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Abstract. In this paper, we discuss the stability of the characteristic curves for nonlinear 
resistive circuits including parasitic elements1. Although the DC solution is determined by 
analyzing the nonlinear resistive circuit, its equilibrium point will be stable or unstable be- 
cause every resistive element has a small parasitic component in practice. We consider here 
two parasitic elements: a capacitor between every resistor node and ground, and an inductor 
in series with each resistor. Of course, the stability can be decided by solving the varia- 
tional equation at each equilibrium point obtained by the DC analysis, however, this is very 
time-consuming. We show here that the stability is mainly changed at the boundary of the 
presence of negative differential resistance (NDR) and the bifurcation points such as turning 
and pitchfork points on the DC characteristic curves, so that the instability regions of the 
solution curve are easily found by both the locations of bifurcation points and NDR regions 
of the nonlinear resistors. 

1. Introduction 

The DC analysis of nonlinear resistive networks is the most important problem for the 
design of electronic circuits, where the solutions correspond to the operating points for a 
DC bias. There have been many papers published about algorithms for calculating the 
multiple solutions of nonlinear resistive circuits [I-21. In practical circuits, however, the 
equilibrium points obtained by the DC analysis can be described as stable or unstable, 
because every resistive element has a parasitic component [3]. In this paper, instability 
of the equilibrium points is investigated by the Liapunov's direct method, where we 
assume that the ratio Lp/Cp of the parasitic elements may take any positive value even 
if the parasitic elements L,, C, themselves are arbitrarily small. Now, we define the 
stability conditions of resistive circuits as follows. 
Definition 1 [4]: An equilibrium point x* is said to be stable if, for each 6 > 0, there 
exists S > 0 such that 1 1  x ( t )  - x* 1 1  < E for all t 2 to, whenever 1 1  x( to)  - x* 1 1  < 6. 
Otherwise, the equilibrium point is said to be unstable. 
Definition 2 A DC circuit's equilibrium point is said to be totally stable if the point 
of any dynamic circuit created by augmenting the DC circuit with an arbitrary set of 
parasitic capacitors between every node and ground, and inductors in series with each 
resistor is stable. 
Definition 3: A resistive circuit's equilibrium point is said to  be k-th order saddle-node 
unstable if the characteristic equation obtained from the variational dynamic circuit 
has k positive real roots. An equilibrium point is said to be occasionally unstable if 
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the above dynamic circuit is unstable only for some set of the parasitic capacitors and 
inductors and is stable for some other parasitic elements. We also define NDR unstable 
region of the solution curves where it  has one or more negative differential resistances 
(NDRs)~ . 

There are many papers discussing the stability of nonlinear networks. In references 
[5-61, a condition for global asymptotic stability is discussed for nonlinear dynamic 
networks in a qualitative manner. In reference [4], a simple technique is proposed to  
identify unstable DC operating points, where the instability is investigated by the sign 
of the determinant of the Jacobian matrix. In this paper, we show in Theorem 2 that 
the regions on the solution curve correspond to the parts where duin/ds < 0 for the 
input u;, and the arc-length s from the starting point, and the equilibrium point will 
be a saddle-node unstable point if the starting point of the arc-length method [2] is 
stable. In reference [7-81, the open-circuit (short-circuit ) instability is defined for the 
driving-point characteristic curves for nonlinear one-port resistive circuits. 

In this paper, we discuss how to identify the unstable regions of solution curves such 
as driving-point and transfer characteristic curves, where we assume the ratios of the 
parasitic elements can take any positive value. The first result is NDR unstable regions 
(Theorem 1) where one or more differential resistances has negative value. The second 
result is saddle-node unstable regions (Theorem 2), where duin/ds < 0 on the solution 
curve and the stability changes at the turning point (dv;/du;, = 0, for input win) The 
third result is also saddle-node unstable regions (Theorem 3), such that the stability 
changes a t  the branch points [9-101 where two solution curves intersect a t  a point. Thus, 
unstable regions of the solution curve can be easily identified without investigating the 
variational equation. Thus, our technique is very useful for identifying the instabilty 
regions of solution curves. 

2. Stability of nonlinear reciprocal resistive circuits 

Consider a nonlinear reciprocal resistive circuit having both voltage- and current- 
controlled nonlinear resistors. To obtain the DC circuit equation, partition the circuit 
into two groups as follows: 

where A is the incidence matrix, and the subscript " 1" indicates the elements of voltage- 
controlled resistors (including linear resistors), and "2" those of current-controlled re- 
sistors, respectively. 
Then, we have the following circuit equation using the tableau approach [6] .  

