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Chapter 1
General introduction

Toxic cyanobacterial blooms have become a frequent occurrence in eutrophic
freshwater environment throughout the world (1). Recent increase of the frequency,
intensity, and duration of cyanobacterial blooms are likely to be related to eutrophication
(2), the elevated CO2 levels (3, 4), and global warming (5, 6). The bloom-forming
cyanobacterial genera include Aphanizomenon, Cylindrospermopsis, Dolichospermum,
Microcystis, Nodularia, Planktothrix and Trichodesmium (7). Of these, Microcystis
aeruginosa is one of the most pervasive and notorious bloom-forming cyanobacterium
(D).

M. aeruginosa spends winter period in the bottoms and rises to the water surface
where it can accumulate to form blooms and scums in the summer in the temperate region
(8). This cyanobacterium possesses gas vesicles which are hollow protein structures filled
with gas, providing buoyancy to the cells (9, 10). The vertical migration by their buoyancy
is important for accessing nutrient and optimizing the utilization of light energy (1). A
part of Microcystis strains can produce the potent hepatotoxin microcystin which is
originally identified as Fast-Death Factor (1). The cyclic heptapeptides, microcystins are
comprised of several unusual amino acids including 3-amino-9-methoxy-2,6,8-trimethyl-
10-phenyldeca-4(E),6(E)-dienoic acid (ADDA) in position five, two conventional D-
amino acids in positions one and six, D-erythro-B-methylaspartic acid in position three,
and N-methyldehydroalanine in position seven (11, 12). To date, over 100 different
congeners of microcystin showing various toxicities (from non-toxic; LDso > 1200 pg/kg
to highly toxic; LDso > 50 pg/kg) have been characterized, mostly due to differences in

L-amino acids in positions two and four (13, 14). Such microcystins form an irreversible
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covalent bond with protein phosphatase (15, 16), especially in hepatocytes, and thereby
can lead to subsequent cell structure damage, liver disease and nephrotoxicity (17-19).
Indeed, numerous fatalities and severe poisonings of livestock, pets and wild life caused
by microcystin-containing Microcystis blooms have been reported (20). Likewise,
microcystin toxicity poses serious problems for human who use impaired water resources
for drinking water supplies (21), recreational activities (22), fisheries (23), and dialysis
treatment (24). These accidents have led to the World Health Organization (WHO) to
propose a drinking water guideline of 1 pg/L for microcystins (25). Thus, it is global
issues for maintaining safe water supplies to control the toxic Microcystis blooms.
Traditionally, chemical and physical environmental factors have been the focus
for controlling Microcystis blooms as well as other cyanobacterial blooms (1). Unlike to
the other major bloom-forming cyanobacteria except for Planktothrix, M. aeruginosa is
incapable of supplying nitrogen requirements by N fixation during nutrient limitation (1).
This physiological feature has led to the hypothesis that the inflow of nitrogen into the
freshwater environments plays a key role in the growth and proliferation of M. aeruginosa
(26) as well as phosphorus. Indeed, it has been shown that the world-wide Microcystis
proliferation appears to link to the increase in both phosphorus and nitrogen inflow
generated by various human activities (26-30). Especially, the low ratio of nitrogen to
phosphorus is thought to favor Microcystis blooms (and also increase the microcystin
concentration (31)) as well as other cyanobacteria (32). However, the universal optimum
ratio is not determined and some contradictory results have been reported (33-36).
Therefore, the effects of the ratio of nitrogen and phosphorus for Microcystis blooms are
still under debate. Physical factors such as irradiance, temperature, turbulence, vertical

mixing and hydrologic flushing have been also only implicated as the potential control of
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Microcystis blooms under certain circumstances (1, 29, 37). Thus, the impacts of chemical
and physical environmental factors on Microcystis bloom formation and termination have
not been fully understood. Furthermore, grazing by zooplankton or bivalves on M.
aeruginosa have been studied as a biological environmental factor. Although grazers
generally exert top-down ecological controls in aquatic ecosystems (38, 39), Microcystis
colony formation can function as grazing deterrents (40). Indeed, Microcystis large
colonies are poorly grazed, particularly by small crustacean zooplankton (40). In addition,
it was reported that a certain Microcystis strain respond to small flagellated zooplankton
that could not consume the colonies, and thereby transformed from unicellular to colonial
morphology (41). Thus, M. aeruginosa are thought to be an inadequate food source for
zooplankton (40).

Viruses infecting microorganisms are ubiquitous and the highly abundant in
aquatic ecosystems (42). Such viruses inject their genome into host cells, redirect host
metabolisms for their reproduction, and finally lysed host cells to release their progeny
into the environments (43). Therefore, viral infections are thought to affect host mortality,
the composition of microorganism communities, and the biogeochemical cycles (42, 44,
45). It was reported that a lytic agent that formed plaques on Microcystis lawns (46) or
virus-like particles that inhibited Microcystis growth about two decades ago (47). In
addition, an increase of cyanovirus titers accompanied by a large decrease in the
Microcystis abundance was also observed in the natural environment (48). These findings
suggest that viruses infecting this cyanobacterium could be also one of the most important
factor to affect its bloom dynamics and termination in the environment. Under such
circumstances, Yoshida et al. (2006) successfully isolated cyanovirus Ma-LMMOI that

specifically infects a toxic bloom-forming cyanobacterium M. aeruginosa. Ma-LMMO1
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is anew lineage of the Myoviridae family that has an icosahedral head (86 nm in diameter)
and a tail complex consisting of a central tube (9 nm in width) and a sheath (24 nm in
width, 209 nm in length) that contracted to 90 nm in length (49, 50). The latent period
and burst size of Ma-LMMO1 were estimated to be 6-12 h and 50 to 120 infectious
units/cell, respectively (50). To date, Takashima et al. (2007) developed a real-time PCR
method for quantification of the abundance of Ma-LMMO1, and thereby revealed that the
relatively high ratio M. aeruginosa to Ma-LMMOI1 numbers in the summer (52).
Comparing the expression levels of gp091 (tail sheath gene) in the environment what in
the culture experiment, furthermore, Ma-LMMOI1 infection likely to occur in 0.01-2.9
cell/mL of the natural Microcystis cell population (53). These findings indicate that Ma-
LMMO1 might have the ability only to infect a small percentage of Microcystis population
in the natural environment (52, 53). Meanwhile, several studies have revealed that Ma-
LMMOL1 exists in Microcystis blooms throughout the world (54-56). In accordance with
these, cyanovirus MaMV-DC, which infects M. aeruginosa and shows high average
nucleotide identity (86.1%) with Ma-LMMO1, was also isolated from Lake Dianchi,
China (57, 58).

Current population studies of M. aeruginosa have also implicated the
interactions between this cyanobacterium and its infecting viruses in the environment.
CRISPR-Cas systems, which is one of antiviral defense systems and composed of short
direct repeats separated by unique sequences (spacers), incorporate foreign DNA
fragments such as viruses into the leader-end of the CRISPR loci as a new spacer that
provides a sequence memory of the invasion of exogenous genetic elements like viruses
(59). Based on such spacer arrangement (CRISPR array), Microcystis bloom is consisted

of the diverse populations that possess different CRISPR arrays (60—63). These
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observations indicate that the diverse combinations of M. aeruginosa and its viruses exist
in the natural environments. Coincide with this, M. aeruginosa has the highest number of
putative antiviral defense genes (corresponding to 29% protein-coding genes) among all
prokaryote or archeal species as of 2011 (64). Such genomic features of M. aeruginosa
also suggest that infection profiles of Microcystis viruses will provide better
understanding of the host-virus interactions as well as their impact on Microcystis blooms
(60).

Despite the potential importance of cyanoviruses in Microcystis blooms, little is
currently known about whole host transcriptional responses to viral infection, and the
infection program of even the only isolated strain Ma-LMMO1 to escape the highly
abundant host defense systems. Especially, Ma-LMMO1 lacks almost all of the T4 core
genes needed for appropriating host metabolic machinery, replicating the viral genome,
and building viral particles and contains none of the auxiliary metabolic genes except for
nblA usually carried by marine T4-like cyanoviruses (49). These genomic features
indicate that Ma-LMMO1 may employ an infection program which is different from that
of other marine cyanoviruses. Considering that Ma-LMMO1-matching spacers are present
in very low in natural Microcystis populations (10/995 spacers) (61), furthermore,
numerous uncharacterized cyanoviruses exist that can affect Microcystis bloom dynamics
and termination process. To date, however, no comprehensive studies have been done to
investigate for the existence of other Microcystis viruses, or whole transcriptional
dynamics of both M. aeruginosa and its viruses in the environment. In my doctoral
thesis, to reveal the infection processes of Microcystis viruses coping with the highly
abundant host antiviral defense system, I first investigated Ma-LMMO1 infection profiles

in the culture experiment using transcriptome analysis (in Chapter 2). Then, I revealed
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the novel Microcystis viruses and their transcriptional patterns in the environment using

cross-omics analysis (in Chapter 3).
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Chapter 2
Transcriptome analysis of a bloom-forming cyanobacterium

Microcystis aeruginosa during Ma-LMMO01 phage infection

Abstract

Microcystis aeruginosa forms massive blooms in eutrophic freshwaters, where
it is constantly exposed to lytic cyanophages. Unlike other marine cyanobacteria, M.
aeruginosa possess remarkably abundant and diverse potential antiviral defense genes.
Interestingly, T4-like cyanophage Ma-LMMOI1, which is the sole cultured lytic
cyanophage infecting M. aeruginosa, lacks the host-derived genes involved in
maintaining host photosynthesis and directing host metabolism that are abundant in other
marine cyanophages. Based on genomic comparisons with closely related cyanobacteria
and their phages, Ma-LMMOI is predicted to employ a novel infection program that
differs from that of other marine cyanophages. Here, | used RNA-seq technology and in
silico analysis to examine transcriptional dynamics during Ma-LMMO1 infection to
reveal host transcriptional responses to phage infection, and to elucidate the infection
program used by Ma-LMMO01 to avoid the highly abundant host defense systems. Phage-
derived reads increased only slightly at 1 h post-infection, but significantly increased
from 16% of total cellular reads at 3 h post-infection to 33% of all reads by 6 h post-
infection. Strikingly, almost none of the host genes (0.17%) showed a significant change
in expression during infection. However, like other lytic dSDNA phages, including marine
cyanophages, phage gene dynamics revealed three expression classes: early (host-
takeover), middle (replication), and late (virion morphogenesis). The early genes were

concentrated in a single ~5.8-kb window spanning 10 open reading frames (gp054—
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gp063) on the phage genome. None of the early genes showed homology to the early
genes of other T4-like phages, including known marine cyanophages. Bacterial RNA
polymerase (c'°) recognition sequences were also found in the upstream region of middle
and late genes, whereas phage-specific motifs were not found. These findings suggest that
unlike other known T4-like phages, Ma-LMMOI achieves three sequential gene
expression patterns with no change in host promoter activity. This type of infection that
does not cause significant change in host transcriptional levels may be advantageous in
allowing Ma-LMMO1 to escape host defense systems while maintaining host

photosynthesis.

Introduction

Viruses are extremely abundant in aquatic environments, with global estimates
reaching 10°° virus-like particles (42). Viruses are thought to play important roles in
regulating the abundance, clonal diversity, and composition of bacterial populations (45),
and thus have the potential to affect biogeochemical cycles through the process of host
cell lysis (42, 45). Therefore, it is essential to elucidate viral infection mechanisms to
better understand the impact of viruses on host populations and biogeochemical cycles.

In general, infection dynamics of T4-like phages show that following infection,
host genomic DNA is degraded and there is an almost complete shift to phage
transcription, leading to the shutdown of host metabolism (43, 65). The phage
transcriptional program generally follows the three temporal expression classes of early,
middle, and late genes, which correspond to host takeover, replication, and virion
morphogenesis, respectively (43, 66). In T4 phage, this expression program is regulated

by the sequential modification of the host RNA polymerase and associated ¢ factor,
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leading to consecutive changes in affinity for different promoter sequences. The
expression of early genes relies on the primary host ¢’ factor which recognizes early T4
promoters that resemble the major Escherichia coli promoters and is stronger than any
bacterial promoters (65). The internal head protein Alt increases affinity for the early T4
promoters and supports preferential transcription from early T4 promoter by ADP-
ribosylation of one of the two a subunits of the host RNA polymerase (67, 68). Middle-
gene promoters have a distinctive motif sequence that is again recognized by the host 67
factor, aided by phage-encoded proteins AsiA and MotA. Anti-c factor AsiA forms the
heterodimers with host ¢’ factor, and activates the transcription from middle T4
promoters. Transcriptional activator MotA binds to the MotA box sequence and recruits
the host RNA polymerase to middle T4 promoters (69, 70). Phage-encoded proteins
endoribonuclease RegB (71) and ADP-ribosyltransferase ModA (72) also contribute to
switch from the early transcription to middle transcription. In contrast to transcription
from early and middle-gene promoters, recognition of late-gene promoters requires a
phage-encoded o factor, gp55. Co-activator gp33 and DNA-loaded sliding clamp gp45
also involve in efficient transcription from late-gene promoters (43).

T4-like cyanophages infecting marine cyanobacterial genera Synechococcus and
Prochlorococcus contain homologs of the T4 replication and virion structural genes that
are shared among T4-like phages (T4 core genes) (73). According to their genomic
features, transcriptome analyses for marine T4-like cyanophages clearly indicate the three
temporal classes of early, middle, and late genes as seen in T4 phage (74—77). In addition,
marine T4-like cyanophages possess a number of auxiliary metabolic genes (AMGs) that
are derived from hosts and are involved in processes such as photosynthesis, carbon

metabolism, and phosphorus utilization (78, 79). Such AMGs are thought to provide



2. Transcriptome analysis during Ma-LMMO01 infection

support during key steps in host metabolism that are relevant to phage, thereby boosting
and redirecting host metabolism after the shutoff of host metabolism caused by phage
infection (77, 79). Indeed, pentose phosphate pathway are augmented to provide a more
direct mechanism for NADPH production, where NADPH is not destined for carbon
fixation, but rather both ATP and NADPH are available for nucleotide synthesis for viral
genome replication during cyanophage P-HM?2 infection (77). In this way, T4-like
cyanophages maintain host photosynthesis activity and redirect carbon flux from the
Calvin cycle to the pentose phosphate pathway, although they lack T4-like middle-gene
promoters and the motA and/or asid genes (75, 77).

