji . (A.15)

The expectation values of two-body operators are written as

〈Ψ |O |Φ〉
〈Ψ |Φ〉 =

∑
ijk�

〈ij | o | k�〉 (B−1
ki B

−1
�j − B−1

�i B
−1
kj

)
. (A.16)

A.2 Hamiltonians

The kinetic term is written as

〈T 〉 = −�
2ν

2m

∑
ij

Bij (W
∗
i − Zj)

2 B−1
ji +

3A�2ν

2m
. (A.17)

The kinetic term of center of mass motion is written as

〈TG〉 = −�
2νA

2M
(W ∗

G − ZG)
2 +

3A�2ν

2M
. (A.18)

Volkov No.2 force is

〈Vcentral〉
=

1

2

∑
j�

βj�

∑
ik

βikXijk�

(
B−1

ki B
−1
�j − B−1

�i B
−1
kj

)∑
n

vn (1− λn)
3
2 exp

[
−λn

4
Z2

ijk�

]
. (A.19)

where, λn, Xijk�, Zijk� is defined as

λn =
1

1 + a2nν
, (A.20)
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Xijk� = WSikSj�δmink
δmjn�

+ BSi�Sjkδmink
δmjn�

−HSikSj�δmin�
δmjnk

−MSi�Sjkδmin�
δmjnk

, (A.21)

Zijk�;μ = W ∗
iμ −W ∗

jμ + Zkμ − Z�μ. (A.22)

The spin-orbit part of G3RS forces is

〈VLS〉 = −i�

32

∑
j�

βj�

∑
ik

βik

(
B−1

ki B
−1
�j − B−1

�i B
−1
kj

) (
δmink

δmjn�
− δmin�

δmjnk

)×
×
∑
μνλ

εμνλ (Σμikj� + Σμj�ik + Σμjki� + Σμi�jk)
(
W ∗

iν −W ∗
jν

)
(Zkλ − Z�λ)×

×
∑
n

vn (1− λn)
5
2 exp

[
−λn

4
Z2

ijk�

]
. (A.23)

Here, the Σ is defined as

Σμikj� = 〈ηi | σμ | ξk〉Sj�. (A.24)

Coulomb force approximated by 7-range Gaussians [191] are

VCoulomb =
∑
i<j

7∑
k=1

e2
√
νCk exp

[
−
(
ri − rj
μk/

√
ν

)2
]
1 + τi3

2

1 + τj3
2

(A.25)

with the parameters
k μk Ck

1 8.888194 0.437686
2 6.244998 −0.421877
3 4.358899 0.363035
4 3.000000 0.082946
5 2.000000 0.179389
6 1.224745 0.717984
7 0.500000 2.108250

(A.26)

The expectation value of this interaction is

〈VCoulomb〉 = 1

2

∑
j

δmjp

∑
i

δmip

∑
�

Bj�δn�p

∑
k

Bikδnkp

(
B−1

ki B
−1
�j − B−1

�i B
−1
kj

)×
×
∑
n

vn (1− λn)
3
2 exp

[
−λ1

4
Z2

ijk�

]2n−1

. (A.27)

Under the isospin-projection, however, Coulomb force is considered effective between neu-
trons as well as protons;

〈VCoulomb〉 = 1

4

∑
j�

Bj�δmjn�

∑
ik

Bikδmink
δmimj

(
B−1

ki B
−1
�j − B−1

�i B
−1
kj

)×
×
∑
n

vn (1− λn)
3
2 exp

[
−λ1

4
Z2

ijk�

]2n−1

. (A.28)
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The differentials for spatial coordinates of one-body operators are

∂ 〈O〉
∂W ∗

Pμ

=
∑
ij

δiP
∂ 〈P | o | j〉
∂W ∗

Pμ

+ 〈i | o | j〉 ∂B−1
ji

∂W ∗
Pμ

. (A.29)

