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Abstract 
Learning chaotic dynamical systems in neural networks is analyzed as a te~nporal 

evolution process in a non-autonomous discrete dynamical system driven by a chaotic 
teacher signal, defined on the space of connection weights. It  is proved to be impossible 
to derive the condition for the learning converging to the optimal state in general. The 
proof is based on the stability analysis of the linearized equation about a fixed point 
corresponding to the optimal state. This impossibility is due to  the non-uniformity of 
chaotic time series and to the fact that a chaotic invviant set is not minimal. It  is 
also pointed out that this non-uniformity can make the basin of the optimal state a very 
complicated one called a "riddled basin". 

1. Introduction 

The Learning of a dynamical system in neural networks is the identification of the system 
referring a time series generated from it as a teacher signal. l .  Since the learning is successive 
adjustments of connection weights (i.e., system parameters of neural networks) using a time 
series prcsented as a teacher signal, it can be regarded as a non-autonomous dynamical system 
on the space of connection weights, driven by the teacher signal. The optimal point of the 
learning is a fixed point of this dynamical system. Hence the convergence condition of the 
learning can be analyzed as the stability of the fixed point. 

From such a point of view, we have been studying analyses of the convergence condition 
of the learning of dynamical systems in neural networks regarding the learning as a time 
cvolution process in a non-autonomous dynamical system defined on the space of connection 
weights [I]-[4]. In this article, we discuss the following two points concerning the learning of 
chaotic time series; 
(1) Difficulty of the linear-approximation-based analysis of the convergence of learning chaotic 

times series 
(2) A riddled basin of the optimal state of the learning of chaos. 

2. Mathematical Formulation of the Learning of Dynamical Systems 

We deal with the successive-type back-propagation (BP) learning of an m-dimensional 
discrete dynarnical system, 

Where f is a continuous map on Rn and k denotes continuous time. Referring input-output 
patterns, (q(k), f (q(k)), as a teacher signal, a neural network, described by the following 
cquation, learns the above system. 

x ( k + l ) = f " ( z ( k ) , w )  ( x € R m ) .  (2) 

'Strictly speaking, we should say "to identify a dynarnical system by learning the time series generated 
from it". In this article, however, we will say learn a dynamical system" for the sake of simplicity. 



Where w is an n-dimensional vector representing connection weights of the neural network. 
The BP learning of successive type is described by a kind of gradient-descent method, 

w(k + 1) = w(k) - qVwE(w(k),  k). (3) 

Where q is a positive number called a learning constant, and E is a function evaluating the 
error between the output of the neural network and the teacher signal, which function is 
defined by, 

1 
E(w1 k) = (9(k)) - j(q(*), d l 2 .  (4) 

Since the teacher signal q(k) varies as the time k, the error function E depends on k explic- 
itly. Thus the learning equation (3) is a non-autonomous dynamical system of the connection 
weights w,  and the optimal point w*, for which E(w*, k) = 0 for every time k, is a fixed 
point of this dynamical system. If w* is asymptotically stable as a fixed point of (3), local 
convergence of the learning to the optimal point is guaranteed. This formulation can be ap- 
plied to more general learning by a successive gradient-descent method (3) in a system (2) 
with adjustable parameters as well as the BP-learning in neural networks. 

3. Analysis of the Convergence Condition of the Learning of Chaos 

In this section, we analyze the learning of chaotic time series based on the mathematical 
formulation introduced in the previous section. 

We denote the non-autonomous discrete dynarnical systems defined by Eqs. (3) and (4) 

by, 
w ( k + l )  =g(w(k),k).  (5) 

Where the explicit dependence of the function g on time k is due to the fact that the teacher 
signal q(k) is time varying governed by Eq. (1). To indicate this time dependence more 
explicitly, we also describe the system (5) by, 

Now we consider the stability of the fixed point w* of this dynamical system based on the 
linear-approximation analysis. Linear approximation is widely used for stability analysis of a 
fixed point in dynamical systems. An important theoretical back-ground of this analysis is 
the following lemma [5]: 
Lemma Let w* be a fixed point of a discrete dynamical system, 

If the null solution, w = o, of the linearized equation around the fixed point, 

is uniformly asymptotically stable, then the fixed point w* is also uniformly asymptotically 
stable. 

Here uniformly asymptotic stability of a solution, w*, of (7) is defined as follows: 
Definition 1 Let w(wo, ko, k) be a solution of (7) which starts wo at an initial time k = 

k o  We say a solution w* is uniformly asymptotically stable if it satisfies the following two 
conditions [ 6 ] ;  
(i) For every positive number E, there exists a positive number 6 such that if llwo - w*ll < 6, 
then for every integer ko and every k > ko, Ilw(wO, kO, k) - w*ll < E is satisfied (uniform 
stability). 



(ii) There exists a positive number 6 such that for any positive number E there exists an integer 
K(E), if llwo - w*Il < 6 then for every integer ko and for any k 2 ko + K(E), IIw(wO, ko, k) - 
w*ll < E is satisfied. 

An important point of this definition is that the time K(E) in the condition (ii), which the 
orbits starting from the 6-neighborhood of the fixed point w* take before they converge into 
the E-neighborhood of w*, does not depend on the initial time ko. Thus the tern1 "uniform" 
means the uniformity with respect to time k. When the function g(w, q(k)) is periodic with 
respect to time k, it is easy to see that this uniformity is satisfied. In such a case, the lemma 
is valid even if the "uniformly asymptotically stable7' in the above definition is replaced with 
"asymptotically stable". Therefore if q(k) in Eq. (6) is periodic (so, if it is a fixed point, 
of course), the asymptotic stability of the fixed point w* is guaranteed by the asymptotic 
stability of the null solution, w = o, of the variational equation linearized around w*. In such 
a case, the stability analysis is not so difficult and the asymptotic stability of the null solution 
is proved for many cases [I, 31. In other words, local convergence of the learning of periodic 
orbits is guaranteed in general. 