Toxic bloom-forming cyanobacterium Microcystis aeruginosa, along with its
phages, provides an excellent model to study the co-evolution of viruses and their hosts
(60) because it contains the largest number of defense genes out of all studied bacteria
and archaea (64), and is frequently exposed to phage infection (61, 80). Cyanophage Ma-
LMMO1, which is known to only infect M. aeruginosa strain NIES-298 among tested
strains, is a member of the Myoviridae family (50) and is phylogenetically distinct from
other known marine T4-like cyanophages (49). Coincidentally, Ma-LMMO1 lacks almost
all of the T4 core genes involved in appropriating host metabolic machinery, replicating
the viral genome during infection, and building viral particles (49). In particular, it does
not contain any homologs of phage-encoded o factor gp55 and transcription factor gp33,
both of which are required for late-gene transcription in T4-like phage (Roucourt and
Lavigne, 2009). In addition, Ma-LMMO1 contains none of the AMGs usually carried by
marine cyanophages. These findings indicate that Ma-LMMO1 may employ an infection
program that differs from that of other marine cyanophages. Ma-LMMO1 does possess a

homolog of nblA4, which plays a central role in the degradation of phycobilisomes (49).
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The phage-encoded NblA is predicted to be involved in maintaining host photosynthesis
(49, 81, 82). Furthermore, Honda et al. (2014) previously reported that there was no
difference in the level of host psbA transcription during Ma-LMMO1 infection and that
levels of genes involved in the Calvin cycle and pentose phosphate pathway also did not
change, or were slightly decreased. Together, these findings suggested that Ma-LMMO1
maintains host photosynthesis activity and carbon metabolism by protecting photosystem
IT using phage-encoded nblA. However, little is currently known about whole host
transcriptional responses to phage infection, and the infection program employed by Ma-
LMMOI to avoid the highly abundant host defense systems during infection.

In this study, I investigated the infection process and transcriptional program of
Ma-LMMO1 during infection of its sole host, M. aeruginosa NIES-298, and assessed host

transcriptional responses to infection using RNA sequencing (RNA-seq) analysis.

Material and Methods
Bacterial and phage culture conditions and experimental design

M. aeruginosa NIES-298 was obtained from the Natural Institute for
Environmental Studies (NIES, Japan; http://www.nies.go.jp). M. aeruginosa was cultured
in CB medium (83) under a 12/12-h light/dark photocycle (light intensity: 21 pmol
photons/m?/s) at 30°C with 0.5% CO (v/v) aeration.

To prepare the phage lysate, a 1-L M. aeruginosa culture (9.14 x 10° cells/mL)
was infected with Ma-LMMO1 at a multiplicity of infection of 0.02 and then incubated as
above for 3 days. The resultant lysate was filtered through a sterile 3.0-um polycarbonate
membrane filter (Millipore, Billerica, MA, USA) and stored as an original lysate at 4°C

(84).
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A 9-L volume of M. aeruginosa culture in exponential-phase was prepared as
described above and then divided between six different flasks containing 1.5 L of medium.
I performed the one-step growth experiment for Ma-LMMOI to obtain simultaneously
infected cells without multiple infection for RNA-seq analysis according to the previous
study (50). Using this infection experiment, at least two different temporal classes (early
and late genes) have been observed in expression of phage genes (81). In brief, cell
division is well synchronized compared with untreated cells when Microcystis cells
arrested once by 36 h darkness are transferred to continuous illumination (the block-
released method) (81, 85). Thereby the variation of infection stage was minimized at each
time point. For the phage infected cultures, 250 mL of original phage lysate were added
to each of three synchronized cultures after the light was turned on. In parallel with
infection experiment, infectious phage concentration was determined using the most
probable number (MPN) method (3.59 x 10° infectious units/mL) (50, 84), resulting in a
multiplicity of infection (MOI) of 0.62—0.89. From the wide range of upper value and
lower value within the confidence limits (95%) in MPN method (86), the MOIs varied.
However, almost complete lysis was observed at 24 h after infection. In addition,
growth experiments of Ma-LMMO1 should be carried out with MOIs less than 1 because
an MOIs greater than 2 results in a small decrease in the number of host cells (50). For
the control cultures, an equivalent volume of CB medium was added to a further three
flasks in place of the phage lysate. To determine the number of phage particles and host
cells, samples were collected from the flasks at different time points during the lytic cycle
(0,05,1,2,3,4,5, 6,8, 10, 12, and 24 h after phage addition). To enumerate phage
particles, samples were passed through a 3.0-um PTFE membrane filter and then

immediately fixed in 20% glutaraldehyde at a final concentration of 1% and stored at 4°C
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until analysis. To enumerate host cells, cells were immediately fixed in 20%
glutaraldehyde at a final concentration of 1% and stored at 4°C until analysis. Densities
of the host cells and phage particles were measured using epifluorescence microscopy
(Nicon ECLIPSE E800; Nicon, Tokyo, Japan) with SYBR Gold staining (Molecular
Probes, Eugene, OR, USA). As described in the previous studies, the estimated latent
period of Ma-LMMO1 is 6-12 h (50) and host transcriptional profiles do not show
remarkable change between 6 h and 8 h post-infection (81). For RNA extraction, therefore,
100-mL aliquots of the infected and control cultures were collected at 0, 1, 3, and 6 h
post-infection, and cells were collected on 3.0-pum PTFE membrane filters. The cells were
then resuspended in 5 mL of stop solution (phenol:ethanol, 5:95 v/v) and stored at —80°C
(85). At each time point, these procedures were complete within 20 min (87).
Sequencing and analysis of the M. aeruginosa NIES-298 genome

Genomic DNA extraction from M. aeruginosa cells was performed using a
combination of the potassium xanthogenate-sodium dodecyl sulfate and
phenol/chloroform/isoamyl alcohol procedures, as described previously (88, 89). The
extracted DNA was sheared using a Covaris M220 focused-ultrasonicator (Covaris,
Woburn, MA, USA) to an average size of 300 bp. A mate pair library was then prepared
using a Nextera Mate Pair Library Prep Kit (Illumina, San Diego, CA, USA) according
to the manufacturer’s instructions. The mate pair library was sequenced using a MiSeq
Reagent Kit v3 (2 x 150-bp read length; Illumina) and the [llumina MiSeq platform, and
assembled using SPAdes ver.3.7.0 (90). Open reading frames (ORFs) were predicted
using Genemarks (91), and predicted ORFs were annotated by blastp analysis against the
National Center for Biotechnology Information (NCBI) non-redundant database (nr) (E-

value thresholds of < 1e¢°).
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RNA-seq library preparation for Illumina sequencing

Total RNA was extracted from 2 mL of the stored cell suspension as described
previously (85). The total RNA concentration was measured using a Qubit Fluorometer
(Life Technologies, Paisley, UK) according to the manufacturer’s instructions. RNA
integrity was also verified by gel electrophoresis. DNA was removed using TURBO
DNase (Ambion, Austin, TX, USA). Genomic DNA depletion was checked to eliminate
the effects of DNA contamination on the following RNA-seq analysis using RT-PCR
assay and gel electrophoresis with DNA-depleted RNA samples as non-reverse
transcribed control (data not shown). For depletion of ribosomal RNA, a Ribo-Zero rRNA
removal kit (Bacteria) (Epicentre, Madison, WI, USA) was used according to the kit
instructions, and rRNA depletion was verified by Agilent 2100 bioanalyzer (Agilent
Technologies, Palo Alto, CA, USA). The rRNA-depleted RNA was then purified using
Agencourt RNAClean XP beads (Beckman Coulter Genomics, Danvers, MA, USA)
according to the manufacturer’s instructions. The purified RNA was converted to double
stranded cDNA using a PrimeScript Double Stranded cDNA Synthesis Kit (TaKaRa Bio,
Otsu, Japan), and cDNA libraries (not strand-specific) were prepared using a Nextera XT
DNA sample preparation Kit (Illumina). RNA-seq libraries were sequenced using a
MiSeq Reagent Kit v3 (2 x 75 bp read length; [llumina) and the [llumina MiSeq platform.
Mapping and counting RNA-seq reads

Reads from each library were aligned separately to the merged reference genome
(Ma-LMMOI plus M. aeruginosa NIES-298) using bowtie2 (92) with option “--score-
min L,0,-0.6”. Host 16S and 23S rRNA reads were removed manually from the total reads
prior to read mapping. An average of 1 million reads were recovered from each cDNA

library at 0, 1, 3, and 6 h post-infection (Table 2-1). Rarefaction curves and chaol indices
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for each host and viral reads were separately constructed using PAST ver.3.17 (93). Reads
from the whole transcriptome library were counted for each gene. Host and viral transcript
counts were each normalized as FPKM (fragments per kilobases of exon per million
mapped reads).

The reads mapping to viral genome at each time point were visualized

independently with Integrative Genomics Viewer (94).

Table 2-1. Summary of sequencing data generated in this study.

(A) In control samples

Oh 1h 3h 6h
paired reads 1,524,163 1,901,677 1,501,410 1,572,588
Q30 filtered 1,446,831 1,788,926 1,428,977 1,469,486
rRNA removed 1,446,826 1,788,922 1,428,972 1,469,481
Mapped reads 1,010,716 1,342,197 1,000,001 949,935
(B) In infected samples

Oh 1h 3h 6h
paired reads 1,747,642 1,468,898 1,399,842 1,615,758
Q30 filtered 1,647,597 1,361,217 1,336,867 1,515,406
rRNA removed 1,647,592 1,361,211 1,336,862 1,515,399
Mapped reads 1,041,952 878,383 930,510 1,109,726

Identification of differentially expressed genes

Differentially expressed host transcripts were identified using the R package
DESeq (95) with blind method for estimateDispersions and DESeq?2 (96) in Bioconductor
(97). This analysis was conducted for the total host reads, considering the global depletion
of all host transcripts relative to the total transcript population due to the influx of viral
transcripts. Transcript abundances were analyzed separately at each time point,

comparing the infected and uninfected treatments. An adjusted P-value (P-value with a
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multiple-test correction) < 0.05 indicated a significant difference. In DESeq2, the
dispersion estimation procedure replaces the different methods from the DESeq, and
treats the samples as replicates for the purpose of dispersion estimation. Due to the
differences of dispersion estimation procedures, DESeq analyses with blind method for
estimateDispersions detected differentially expressed genes (DEGs), while DESeq2
analyses could not detect any DEGs. I also investigated whether DEGs with unknown
function showed similarity to any of the defense islands in the genome of M. aeruginosa
NIES-843 (GenBank accession no. NC 010296) using a blastn search with default
parameters.
Clustering of phage gene expression

Cluster analysis of Ma-LMMO1 gene expression patterns was performed for the
normalized and log>-transformed transcript levels of the phage genes derived from the
RNA-seq data. Hierarchical clustering was performed using Euclidean distance and
average linkage metrics as implemented in the R package “stats”. The Jaccard coefficient
was used to assess the quality and stability of the number of clusters obtained from
hierarchical clustering (75). The Jaccard coefficient provides a measure for the similarity
of two different sets of clusters, and ranges from zero (dissimilar) to one (similar). For
statistical evaluation of the clustering stability, random subsets of the samples containing
70% of the genes were repeatedly (1000 replicates) selected and clustered, and then the
Jaccard coefficient was calculated. This procedure was performed with varying numbers
of clusters (k = 2 to 7), and the distribution of the Jaccard coefficients obtained was
displayed as a histogram. The benhur function in the R/Bioconductor package
“clusterStab” was used to carry out the clustering and calculation. The dendrogram of

Ma-LMMO1 expression clusters was plotted using the dendrogram function (hclust; R

16



2. Transcriptome analysis during Ma-LMMO01 infection

package stats). The heat map analyses for viral gene expression profile were conducted
using heatmap.2 function in the R/Bioconductor package “gplots”.
Computational identification of promoter motifs

The upstream regions of all phage genes (300 bp) were collected from the Ma-
LMMO1 genome. The primary sigma factor recognition sequences were predicted using
BPROM (http://softberry.com) with default parameters. The promoter sequences were
aligned separately for each motif (—10 box and —35 box) using ClustalW (98). Logos were
prepared using weblogo (99).
Verification of RNA-seq results

RNA-seq results were verified using quantitative reverse-transcription
polymerase chain reaction (QRT-PCR) analysis of host (sigd, rnpB) and phage genes
(gp005, gp054, gp062, gp087, gp091 and gpl34) during Ma-LMMO1 infection. Total
RNA derived from the same samples was reverse transcribed with random hexamers
using a SuperScript Il First-Strand Synthesis System (Invitrogen, Carlsbad, CA, USA)
as per the manufacturer’s instructions. cDNA copies were quantified using SYBR Premix
Ex Taq (Tli RNaseH Plus; TaKaRa Bio) with 5 pmol of each of the forward and reverse
primers as described previously (84). I designed novel primer sets for gp054
(ATGCCGAACTAAGAAGCCCACGG and CACTTGCTTCACTCGCTGCTCQG),
gp062 (GGTGAACCCATCGTGAATGTGCCA and
AAGATTTGGGCAACGGCATCACC), gp087 (GGGATCCGCTAGCGCAGCTG and
AGGCGCACGCCAGAAGGAAC) and gpi34 (ATGCTCCTCCTGGTGGTC and
ATAGTAATCCTCGCCGTCC). Transcript levels for each gene were normalized to host
rnpB transcript levels (85).

Public data
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The genome sequence of M. aeruginosa NIES-298 was deposited in the DNA
Data Bank of Japan (DDBJ) Mass Submission System (MSS) under the accession
numbers BEIU01000001-BEIU01000088. The mRNA expression data were deposited in
the DDBJ Sequence Read Archive (DRA) under accession numbers DRR101368—

DRR101375.