Those of two-body operators are

∂ 〈O〉
∂W ∗

Pμ

=
∑
ijk�

[
δiP

∂ 〈ij | o | k�〉
∂W ∗

Pμ

+ 〈ij | o | k�〉GiP ;μ

] (
B−1

kPB
−1
�j − B−1

�P B
−1
kj

)
. (A.30)

Replacing ∂
∂W ∗

Pμ
into ∂

∂η∗Pμ
, we obtain the differentials for spin coordinates. The differentials

of the kinetic term are

∂ 〈T 〉
∂W ∗

Pμ

= −�
2ν

2m

∑
j

B−1
jP

∑
i

{
δiP
[
2
(
W ∗

iμ − Zjμ

)
+ Zjμ

(
(W ∗

i −Zj)
2 − 3

)]
+

[
(W ∗

i −Zj)
2 − 3

]
GiP ;μ

}
Bij, (A.31)

∂ 〈T 〉
∂η∗Pμ

= −�
2ν

2m

∑
j

B−1
jP

∑
i

{
βijδminj

[
(W ∗

i −Zj)
2 − 3

]
(ξjμδiP + giP ;μSij)

}
. (A.32)

The differentials of the kinetic term of the center of mass motions are

∂ 〈TG〉
∂W ∗

Pμ

= −�
2ν
√
A

M

(
W ∗

Gμ − ZGμ

)
, (A.33)

∂ 〈TG〉
∂η∗Pμ

= 0, (A.34)

where the coordinate of the center of mass ZGμ is defines as

ZGμ =
1√
A

A∑
i=1

Ziμ. (A.35)

The differentials of Volkov No.2 force are

∂ 〈Vcentral〉
∂W ∗

Pμ

=
∑
j�

βj�

∑
k

(
B−1

kPB
−1
�j − B−1

�P B
−1
kj

)∑
i

βikXijk�×

×
∑
n

vn (1− λn)
3
2 exp

[
−λn

4
Z2

ijk�

] [
δiP

(
Zkμ − λn

2
Zijk�;μ

)
+GiP ;μ

]
, (A.36)

∂ 〈Vcentral〉
∂η∗Pμ

=
∑
j�

βj�

∑
k

(
B−1

kPB
−1
�j − B−1

�P B
−1
kj

)
∑
i

βik

(
δiPX

′
ijk�;μ + giP ;μXijk�

)∑
n

vn (1− λn)
3
2 exp

[
−λn

4
Z2

ijk�

]
. (A.37)
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Here, X ′
ijk�;μ is defined as

X ′
ijk�;μ = WξkμSj�δmink

δmjn�
+ Bξ�μSjkδmink

δmjn�

−HξkμSj�δmin�
δmjnk

−Mξ�μSjkδmin�
δmjnk

. (A.38)

The differentials of the spin-orbit part of G3RS force are

∂ 〈VLS〉
∂W ∗

Pτ

=
−i�

16

∑
j�

βj�

∑
k

(
B−1

kPB
−1
�j − B−1

�P B
−1
kj

)×
×
∑
i

βik

(
δmink

δmjn�
+ δmin�

δmjnk

)×
×
∑
n

vn (1− λn)
5
2 exp

[
−λn

4
Z2

ijk�

]
×

×
∑
μνλ

εμνλ (Σμikj� + Σμj�ik + Σμjki� + Σμi�jk)×

×
{
δiP

[(
Zkτ − λn

2
Zijk�;τ

)(
W ∗

iν −W ∗
jν

)
+ δτν

]
+
(
W ∗

iν −W ∗
jν

)
giP ;τ

}
×

× (Zkλ − Z�λ) , (A.39)

