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Abstract .  The author proposes two necessary conditions under which the 3rd order oscillators with 

cubic nonlinear active elements generate chaos. Using these conditions, these oscillators are classificated 

into two groups according to whether they generate chaos or not, and this result is confirmed by 

computer simulations. 

1. Introduction 

Electrical circuit is one of the fields where the chaos was found earliest[l]. Since then many types of 

the 3rd order oscillators generating chaos have been reported(2-111. However, most of them are found 

by trial or chance, and the conditions for generating chaos have not yet been made clear. In this article 

the author considers a group of the 3rd order oscillators which consist of five two-terminal elements; 

four of them are linear capacitors, inductors, and one resistor, and only one element is a cubic nonlinear 

active resistor. There exist 11 types of oscillators as shown in Fig.1. Two conditions for generating 

chaos are proposed. Using these conditions, these oscillators are classified into two groups according 

to whether they generate chaos or not, and this result is confirmed by computer simulations. 

2. A Group of the 3rd Order Oscillators 

In order to consider the conditions for generating chaos, we restrict ourselves to the simple and 

natural oscillators which consist of the following five elements. 

1. Three capacitors and inductors are positive. i.e., natural ones. 

2. One voltage-controlled nonlinear resistor has the cubric active characteristics, i.e., 

i = f ( u )  = p(-v + u 3 / 3 )  

3. One linear resistor may be positive or negative. 

By using these elements, we obtain 11 types of complete circuits as shown in Fig.1. A1 is the Chua's 

circuit. It is our object to find oscillators generating chaos theoretically. 



3. Conditions for Generating Chaos 

Chaos is roughly considered to be the situation where all the equiliblium points, limit cycles and tori 

in a cirtain region of the phace space are unstable and the trajectory is obliged to wander in that region 

forever. On the other hand, as is well known, the behavior of an oscillator is rather simple for weak 

nonlinearity. As the nonlinearity becomes strong, complicated phenomena may occur. Such is the 

chaos. These changes of phenomena are considerd to  accompany the change of the property(number 

and stability) of the equilibrium points inevitably. To see this situation, we change one parameter p 

of (1). 

According to these physical considerations, we propose two following conditions as the necessary 

ones to generate chaos. The expression is slightly different from those in [12] based on our simulation 

results and the suggestion of [lo]. 

Condition I: The number of equilibrium points and/or their stability changes in a complicated 

manner as the parameter of activity p is increased. 

Condition 11: There exists a parameter value p for which three equilibrium points exist, and all 

of them are unstable. 

4. Classification of the 3rd Order Oscillators 

The equilibrium points of oscillators shown in Fig.1 are determined by the resistive circuits obtained 

with the capacitors open-circuited and the inductors short-circuited. These resistive circuits are divided 

into three types A, B, and C as shown in Fig.2. Their equilibrium points are given by the nonlinear 

and the linear resistive characteristics as shown in Fig.3. Therefore, we can classify these oscillators 

into four groups as shown in Fig.1. Groups A and B in Fig.1 have three equilibrium points given by 

A and B of Fig.2 & 3, respectively. Both C containing two capacitors and D containing one capacitor 

in Fig.1 have only one equilibrium points as shown in C of Fig.2 & 3. 

5. Oscillators Generating Chaos 

As the oscillators of C and D types in Fig.1 have only one equilibrium point, they are considered not 

to generate chaos according to Condition 11. When a linear resistor is positive, two equilibrium points 

other than the origin are stable in B type. So, they can not generate chaos according to Condition 

11, either. Therefore, only three oscillators of A type have the possibility to  generate chaos. Now, we 

apply Condition I t o  them. By deriving variational equations from circuit equations, we obtain the 

3rd order characteristic equation generally as follows. 

where X is the characteristic root. The stability conditions are given by 

By the calculation, p and r are found to be linear functions of p ,  and s is a quardatic one. Situations 

of graphs of p(p),r(p),and s(p)  depends on the system parameters. 



When they situates as shown in Fig.4, we can see that the stability of three equilibrium points 

changes in the most complicated manner as p increses. Therefore, when we denote the the roots of 

p = 0, T = 0, and s = 0, in Fig.4b as p i ,  T: ,and s;, sa, respectively, the conditions for generating chaos 

as follows. 

1. s(0) has two real roots. 2. s; > sk > r:&p; 3. s; > p > sa (4) 
For A1 and A2, we can choose parameter values so as to  satisfy (4) and realize Fig.4. On the other 

hand, for A3 we can never realize Fig.4 because pi > sa identically. As a result, we can predict that 

A1 and A2 can generate chaos when a linear resistance is positive. In fact, cham can be easily found 

in A1 and A2 for the parameters satisfying (4), while chaos has never been found in A3. 

In the same manner, when a linear resistor is negative, group A and B have the possibility to  

generate chaos according to Condition 11. Using Condition I, A2, A3 and all of group B, i.e., six types 

of oscillators are expected to  generate chaos. An example of the complicated change of stability for 

group B is shown in Fig.5. This prediction was confirmed by computer simulation. Some examples 

of chaotic attractors are shown in Fig.6. No exceptions of this classification have been found by the 

author and reported so far in the literatures. 

6. Conclusion 

In this article, the author has proposed two necessary conditions under which the 3rd order oscillators 

with a cubic nonlinear active element generate chaos. Using these conditions, 11 types of oscillators 

which consists of five two-terminal elements were classified into two groups according to whether they 

generate chaos or not. This result was confirmed by computer simulation. 

This article is the revised one which presented in Proc.of NOLTA1995 (International Symposium 

on Nonlinear Theory and its Applications) [12]. The subsequent results are repoted in [13,14]. 
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Fig. 3: Characteristics of resistiors for determining equilibrium points. 
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Fig. 4: Stability conditions of A type oscillators. 

(a)Equilibrium point of origin 

(b)Equilibrium point other than the origin 

Fig. 5: Stability conditions of B type oscillators. 

(a)Equilibrium point of origin 

(b)Equilibrium point other than the origin 



I I 

8.1 

0 

4 . 3  

1 

1 d 

I 

-,., .I .I., I 1.) L I . , ,  I V l  ' 

Fig. 6: Some examples of the chaotic attractors (Cl = 1.0). 