0 0 0  0 

(2) 

Al A2 0 0 A J  

21t has been proven in Theorem 1 that, for reciprocal resistive circuits with parasitic elements, if 
the circuit has one or more NDR, the equil ibrium point may become unstable depending on the choice 
of the parasitic elemen t ,  which is classified as an occasionally unstable or saddlenode point. 



where vn denotes the vector of node voltage. From the first and third rows, we have 

Thus, we have the following relations from the second and fourth rows in (2): 

A2i2 = -A1gV(ATvn + El) + AJ, ATV, + E2 = ri(i2) (4) 

The first equation corresponds to  the nodal equation, and the second one is obtained 
by the Kirchhofl's voltage law for the loops containing the current-controlled resistors. 

Now, let us derive the dynamic equation by considering the parasitic elements. We 
assume a parasitic capacitor between every resistor and ground, and a parasitic inductor 
in series with each resistor. Then, we have 

di2 
Lp2- dt = A ~ V  2 n + E2 - ri (i2) (5.3) 

Observe that the right-hand side is exactly equal to the DC equations (3) and (4). 
Thus, stability of the equilibrium point can be determined by the variational equation. 
Let the equilibrium point be (vno, vlo, izo), and put 

We further transform the variables as follows: 

x1 = GAV,, x1= ,&G~Av~ 2 2  = & ~ i 2  (7) 

Then, we have from (5) 

1 1  

where P = d i a g ( g 5 ,  LilyG;', L;:), and G, = vl 
?J=1)1,, 

, Q =  m, 
a; i=izo 

Now, let us define the Liapunov function as follows: 

Then, we have 

dV 
0 0  0 

- = -2 ( x x )  P ( 0 G 0 
dt 0 0 R, 



Now, we have the following instability condition for the nonlinear reciprocal resistive 
circuits. 
Theorem 1 For reciprocal circuits, i f  all of G,  and R, have positive dgerential re- 
sistances at the equilibrium point, those parts of the characteristic curve will be totally 
stable. O n  the other hand, the equilibrium point will be NDR unstable i f  one or more 
of the digerential resistances has negative value at the point. 
Proof: See reference [12]. 

3. Unstable regions of solution curves 

Now, consider more general circuits containing bipolar transistors, FETs and so on. 
The solution curve can be calculated by solving a resistive circuit composed of n equa- 
tions in (n + l) variables 

f (x) = 0, f : Rn+l --t Rn (11) 

where xn+l is an additional variable, and sometimes chosen as the DC bias or forced 
input. Assume f (x) is C2  continuous in x E Rn+'. Let us describe the variable by 
x = x(s) as a function of arc-length s from the starting point xo [2]. Then, the solution 
of (11) satisfies the following set of algebraic-differentia1 equations: 

Since the solution curve r (x )  is a continuous function of s even at the turning point, 
we have from (12) 

Observe that the first n x (n + 1) submatrix corresponds to the Jacobian matrix of 
f (x), and the last row shows the derivatives of the curve. Our curve tracing algorithm 
[2] can efficiently trace the solution curve satisfying (12). In this case, it is proved that 
whenever the rank of Jacobian matrix of f (x) is n, the coefficient matrix DI'(x) is 
nonsingular. So, we can trace even for the turning points. Thus, we have the following 
relation by the Cramer's formula to (n  + 1)th variable 

dxn+l det lDnf(~) l  -= 
ds det 1 DI'(x) 1 

where D, f (x) is the Jacobian matrix for the variable {xl, 52,. . . , xn) 
. . 

This relation plays a very important role in investigating the stability of the solution 

3Note that the relations (3) and (4) can be applied to nonreciprocal circuits, where the nonlinear 
resistors are described by 

il = gv(v,i), v2 = ~ ~ ( v , i )  



curves. Now, assume that we have the following dynamic equation by considering 
parasitic elements: 

dx 
Q- = f (x, $,+I), where Q = 

d t  

Then, the variational equation a t  an equilibrium point x is given by 

Thus, the stability condition of the resistive circuits is decided by the eigenvalues of the 
Jacobian matrix Dn f (x). We have the following stability property around the turning 
point. 
Theorem 2 W h e n  the solution curve has passed through the turning point, one of 
three bifurcations of the  stability m a y  occur a t  the point as  follows: a totally stable t o  a 
saddle-node, a n  unstable focal t o  a saddle-node, and a saddle-node t o  a di$erent order 
of saddle-node. 
Proof: The direction of the solution curve is changed at a turning point, so that we 
have d~,+~/ds = 0 at  the point. This means that the sign of detlD,f (x)l is changed 
after passing through the turning point because of the nonsingularity of Dl?(x) in (13) 
[lo]. Here, we transform (15) as follows: 