∂ 〈VLS〉
∂η∗Pτ

= − i�

16

∑
j�

βj�

∑
k

(
B−1

kPB
−1
�j − B−1

�P B
−1
kj

)×
×
∑
i

βik

(
δmink

δmjn�
+ δmin�

δmjnk

)×
×
∑
n

vn (1− λn)
5
2 exp

[
−λn

4
Z2

ijk�

]∑
μνλ

εμνλ
(
W ∗

iν −W ∗
jν

)
(Zkλ − Z�λ)×

×
{
δiP

[
(σμξk)τ Sj� + ξkτ 〈σμ〉j� + ξ�τ 〈σμ〉jk + (σμξ�)τ Sjk

]
+

giP ;τ (Σμikj� + Σμj�ik + Σμjki� + Σμi�jk)} . (A.40)

Here, 〈σμ〉ij is defined as

〈σμ〉ij = 〈ηi | σμ | ξj〉 . (A.41)

The differentials of Coulomb force are

∂ 〈VCoulomb〉
∂W ∗

Pμ

=
∑
j

δmjp

∑
i

δmip

∑
�

Bj�δn�p

∑
k

δnkpBik

(
B−1

kPB
−1
�j − B−1

�P B
−1
kj

)×
×
∑
n

vn (1− λn)
3
2 exp

[
−λn

4
Z2

ijk�

] [
δiP

(
Zkμ − λn

2
Zijk�;μ

)
+GiP ;μ

]
,

(A.42)
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∂ 〈VCoulomb〉
∂η∗Pμ

=
∑
j

δmjp

∑
i

δmip

∑
�

Bj�δn�p×

×
∑
k

(δiP ξkμ + giP ;μSik)
(
B−1

kPB
−1
�j − B−1

�P B
−1
kj

)
βikδnkp×

×
∑
n

vn (1− λn)
3
2 exp

[
−λn

4
Z2

ijk�

]
. (A.43)

Under isospin projection, we have to consider the elements between neutrons

∂ 〈VCoulomb〉
∂W ∗

Pμ

=
1

2

∑
j�

Bj�δmjn�

∑
ik

Bikδmink
δmimj

(
B−1

kPB
−1
�j − B−1

�P B
−1
kj

)×
×
∑
n

vn (1− λn)
3
2 exp

[
−λn

4
Z2

ijk�

] [
δiP

(
Zkμ − λn

2
Zijk�;μ

)
+GiP ;μ

]
,

(A.44)

∂ 〈VCoulomb〉
∂η∗Pμ

=
1

2

∑
j�

Bj�δmjn�

∑
i

δmimj

×
∑
k

(δiP ξkμ + giP ;μSik)
(
B−1

kPB
−1
�j − B−1

�P B
−1
kj

)
βikδmink

×

×
∑
n

vn (1− λn)
3
2 exp

[
−λn

4
Z2

ijk�

]
. (A.45)

A.3 Constraints

The expectation values of coordinates should be subtracted by center-of-mass motion rG
as

〈rμrν〉 =
〈
Φ
∣∣ 1
A

∑
i

(
riμ − rG

)
(riν − rG)P

TP π
∣∣Φ〉

〈Φ |P TP π |Φ〉 . (A.46)

The covariances are defined as

1

A

∑
i

(riμ − rGμ) (riν − rGν) =
1

A

∑
i

riμriν − ArGμrGν

=
A− 1

A2

∑
i

riμriν − 1

A2

∑
i 	=j

riμrjν . (A.47)

The expectation values of these operators are〈
1

A

∑
i

(riμ − rGμ) (riν − rGν)

〉

=
A− 1

4νA
δμν +

1

4νA

∑
ij

Bij

(
W ∗

iμ + Zjμ

)
(W ∗

iν + Zjν)B
−1
ji

− 1

4νA

(
W ∗

Gμ + ZGμ

)
(W ∗

Gν + ZGν) . (A.48)
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The differentials are written as

∂

∂W ∗
Pτ

〈
1

A

∑
i

(riμ − rGμ) (riν − rGν)

〉

=
1

4νA

∑
ij

BijB
−1
jP {δiP

[
δμτ (W

∗
iν + Zjν) + δντ

(
W ∗

iμ + Zjμ

)
+

Zjτ (W
∗
iν + Zjν)