Results
Phage infection and transcriptome dynamics

I first investigated the infection process and transcriptome dynamics of the Ma-
LMMO1 phage during infection. Phage particles were released from the infected cells
within 8-12 h of infection (Figure 2-1A), and the number of phage particles increased
from 1.38 x 10® particles/mL at 0 h to 3.34 x 10® particles/mL at 24 h post-infection
(Figure 2-1A). This infection profile was consistent with previously reported results
(Yoshida et al., 2006). In the control culture, the M. aeruginosa cell density increased
from 6.36 x 10° cells/mL at 0 h to 8.11 x 10° cells/mL at 24 h post-infection (Figure 2-
1A). In contrast, in the infected culture, Microcystis cells were lysed at the point of phage
particle release (Figure 2-1A), with a corresponding decrease in M. aeruginosa cell
density from 7.78 x 10° cells/mL at 0 h to 1.61 x 10° cells/mL at 24 h post-infection
(Figure 2-1A). Considering that Ma-LMMO1 infection only occurs in a light cycle (100)
and the latent period of this phage is 6-12 h (50), the decrease in host cell number between
0 h and 24 h post-infection represented lysis dynamics of infected host cells without
multiple-infection. Therefore, I calculated that >79% of host cells were finally infected
by Ma-LMMO1 in the infection experiment. Also, Ma-LMMO1 infection was thought to

occur within 1 h post-infection according to transcriptome dynamics as described below.
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(A) Infection dynamics

—~ 1.0E+06 1.0E+09 U
= D
£ Q
2 o
8 2
> =}
= o]

7 X
GC) 1.0E+08 ,Ui
o B
8 -®-infected cells o
7] —a—control cells i
:‘E -e-phage particles §
1.0E+05 T T T T 1.0E+07 >

0 5 10 15 20 25

Time after infection (h)

(B) Transcriptome dynamics

e 100 o
G
& 801
[)
—
© b
; €0 1 -8-Mapped host reads
_
8 40 - —8-Mapped viral reads
8 b
Qo
<
o] -
3 20
Q.
g
0 » r r r r
= 0 1 2 3 4 5 6

Time after infection (h)

Figure 2-1. Infection dynamics and transcriptome dynamics
of Microcystis aeruginosa NIES-298 by myovirus Ma-
LMMO1. Host cell density and phage particle number were
determined by direct count using microscopy with SYBR Gold
(A). Ratios of phage and host mRNA at different time points
following infection were determined from RNA-seq reads that

mapped to the phage and host genomes, respectively (B).

Rarefaction analyses for the number of host ORFs clearly demonstrated that each
sequencing data was exhaustive to describe the transcriptional profile (Figure 2-2).
Rarefaction curves generated from viral reads at 0 h and 1 h post-infection did not reach
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2. Transcriptome analysis during Ma-LMMO01 infection

an asymptote, and then finally reached at 3 h and 6 h post-infection with the progress of
viral infection (Figure 2-2). The chaol indices for each library supported these results
(Figure 2-2). At 1 h post-infection, phage transcripts inside the infected cell accounted
for 0.13% of total cellular transcription, but by 3 h and 6 h post-infection, phage
transcripts constituted 16% and 33% of total cellular transcription, respectively (Figure
2-1B). Therefore, even at 6 h post-infection, host transcripts still accounted for 67% of
cellular transcription. Also, qRT-PCR analyses normalized to host rnpB transcript levels
(Figure 2-3) showed that sigA4 transcription did not change until 8 h post-infection and
that gp091 transcription increased gradually and reached peak levels within 6-8 h post-
infection, indicating that the transcript profiles of host and phage genes were well
represented by the RNA-seq data (see below) (Figure 2-4).
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Figure 2-3. rnpB transcript levels during infection. Transcript levels of rnpB from
Microcystis aeruginosa NIES-298 during the 8-h latent period of infection by the Ma-
LMMOI1 phage as determined by quantitative real-time polymerase chain reaction
analysis. The copy number of rnpB at each time point was normalized per nanogram
of total RNA. Results corresponding to the infected culture are shown in red, while
the uninfected control culture results are shown in blue. Three technical replicates
were carried out for each biological replicate. This result was verified by
transcriptional dynamics from RNA-seq data that total reads at each time point were
mapped to rnpB sequence (shown in black). Transcript count for 7npB was normalized
as FPKM.
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Figure 2-4. Quantitative real-time polymerase chain reaction
(qQRT-PCR) validation of RNA-seq results. The RNA-seq results
were verified using qRT-PCR analysis of host sig4 and viral gp091
gene expression during infection (A). Temporal expression classes
were also verified with putative early (gp054, gp062), middle
(gp087, gp134), and late (gp087, gp091) genes respectively (B).
Transcript levels for each gene were normalized to host rnpB

transcript levels.
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2. Transcriptome analysis during Ma-LMMO01 infection

Host transcriptional responses to phage infection

Because a complete switch to phage transcription did not occur by 6 h post-
infection, I investigated host transcriptional responses to phage infection in the infected
cells. I generated a 4.92-Mb draft genome sequence for M. aeruginosa in 88 contigs (=500
bp), containing a predicted 4749 ORFs. Strikingly, very few (0.17%) of the host genes
showed significant changes in expression during infection (Figure 2-5). However, 8
differentially expressed genes (DEGs) were identified during Ma-LMMOI infection
although an immediate response was not observed (Table 2-2). Of these, three genes
coding for hypothetical proteins were up-regulated after both 3 and 6 h of Ma-LMMO01
infection (Figure 2-5, Table 2-3). Also, the type I-D CRISPR-associated protein
Cas10d/Csc3 gene, membrane protein gene, and three heat shock genes (coding for co-
chaperone GroES, molecular chaperone GroEL, and heat-shock protein) were

upregulated after 6 h of Ma-LMMOI1 infection (Figure 2-5, Table 2-3).

Table 2-2. Summary of the protein-coding host response genes.

NIES-298 Total in genome

1h 3h 6 h
Up-regulated genes 0 3 8
Down-regulated genes 0 0 0
Unchanged genes 4749 4746 4741
Total genes 4749
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(A) 1 h after infection

w0

P
A

o [\¢]
N N

log2 (P1 mapped reads <fpkm>)

0 2 4 6 8 10 12 14 16 18
log2 (C1 mapped reads <fpkm>)

(B) 3 h after infection

=
o

=
o

log2 (P3 mapped reads <fpkm=>)

0 2 4 6 8 10 12 14 16 18
log2 (C3 mapped reads <fpkm>)

(C) 6 h after infection

log2 (P8 mapped reads <fpkm=>)

0 2 4 6 8 10 12 14 16 18
log2 (C6 mapped reads <fpkm>=>)

@ Up-regulated genes @ Not changed genes

Figure 2-5. Impact of phage infection on the bacterial transcriptome. Scatter plot
of the Microcystis aeruginosa transcriptome following phage infection (P1-P6)
compared with the uninfected control (C1-C6). Each dot represents an open reading

frame, with up-regulated genes shown in red and unchanged genes in black.
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2. Transcriptome analysis during Ma-LMMO01 infection

Amongst the DEGs with annotated function, only the type I-D CRISPR-
associated protein Casl10d/Csc3 gene were associated with host defense. However,
bacterial genes of unknown function in genomic islands are often differentially expressed
in response to viral infection (75, 101), as well as in response to environmental stressors
(102—-105). Therefore, I next explored where the DEGs with unknown function were
located in the M. aeruginosa genome. This analysis revealed that three DEGs (identified
at 3 h and 6 h post-infection) showed no similarity to genes found in the M. aeruginosa
NIES-843 defense islands (64). Therefore, three hypothetical protein genes might respond

to not phage infection as host defense systems but various stresses for viral production.

Phage temporal expression patterns

Although there was very little change in host gene expression during
the course of phage infection, the phage temporal expression classes were apparent when
the genes were clustered according to their expression patterns (Figure 2-6, Figure 2-7).
I assessed the quality and gene composition of the clusters obtained by hierarchical
clustering analysis, using the Jaccard coefficient as a stability measure. The most stable
solutions were obtained when the phage gene expression profiles were divided into two
clusters, with a high frequency of high Jaccard coefficients for this number of clusters
(Figure 2-8). Cluster 1 was composed of five genes concentrated in a single ~3.5-kb
window in the Ma-LMMO1 genome (gp037-gp041; Figure 2-7). Cluster 2 comprised
177 genes and could be further divided into five subclasses displaying a variety of
expression patterns (B1-B5; Figure 2-7). For example, the expression of subclass B1
genes, which constitute 3.5% of the genome, increased drastically at 1 h post-infection,

and then remained high across the remaining sampling points (Figure 2-7, Table 2-4).
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2. Transcriptome analysis during Ma-LMMO01 infection

These early genes, spanning 10 ORFs (Gp054—Gp063), were concentrated in a single
~5.8-kb window in the phage genome (Figure 2-9). However, none of the early genes
appeared to have homologs in the databases, and showed no homology to early genes of
T4 phage and other cyanophages.

All genes in subclass B5 were highly expressed at 3 h post-infection, and
expression levels remained high throughout the infection process (Figure 2-7). I
identified 162 genes in this middle phase of gene expression, including those involved in
DNA replication, recombination/repair, and nucleotide metabolism, as well as genes
coding for lysozyme and phage DNA terminase. These included DNA primase (gp134),
DNA polymerase 1 (gp!78), holB-like ATPase (gp69), and 3'-5" exonuclease (gp180),
all of which are required for phage DNA replication. In addition, the B5 subclass
contained genes coding for a T4 RNA-DNA helicase UvsW homolog (gp66), RecA-like
recombinase UvsX (gp008), ATP-dependent RecD-like helicase (gp160), and uracil-DNA
glycosylase (gp173). These four genes are putatively associated with DNA recombination
and repair functions. Further middle genes included the a (gp006) and B (gp002) subunits
of ribonucleotide reductase, a flavin-dependent thymidylate synthase ThyX homolog
(gp020), and dUTPase (gp81), all of which are involved in nucleotide metabolism. In
addition, a phage-encoded lysozyme and terminase, which are required for cell lysis and
DNA packaging, belonged to the middle cluster. The expression patterns of subclasses B2
and B3 were also similar to that of subclass B5 (Figure 2-7, Table 2-4).

The expression of all genes in subclass B4 increased gradually during infection,
and reached peak levels at 6 h post-infection (Figure 2-7). Overall, I identified five late
genes, including those coding for two major head proteins (gp086 and gp087) and a phage

tail sheath protein (gp091) (Yoshida et al., 2008; Table 2-4). This result is consistent with
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2. Transcriptome analysis during Ma-LMMO01 infection

our current understanding of the construction of T4-like phage particles, because phage

structural genes tend to be transcribed later in the infection process (65, 66, 75).
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Figure 2-6. Heat map of Ma-LMMO01 genes during infection. Genes
are listed in order on the Ma-LMMOI genome. The color gradient

indicates gene transcripts unchanged (green) or enriched (red).
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Figure 2-7. Temporal expression pattern of Ma-LMMO1 phage genes. Clustering
analysis of phage genes by their expression patterns is presented in the dendrogram,
with the A1, B1, B2, B3, B4, and B5 expression subclasses shown in orange, green,
purple, pink, red, and blue, respectively. Gene names at the dendrogram tips are
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infection. Subclass designation at the top left corner of each graph is as in Table 2-4.
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Figure 2-8. Jaccard similarity coefficients. The Jaccard coefficient was used as a
stability measure to determine the most stable number of clusters obtained by
hierarchical clustering analysis of the phage genes. Individual histograms show the
distribution of the Jaccard coefficients for 1000 subsets of genes when 70% of the
genes are randomly selected for each subset. Each histogram displays the distribution
of Jaccard coefficients for a different number of clusters, k (k =2 to k = 7). Clustering

was considered stable when the majority of Jaccard values were close or equal to one.
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Figure 2-9. Genome organization of phage early, middle, and late genes.
Log> fold changes in expression of phage genes during infection of
Microcystis aeruginosa NIES-298 at 1 h (green), 3 h (blue), and 6 h (red)
post-infection.

Viral regulation of the transcriptional patterns

To understand how the phage expression patterns are regulated with no change
in host transcriptional levels, I examined the upstream regions of all phage genes.
Grouping of promoters according to the timing of gene expression revealed similar motif
signatures that are likely to be responsible for directing the expression of the early, middle,
and late genes (Figure 2-10). A canonical cyanobacterial ¢’° (SigA) recognition-like
sequence was found upstream of the early genes, and comprised two palindromic 6-bp
motifs, separated by 1618 bp, located 68 bp upstream of the transcriptional start site

(Figure 2-10A). This is consistent with current knowledge on phage early transcription,
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as early phage gene expression is usually regulated by the host core transcriptional
machinery, and hence, phage early promoters are expected to resemble host 6’° promoters
(43, 65). Similarly, the promoters of the Ma-LMMO01 middle genes were characterized by
the SigA recognition site, suggesting that these genes were also transcribed using the core
host transcriptional machinery (Figure 2-10B). Finally, although late-gene promoters
showed a distinct motif, it was still very similar to the SigA recognition motif as well as
early- and middle-gene promoters (Figure 2-10C). Late transcription of T4-like phages
is generally independent of the host ¢, and is instead mediated by a phage-encoded
factor. Hence, phage late-gene promoters are expected to resemble T4 late promoters (43,
65, 75). Therefore, in contrast to current knowledge on phage transcriptional regulation,
these results suggest that all phases of Ma-LMMO1 gene transcription are dependent on
host 67°. Overall, I defined four early-gene promoters, 97 middle-gene promoters, and
four late-gene promoters upstream of phage genes. Transcriptomic read mapping pattern
of viral genes supported the results of promoter prediction in each expression classes
(Figure 2-11). Furthermore, I determined that the most plausible Ma-LMMO1 early-,
middle-, and late-gene promoter sequences were TAGNNNNI6.18YATANT,

TTNNNNN0.2sTANNNT, and WTNNANN 6. TATTMT, respectively (Figure 2-10).
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Figure 2-10. Ma-LMMO01 early, middle, and late promoters. Promoter logos of the
sequences upstream of the transcription start sites of the phage early (A), middle (B),
and late (C) genes. Promoter logos were generated from four early-gene promoters

(A), 97 middle-gene promoters (B), and four late-gene promoters (C).
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(A) Early genes (at 1 h after infection)

» 5,0 A D *)) (%) N )
§F £ £ & & & ¢ $
B S &8 g & & & & 8§ S
L 8% COEd CGODDEECGTEE aE T -
352 - A
NT § 12000
(Uj"a
E®s ]MM
Svs 0

(B) Middle genes (at 3 h after infection)

PO & A QX QO N A 0N DS DD
NS S SIS A A A A O A AN NN SN
& & & & 8 & § & & &5 & §8¢ &
P aEm 44 @EGBEi GaEia e @&

Normalized
read abundance

(million/total reads)
]
o
o 8
I

(C) Late genes (at 6 h after infection)

Normalized
read abundance
(million/total reads)

Figure 2-11. Transcriptomic read mapping pattern of early, middle, and late
genes. Part of genome-wide overview of reads mapped to the Ma-LMMO1 genome at
samples taken 1 h (A), 3 h (B), and 6 h (C) after infection, which are composed of
early, middle, late genes respectively. Genes shown in red represent the viral late genes
(C). The visualization analyses for each time point were conducted independently.
Read abundance was normalized by Integrative Genomics Viewer function (million
per total read count). Red arrows indicate the position of predicted early, middle, and

late promoter sequence in silico analysis.
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Discussion

This study is the first report on both the transcriptional profile of cyanophage
Ma-LMMO1 during host infection, and the whole transcriptional response of M.
aeruginosa to the phage infection. The results revealed that Ma-LMMO1 infection did not
affect the transcriptional levels of most host genes (99.83%) at any point during the
infection process (Figure 2-5). Honda et al. (2014) previously investigated transcriptional
alterations of host genes involved in cellular processes during Ma-LMMO1 infection (4
housekeeping genes, 7 stress response genes, 3 carbonhydrate metabolic genes, and 5
photosynthetic genes). In this analysis, no remarkable change in expression levels of these
genes is observed (84). Thus, unlike other marine T4-cyanophages (74, 75, 77), an
incomplete switch to phage transcription was observed in the infected cells throughout
the Ma-LMMOI infection process. This result suggested that Ma-LMMO1-encoded
proteins did not cause the changes in host transcriptional activity as seen in T4 phage (43,
65). Ma-LMMO1 lacks phage-encoded proteins that are important for switching from host
to phage transcription, including AsiA (anti-c factor), MotA (activator for middle
transcription), gp33 (co-activator for late transcription), and gp55 (T4-encoded ¢ factor)
(43, 49). Therefore, these results coincide with the genomic features of Ma-LMMOI.