The eigenvalues of the variational equation satisfy the following relation [4]: 

n 

det IQ-' D, f (x) 1 = det IQ-' 1 fl Xi 
i=l 

We assume that detlQ-'1 # 0 holds, so that the stability depends on the eigenvalues of 
D, f (x), where Xi(i = 1,2, . . . , n) are the eigenvalues composed of real and/or complex 
conjugates. Thus, the change of sign (13) means that an odd number of the real eigen- 
values has changed signs after passing through the turning point. Therefore, the type 
of stability is changed at the point. Note that for the complex conjugate eigenvalues, 
the sign of (16) does not change even if the real parts have changed sign, so that one 
of three bifurcations given in the Theorem 2 will be possible. 

Next, we consider the stability of the solution curve around the branch bifurcation 
point [9], where two solution curves cross at a point. It is known that the rank of the 
Jacobian matrix of (11) for {xl, 22,. . . , x,+~) 

is reduced to less than n. Hence, the matrix Dl?(.) becomes singular at the bifurcation 
point. We have the following theorem around the point. 



Theorem 3 Let r (x )  be a smooth solution curve passing through the branch bifurcation 
point. Then,  the stability of solution is  changed at the point. 
Proof: For simplicity, put 

Now, applying Taylor expansion to dl(xn+1) at two points x:+, - and xi+, + 
Ax,+l before and after the bifurcation point x*, we have 

where ' indicates the derivative with respect to xn+l. At the branching point x*, the 
following relations hold [9] 

rank(D f (x*)) = n - 1, d l ( ~ ; + ~ )  = 0, dl'(x;+,) # 0 (19) 

Multiplying the two equations in (la), we obtain 

Thus, the sign of the denominator of (13) is changed whenever it passes through the 
point. We have the same result as det 1 Dr(x)  1 for 

because the rank of D f (x) is n - 1 at the bifurcation point. 
Thus, both signs of the denominator and numerator of (13) are changed at the point, 
so that the direction of solution curve d ~ , + ~ / d s  will not be changed at  the branch bi- 
furcation point. But the stability of the solution curve is changed. The instability of 
the equilibrium point after the bifurcation point will be a saddle-node type. 

As a special case, there are many symmetric circuits such as a Flip-Flop circuit. In 
this case, they sometimes have an interesting property such that one of the solution 
curves is symmetric with respect to another one. This type of bifurcation is termed a 
pitchfork bifurcation [9]. 
Corollary 1 A t  a pitchfork point, one of the solution curves changes stability at the 
point, while the other keeps the same stability passing through the point. 

4. An illustrative example 

Hopfield neural networks are sometimes applied to solve combinatorial problems such 
as the traveling salesman problem, the layout of VLSI circuits and so on. Now, consider 
the circuits containing 6 synapses whose equation is given by 



where 

L 4 

Figure 1 Stability of the solution curve for a Hopfield network 

Setting dui/dt = 0, the stationary solutions are obtained. Choosing a as an additional 
variable, we have a set of 6 algebraic equations with 7 variables. The solution curves 
are obtained starting from a = 0.1 [lo]. The curves in the (xl, 23, x7)-plane are shown 
in the Figure, where we choose a = 0.2927 + 0.1. We found 9 pitchfork points and 4 
turning points. 
Note that since the coefficient matrix W is symmetric, all of the eigenvalues are real, and 
the equilibrium points belong to the saddle-node points. We show the unstable curves 
by dotted lines. Therefore, all of the stabilities are determined by the application of 
Theorem 2 and Corollary 1. Note that, in this case, the equilibrium points in region 
(B1, B2) are 1st order saddle-node points because those of (S, B1) are stable. On the 
other hand, those in the region (Bz, B3) are 2nd order saddle-node points, because the 
order is changed by one at  the pitchfork B2. We can see that most of the branches are 
unstable. 

5. Conclusions and remarks 

In this paper, the stability of DC solution curves is examined by introducing parasitic 
elements, in the form of a small capacitor between every resistor and ground, and an 
inductor in series with every resistor. The ratios of the capacitors and inductors play a 
very important role in the stability. We have assumed that the ratios Cp/Lp may take 
any value from zero to infinity. 



We have proved three theorems and one corollary which are very useful for checking 
the instability regions of the solution curves. We have two main results. The first result 
is that  instability may be occurred in the negative differential resistance(NDR) regions 
depending on the choice of parasitic elements. The second result is that  the stability is 
also changed a t  the bifurcation points such as a turning, branch and pitchfork. Thus, 
we can easily find the instability regions of the solution curves without investigating 
the variational equation. 
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