(
W ∗

iμ + Zjμ

)]
+

+GiP ;τ (W
∗
iν + Zjν)

(
W ∗

iμ + Zjμ

)} − 1

4νA
3
2

[
δτμ (W

∗
Gν + ZGν) + δντ

(
W ∗

Gμ + ZGμ

)]
,

(A.49)

∂

∂η∗Pτ

〈
1

A

∑
i

(riμ − rGμ) (riν − rGν)

〉

=
1

4νA

∑
ij

βijδminj
B−1

jP (W ∗
iν + Zjν)

(
W ∗

iμ + Zjμ

)
(ξjτδPi + SijgiP ;τ ) . (A.50)

Therefore, the differentials of constraint potentials for β and γ parameters 〈Hβγ〉 are
∂ 〈Hβγ〉

∂t
=

2

〈x2〉+ 〈y2〉+ 〈z2〉{(β cos γ −X)
[−β cos γ

(
∂t
〈
x2
〉
+ ∂t

〈
y2
〉
+ ∂t

〈
z2
〉)

+√
π

5

(
2∂t
〈
z2
〉− ∂t

〈
x2
〉− ∂t

〈
y2
〉)]

+

+ (β sin γ − Y )
[−β sin γ

(
∂t
〈
x2
〉
+ ∂t

〈
y2
〉
+ ∂t

〈
z2
〉)

+

√
3π

5

(
∂t
〈
x2
〉− ∂t

〈
y2
〉)]}. (A.51)

A.4 Angular momenta and transition operators

L2 is defined as

L2 =
∑
i

�2i +
∑
i 	=j

�i · �j. (A.52)

The expectation value of the first term is

〈i | �2 | j〉
Bij

=
[
(W ∗

i2 + Zj2)
2 + (W ∗

i3 + Zj3)
2 + 2

]
W ∗

i1Zj1

+
[
(W ∗

i3 + Zj3)
2 + (W ∗

i1 + Zj1)
2 + 2

]
W ∗

i2Zj2

+
[
(W ∗

i1 + Zj1)
2 + (W ∗

i2 + Zj2)
2 + 2

]
W ∗

i3Zj3

− (W ∗
i2 + Zj2) (W

∗
i1 + Zj1)W

∗
i1Zj2

− (W ∗
i3 + Zj3) (W

∗
i1 + Zj1)W

∗
i1Zj3

− (W ∗
i3 + Zj3) (W

∗
i2 + Zj2)W

∗
i2Zj3

− (W ∗
i1 + Zj1) (W

∗
i2 + Zj2)W

∗
i2Zj1

− (W ∗
i1 + Zj1) (W

∗
i3 + Zj3)W

∗
i3Zj1

− (W ∗
i2 + Zj2) (W

∗
i3 + Zj3)W

∗
i3Zj2. (A.53)
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The expectation value of the second term is

〈ij | �1 · �2 | k�〉
−BikBj�

= (W ∗
i1 + Zk1)

(
W ∗

j1 + Z�1

)
(Zk2Z�2 + Zk3Z�3)

+ (W ∗
i2 + Zk2)

(
W ∗

j2 + Z�2

)
(Zk3Z�3 + Zk1Z�1)

+ (W ∗
i3 + Zk3)

(
W ∗

j3 + Z�3

)
(Zk1Z�1 + Zk2Z�2)

− (W ∗
i2 + Zk2)

(
W ∗

j1 + Z�1

)
Zk1Z�2

− (W ∗
i3 + Zk3)

(
W ∗

j1 + Z�1

)
Zk1Z�3

− (W ∗
i1 + Zk1)

(
W ∗

j2 + Z�2

)
Zk2Z�1

− (W ∗
i3 + Zk3)

(
W ∗

j2 + Z�2

)
Zk2Z�3

− (W ∗
i1 + Zk1)

(
W ∗

j3 + Z�3

)
Zk3Z�1

− (W ∗
i2 + Zk2)

