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ABSTRACT 

Nerve membranes respond to periodically forcing stim~ilation not only periodically but also 
chaotically, depending upon parameter values of the force. We review the forced chaos in nerve 
membranes and it8s modeling with a simple one-dimensional map. We also discuss possible 
information processing, or chaotic PDP (Parallel Distributed Processing) with spatio-temporal 
chaos in net,works composed of such one-dimensional maps. 

1 Introduction 

This world is full of many rhythms and oscillations. Mutual interactions of rhythms 
and oscillations seem to make the world rich and attractive. The typical and simplest 
example of such an interaction is a forced oscillation, or periodic forcing of an oscillator. 
Generally speaking, a forced oscillation generates a variety of phenomena including 
beautiful deterministic chaos in spite of simplicity of the interaction. 

In Japan, great researches on forced oscillations were achieved in the field of electrical 
engineering. In particular, it is well known that Y. Ueda discovered a strange attractor 
in the forced Dliffing - Van del Pol equations on November 27, 1961 [28, 501. Since 
then, deterministic chaos has been studied actively in various fields of engineering in 
Japan [9] (see also Proceedings of International Symposiums on Nonlinear Theory and 
its Applications (NOLTA)) . 

Such studies on chaos in Japan have been producing many practical applications 
including even consumer products for household appliances like kerosene fan heaters, 
dish washers, air conditioners and rriicrowave ovens [9]. Although these applications of 
chaos are interesting, the importance of chaos for engineering shollld be rnore profound 
t)ecanse co11c:epts of deterrrlinistic chaos are greatly influencing basic theories in engi- 
neering on prediction, control, computation, information and so on [9, 21, 561. "Chaos 
engineering", which is defined to be generic: stildies on theoretical and technological 



foundations for possible applications of deterministic chaos, fractal arid c:omplex sys- 
tems, was advocated by the present author first in 1990 for basic studies of applied 
chaos and applicable chaos [G, 7, 9, lo]. Here, applied chaos and applic(ib1e chao.s mean 
, respectively, applications of known theories on deterministic chaos to concrete cxarn- 
ples of complex phenomena , and generalization arid systematizatior~ of mathematical 
structures common to such concrete complex phenonieria toward possible applications 
in the future [9]. 

This article reviews a chaotic forced oscillation, which is generated by periodic 
forcing of a nerve oscillator, and its modeling with a simple one-dimensional and bimodel 
map. We also discuss possible information processing wit11 spatio-temporal chaos in 
neural networks composed of such chaotic maps, which is an important research snbject 
on chaos and computation in chaos engineering. 

2 Forced Chaos in Nerve Membranes 
Squid giant axons have been widely used in electrophysiological experiments because 
they are giant with diameters between 500pm and 750pm and structurally simple with- 
out myelin sheaths [12, 231. It has been shown by experiments with squid giant axons 
that a chaotic forced oscillation, or chaotic response to periodic force can be easily and 
reproducibly observed not only in oscillatory axons but also in resting axons when axons 
are stimulated by periodic current stimulations [ll, 12, 13, 35, 361. Further, different 
routes t o  chaotic forced oscillations have also been found experimentally with squid gi- 
ant axons, namely, (1) "successive period-doubling bifurcations" where the period of a 
periodic forced oscillation increases in the form of 2" times at  each bifurcation point un- 
til an infinity period is realized in a chaotic forced oscillation, (2) "intermittency" where 
chaotic bursts occur intermittently among apparently periodic phases, (3) "collapse of 
quasi-periodicity" where a chaotic forced oscillation is produced through collapse of a 
2-dimensional torus representing a quasi-periodic forced oscillation. 

Chaotic forced oscillations and the routes to forced chaos in the squid giant axons 
can be described by solutions of nerve ordinary differential equations of the Hodgkin- 
Huxley equations [23] and the FitzHugh-Nagumo equations [18, 381. The fact that the 
nerve equations can reproduce the forced chaos experimentally observed in squid giant 
axons implies that such chaotic phenomena in nerve membranes can be understood in 
the framework of the deterministic nonlinear dynamics. 

These studies have clarified that biological neurons are entirely different from simple 
linear threshold neurons like the McCulloch-Pitts model [37] widely used in artificial 
neural networks at least in the meaning that the former has excitable nonlinear "dy- 
namics" with threshold, which can produce forced chaos [12, 13, 35, 361 but the latter 
can't. 