Similar results were also obtained for the PRD1 and PRR1 phage during
infection of E. coli K-12 (106) and Pseudomonas aeruginosa PAO1 (107), respectively.
These phages are thought to down-regulate host protein synthesis, mainly by controlling
ppGpp concentration (106) and ribosomal protein synthesis (107), respectively, to
channel host resources for viral reproduction. However, none of the host genes involved
in protein synthesis showed a significant change in expression during Ma-LMMOI

infection (Figure 2-5). An infection profile that does not affect host transcriptional levels
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might be advantageous for Ma-LMMO1 to ensure viral propagation without the induction
of host defense systems. M. aeruginosa possesses the highest number of putative antiviral
defense systems of any prokaryote or archeal species examined to date (64), including
CRISPR-Cas systems, restriction-modification systems, Toxin-Antitoxin (TA) systems,
and abortive infection systems. In particular, putative TA genes are highly abundant in the
genome of M. aeruginosa (396 TA genes of 492 total defense genes) (64). A TA system
is generally composed of a stable toxin protein and an unstable antitoxin protein or small
RNA, meaning that it is essential to continuously synthesize antitoxin to neutralize the
toxin (108). Therefore, phage-mediated host transcriptional shutoff may robustly induce
programmed cell death caused by TA systems in this species. Of the distinct defense genes,
the type I-D CRISPR-associated protein Cas10d/Csc3 gene showed significant change in
transcriptional level during infection (Table 2-3). In CRISPR-Cas systems, the
incorporation of foreign DNA fragments into the CRISPR array, mediated by Casl and
Cas2, first occurs in the adaptation stage. CRISPR RNAs (cRNAs), which are transcribed
from the CRISPR array in the expression and interference stages, then function as guides
to specifically target and cleave the nucleic acids of cognate viruses or plasmids with the
aid of the Cas proteins. Multiprotein crRNA-effector complexes including Cas10d/Csc3
protein mediate the processing and interference stages of type I-D CRISPR-Cas system
(109). However, in the current study, the expression of other CRISPR-Cas system related
genes were not significantly altered during infection, indicating that CRISPR-Cas
systems may not be effective against Ma-LMMO1 infection even though M. aeruginosa
NIES-298 possess spacers matching for this viral genome (61). This fact supported the
hypothesis that infection profile without affecting host transcriptional levels might enable

Ma-LMMO1 to escape the highly abundant host defense systems during infection.
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Unknown non-enzymatic peptides are recently thought to be significantly important for
viruses to take-over host metabolism (110). Among numerous Ma-LMMO1- genes with
unknowns (49), 10 early genes observed in this study (Figure 2-7) may be important to
repress host responses to phage infection. Host transcriptional responses in the early
infection in other marine cyanophages (75, 101) were not observed in this study, which
supports this idea. Another possibility is that M. aeruginosa may control or limit the
highly abundant TA systems so as not to frequently induce programmed cell death. Also,
the function of up-regulated membrane protein gene remains to be understood although
bacterial cell surface-related genes are associated with blocking phage adsorption (111).

Like other T4-like marine cyanophages, Ma-LMMO1 showed three temporal
expression classes: early, middle, and late (Figure 2-7). The qRT-PCR based phage
expression patterns supported this result (Figure 2-4). In addition, promoter motifs linked
to each of the expression classes were similar to those of cyanobacterial primary ¢ factor
SigA recognition-like sequences, although they differed slightly from each other (Figure
2-10). Transcription in cyanobacteria is controlled by the host RNA polymerase core
enzyme in combination with heterogeneous o factors that are assigned into groups 1
(SigA), 2 (SigB-E), and 3 (SigF-J) (112). Group 1 and 3 o factors are essential for cell
viability and survival under stress, respectively, whereas group 2 o factors are
nonessential for cell viability. These findings suggest that Ma-LMMO1 does not utilize
alternative o factors but favors the primary ¢ factor SigA for gene expression. This
hypothesis coincides with the viral genomic features and host transcriptional responses
observed during Ma-LMMO1 infection. However, the homogenous promoter sequences
raise the question as to how Ma-LMMO1 controls the three temporal expression patterns

during infection. One possibility is that the slight differences among promoter sequences
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may contribute to distinguishing between the three promoter types as well as the host
promoters (43). Another possibility is that early-gene products (Gp054—Gp063) may be
involved in the regulation of viral expression patterns during Ma-LMMO1 infection. In
general, phage-encoded early products usually modify the host RN A polymerase complex,
and then switch viral expression classes (43). However, Ma-LMMO1 early-gene products
may employ a novel mechanism to control their expression patterns, as phage gene
products usually down-regulate host transcription (43).

In addition to the scenario that Ma-LMMO01 maintained host transcriptional
activity as described above, there is an alternative possibility that decomposition as well
as production of host transcripts did not occur, and thereby host transcripts were
apparently stable. In T4 phage, host transcription is halted shortly after infection even
though viral reproduction are independent of host transcripts at all (43, 65), which
supports this scenario. In either scenario, it is possible that Ma-LMMO1 encounters
nutrient limitation during infection, particularly in molecules such as nucleic acids and
amino acids that are required for viral reproduction. In general, bacteriophages exploit
the host metabolism to establish an efficient infection cycle and redirect host cell
components, including metabolic substrates and the machinery for replication,
transcription, and translation, towards the production of new virions (65). In T4 phage,
for example, nucleotide precursors for DNA replication are generated from host DNA
degradation, and host transcription is down-regulated by the sequential modification of
host transcriptional machinery (65). In addition, T4-like marine cyanophages redirect
carbon flux from the Calvin cycle to the pentose phosphate pathway, maintaining host
photosynthesis by using AMGs (77, 79). However, Ma-LMMO1 lacks the defined genes

that are required for the acquisition of precursors for their replication and virion
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morphogenesis (49). One possibility is that viral DNA replication and virion synthesis
proceed gradually during Ma-LMMO1 infection using the remaining precursors inside the
infected cells. This hypothesis is supported by the observations that middle-gene
transcriptional levels remained elevated up to 3—6 h post-infection, and late-gene
transcriptional levels increased gradually during the latent period (Figure 2-7). Also, M.
aeruginosa has a larger genome (4.92 Mb) than marine cyanobacteria such as
Prochlorococcus and Synechococcus (1.64-2.86 Mb) (113). This suggests that unlike in
other marine cyanobacteria, nucleotide precursors are highly abundant in Microcystis
cells, and can therefore be exploited by Ma-LMMO1 for its own DNA replication.
Furthermore, phage-encoded NblA may provide amino acid precursors that are required
for viral protein synthesis during Ma-LMMO1 infection. The degradation of
phycobilisomes, catalyzed by NblA, is thought to provide a pool of resources that can be
reused by cyanobacteria during nutrient limitation (114). In addition, phage-encoded
NblA is active in Planktothrix phage PaV-LD, and degrades the host phycobilisomes (82).
Also, Yoshida ef al. (2008) previously reported that Ma-LMMO1-encoded nbiA is
expressed in the infected culture and that host phycobilisomes are degraded during Ma-
LMMO1 infection. These findings suggest that Ma-LMMO1-encoded NblA contributes to
sustaining amino acid pools to prevent nutrient limitation. Phage-encoded NblA and host
heat-shock proteins such as GroES and hspA are thought to contribute the maintenance
of photosynthesis activity during Ma-LMMOI infection (84). According to this idea,
transcriptional levels of GroES, GroEL and heat-shock protein gene significantly
increased at 6 h post-infection (Table 2-3). Thus, Ma-LMMO01 may provide the precursors
and energy for their reproduction by maintaining photosynthetic apparatus and

degradation of phycobilisome. In addition, T4 phage halts phage development until
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appropriate nutrients become available in the stationary phase E. coli cells although DNA
replication is completed (115). Similarly, T4-like marine cyanophage P-SSM2 responds
to phosphate limited conditions and maintains the host phosphate uptake rate during
infection by controlling host PhoR/PhoB two-component signal transduction system (76,
116). Ma-LMMOI1 which encounters nutrient limitation during infection may possess
similar mechanisms that adjust infection process and host physical states in response to
cellular conditions as seen in these phages. Another possibility is that Ma-LMMO01 may
control host metabolism in translational levels to provide the precursors such as
nucleotides and amino acids for their reproduction. Indeed, cellular adaptation for the
production of phage progeny is thought to be more active at the translational or
posttranslational level in Lactococcus lactis phage Tuc2009 and c2 (117) and
Pseudomonas aeruginosa phage LUZ19 (118), in which the minimal transcriptional
response is observed during infection. Translational dynamics during Ma-LMMO1
infection will help us to further understand the viral impacts on host physiology.

In conclusion, Ma-LMMO01 employs an infection program in the apparently
stable host transcriptional levels, and uses the host core ¢ factor SigA while avoiding host
defense systems. This type of infection is a novel example of adaptation based on host
defense systems to ensure efficient viral reproduction, and differs from that seen in other
marine T4-like cyanophages. Future work is needed to explore whether other types of
cyanophage infecting M. aeruginosa show the same transcriptome dynamics and

infection program.
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Chapter 3
Co-occurrence of broad and narrow host-range viruses infecting the

toxic bloom-forming cyanobacterium Microcystis aeruginosa

Abstract

Viruses play important roles in regulating the abundance and composition of
bacterial populations in aquatic ecosystems. The toxic bloom-forming cyanobacterium
Microcystis aeruginosa interacts with diverse cyanoviruses, resulting in their population
diversification. However, current knowledge of the genomes from these viruses and their
infection programs are limited to a sole Microcystis virus Ma-LMMO1. Here, I
investigated the genomic information and transcriptional dynamics of Microcystis-
interacting viruses using metagenomic and metatranscriptomic approaches. I identified
three novel phylogenetic viral groups: Group I (including Ma-LMMOI1), II (high
abundance and transcriptional activity), and III (new lineages). The Group II viruses
interacted with all three phylogenetically distinct Microcystis population types
(phylotypes), whereas the Group I and III viruses interacted with only one or two
phylotypes, indicating the co-occurrence of broad (Group II) and narrow (Group I and
IIT) host-range viruses in the bloom. These viruses showed peak transcriptional levels
during daytime regardless of their genomic differences. Interestingly, M. aeruginosa
expressed antiviral defense genes against viral infection, unlike that seen with a Ma-
LMMO1 infection in a previous culture experiment. Given that broad host-range viruses
often induce antiviral responses within alternative hosts, these findings suggest that

Group II viruses are major drivers for the diversification of Microcystis populations.
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Introduction

Microcystis  aeruginosa 1is one of the most pervasive bloom-forming
cyanobacteria found in freshwater ecosystems throughout the world (1). Some strains of
this species produce the potent hepatotoxin called microcystin (119-121), and the
persistent blooms caused by such strains pose serious problems for humans who use water
resources from such impaired sources for drinking water, recreational activities, and
fisheries (1, 122). It is important, therefore, to identify and characterize the environmental
and biological factors that affect Microcystis blooms.

This cyanobacterium possesses the highest number of putative antiviral defense
systems among all prokaryote or archeal species examined as of 2011 (64, 123). Of
antiviral defense systems, CRISPR-Cas systems, which are composed of short direct
repeats separated by unique sequences (spacers) and the CRISPR-associated genes,
incorporate foreign DNA fragments such as viruses into the leader-end of the CRISPR
loci as a new spacer (59). Thus, the spacer arrangement (CRISPR array) provides a
sequence memory of the invasion of exogenous genetic elements like viruses, or provides
a targeted defense against subsequent invasion by the corresponding invaders (59).
Recent studies on the Microcystis CRISPR array revealed that this cyanobacterium has
been challenged by diverse communities of cyanoviruses in natural environments (60, 61,
63), suggesting that Microcystis cyanoviruses are one of the important factors that
determine bloom dynamics and termination. However, to date, the only isolated
Microcystis viruses are Ma-LMMO1 (50) and MaMV-DC (57) (Microcystis virus Ma-
LMMOI according to the International Committee on Taxonomy of Viruses (124))
although the establishment of laboratory virus-host systems would invaluably augment

our understanding of the interactions occurring between M. aeruginosa and the viruses
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targeting it.

Microcystis virus Ma-LMMO1 and MaMV-DC are Myoviridae family members
with very narrow host ranges, and they are known only to infect M. aeruginosa strains
NIES-298 (50) and FACHB-524 (57) among the tested strains, respectively. They are also
phylogenetically distinct from other known T4-like marine cyanoviruses (50, 57). Ma-
LMMOI lacks the viral-encoded proteins that are important for switching from host to
viral transcription and that are needed to acquire the precursors for replication and virion
morphogenesis, as seen in T4-like marine cyanoviruses (43, 49, 73). In chapter 2, I
revealed that Ma-LMMOI1 achieves three temporal expression classes comprising early,
middle and late periods without affecting the host’s physiology to escape host defense
systems while maintaining host photosynthesis (125). Interestingly, Ma-LMMO1-
matching spacers are present in very low abundances in natural Microcystis populations
(10/995 spacers) (61), suggesting that numerous uncharacterized cyanoviruses exist that
could affect the bloom dynamics and termination process in Microcystis.

Advances in next-generation sequencing and sequence assembly techniques
have allowed us to access viral metagenomics (virome) data to assess the genome content
and architecture of uncultured viruses. This data offer the possibility to gain unique
insights into the main viral families in the environment. Indeed, recent studies have
revealed the viral diversity, viral habitat distribution, numerous uncharacterized viral
lineages, and the viral-host interactions that occur in nature (126—128).