(
W ∗

j3 + Z�3

)
Zk3Z�2. (A.54)

S2 is defined as

S2 =
∑
i

s2i +
∑
i 	=j

si · sj. (A.55)

The expectation value of the first term is∑
ij

3

4
BijB

−1
ji =

3

4
A, (A.56)

because 〈
i
∣∣ s2 ∣∣ j〉 = 1

2

(
1

2
+ 1

)
〈i | j〉 . (A.57)

The expectation value of the second term is

〈ij | s1 · s2 | k�〉 = 〈i | s | k〉 · 〈j | s | �〉 . (A.58)

Here, single-particle expectation values 〈i | s | j〉 are written as

〈i | s | j〉 = 1

2

⎛
⎝ η∗i2ξj1 + η∗i1ξj2

iη∗i2ξj1 − iη∗i1ξj2
η∗i1ξj1 − η∗i2ξj2

⎞
⎠ βijδminj

. (A.59)

In this thesis, E2 transitions are isoscalar transitions. The isospins are conserved
between the initial states and the final states. Therefore, under isospin projection, as well
as Coulomb force, we use the average of the proton transition parts and neutron transition
parts;

〈M(E2, 2)〉 = 1

2

1

4

√
15

2π

{∑
ij

1

4ν[
(W ∗

i1 + Zj1)
2 + 2i (W ∗

i1 + Zj1) (W
∗
i2 + Zj2)− (W ∗

i2 + Zj2)
2]BijB

−1
ji

− 1

4ν

[
(W ∗

G1 + ZG1)
2 + 2i (W ∗

G1 + ZG1) (W
∗
G2 + ZG2)− (W ∗

G2 + ZG2)
2]} ,

(A.60)
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〈M(E2, 1)〉 = −1

2

1

2

√
15

2π
{∑

ij

1

4ν
[(W ∗

i1 + Zj1) (W
∗
i3 + Zj3) + i (W ∗

i2 + Zj2) (W
∗
i3 + Zj3)]BijB

−1
ji

− 1

4ν
[(W ∗

G1 + ZG1) (W
∗
G3 + ZG3) + i (W ∗

G2 + ZG2) (W
∗
G3 + ZG3)]

}
, (A.61)

〈M(E2, 0)〉 = 1

2

1

4

√
5

π
{∑

ij

1

4ν

[
2 (W ∗

i3 + Zj3)
2 − (W ∗

i1 + Zj1)
2 − (W ∗

i2 + Zj2)
2]BijB

−1
ji

− 1

4ν

[
2 (W ∗

G3 + ZG3)
2 − (W ∗

G1 + ZG1)
2 − (W ∗

G3 + ZG3)
2]} , (A.62)

〈M(E2,−1)〉 = 1

2

1

2

√
15

2π
{∑

ij

1

4ν
[(W ∗

i1 + Zj1) (W
∗
i3 + Zj3)− i (W ∗

i2 + Zj2) (W
∗
i3 + Zj3)]BijB

−1
ji

− 1

4ν
[(W ∗

G1 + ZG1) (W
∗
G3 + ZG3)− i (W ∗

G2 + ZG2) (W
∗
G3 + ZG3)]

}
, (A.63)

〈M(E2,−2)〉

=
1

2

1

4

√
15

2π

{∑
ij

1

4ν[
(W ∗

i1 + Zj1)
2 − 2i (W ∗

i1 + Zj1) (W
∗
i2 + Zj2)− (W ∗

i2 + Zj2)
2]BijB

−1
ji

− 1

4ν

[
(W ∗

G1 + ZG1)
2 − 2i (W ∗

G1 + ZG1) (W
∗
G2 + ZG2)− (W ∗

G2 + ZG2)
2]} . (A.64)

In this thesis, M1 transitions are isovector transitions. The isospins are changed with
ΔT = 1 between the initial states and the final states. Therefore, we use the difference
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of the proton transition parts and neutron transition parts;