3 Simple Model of Forced Chaos in Nerve Mem- 
branes 

Although forced chaos in the squid giant axons can be well describetl quantitatively with 
the Hodgkin-Huxley equations and qualitatively with the FitzHugh-Nagnrno equations, 



thesa (:qnations arc too comp1ic:atcd as a model to represent c-onstitnerit elerrlents in 
large-sc:alcd artificial neural networlts. Therefore, a sirnple mapping model which can 
qualitativaly rt:prod~~ce the forct:d chaos in the nerve mernt~ranes was proposed on the 
basis of thc properties of gradt.d responses, and relativc refractoriness and its accurnu- 
lation i11 thc nerve mcrnbraries [14]. The equation of the rriodel is given as follows: 

t 

x(t  + 1) = f[s(t) - a C kdg{x(t - d ) }  - 01 
d=O 

(1) 

where x( t+l )  is the continlious ontput of the neuron at  the discrete time t+ l ;  t shows the 
discrcte tirne steps (t = 0,1 ,2 , .  . .); f is the continliolis output fiinction usually assumed 
to be the logistic functionf (y) = 1/{1 + exp(-yle)) with the steepness parameter E ;  

s(t) is the strength of the stimulation at  t ;  a is a positive parameter; k is the damping 
factor of the refractoriness between 0 and 1; g is a refractory function describing the 
relationship between the analog output and the magnitude of the refractory effect to 
t l ~ e  following stimulation; O is the resting threshold. 

Thc continuous output function f represents the property of a continuous stimulus- 
response curve in nerve membranes [18]. The term a ELo k"g{x(t - d)} in Eq.( l)  
corresporids t o  accumulated refractory effects of the nerve membranes. It is assumed 
here that refractory effects diie t o  past series of output firings are superimposed with 
exponential temporal decay [15, 391. 

Eq.(l) can be transfornied to the following simpler one-dimensional map by defining 
the interrial state ~ ( t  + 1) e s ( t )  - a ~ 2 = ~  k${x(t - d)} - @ [14] : 

where y(t + 1) is the internal state ; a, = (A - @)(I  - k) and A is the strength of the 
stimulation which is temporally constant in electrophysiological experiments stimulat- 
ing squid giant axons by periodic pulses with a constant amplitude. The output x(t + 1) 
of the neuron is calculated with the internal state y(t + 1) as follows : 

The one-dimensional map of Eq.(2) can qualitatively reproduce not only periodic re- 
sponse but also chaotic one experimentally observed with squid giant axons. 

4 Chaotic Neural Network Model and 
Computation with Spatio-temporal Chaos 

A model of the forced chaos in nerve membranes in Eq. (1) can be extended to  one 
of synchronous chaotic neural netmrorks[3, 4, 6, 141 by considering an additional physi- 
ological property on spatio-temporal snmmation of both external inputs and feedback 
inputs from other constituent neurons. 

Tlic dynarriics of tlie i-th chaotic neuron integrated in a synchronous chaotic neural 
network with M external inputs and N constituent neurons is generally described as 



follows [4, 6, 141: 

xi (t + 1) = fi  1 x ?lij k:~j( t  - (1) + x ?uij c kf~:.j (t - d) - kty{ri(t - d)) - ei] , 
j=1 d=O j=l d=O d=O 

(4) 
where xi(t  + 1) is tlie output of the i-th neuron wit11 a continuoils value between 0 
and 1 at  discrete time t + 1; t shows the discrete time steps ; fi is the continuous 
output function ; Aj(t - d) is the strength of the j-th external input at  discrete time 
t - d ;  v;j and wij are synaptic weights t o  tlie i-th neuron from the j-th external input 
and from the j-th constituent neuron, respectively;k,, kJ and k, are the decay factors 
taking values between 0 ancl 1 for the external inputs, the feedback inputs and the 
refractoriness, respectively; y is the refractory function usually assumed to be g(x) = x 
for the sake of simplicity. 

Equation(4) can be transformed into the following simplified and simultaneous forrn 
under the assumption of the exponential temporal decay of input and refractory effects 
in the form of kt ,  ky and kf in eq.(4) [4, 6, 141: 

t where E,(t + 1) (= zgl vij c ~ = ~  k,dAj(t - d)), qi(t + 1) (e wij CjiXO k:xj(t - 
d)) and <;(t + 1) (- -a kfg{xi(t - d)) - Oi) are internal state terms for the 
external inputs, the feedback inputs from the constituent neurons in the network and the 
refractoriness, respectively and 8; Oi(l  - k,). The output x;(t + 1) of the i-th neuron 
is calculated by transformation from the internal state to the output value through the 
output function fi,  namely xi (t + 1) = f;{J;(t + 1) + qi ( t  + 1) + Ci(t + 1)). The model of 
eqs. (5) - (7) includes some of conventional discrete-time neuron models such as linear 
threshold neurons with the Heaviside output function, or the McCulloch-Pitts neurons 
[37] and analog neurons with the logistic output function used in backpropagation 
neural networks with marly applications [41] as special cases of the model by changing 
parameter values of the model; namely, the model of the synchronous chaotic neural 
networks is a natural extension of the conventional discrete-time neural networks for 
introducing chaotic dynamics into these usual discrete-time neural network models in 
order to study possible functions and computational roles of spatio-temporal chaos 
in artificial and biological information processing by comparing the behavior of the 
synchronous chaotic neural networks with that of the conventional neural networks 
[31 4, 6, 141. 