To date, metatranscriptomic studies have been conducted in freshwater
environments during Microcystis blooming (56, 129-131). These studies have only
focused on Microcystis (and in some case other bacterial) gene expression profiles in

environmental samples. However, few studies have been conducted on the gene
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expression profiles of Microcystis viruses in the environment (100). A previous study
revealed that the abundance of tail sheath gene gp09/ mRNA from Ma-LMMO1 within
host cells reached peak levels during the daytime, falling to the lowest levels at midnight
(100). Despite the importance of cyanoviruses in Microcystis bloom dynamics, no
comprehensive analyses have been done to test for the existence of other Microcystis
viruses, or to examine the whole transcriptional dynamics of both M. aeruginosa and its
viruses in the environment.

Consequently, in this study, [ identified wuncharacterized Microcystis
cyanoviruses using metagenomic approaches, and then investigated their transcriptional

dynamics in the environment to better understand their impact on Microcystis blooms.

Materials and Methods
Sampling

Samples were prepared from a time-series of nine freshwater samples from the
surface at an offshore point at Hirosawanoike Pond (Kyoto, Japan; 35° 026" N 135° 690’
E) every 3 h over a 24 h period on October 19 and 20, 2017. On these days, the sunrise
and sunset times were 06:06 and 17:18 (October 19) and 06:07 and 17:16 (October 20).
For the metatranscriptomic analysis, samples (100 mL) were collected on 3.0-um pore-
size polytetrafluoroethylene membrane filters (Millipore, Billerica, MA, USA),
resuspended in 5 mL of stop solution (phenol: ethanol, 5: 95 v/v) for transport, and stored
at —80°C (132). At each time point, these procedures were accomplished within 20 min
to prevent transcriptional shifts and RNA degradation (87). For the virome analysis, the
1 L of freshwater collected at 18:00 on October 19 and 06:00 on October 20 was

prefiltered through 142 mm 3.0-um pore-size polycarbonate membrane filters (Millipore),
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and then filtered sequentially through 0.22-pum pore-size Sterivex filters (Millipore). The
filtrates were stored at 4°C prior to treatment. The viruses in the filtrates were
concentrated after incubation in 10% polyethylene glycol 8000—1 M NaCl, purified using
a CsCl density centrifugation step, and stored at —80°C (49). The freshwater samples (100
mL) and the filtrates (viral fraction; 1 or 15 mL) were collected at each time point to
quantify the numbers of Microcystis cells, viral particles and gp09/ abundance. Viral
particle densities were measured using epifluorescence microscopy (Nikon ECLIPSE
E800; Nikon, Tokyo, Japan) with SYBR Gold staining (Molecular Probes, Eugene, OR,
USA). The abundances of Microcystis cells (PC-1GS) and Ma-LMMO1 particles (gp091)
were determined using a previously described quantitative polymerase chain reaction
analysis method (100).
DNA/RNA extraction and sequencing

For the virome analysis, DNA extraction from the two purified viral fractions
was performed using the previously described xanthogenate—SDS method (88). For the
metatranscriptomic analysis, total RNA was extracted from 1 mL of the stored samples
as described previously (85). DNA was removed using TURBO DNase (Ambion, Austin,
TX, USA). The Ribo-Zero rRNA removal kit (Bacteria) (Illumina, San Diego, CA, United
States) was used to deplete the ribosomal RNA. Genomic DNA and ribosomal RNA
depletion were checked using a reverse transcription-PCR assay with DNA-depleted
RNA samples served as the non-reverse transcribed controls and Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA), respectively. The rRNA-
depleted RNA was purified using Agencourt RNAClean XP beads (Beckman Coulter
Genomics, Danvers, MA, USA), and then converted to double-stranded cDNA using the

PrimeScript Double Stranded cDNA Synthesis Kit (TaKaRa Bio, Otsu, Japan). Virome
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and cDNA libraries were prepared using the Nextera XT DNA Sample Preparation Kit
(Illumina), and then sequenced using the MiSeq Reagent Kit v3 (2 % 300-bp read lengths
for the virome and 2 x 75-bp read lengths for the cDNA; Illumina) on the Illumina MiSeq
platform.
Virome analysis

Total reads from the samples collected at 18:00 on October 19 and 06:00 on
October 20 were co-assembled using SPAdes 3.9.1 with default k-mer lengths (Table 3-
1a) (90). Decontamination of the prokaryotic sequences was performed using VirSorter
1.0.3 (133). To identify the putative viral contigs derived from Microcystis viruses, 1
performed a host prediction of viral contigs (> 10 kb) using the CRISPR-Cas system, viral
tRNA matches (128) and hexanucleotide frequency similarity (134). For host assignment
using the CRISPR-Cas system, a nonredundant CRISPR-Cas spacer database of 3881
sequences was created from the published data (60, 61, 63, 135) and spacer sequences
from the available genomes of 29 M. aeruginosa isolates using the CRISPR Recognition
Tool (136). All nonredundant spacers were queried against all the viral contigs I obtained
in this study using the BLASTn-short function from the BLAST+ package with the
following parameters: an e-value threshold of 1.0 x 10°'° and a percentage identity of 95%
(128). For the host assignment using viral tRNA matches, tRNA identification from the
29 M. aeruginosa isolates and two complete environmental genomes (135) was
performed using ARAGORN v1.2.38 and the ‘-t’ option (137). A nonredundant tRNA
database of 129 sequences was also queried against all the viral contigs using the
BLASTn-short function from the BLAST+ package with the following parameter: 100%
length and sequence identity (128). The calculation of hexanucleotide frequency

similarity between the viral and host sequences was conducted using VirHostMatcher
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(dissimilarity score threshold < 0.15) (134). The proteomic tree, gene annotations and
genomic alignment views were constructed using the ViPTree server (138). To further
determine whether shared proteins among other known viruses appeared on the viral
contigs identified in this study, translated ORFs from each viral contig were searched
against the hidden Markov model profiles downloaded from the prokaryotic Virus
Orthologous Groups (pVOGs) database, which provides 9,518 orthologous groups shared
among bacterial and archaeal viruses (139) using hmmscan (140) with an e-value
threshold of 1.0 x 10, The genome-wide similarity score (Sg) cutoff for clustering was
set to > 0.15 (viral genus-level cutoff) according to a previous study (127). Maximum-
likelihood (ML) analysis of the terminase large subunit (TerL), ribonucleotide reductase
a and P subunit genes, and internal transcribed spacers (ITSs) was performed using the
MEGA package (141). Bootstrap resamplings were conducted for 100 replications in the
ML analysis. Viral reads derived from samples at 18:00 and 06:00 were aligned separately
to the Microcystis viral genomes using bowtie2 (92) with the option “-score-min L,0,-0.3”
after quality-control screening.
M. aeruginosa 11-30S32 genome sequencing and analysis

Genomic DNA extraction from M. aeruginosa 11-30S32 was performed using
the xanthogenate-SDS method and phenol/chloroform/isoamyl alcohol procedures in
combination, as described previously (88, 89). A paired-end library was then prepared
using the Nextera XT DNA Sample Prep Kit (Illumina) according to the manufacturer’s
instructions. The paired-end library was sequenced using the MiSeq Reagent Kit v3 (2 %
150-bp read length; Illumina) and the Illumina MiSeq platform, and assembled using
SPAdes ver.3.7.0 (90). Open reading frames (ORFs) were predicted using GenemarkS

(91), and the predicted ORFs were annotated by blastp analysis against the National
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Center for Biotechnology Information (NCBI) non-redundant database (nr) (E-value
threshold of 1e7).
Metatranscriptomic data processing

Reads from each library were aligned separately to the reference genomes using
bowtie2 (92) with the option “-score-min L,0,-0.3”. Eukaryotic, archeal, and bacterial
rRNA reads were removed from the total reads prior to read mapping using the
SortmeRNA 2.1 software package (142). On average, 1.6 million reads were recovered
from cDNA libraries at each time point (Table 3-1b). Reads from the whole transcriptome
library were counted for each genome or gene. Microcystis and viral transcript counts
were normalized as FPKM (fragments per kilobase of exon per million mapped reads)
and the read counts from M. aeruginosa NIES-843 rnpB (as a proxy for host cell density)
(100). The heat map analyses for the Microcystis toxin—antitoxin gene expression profiles
were conducted using the heatmap.2 function in the R/Bioconductor package “gplots”.
Recruitment of Lake Erie metatranscriptomic data for Microcystis viruses

I collected seven metatranscriptomic data from early, middle, and late blooms in
western Lake Erie in North America (130). Considering that the average nucleotide
identity is 86.1% between Ma-LMMOI and MaMV-DC (58), single-end reads were
aligned separately to the reference genomes using bowtie2 (92) with the option “-score-
min L,0,-0.9”.
Public data

The M. aeruginosa 11-30S32 genome sequence was deposited with the DNA
Data Bank of Japan (DDBJ) Mass Submission System (MSS) under the accession
numbers BHVUO01000001-BHVU01000814. The Microcystis viral contigs assembled

from the virome reads were deposited with DDBJ Nucleotide Sequence Submission
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3. Broad and narrow host range Microcystis viruses

System under accession numbers L[C425512-1.C425526. The virome and
metatranscriptomic data were deposited in the DDBJ Sequence Read Archive under

accession numbers DRR151114-DRR151124.

Results and Discussion
Identification and characterization of novel Microcystis viruses

To identify uncharacterized Microcystis viruses in the environment, I first
sequenced two virome samples collected from Hirosawanoike Pond at 18:00 on October
19 and 06:00 on October 20, 2017. The PC-IGS gene copy numbers of M. aeruginosa
fluctuated from 4.2 x 10°-1.7 x 10° copies/mL during sampling (Figure 3-1a). Sequence
reads from each virome library were co-assembled into 960 contigs (> 10 kb) (Table 3-
1a). No Microcystis viral contigs were identified using viral tRNA matches or
hexanucleotide frequency similarity as the search criteria. However, 15 viral contigs
possessing Microcystis protospacers were identified using the CRISPR spacer-based host
prediction (Table 3-2). Of these viral contigs, one contig, NODE34, possessed only one
protospacer sequence (Table 3-2), and the interaction with M. aeruginosa was supported
by genome similarity. This viral contig showed high sequence similarity to that of the
isolated Microcystis virus Ma-LMMO1 (Sc = 0.94, where the S value is 1 when two
genomes in a comparison are identical and decreases to 0 when sequence similarity is not
detected by tblastx (127)). In contrast, 13 viral contigs possessed multiple protospacer
sequences (up to 23) (Table 3-2), which was strongly indicative of an interaction with M.
aeruginosa. The remaining NODE982 viral contig, which possessed only one protospacer,
was close to NODE656 (S = 0.56; > 0.2937, threshold for infecting host organisms that

are evolutionarily related at the genus level (127)), which possessed three protospacers
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(Table 3-2). Hereafter, I refer to these 15 viral contigs as Microcystis viral genomes

(MVGs).

(a) Total Microcystis cell abundance
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Figure 3-1. Sequence biases relating to the total Microcystis cell
abundance at each sampling time point. (a) Total Microcystis cell
abundance was determined by quantitative polymerase chain reaction
analysis. (b) Total Microcystis and rnpB read percentages are shown in blue

and red, respectively. Shaded areas indicate the periods of darkness.
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Table 3-1. Summary of the sequencing data generated in this study.

(a) Virome analysis

No. of contigs

Host prediction

Total Paired reads

(=10 kb) spacer tRNA HNF
10,799,129 960 15 0 0
(b) Metatranscriptome analysis

6 9 12 15 18 21 0 3 6
Paired reads 2,032,721 1,841,909 2,114,583 1,952,772 2,261,942 2,556,467 2,895,684 2,786,238 2,652,467
Q30 filtered 1,901,924 1,727,679 1,971,646 1,833,019 2,119,398 2,421,849 2,745471 2,638,588 2,508,493
rRNA removed 1,286,580 1,064,152 540,139 1,109,518 1,149,867 2,059,964 2,376,395 2,353,558 2,350,183
Mapped reads Host 641,622 772,501 458,460 646,746 904,494 1,648,724 1,831,685 1,960,147 2,090,628
Virus 6,714 3,163 1,950 4,163 6,631 8,833 16,631 18,712 10,504

Table 3-2. Summary of the spacer sequences identical to viral contigs assembled

in this study.

Group contig_id (=10 kb) CRISPR type (CT) identity (%) length mismatch gap gstart gend sstart send e-value bitscore
Group|  MVG_NODE34 DA14_genomic.fna_CRISPR.157 100 37 0 0 1 37 288 252 7.49E-13 69.4
MVG_NODEA47 NIES98_genomic.fna_CRISPR.172 100 34 0 0 1 34 42328 42295 3.07E-11 63.9
NaRes975_genomic.fna_CRISPR.20 97.6 42 1 0 1 42 16601 16642 7.15E-14 731
PCC9807_genomic.fna_CRISPR.20 100 40 0 0 1 40 24996 24957 1.89E-14 75

MVG_NODE620 CT73-4 100 33 0 0 1 33 6761 6793 9.58E-11 62.1
CT100-1 100 34 0 0 1 34 1154 1121 2.87E-11 63.9
LE3_genomic.fna_CRISPR.75 100 37 0 0 1 37 1607 1571 7.49E-13 69.4
PCC7005_genomic.fna_CRISPR.3 100 35] 0 0 1 35 9700 9666 8.55E-12 65.8
SPC777_genomic.fna_CRISPR.70 100 36 0 0 1 36 6098 6063 2.53E-12 67.6
SPC777_genomic.fna_CRISPR.88 100 37 0 0 1 37 9550 9514 8.81E-13 69.4

MVG_NODE869 NIES298_genomic.fna_CRISPR.70 97.4 38 1 0 1 38 7015 6978 1.03E-11 65.8
PCC7005_genomic.fna_CRISPR.3 100 35] 0 0 1 35 7205 7171 8.55E-12 65.8
SPC777_genomic.fna_CRISPR.70 100 36 0 0 1 36 3291 3256 2.53E-12 67.6

Group Il MVG_NODE331 NIES298_genomic.fna_CRISPR.42 100 33 0 0 1 33 11053 11085 9.58E-11 62.1
NIES298_genomic.fna_CRISPR.79 100 37 0 0 1 37 18423 18459 7.49E-13 69.4
NIES298_genomic.fna_CRISPR.82 100 35 0 0 1 35 478 512 8.55E-12 65.8
NIES298_genomic.fna_CRISPR.86 100 35 0 0 1 35 2605 2571 8.55E-12 65.8
NIES843_genomic.fna_CRISPR.129 100 36 0 0 1 36 9331 9296 2.53E-12 67.6
NIES843_genomic.fna_CRISPR.180 100 36 0 0 1 36 6504 6469 2.53E-12 67.6
NIES98_genomic.fna_CRISPR.175 100 35 0 0 1 35 14820 14786 8.55E-12 65.8
NIES98_genomic.fna_CRISPR.200 100 37 0 0 1 37 4758 4794 7.49E-13 69.4
PCC7941_genomic.fna_CRISPR.74 100 34 0 0 3 36 2264 2231 3.28E-11 63.9
PCC9701_genomic.fna_CRISPR.119 100 34 0 0 1 34 18768 18735 2.87E-11 63.9
PCC9701_genomic.fna_CRISPR.140 100 34 0 0 1 34 14580 14547 2.87E-11 63.9
PCC9809_genomic.fna_CRISPR.34 100 34 0 0 2 35 2786 2753 3.07E-11 63.9