〈M(M1, 1)〉 = −1

2

1

2

√
3

2π
{∑

ij

[
i(−1)nj+1 ((W ∗

i3Zj2 −W ∗
i2Zj3) + i (W ∗

i1Zj3 −W ∗
i3Zj1))Sij

+(−1)nj+1 gIVs ((η∗i2ξj1 + η∗i1ξj2) + i (iη∗i2ξj1 − iη∗i1ξj2))
]
βijδminj

B−1
ji

− i
√
Z√
A

[−W ∗
Gp2ZG3 +W ∗

Gp3ZG2 +W ∗
G3ZGp2 −W ∗

G2ZGp3

]
+

√
Z√
A

[−W ∗
Gp3ZG1 +W ∗

Gp1ZG3 +W ∗
G1ZGp3 −W ∗

G3ZGp1

]
+

i
√
N√
A

[−W ∗
Gn2ZG3 +W ∗

Gn3ZG2 +W ∗
G3ZGn2 −W ∗

G2ZGn3]

−
√
N√
A

[−W ∗
Gn3ZG1 +W ∗

Gn1ZG3 +W ∗
G1ZGn3 −W ∗

G3ZGn1]

}
, (A.65)

〈M(M1, 0)〉 = 1

2

1

2

√
3

π
{∑

ij

[
i(−1)nj+1 (W ∗

i2Zj1 −W ∗
i1Zj2)Sij+

(−1)nj+1 gIVs (η∗i1ξj1 − η∗i2ξj2)
]
βijδminj

B−1
ji

− i
√
Z√
A

[−W ∗
Gp1ZG2 +W ∗

Gp2ZG1 +W ∗
G2ZGp1 −W ∗

G1ZGp2

]

+
i
√
N√
A

[−W ∗
Gn1ZG2 +W ∗

Gn2ZG1 +W ∗
G2ZGn1 −W ∗

G1ZGn2]

}
, (A.66)

〈M(M1,−1)〉 = 1

2

1

2

√
3

2π
{∑

ij

[
i(−1)nj+1 ((W ∗

i3Zj2 −W ∗
i2Zj3)− i (W ∗

i1Zj3 −W ∗
i3Zj1))Sij

+(−1)nj+1 gIVs ((η∗i2ξj1 + η∗i1ξj2)− i (iη∗i2ξj1 − iη∗i1ξj2))
]
βijδminj

B−1
ji

− i
√
Z√
A

[−W ∗
Gp2ZG3 +W ∗

Gp3ZG2 +W ∗
G3ZGp2 −W ∗

G2ZGp3

]
−

√
Z√
A

[−W ∗
Gp3ZG1 +W ∗

Gp1ZG3 +W ∗
G1ZGp3 −W ∗

G3ZGp1

]
+

i
√
N√
A

[−W ∗
Gn2ZG3 +W ∗

Gn3ZG2 +W ∗
G3ZGn2 −W ∗

G2ZGn3]

+

√
N√
A

[−W ∗
Gn3ZG1 +W ∗

Gn1ZG3 +W ∗
G1ZGn3 −W ∗

G3ZGn1]

}
. (A.67)
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Above them, I defined WGpμ,WGnμ, ZGpμ, ZGnμ as

WGpμ =
1√
Z

∑
mi=p

Wiμ, (A.68)

WGnμ =
1√
N

∑
mi=n

Wiμ, (A.69)

ZGpμ =
1√
Z

∑
ni=p

Ziμ, (A.70)

ZGnμ =
1√
N

∑
ni=n

Ziμ. (A.71)

The expectation value of magnetic moment μ is written below. Because the isospins are
conserved between the initial states and the final states, we use the average of the proton
transition parts and neutron transition parts under isospin projection;