Generally speaking, the model of synchronous chaotic neural networks generates var- 
ious complex and computatior~al neurodynamics with spatio-temporal chaos in the level 
of neural networks, through nonlinear interactions with synaptic: conncc:tions arnong cl- 
emental neurons with their om7r1 chaotic dynamics in thc level of single nenrons. Here, 
hierarchical interactions between low-dimensional chaos in single neurons and possit)ly 



liig11-dir~~(:nsiorial spatio-terriporal chaos in a global neural  letw work may also play 
important role t o  create such rich neurodynamics. 

In part,icular, the spatio-temporal dynamics with refractoriness or equivalently a 
solf-recnrrent inhibitory conr1ec:tion in ex11 neuron produces a kind of chaotic itinerancy 
[32, 491 with possibly fractal structure of a global strange attractor in the phase space 
without getting stlick arid stopping at  equilibrium points correspondirlg to local minirna 
of a computational energy function [24]. This is because any neurons can't keep firing 
with a high output value due to accumulation of refractory effects if the decay factor 
5 for the refractoriness is sufficiently close to 1 [2]. This property has been applied 
to dynamical assoc:iation of spatio-temporal patterns in associative nlemory neural 
networks [2, 41 arid to  dynamical searching for good approximate solutions to such 
NP-hard problems as traveling salesman problems and quadratic assignment problems 
in combinatorial optimization neural networks [16, 17, 22, 48, 551. The associative 
dynamics of synchronous chaotic neural networks with the self-organization rule [52,53] 
is similar to nonlinear behavior experimentally observed in an olfactory system [19, 441. 

The chaotic neurodynamics can be harnessed or tarned to  converge to a fixed point 
a.3 follows. If certain information on distances from the network state to a target state in 
an appropriate space is available, the information can be used for adapting parameters 
by a kind of feedback control [47]. If such information is not available as in the case 
of NP-hard problems, on the other hand, a kind of deterministic simulated annealing 
with transient chaos, which we call chaotic simulated annealing, was shown to work to 
some extent [16, 17, 481, although a more sophisticated adaptive annealing scheme is 
desirable for practical applications. 

As this simple model of the chaotic neural networks is a synchronous version derived 
on the basis of the experiment with periodic forcing [5, 11, 12, 13, 35, 361, it has little 
direct relation to  biological neural networks. However, from the viewpoint of theoretical 
and engineering studies, the model has abundant and curious spatio-temporal mapping 
dynamics with such engineering applicability as dynamical associative memory, com- 
binatorial optimization and self-organization. In fact, computation with synchronous 
chaotic neural networks, or chaotic PDP (Parallel Distributed Processing) [9] is one of 
important research subjects in chaos engineering [7, 9, lo]. 

For more biological modeling of the brain dynamics, we can extend the model of 
synchronous chaotic neural networks further to an asynchronous version with continu- 
ous, or analog time intervals between spikes of action potentials [29, 301. The model of 
asynchronous chaotic neural networks can be utilized not only for studying possibilities 
of spatio-temporal coding and information processing with timing of the spikes and 
continuous interspike intervals [29, 30, 31, 341 but also for modeling various biological 
neurons distributed from integrators to coincidence detectors [I,  451 by changing values 
of the parameters such as time constants of exponential temporal decay. Recently, roles 
and operation modes of cortical neurons are becoming an important research subject 
[ l ,  8, 42, 45, 461. When the time constants of exponential temporal decay in the model 
of rrsynclironous chaotic neural networks are much smaller than the average interspike 
iilterval of input pulses, each neuron effectively operates as a coincidence detector. For 
exarriple, emergence of dynamn,iccil cell assem,blies in neural networks composed of co- 
incidenc:e detector rlellrons was first demonstrated by the model of the asynchronous 
chaotic rlcilral networks [20]. Here, the dynamicul cell assernbly means a group of 



rleurorls linked temporally by (:vents of coinc:itlcnc:e tlctcc:tion of inc:itlent spiltcs at  tach 
neuron and correlated firings resiilting from s~iccessive cvonts of siic:11 coincidonc:o doto(:- 
tior~ among rleurons ; the emergence rnechar~ism of s1icl.1 a dynarnical assembly is a kind 
of forced oscillation in the networl< level, or response of a neural net~vork c:ornposcd of 
coincidence detector neurons to an external spatio-terr~poral input [20]. 