MVG_NODE375 CT48-1 100 34 0 0 1 34 4692 4659 2.87E-11 63.9
CT48-4 100 37 0 0 1 37 5865 5901 7.49E-13 69.4
CACIAMO03_genomic.fna_CRISPR.88 100 41 0 0 1 41 7312 7352 5.53E-15 76.8
LE3_genomic.fna_CRISPR.47 100 35 0 0 1 35 3918 3884 8.55E-12 65.8
LE3_genomic.fna_CRISPR.57 100 35 0 0 1 35 557 523 8.55E-12 65.8
LE3_genomic.fna_CRISPR.101 97.3 37 1 0 1 37 17679 17643 4.10E-11 63.9
NIES298_genomic.fna_CRISPR.59 100 34 0 0 1 34 18711 18678 2.87E-11 63.9
NIES298_genomic.fna_CRISPR.162 100 35 0 0 1 35 1563 1597 8.55E-12 65.8
NIES298_genomic.fna_CRISPR.193 97.6 42 1 0 1 42 3499 3458 7.15E-14 73.1
NIES298_genomic.fna_CRISPR.194 100 35 0 0 1 35 5500 5466 1.03E-11 65.8
NIES298_genomic.fna_CRISPR.199 100 36 0 0 1 36 5976 5941 2.53E-12 67.6
NIES298_genomic.fna_CRISPR.202 97.4 38 1 0 1 38 5106 5069 1.20E-11 65.8
NIES44_genomic.fna_CRISPR.46 100 35 0 0 1 35 1228 1262 8.55E-12 65.8
NIES843_genomic.fna_CRISPR.62 100 34 0 0 1 34 19612 19645 2.87E-11 63.9
NIES843_genomic.fna_CRISPR.70 100 36 0 0 1 36 6291 6326 2.53E-12 67.6
NIES98_genomic.fna_CRISPR.15 100 39 0 0 1 39 7293 7331 7.15E-14 73.1
NIES98_genomic.fna_CRISPR.282 97.6 42 1 0 1 42 10794 10835 7.15E-14 73.1
PCC7941_genomic.fna_CRISPR.84 100 35 0 0 1 35 8049 8015 8.55E-12 65.8
PCC9701_genomic.fna_CRISPR.45 100 44 0 0 1 44 3517 3474 1.30E-16 82.4
PCC9701_genomic.fna_CRISPR.54 100 35 0 0 1 35 2373 2407 8.55E-12 65.8
TAIHU98_genomic.fna_CRISPR.39 97.4 38 1 0 3 40 5069 5106 1.14E-11 65.8
DA14_genomic.fna_CRISPR.49 100 36 0 0 1 36 4963 4998 2.53E-12 67.6
TAO09_genomic.fna_CRISPR.13 100 35 0 0 1 35 17048 17082 8.55E-12 65.8

MVG_NODE382 CT99-2 100 39 0 0 1 39 16539 16501 6.47E-14 731
DIANCHI905_genomic.fna_CRISPR.59 97.3 37 1 0 3 39 10408 10372 3.89E-11 63.9
NIES843_genomic.fna_CRISPR.91 100 34 0 0 1 34 10980 10947 2.87E-11 63.9
NIES98_genomic.fna_CRISPR.21 100 34 0 0 1 34 5253 5220 2.87E-11 63.9
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Table 3-2. continued.

Group contig_id (=10 kb) CRISPR type (CT) identity (%) length mismatch gap gstart gend sstart send e-value bitscore
Group Il MVG_NODE382 NIES98_genomic.fna_CRISPR.37 100 37 0 0 4 40 13059 13023 8.81E-13 69.4
NIES98_genomic.fna_CRISPR.50 100 39 0 0 2 40 15082 15120 7.15E-14 731
NIES98_genomic.fna_CRISPR.66 100 34 0 0 1 34 1978 2011 2.87E-11 63.9
NIES98_genomic.fna_CRISPR.213 100 35 0 0 1 35 3112 3146 9.12E-12 65.8
NIES98_genomic.fna_CRISPR.215 100 35 0 0 1 35 7575 7609 8.55E-12 65.8
NIES98_genomic.fna_CRISPR.223 100 35 0 0 1 35 7710 7744 8.55E-12 65.8
NIES98_genomic.fna_CRISPR.241 100 36 0 0 1 36 8335 8370 2.53E-12 67.6
NaRes975_genomic.fna_CRISPR.217 100 35 0 0 1 35 19914 19880 8.55E-12 65.8
PCC7941_genomic.fna_CRISPR.120 100 36 0 0 1 36 1061 1096 2.53E-12 67.6
PCC9443_genomic.fna_CRISPR.197 100 33 0 0 1 33 2683 2651 9.58E-11 62.1
PCC9717_genomic.fna_CRISPR.51 100 35 0 0 1 35 12175 12209 8.55E-12 65.8
PCC9717_genomic.fna_CRISPR.52 100 34 0 0 1 34 1879 1846 2.87E-11 63.9
PCC9717_genomic.fna_CRISPR.71 100 40 0 0 1 40 11874 11913 1.89E-14 75
PCC9717_genomic.fna_CRISPR.136 100 34 0 0 1 34 7537 7570 2.87E-11 63.9
PCC9717_genomic.fna_CRISPR.228 100 37 0 0 1 37 13265 13229 7.49E-13 69.4
SPC777_genomic.fna_CRISPR.124 100 35 0 0 1 35 1059 1093 8.55E-12 65.8
SPC777_genomic.fna_CRISPR.125 100 37 0 0 1 37 3117 3081 7.49E-13 69.4

MVG_NODE385 CT39-3 100 35 0 0 1 35 5112 5146 8.55E-12 65.8
CT62-3 100 35 0 0 1 35 15902 15868 8.55E-12 65.8

CT67-2 100 34 0 0 1 34 17220 17187 2.87E-11 63.9

CT67-3 100 34 0 0 1 34 6496 6463 2.87E-11 63.9

CT79-3 100 34 0 0 1 34 15982 16015 2.87E-11 63.9

CT103-2 100 36 0 0 1 36 10359 10324 2.53E-12 67.6
CHAOHU1326_genomic.fna_CRISPR.49 97.4 38 1 0 1 38 3059 3022 1.03E-11 65.8
NIES298_genomic.fna_CRISPR.75 97.4 38 1 0 1 38 4091 4128 1.03E-11 65.8
NIES98_genomic.fna_CRISPR.9 100 38 0 0 2 39 13634 13597 2.33E-13 713
NIES98_genomic.fna_CRISPR.12 100 43 0 0 2 44 1124 1166 4.68E-16 80.5
NIES98_genomic.fna_CRISPR.185 100 38 0 0 1 38 15638 15601 2.20E-13 713
NaRes975_genomic.fna_CRISPR.158 100 34 0 0 1 34 6597 6564 2.87E-11 63.9
NaRes975_genomic.fna_CRISPR.161 98.1 52 1 0 1 52 11496 11547 2.91E-19 91.6
NaRes975_genomic.fna_CRISPR.165 97.3 37 1 0 1 37 7148 7184 3.48E-11 63.9
PCC9443_genomic.fna_CRISPR.472 100 34 0 0 3 36 6595 6628 3.28E-11 63.9
PCC9701_genomic.fna_CRISPR.150 100 33 0 0 1 33 7971 7939 9.58E-11 62.1
PCC9717_genomic.fna_CRISPR.226 100 42 0 0 1 42 10672 10631 1.54E-15 78.7
DA14_genomic.fna_CRISPR.22 100 39 0 0 5 43 9977 10015 8.51E-14 731

Group Il MVG_NODE378 CT57-1 100 34 0 0 1 34 15782 15815 2.87E-11 63.9
CT66-3 100 34 0 0 3 36 11854 11821 3.28E-11 63.9
NIES98_genomic.fna_CRISPR.157 100 34 0 0 1 34 932 899 2.87E-11 63.9

MVG_NODE562 PCC9443_genomic.fna_CRISPR.95 97.3 37 1 0 1 37 6624 6660 3.89E-11 63.9
PCC9717_genomic.fna_CRISPR.162 100 33 0 0 1 33 6892 6924 9.58E-11 62.1
DA14_genomic.fna_CRISPR.153 100 5] 0 0 1 35 8161 8127 8.55E-12 65.8
DA14_genomic.fna_CRISPR.177 97.6 42 1 0 1 42 12742 12783 7.15E-14 731

MVG_NODE577 CT46-1 100 35 0 0 1 35 674 640 8.55E-12 65.8
LE3_genomic.fna_CRISPR.13 97.6 41 1 0 1 41 403 363 2.57E-13 713
PCC9443_genomic.fna_CRISPR.108 100 34 0 0 1 34 14638 14605 3.07E-11 63.9
PCC9717_genomic.fna_CRISPR.163 100 35 0 0 1 35 6143 6177 8.55E-12 65.8
SPC777_genomic.fna_CRISPR.79 100 36 0 0 3 38 14312 14347 2.85E-12 67.6

MVG_NODE636 CT63-4 97.4 38 1 0 1 38 2585 2548 1.03E-11 65.8
CT84-2 100 35 0 0 1 35 11672 11706 8.55E-12 65.8
NIES298_genomic.fna_CRISPR.68 100 34 0 0 1 34 2118 2151 2.87E-11 63.9
NIES298_genomic.fna_CRISPR.112 100 33 0 0 1 33 1437 1405 9.58E-11 62.1
NIES98_genomic.fna_CRISPR.138 100 34 0 0 1 34 3248 3215 2.87E-11 63.9
NIES98_genomic.fna_CRISPR.139 100 34 0 0 1 34 4060 4027 2.87E-11 63.9

MVG_NODE656 PCC9443_genomic.fna_CRISPR.220 100 35 0 0 1 35 8625 8591 8.55E-12 65.8
PCC9807_genomic.fna_CRISPR.87 100 34 0 0 3 36 7657 7690 3.28E-11 63.9
DA14_genomic.fna_CRISPR.130 100 34 0 0 1 34 5574 5541 2.87E-11 63.9

MVG_NODE671 CT57-4 100 35 0 0 1 35 2118 2152 8.55E-12 65.8
PCC7941_genomic.fna_CRISPR.26 97.6 42 1 0 1 42 389 430 7.15E-14 731

MVG_NODE982 NIES843_genomic.fna_CRISPR.29 100 34 0 0 2 35 4237 4270 3.07E-11 63.9
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The fifteen MVGs referred to above were largely divisible into three groups;
namely, Group I (MVG _NODE34, NODE47, NODE620 and NODES&69), Group II
(MVG_NODE331, NODE375, NODE382 and NODE385) and Group III
(MVG_NODE378, NODES562, NODES577, NODE636, NODE656, NODE671 and
NODED982) based on their genome similarities using ViPTree (Figure 3-2) (138).

The four viral Group I contig sizes ranged from 10,954 to 48,147 bp and
contained 21-49 predicted protein-coding genes (Table 3-3). According to sequence
similarity, MVG_NODE234 (Sc = 0.94) and NODE47 (S = 0.84) were derived from close
relatives of Microcystis virus Ma-LMMO1 and had 28.5-29.7% and 25.3-26.4% of the
genome length of Microcystis virus Ma-LMMO1, respectively (Figure 3-3, Table 3-3)
(49, 50, 57, 58). These two viral contigs contained the middle genes required for DNA
replication, recombination/repair and nucleotide metabolism, in addition to viral
structural genes (125). Reconstruction of these Ma-LMMO1-related MVGs from the
virome reads corroborated the quality of the sequence assembly and host prediction. In
addition, the other two Group I MVGs, which were similar each other (MVG_NODE620
and NODES869; S¢ = 0.80), shared three protein homologs (thymidylate synthase,
ribonucleotide reductase o and B subunit) with Ma-LMMO1 with 40-50% identity
(Figure 3-3, Table 3-3). The low similarity to Microcystis virus Ma-LMMO1 (Sc = 0.11
for MVG NODE620; 0.14 for NODES869) revealed that MVG NODE620 and
NODES869 were derived from novel Microcystis viruses in the environment. This finding
was also supported by the phylogenetic trees for ribonucleotide reductase a and § subunits

(Figure 3-4).
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Figure 3-2. Proteomic tree of 15 Microcystis viral genomes identified in this
study and 1730 prokaryotic dsDNA viruses. (a) Whole proteomic tree including
the related prokaryotic dsDNA viruses (1730 reference genomes) generated by
ViPTree server ver.1.5. The dendrogram represents the proteome-wide similarity
relationships between 15 Microcystis viral genomes (MVGs) and reference viral
genomes (RVGs). Branches are colored red (MVGs) or black (RVGs), and branch
lengths are logarithmically scaled from the root of the entire proteomic tree. (b)
Rings outside the dendrogram, from inside to outside, represent viral family
classifications and taxonomic groups of known hosts, respectively. (c) Enlarged view
of the proteomic tree including areas of the MVGs and two reference genomes of
Microcystis viruses. Seven Bacillus viruses that show weak genomic similarity to
Group [ viral genomes and five cyanoviruses and 47 myoviruses that form clades
with Group II viruses are also shown.
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3. Broad and narrow host range Microcyst
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3. Broad and narrow host range Microcyst
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3. Broad and narrow host range Microcystis viruses

(a) Group |
%-identity

0 20 30 40 50 60 70 80 8590 95100

B subunit

MVG_NODE869 ﬁmymmymsynmase'

(10,954 bp)

XRE family transcriptional regulator
PadR famuly transcnptlonal regulator

MVG_NODE620 (o 8 subunit

lhymldylale synlhase

(14,147 bp l protein phosph

type | restriction modmcsllon DNA specificity protein

provirus antirepressor provirus antirepressor

putative thymidylate synlh}% rﬁCA recombinase .
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Figure 3-3. Genome map of Microcystis viral genomes in Group I, Group II and
Group III. Putative gene functions are indicated for each Microcystis viral genome.
All tBLASTx alignments are represented by colored lines between two genomes. The

color scale represents the tBLASTx percent identity.
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Figure 3-4. Maximum-likelihood tree of ribonucleotide reductase o (nrdA) and

0.5

B (nrdB) subunit genes. The tree contains the protein sequences used in a previous
study (shown in black characters) (143) and encoded in MVG_NODE620 and
NODES869 (shown in red characters). The scale bar refers to the estimated number of
amino acid substitutions per site. Numbers close to the nodes represent bootstrap

percentages above 75%.
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The four viral contigs in Group II ranged in size from 19,786 to 22,572 bp and
contained 16-32 predicted protein-coding genes (Table 3-3). Of these, MVG NODE331,
NODE375 and NODE382 shared one to five homologs (e.g., TerL, viral portal protein
and hypothetical protein) with each other. These MVGs partly shared sequence
similarities with cyanobacterial siphoviruses like P-SS2 (144), S-CBS1, S-CBS2, S-
CBS3 (145) and KBS-2A (146) (Figure 3-3). In Synechococcus siphovirus S-CBS1 and
S-CBS3, the viral structural genes are conserved on the left arm of their genomes (145).
MVG NODE331 and MVG _NODE382 shared three (TerL, viral portal protein and
major capsid protein) and two (TerL and viral portal protein) homologs with
Synechococcus siphovirus S-CBS3, respectively (Figure 3-3, Table 3-3). Phylogenetic
analysis of the terL gene showed that the two MVGs formed a sister clade with
Synechococcus siphovirus S-CBS1 and S-CBS3 (Figure 3-5). MVG NODE375
displayed partial sequence similarity (50-60% identity) with the lysozyme gene from
Synechococcus siphovirus S-CBS3 (Figure 3-3). Interestingly, MVG_NODE385 shared
only one homolog (hypothetical protein) with MVG_NODE375 and MVG_NODE382
(Figure 3-3, Table 3-3, Sc = 0.011 and 0.026, respectively).