〈μ(1)〉 = −μN
1

2

1

2

√
3

2π
{∑

ij

[i ((W ∗
i3Zj2 −W ∗

i2Zj3) + i (W ∗
i1Zj3 −W ∗

i3Zj1))Sij

+gISs ((η∗i2ξj1 + η∗i1ξj2) + i (iη∗i2ξj1 − iη∗i1ξj2))
]
βijδminj

B−1
ji

−2i
A− 1

A
[(−W ∗

G2ZG3 +W ∗
G3ZG2) + i (−W ∗

G3ZG1 +W ∗
G1ZG3)]

}
, (A.72)

〈μ(0)〉 = μN
1

2

1

2

√
3

π

{∑
ij

[i (W ∗
i2Zj1 −W ∗

i1Zj2)Sij+

gISs (η∗i1ξj1 − η∗i2ξj2)
]
βijδminj

B−1
ji

−2i
A− 1

A
(W ∗

G2ZG1 −W ∗
G1ZG2)

}
, (A.73)

〈μ(−1)〉 = μN
1

2

1

2

√
3

2π
{∑

ij

[i ((W ∗
i3Zj2 −W ∗

i2Zj3)− i (W ∗
i1Zj3 −W ∗

i3Zj1))Sij

+gISs ((η∗i2ξj1 + η∗i1ξj2)− i (iη∗i2ξj1 − iη∗i1ξj2))
]
βijδminj

B−1
ji

−2i
A− 1

A
[(−W ∗

G2ZG3 +W ∗
G3ZG2)− i (−W ∗

G3ZG1 +W ∗
G1ZG3)]

}
. (A.74)

The Gamow-Teller transition operator is defined in Eq. (1.1). The expectation value
between the isospin eigenstates (T = 0, 1) is〈

Ψ

∣∣∣∣∣P T
∑
i

σi
μτ

i
±

∣∣∣∣∣Φ
〉
. (A.75)
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To obtain this value, we have to calculate the spin-isospin overlaps between the N = Z+2
nuclei and the N = Z odd-odd nuclei as follows.

1

2

∑
i

det

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

β11 · · · β1i · · · β1A

β21 · · · β2i · · · β2A
...

...
...

βA1 · · · βAi · · · βAA

⎞
⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎝

S11 · · · 〈η1 | σμ | ξi〉 · · · S1A

S21 · · · 〈η2 | σμ | ξi〉 · · · S2A
...

...
...

SA1 · · · 〈ηA | σμ | ξi〉 · · · SAA

⎞
⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎝

T11 · · · 〈m1 | τ± |ni〉 · · · T1A

T21 · · · 〈m2 | τ± |ni〉 · · · T2A
...

...
...

TA1 · · · 〈mA | τ± |ni〉 · · · TAA

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦

+(−1)T+1 det

⎡
⎢⎢⎢⎣
⎛
⎜⎜⎜⎝

β11 · · · β1i · · · β1A

β21 · · · β2i · · · β2A
...

...
...

βA1 · · · βAi · · · βAA

⎞
⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎝

S11 · · · 〈η1 | σμ | ξi〉 · · · S1A

S21 · · · 〈η2 | σμ | ξi〉 · · · S2A
...

...
...

SA1 · · · 〈ηA | σμ | ξi〉 · · · SAA

⎞
⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎝
〈
m1

∣∣ τ †pn ∣∣n1

〉 · · · 〈
m1

∣∣ τ †pnτ± ∣∣ni

〉 · · · 〈
m1

∣∣ τ †pn ∣∣nA

〉〈
m2

∣∣ τ †pn ∣∣n1

〉 · · · 〈
m2

∣∣ τ †pnτ± ∣∣ni

〉 · · · 〈
m2

∣∣ τ †pn ∣∣nA

〉
...

...
...〈

mA

∣∣ τ †pn ∣∣n1

〉 · · · 〈
mA

∣∣ τ †pnτ± ∣∣ni

〉 · · · 〈
mA

∣∣ τ †pn ∣∣nA

〉

⎞
⎟⎟⎟⎠
⎤
⎥⎥⎥⎦ . (A.76)
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