Moreover, asynchronous chaotic r~eiiral networks with additional properties liltc the 
latency for generating action potentials and global negative feedback produce a new 
kind of spatio-temporal chaos as a deterministic spatio-temporal point process in neural 
networks composed of coincidence detector neurons [Ell]. 

5 Possibility of a New Kind of Brain-like Comput- 
ing Systems Based upon Chaotic Neural Net- 
works 

Almost all computers existing today are digital computers. Probable reasons why digital 
computers have prevailed in the world just within a half century since the invention 
of the first machine ENIAC in 1946 are existence of the firm principle of the Turing 
Machine and rapid progress of hardware technology on digital integrated circuits. 

The possible limits of performances on digital computers, however, are coming 
within sight recently. One factor results just from the hardware architecture of present 
digital computers, namely the synchronous system design. The extremely 'rapid ad- 
vance of speed and integration in the synchronous digital hardware is beginning to 
make manifest the problems of delays of signal propagation and electrical power con- 
sumption peculiar to the synchronous VLSI system design [40]. 

Another fundamental problem of digital computation, namely digital uncomputabil- 
ity of real numbers and deterministic chaos has been clarified by understanding chaotic 
dynamics. A seed generating complexity of deterministic chaos exists in complexity 
of real numbers specifying the initial condition, as typically sho~vn with the Bernoulli 
shift map and the Logistic map. On the other hand, almost all real numbers can't be 
computed by Turing machines because the set of algorithm and that of real nlrmbcrs are 
countably infinite and uncountable, respectively. Furthermore, since the pseudo-orbit 
tracing property can not be guaranteed in many chaotic systems, numerically approx- 
imate calculation on long-term behavior of deterministic chaos by digital computers 
suffers from difficulty in this sense too. 

There exist possibilities t o  invent a new kind of compliting systems which might 
break the barriers limiting the performances of the present digital c:ornpirters explained 
above, by learning from the dynamical brain. In fact, we can get t ~ w  clues for the 
purpose from the brain, namely analog hardware implementation of deterministic chaos 
with nerve membranes and asynchronolrs computing with spatio-temporal pulses of 
action potentials in biological neural netwdrks. 

As summarized in section 2, real nerve membranes arc chaotic analog devices which 
dynamically realize deterministic chaos dircc:tly on the basis of their own nonlinear cx- 
citable characteristics. Although chaotic: behaviour prodnced by such arlalog tlcvic:es, 
or nerve membranes is with inevitable fluctuation like thermal noisc and c:hannel noisc, 
it implies implementation technique of deterministic chaos crltirely different from tligi- 



tal irriplcrnci~tatio with nnrricrically approximate c:alcnlation. In other words, analog 
hardware deviccs can implement detcrrninistic chaos directly by its own t1ynamic:al 
propcrty. 

It is one of important cllaracteristics of tletcrministic chaos that simple nonlinear 
systems (:an frequently generate very c:omplicated behavior anti possibly corriplicatetl 
fiinctions. The simplicity of the nonlinear property leads to arl advantage that such 
chaotic systems can be easily and directly implemented by simple hardware. In fact, 
since the equations of the chaotic neural networks are simple enough, they are easily 
implementetl by various analog electroiiic circuits [25, 26, 27, 33, 431. For example, 
an electronic IC chip with nine chaotic neurons based upon switched-capacitor circuit 
technique has bcen designed and implemented in a standard 2pm n-well CMOS IC fab- 
rication process [25, 261 and electronic realization of the computational spatio-temporal 
dynamics of the synchronous chaotic neural networks has been confirmed [25, 26, 271. 

The secontl point to be noted is asynchronous characteristics of spatio-temporal 
spikes in real neural networks. On the aspect, a model of asynchronous chaotic neu- 
ral networks and the dynarnical cell assembly hypothesis on the neural information 
processing [20] may provide mechanisms of flexible asynchronous computation making 
a breakthrough to coriventional synchronous computing systems. In particular, nsyn- 
chronous chaotic neural networks composed of coincidence detector neurons generate an 
interesting chaotic point process with spatio-temporal spikes [51]. Since such networks 
can operate multiple functions with temporal spike coding and functional connectivity 
[54], it is an irnportant future problem to  examine possibility of altering the network 
functional mode through such a new kind of spatio-temporal point-process chaos. 

6 Conclusion 

We have reviewed chaotic forced oscillations in nerve membranes and models of syn- 
chronous and asynchronous chaotic neural networks. The models may have potential 
to create a new kind of brain-like computing systems beyond present digital and syn- 
chronous comput,ers. 
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