The seven viral Group III contigs ranged in size from 10,206 to 20,407 bp and
contained 12-27 predicted protein-coding genes (Table 3-3). None of these shared
genome-wide sequence similarities with known viruses in the current database (Figure
3-3). Although blast analysis against the NCBI-nr database revealed few detectable
homologues (3.70-36.4% of ORFs) in each MVG (Table 3-3), 33.3-50.0% of the ORFs
were predicted to encode viral proteins in four MVGs (MVG_NODE378, NODE656,
NODEG671 and NODE982) by further searches against pVOGs (139) (Table 3-4). These

MVGs partially overlapped with each other, suggesting that they might be derived from
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the same viruses. In contrast, only 10.5-25.0% of the ORFs were predicted to encode
viral proteins in the other MVGs (MVG_NODES562, NODES577 and NODE636) (Table
3-4). Considering that pVOGs mainly comprise the Caudovirales order (147) and include
few freshwater viromes (139), this result is possibly due to such database biases.
Furthermore, the CsCl gradient centrifugation step and decontamination of prokaryotic
sequences by VirSorter provided support that the Group III contigs were derived from
viral sequences, and not cellular organisms. These findings strongly suggested that the

Group III MVGs are new viral lineage members.
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Figure 3-5. Maximum-likelihood tree of TerL (terminase large subunit) genes.
The tree contains protein sequences encoded in MVG _NODE331 and NODE382
(shown in red characters). The scale bar refers to the estimated number of amino acid

substitutions per site. Numbers close to the nodes represent bootstrap percentages
above 75%.
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Table 3-4. Putative viral genes in Microcystis viral genomes determined by
hidden Markov model profiles from the prokaryotic Virus Orthologous
Groups (pVOGs) database.

contig_ID ORF function VvPOG e-value
MVG_NODE34 1 hypothetical protein VOG9956 8.50E-123
2 DNA helicase VOGO0377 9.10E-51
4 hypothetical protein VOG2063 0.00046
7 hypothetical protein VOG10935 2.90E-26
11 hypothetical protein VOG10935 2.90E-10
16 DNA primase VOG4551 2.60E-14
19 hypothetical protein VOG5541 2.10E-88
22 putative Fe-S oxidoreductase VOG9839 3.60E-183
23 hypothetical protein VOG1093 1.30E-10
24 exonuclease VOG4692 5.50E-11
26 hypothetical protein VOG0283 4.40E-11
29 terminase large subunit VOG1886 1.50E-151
32 hypothetical protein VOG4127 8.50E-05
38 hypothetical protein VOG0080 8.90E-103
39 hypothetical protein VOG0079 2.70E-29
41 hypothetical protein VOG6811 2.70E-20
43 hypothetical protein VOG5296 9.20E-73
MVG_NODE47 2 hypothetical protein VOG7296 9.40E-06
3 hypothetical protein VOG3671 8.20E-59
11 serine/threonine protein phosphatase VOG0156 1.90E-79
13 hypothetical protein VOG4552 1.60E-33
16 thymidylate synthase VOG4561 1.50E-05
17 hypothetical protein VOG5169 1.10E-05
23 hypothetical protein VOG3108 2.60E-233
24 hypothetical protein VOG4741 1.10E-37
27 prophage antirepressor VOG10917 1.70E-91
28 putative DNA helicase VOG0025 4.90E-19
30 ribonucleoside triphosphate reductase, alpha chain  VOG2368 1.70E-156
31 phycobilisome degradation protein NblA VOG7606 1.30E-30
32 hypothetical protein VOG9316 2.10E-73
34 ribonucleotide reductase subunit VOG4562 1.80E-66
35 protector from prophage-induced early lysis VOG4594 9.80E-54
36 hypothetical protein VOG4590 5.40E-25
37 P-starvation inducible protein VOG0058 8.90E-55
38 deoxyuridine 5'-triphosphate nucleotidohydrolase VOG0085 3.40E-26
39 DNA polymerase VOG0026 1.20E-15
40 DNA polymerase VOG0026 2.00E-31
47 hypothetical protein VOG7140 1.80E-11
48 clamp loader subunit VOG0996 2.20E-49
MVG_NODE620 6 hypothetical protein VOG5169 3.50E-40
10 ribonucleotide reductase subunit 8 VOG4562 1.10E-66
12 ribonucleotide reductase VOGO0088 5.90E-147
14 hypothetical protein VOG5532 7.40E-05
17 thymidylate synthase VOG0092 2.50E-21
19 phycobilisome degradation protein NblA VOG7606 3.50E-12
MVG_NODE869 3 hypothetical protein VOG5169 5.70E-41
8 ribonucleotide reductase subunit VOG4562 3.10E-64
13 ribonucleotide reductase VOG0088 8.20E-147
15 hypothetical protein VOG5532 0.00043
19 thymidylate synthase VOG0092 1.20E-22
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Host-virus interactions

To investigate the host range of the above-named viruses, I conducted a
phylogenetic analysis on the 15 Microcystis strains for which both ITS sequences and
CRISPR spacers were available. Consequently, these M. aeruginosa strains could be
largely divided into the following three groups: type I (CACIAMO3, DA 14, NIES298,
NIES98, PCC7941, PCC9443, PCC9717, PCC9807, SPC777, TAIHU9S, TA09), type 11
(NIES843, PCC9809) and type III (NIES44, PCC9701)) (Figure 3-6) (60, 148).
According to the ITS phylotyping of Microcystis strains, Group I viruses only interacted
with seven (DA14, NIES298, NIES98, PCC9807, SPC777) type I strains (Figure 3-6,
Table 3-5). Group III viruses interacted with eight (DA 14, NIES298, NIES98, PCC7941,
PC(C9443, PCC9717, PCC9807, SPC777) type I strains and one (NIES843) type II strain
(Figure 3-6, Table 3-5). In contrast, Group II viruses interacted with all type I-III strains
except for strain PCC9807 (Figure 3-6, Table 3-5). Also, each Group II virus apparently
possessed more highly abundant protospacers, parts of which have been acquired
repeatedly by the same strains, more than the other groups (up to 23; MVG_NODE375)
(Table 3-2). These suggested that Group II viruses could interact with the broad range of
Microcystis strains more frequently than others and have more impact on the bloom than

the other groups.
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Figure 3-6. Maximum-likelihood tree of the internal transcribed spacer (ITS)
sequences from M. aeruginosa strains. The tree contains the nucleotide sequences
used in previous studies (shown in black characters) (60, 149) and this study (shown
in red characters). Strains belonging to the three phylogenetic groups (ITS Cluster I,
IT and IIT) were defined in previous studies (60, 149). ITS clusters I, Il and III branches
are shown in black, purple and brown, respectively. Microcystis strains possessing
Group I, II and III viral spacers are represented by green, blue and red circles,
respectively. Some of the strains used in this study (PCC7005, NaRes975, LE3,
DIANCHI905 and CHAOHU1326) are not included because their ITS sequences
could not be determined. CRISPR types defined by a previous study (60) are shown
in orange characters. The scale bar refers to the estimated number of nucleic acid
substitutions per site. Numbers close to the nodes represent bootstrap percentages
above 75%.
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Table 3-5. Potential host strains for 15 Microcystis viruses identified in this study.

contig_id viral group potential host strain  host ITS type
MVG_NODE34 Group | DA14 type |
MVG_NODE47 NIES98 type |
NaRes975 N.D.
PCC9807 type |
MVG_NODEG620 LE3 N.D.
PCC7005 N.D.
SPC777 type |
MVG_NODE869 NIES298 type |
PCC7005 N.D.
SPCT777 type |
MVG_NODE331 Group Il NIES298 type |
NIES843 type Il
NIES98 type |
PCC7941 type |
PCC9701 type Il
PCC9809 type Il
MVG_NODE375 CACIAMO3 type |
LE3 N.D.
NIES298 type |
NIES44 type Il
NIES843 type Il
NIES98 type |
PCC7941 type |
PCC9701 type Il
TAIHU98 type |
DAl14 type |
TAO09 type |
MVG_NODE382 DIANCHI905 N.D.
NIES843 type Il
NIES98 type |
NaRes975 N.D.
PCC7941 type |
PCC9443 type |
PCC9717 type |
SPC777 type |
MVG_NODE385 CHAOHU1326 N.D.
NIES298 type |
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Table 3-5. continued.

contig_id viral group potential host strain  host ITS type
MVG_NODE385 Group Il NIES98 type |
NaRes975 N.D.
PCC9443 type |
PCC9701 type Il
PCC9717 type |
DAl14 type |
MVG_NODE378 Group Il NIES98 type |
MVG_NODE562 PCC9443 type |
PCC9717 type |
DA14 type |
MVG_NODES577 LE3 N.D.
PCC9443 type |
PCC9717 type |
SPC777 type |
MVG_NODEG636 NIES298 type |
NIES98 type |
MVG_NODEG656 PCC9443 type |
PCC9807 type |
DA14 type |
MVG_NODEG671 PCC7941 type |
MVG_NODE982 NIES843 type Il

N.D. indicates the Microcystis strains for which the ITS sequences were not
determined.
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Transcriptional dynamics of M. aeruginosa in the environment

Next, I conducted metatranscriptome analyses to investigate the diurnal
expression dynamics of Microcystis genes. The sampling of the Microcystis bloom
generated a total of 9 metatranscriptome samples spread over the day-night transition
from the Hirosawanoike Pond. After removing the remaining rRNA reads, 49.9-89.0%
of the total paired reads were mapped to M. aeruginosa 30S32 genome that is the most
dominant genotype (CRISPR type 19 isolate) (62) in Hirosawanoike Pond (Table 3-1).
Thus, the Microcystis read percentages fluctuated greatly during 24 h sampling (Table 3-
1, Figure 3-1b). This was mainly associated with the accumulation of Microcystis cells
at the water surface during the night (100), thereby potentially having a large impact on
the metatranscriptome results. Temporal changes in the percentage of rnpB reads well
reflected the sequencing biases derived from the cell densities per sample (Figure 3-1b)
(100). Therefore, all read counts were normalized as FPKM and »npB counts to capture
the transcriptional dynamics within the cells correctly. After normalizing the
transcriptional levels, the photosynthesis genes showed the highest transcriptional levels
during the daytime, as described previously (129) (Figure 3-7a). The expression levels
of the TCA genes also increased during the light/dark transition, as was seen in a previous
culture experiment (149) (Figure 3-7b). These results suggested that M. aeruginosa
activates various cellular metabolisms including photosynthesis during the daytime, and
then consumes the resultant products at night. This coincides with the observation that
Microcystis cells move vertically towards the water surface by becoming lighter at night

(100).

79



3. Broad and narrow host range Microcystis viruses

(a) Photosynthesis (b) TCA cycle
T_é?eoo ’g 50 5

4 S 5 D 4.0 J

CU — m |

o) GQ{ o rg 3.0 2€

© O §

§§ §§ 20 1\ /-

TS §S 10 =3 |
LL Ll_ ’ . v v v v i v . v
b 6 9 12 15 18 21 0 3 6 = 6 9 12 15 18 21 0 3 6

Sampling time (h) Sampling time (h)
Toxin-Antitoxin system (d) CRISPR-Cas system

0 0.06 1
005 { A
Fé ““r.\‘

0.03 1

(c

~

1.6 -
1.4
4D
1
0.8
0.6
04 4
0.2 %
0 +———— -
6 9 12 15 18 21 0 3 6

Mapped reads
(FPKM/rnpB reads

Mapped reads
(FPKM/rnpB reads)

é S')1'21'51'82'1 0 3 6
Sampling time (h) Sampling time (h)

Figure 3-7. Temporal gene expression patterns of M. aeruginosa in the
environment. (a) Photosynthesis, (b) TCA cycle, (c) Toxin-antitoxin system, (d)
CRISPR-Cas system (a, b, d: all genes defined in the KEGG Orthology database are
indicated, c: only the top 10 genes showing the highest transcriptional abundances at
15:00 h are indicated). The y-axis represents FPKM (fragments per kilobase per
mapped million reads) normalized by rnpB reads as a proxy for Microcystis cell

density. Shaded areas indicate the periods of darkness.

Transcriptional dynamics of M. aeruginosa viruses in the environment

I further investigated the transcriptional dynamics of Microcystis viruses. After
read processing, 0.41-1.05% of the total paired reads were mapped to Microcystis virus
Ma-LMMO1 and the 960 viral contigs (> 10 kb), including the MVGs (Table 3-1). In the
case of Ma-LMMO1, for example, the viral reads derived from the samples at 15:00 hours
were mapped to 52.7% of the total genes (97/184; Figure 3-8), suggesting that the

metatranscriptome analysis could capture the whole transcriptional dynamics of each
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MVG, not a specific gene expression per se.
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Transcripts were observed in all of the MVGs, clearly indicating that the MVGs
actively infect their hosts. The transcriptional dynamics of the MVGs increased gradually
during the daytime, peaking at 12:00 or 15:00 hours (Figure 3-9). The transcriptional
noise peaks at 06:00 hours were derived from the high expression levels of host-like genes
(e.g. MAE RS01135; data not shown). Group II virus, particularly MVG_NODE385,
showed the highest transcriptional activities among the Microcystis viruses (Figure 3-9).
However, the transcriptional activities of the MVGs did not coincide with the abundance
rank of viral reads mapping to each contig (Figure 3-10), suggesting that progeny
productivity is determined by not only transcriptional activity but other factors also
(further discussed in the conclusion section). Conversely, all the contigs showed minimal
transcriptional activity at night (Figure 3-9). A previous study reported that Ma-LMMO1
gp091 (tail sheath protein) transcripts peaked during the daytime and that gp09/ DNA
copy numbers in the host cell fractions peaked in the afternoon, followed by an increase
of gp091 DNA copy numbers in the nighttime viral fractions (100). Furthermore, other
studies have reported that marine cyanoviruses levels increase and cause high mortality
rates of their host cells at midnight (150—152). The observed dynamics of gp097 DNA
copy numbers concorded with the results of the previous study (Figure 3-11) (100). Also,
the viral metagenomic read abundances of the MV Gs derived from samples at 06:00 were
higher than those derived from samples at 18:00 (Figure 3-10). These suggested that all
MVG viruses are released from Microcystis cells at midnight in the freshwater
environment.

Strikingly, Group I, II and III viruses were included in both groups showing
transcriptional peak levels at 12:00 (P12) and 15:00 (Pis) (Figure 3-9). Therefore, |

compared the genomic features of MVG_NODEG620 (P15) with those of MVG _NODES869
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(P12) to investigate whether the slightly different patterns depended on their gene contents
or not. These Group I MVGs showed high sequence similarities (S = 0.80; Figure 3-3)
with each other and shared part of the Ma-LMMO01 middle gene homologs (not containing
early and late gene homologs). This suggested that the observed transcriptome dynamics
do not depend on the gene expression classes (or certain genes) but on the combination
of viruses and host (M. aeruginosa) populations in the environment. Thus, the observed
transcriptional pattern of each MVG in this study reflected the actual transcription

dynamics of Microcystis viruses in the infected cells.
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Figure 3-9. Temporal transcriptional dynamics of 15 Microcystis viruses in the
environment. Group I, II and IIl viruses are shown in green, blue and red,
respectively. (a) MVG_NODES869 (Group I), NODE382 (Group II), NODE636,
NODE671 (Group III); (b) MVG_NODE34, NODE47, NODE620, Ma-LMMO1,
MaMV-DC (Group I), MVG NODE331, NODE375, NODE385 (Group II),
MVG_NODE378, NODES562, NODE577, NODE656, NODE982 (Group III). The y-
axis represents FPKM (fragments per kilobase per mapped million reads) normalized

by rnpB reads as a proxy for Microcystis cell density. Shaded areas indicate the periods
of darkness.
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Figure 3-10. Virome and transcriptome read abundances of Microcystis viral
genomes including Ma-LMMO01 and MaMV-DC. The x-axis is the ranked value
for each Microcystis viral genome. The y-axis represents FPKM (fragments per
kilobase per mapped million reads) or FPKM normalized by rnpB reads as a proxy
for Microcystis cell density. The virome abundances at 18:00 and 06:00 are shown in
orange and green bars, respectively. Transcriptome read abundances at 12:00 or
15:00 are shown in black bars. Green, blue, and red characters indicate Group I, II,

and III viruses, respectively.
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Figure 3-11. Diel changes in viral abundance in the free viral fraction. Total viral
particle numbers and the abundances of Ma-LMMO1 gp091 gene are shown in black
and red, respectively. Total viral particle numbers were determined by direct counts
using microscopy with SYBR Gold. The abundance of gp09/ was determined by
quantitative polymerase chain reaction analysis. Shaded area indicates the period of
darkness.

I next examined the viral gene expression patterns to address whether viral gene
expression classes (i.e., early, middle, or late (125)) could be captured in the environment.
Of all the mapped reads in the Ma-LMMO1 genome, 1.58-6.69%, 51.3-75.9% and 17.7—
32.5% of the metatranscriptome reads were mapped to early, middle and late Ma-LMMO1
genes, respectively, at each time point. The total read abundance for each gene expression
class increased gradually during the daytime, peaked at 15:00, and then drastically
decreased during the daytime/night transition (Figure 3-12). Unlike in the synchronized
culture experiment (125), Ma-LMMO1 did not clearly show three temporal expression

classes (early, middle and late) in the environment (Figure 3-12). Considering the results
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of the culture experiment (125), it was possible that at least two distinct transcriptional
peaks corresponding to middle and late genes were observed in the environment.
Therefore, this result suggested that there is a slightly different infection stage in each

infected cell in the environment.
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Figure 3-12. Temporal expression patterns of Ma-LMMO01 viral genes in the
environment. Early, middle and late genes defined in a previous culture experiment
are shown in green, blue and red, respectively. The y-axis represents FPKM
(fragments per kilobase per mapped million reads) normalized by rnpB reads as a

proxy for Microcystis cell density. Shaded area indicates the period of darkness.

The implication for Microcystis antiviral responses and its viral infection profiles
M. aeruginosa reaches high cell density in the environment during the bloom
(Figure 3-1a) (100), suggesting that this cyanobacterium can frequently be attacked by
its diverse viruses. Also, this cyanobacterium possesses highly abundant host defense
systems, especially, the toxin—antitoxin system (64). However, the metatranscriptome

analysis revealed that the antiviral defense genes showed no constitutive expression
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against the viral infection during the daytime (Figure 3-7c¢ and d). The expression
patterns of the toxin—antitoxin and CRISPR-Cas system-related genes seem to reach peak
levels at 15:00, which might correspond to the late infection stage (Figure 3-7¢ and d,
Figure 3-13). The culture-based study in chapter 2 revealed that such gene expression
patterns did not occur in the control culture or in the Ma-LMMO1-infected culture (125)
(Figure 3-13). Therefore, this result indicated that M. aeruginosa could respond to viral
infections via the expression of antiviral defense genes such as the toxin—antitoxin and
CRISPR-Cas systems in the environment. Considering that higher expression levels of
antiviral defense genes were observed in the environmental samples than in the culture
experiment (Figure 3-13), M. aeruginosa may generally have more effective antiviral
defense mechanisms that can be induced by infection with diverse viral species/strains
than strain NIES-298; the Ma-LMMO1-like infection profile, which does not cause
significant changes in host transcriptional levels (125), is not common for Microcystis

viruses.

Recruitment of metatranscriptome reads to Microcystis viral genomes in Lake Erie
Spacers matching Group I-III viruses were also acquired by Microcystis strains isolated
in other countries (Figure 3-14), suggesting that similar Microcystis viruses exist in other
freshwater ecosystems throughout the world. Therefore, I recruited the available seven
metatranscriptomic read sets derived from the early, middle and late bloom in Lake Erie
(130) to the MVGs. Although the transcriptional activities of the MVGs were largely
influenced by the sampling time (Figure 3-9), the metatranscriptomic reads from
Hirosawanoike Pond were apparently more preferentially recruited onto the MVGs than

those from Lake Erie (Figure 3-15). In a previous study, Kimura ef al. (2013) observed
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that rapid gene diversification of Microcystis virus Ma-LMMO1 gp091 had occurred in
even the same freshwater environments through host-virus interactions (80). Therefore,
these results suggested that Microcystis viruses have diversified their genomes through
host—virus co-evolution independently in each freshwater environment although similar

viruses are also found in Lake Erie.
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Figure 3-13. Heat map of Microcystis toxin—antitoxin system genes in the
environment and a culture experiment. The toxin-antitoxin system genes listed in
Makarova et al. 2011 were used in this analysis. The Microcystis transcriptome data
for the infected (P0O-P6) and control cultures (C0-C6) were obtained from Morimoto
et al. 2018. The color gradient shows the unchanged (green) and enriched (red) gene
transcripts.
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Figure 3-14. Abundance of spacers corresponding to Group I, II and III viruses
in the isolated Microcystis genomes from each country. The x-axis represents the
country from which the Microcystis strains possessing MVG spacers were isolated.
BRA; Brazil, CAN; Canada, CAF; Central African Republic, CHN; China, FRA;
France, JPN; Japan, RSA; South Africa, USA; United States of America. The y-axis
represents the total number of MVG spacers. Green, blue, and red bars represent the

number of Group I, IT and III viral spacers, respectively.
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Figure 3-15. Microcystis viral transcript abundances for Lake Erie (LE) and
Hirosawanoike Pond (HP). Sequence reads obtained from seven metatranscriptomes
in Lake Erie or metatranscriptomes at each time point in Hirosawanoike Pond were
mapped onto Microcystis viral genomes. Boxes represent the first, median and third
quartiles. The y-axis represents FPKM (fragments per kilobase per mapped million

reads) normalized by rnpB reads as a proxy for Microcystis cell density.
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Conclusion

The interactions occurring between the toxic bloom-forming cyanobacterium M.
aeruginosa and its infecting viruses have generated diverse host populations that possess
different CRISPR arrays in their genomes (60-62). However, an important knowledge
gap exists between such observations and the known Ma-LMMOI infection profile
because this only isolated virus can escape from the highly abundant host defense systems
(125). In this study, I revealed the existence of diverse Microcystis cyanoviruses, which
included a new viral lineage Group III viruses. Comparing the abundant virome reads,
such novel viruses are thought to be more prevalent than Microcystis virus Ma-LMMO1
(or the corresponding contigs; MVG NODE34 and NODE47). Notably, the Group II
viruses were found to interact with the broad range of Microcystis strains more frequently
than the Group I and III viruses that interacted with a narrower range of strains. This is
supported by the highest transcriptional levels being in Group II virus. The highest
transcriptional levels of these Microcystis viruses occurred at 12:00 or 15:00 regardless
of their genomic differences. Considering that MVG_NODE620 and MVG_NODES869,
which shared the Ma-LMMO1 middle gene homologs, showed different expression
patterns, this result suggested that diverse combinations of M. aeruginosa and its viruses
exist in the environment. In addition, Ma-LMMO1 did not show the distinct three temporal
expression classes of early, middle, and late genes in the environment, suggesting that
viral gene expression might differ slightly within each infected cell. On the other hand,
M. aeruginosa was found to express antiviral defense genes such as the toxin—antitoxin
and CRISPR-Cas systems in the environment, which allowed it to defend itself against
viral infections. This indicated that Ma-LMMO1-like infection profile, which does not

affect the host’s transcriptional levels to escape antiviral defense systems, is not common
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in Microcystis viruses. Generally, narrow host-range viruses are thought to infect highly
abundant hosts, whereas broad-host range viruses are assumed to infect low abundance
hosts (75, 153). According to the previous study (62), the Microcystis bloom at
Hirosawanoike Pond comprises at least 16 major and other rare CRISPR genotypes,
supporting the co-occurrence of narrow- and broad-host range Microcystis viruses.
Additionally, the transcriptional activities of the MVGs did not necessarily reflect the
abundances of each viral contig in the environment (Figure 3-10). Given that viruses with
broad-host ranges often induce different antiviral responses within each host strain (75,
154), this observation suggested that antiviral gene expression in M. aeruginosa inhibits
viral multiplication, especially broad-range viruses like Group II. Collectively, these
findings suggest that Group II viruses are the major drivers of Microcystis population
diversification, whereas Group I and III viruses contribute to the control of Microcystis
abundance and composition. The isolation and characterization of Microcystis viruses
such as the Group II and III viruses described in the present study will expand our
knowledge about other infection profiles in Microcystis viruses. Future work on the
seasonal dynamics of MVGs and their hosts will also help us to further understand the

viral impact on Microcystis blooms and their population dynamics.
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Chapter 4
Integration and outlook

Toxic bloom-forming cyanobacterium Microcystis aeruginosa has the highest
number of putative antiviral defense genes and interacts with diverse viruses in the
environment, resulting in the diversification of their population. Despite such potential
significance of cyanoviruses in Microcystis blooms, little is known about even the
whole host transcriptional responses and infection process during a sole Microcystis
virus Ma-LMMO1 infection. Also, low proportion of Ma-LMMUO1-matching spacers
suggested that numerous uncharacterized Microcystis viruses exist in the environment,
however, no comprehensive studies have been done to investigate for the existence of
other Microcystis viruses, or both Microcystis and its viral transcriptional dynamics.

In chapter 2, I first investigated the infection process and transcriptional
program of Ma-LMMO1, and assessed host transcriptional responses to infection using
RNA-seq analysis. Strikingly, almost all of the host genes did not show a significant
change in expression during Ma-LMMOI infection, however, like other lytic dsSDNA
viruses including marine cyanoviruses, Ma-LMMOI1 transcriptional programs are
orchestrated in three expression classes: early (host-takeover), middle (replication), and
late (virion morphogenesis). In addition, cyanobacterial primary ¢ factor SigA
recognition-like sequences were found in the upstream region of each class genes,
whereas viral specific motifs were not found. These findings suggested that unlike other
known T4-like phages, Ma-LMMO1 achieves three gene expression patterns without
changing host promoter activity by exploiting SigA for its transcription. This type of
infection may be advantageous in allowing Ma-LMMOI to escape the highly abundant

host defense systems while maintaining host photosynthesis.
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In chapter 3, I further investigated the genomic information and transcriptional
dynamics of Microcystis viruses using cross-omics analysis. Virome approach revealed
that three novel phylogenetic viral groups: Group I (including Ma-LMMO1), II (high
abundance and transcriptional activity), and III (new lineages). Of these, the Group II
viruses interacted with all three phylogenetically distinct Microcystis phylotypes,
whereas the Group I and III viruses interacted with only one or two phylotypes. This
indicated the co-occurrence of broad (Group II) and narrow (Group I and III) host-range
viruses in the bloom. All these viruses showed the highest transcriptional levels during
daytime regardless of their genomic differences. Interestingly, metatranscriptomic
approach also revealed that M. aeruginosa expressed antiviral defense genes against
viral infection, unlike that seen with a Ma-LMMO1 infection in chapter 2. Given that
broad host-range viruses often induce antiviral responses within alternative hosts, these
findings suggested that Group II viruses are major drivers for the diversification of
Microcystis populations, whereas Group I and III viruses contribute to the control of
Microcystis abundance and composition.

These studies expand our knowledge about the infection profiles, host
responses, the genomic features of other Microcystis viruses, and the potential
ecological roles of broad- and narrow-host range viruses in the bloom. Future work on
the seasonal dynamics of each viral group and their hosts will also help us to further
understand the viral impact on Microcystis blooms and their population dynamics as

well as the isolation and characterization of them.
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