However, when q(k) is chaotic as is discussed in this article, the situation is completely 
diffcrent. That is, the null solution of the linear approximated system, 

is not uniformly asymptotically stable in general. This is expressed by the following theorem: 
Theorem 1 Let q(k) be a dense orbit contained in a chaotic attractor AT that contains at 
least one periodic orbit with a period less than nlm.  Then the null solution of the linearized 
system (9) is not uniformly asymptotically stable. 

Thus the unifornlly asymptotic stability of the linear approximated system is not guaran- 
teed i r ~  general. However, non-uniformly asymptotic stability is guaranteed in general as is 
shown in the following theorem: 
Theorem 2 Suppose {q(k)) is an orbit contained in a chaotic attractor AT and there exists 
a positive integer n' such that f n' is ergodic with respect to an invariant probabilistic measure 
P of AT. And suppose 

P ( {  4 1 r ( q ) < l )  ) > O  (10) 

is satisfied. Where r(q) is defined by 

Besides we assume the learning constant q is sufficiently small so that lX(')(k)l < 1 is satisfied 
for all k E Z and 1 = 1, ..., m. Where 

~ ( " ( k )  = 1 - mvll a(') (k) 1 1 2  

and a(')(k) is an rn-dimensional vector defined by, 

Then the null solution of (9) is asymptotically stable with probability one with respect to the 
initial value of q(k). 

For the proofs of these two theorems, see Refs. [ l ,  31. Here we will explain the meaning 
of them intuitively. 

A chaotic orbit is dense in a chaotic invariant set AT, and the set contains unstable periodic 
orbits (UPO) innumerably [7]. So the conditions of the above theorems are satisfied in general. 



A dense chaotic orbit in AT has chances to approach the UPOs arbitrarily closely although 
it can never converge to such an unstable orbit. And the closer it approaches to a UPO, the 
longer it stays around there. In terms of learning, therefore, the closer the initial value q(ko) 
is to the UP0 at an initial time ko, the longer the time is, during which the presented teacher 
signal patterns are restricted to those around the UPO. Therefore even if the learning with a 
certain chaotic teacher signal converges to the optimal point, the time it takes is not uniform 
with respect to the initial time ko. We will explain this situation using a simple example of a 
learning problem as follows: 

Here we consider the learning of the Logistic map, 

in a learning system with a one-dimensional adjustable parameter w, 

x(k+ 1) = wx(k)(l -x(k)) (x E R). (12) 

Where we set w* = 4. Since an error evaluating function is defined by, 

the learning based on gradient-descent method minimizing this function is described by, 

This equation itself is affine with respect to w, so the linearized system about w* of it is a 
system of a variable v changed from w by v = w - w* without approximation, 

Since a chaotic orbit q(k) of the Logistic map is restricted to an open interval (0, I),  the 
coefficient 1 - 11[q(k)(l - q(k))]2 in the right hand side of Eq. (15) is less than unity in its 
magnitude if the learning constant 77 is sufficiently small. Thus we can expect the null solution, 
v = 0, of the linear equation.(l5) is asymptotically stable. It is Theorem 2 that guarantees 
this in general. 

However, since q(k) is dense in a closed interval [O,l], it can approach a fixed point q = 0 
arbitrarily closely. The closer q(ko) is to 0 at an initial time ko, the longer the time is, during 
which the coefficient in the right hand side of Eq. (15) remains around unity, and thus the 
longer the convergence time of v(k) to 0 becomes. Hence there does not exist a convergence 
time K ( E )  that does not depend on the initial time ko as is required in the condition (ii) of 
Debition 1. Therefore the null solution cannot be uniformly asymptotically stable. 

Hondou et al. [8]-[lo] have pointed out that the short-term correlation caused by the 
stay of chaotic orbits around a UP0 accelerates the learning of chaos. Furthermore, they 
also have showed that due to such a correlation, when a particle in a periodic potential is 
excited by a chaotic signal, the transition probability of the particle from a potential valley 
to another becomes asymmetric even if the signal has a uniform invariant measure and the 
power spectral density of it is white [8]-[lo]. These results imply the possibility of utilizing 
the temporal non-uniformity of chaos in learning, while in this article we have discussed a 
negative result, that is, this non-uniformity of chaos makes it hard to analyze the condition 
for convergence of the learning. 

In relation to the non-uniformity of chaos, we should emphasize the difference between 
chaotic orbits and almost periodic orbits. To explain this difference, first we introduce the 
definition of minimal sets. 



Definition 2 If a closed invariant set S of a discrete dynamical system contains no closed 
invariant proper subset, then S is called a minimal set [ll, 121. 

For example, clearly a periodic attractor is minimal. A chaotic attractor generally contains 
UPOs, which are closed invariant proper subsets, hence it is not a minimal set. An almost 
periodic orbit is also aperiodic. However its closure, namely a torus, contains no UPOs. Hence 
a torus is a minimal set and an almost periodic orbit is temporally uniform unlike a chaotic 
orbit. Therefore uniformly asymptotic stability of the null solution of the linearized system 
(9) of the learning of an almost periodic orbit is guaranteed in general [3]. Minimality is 
an important property that characterizes the difference between chaos and torus as well as 
Lyapunov exponents or power spectrum. 

4. A Riddled Basin of the Optimal State of Learning 

In the previous section, we considered the learning of chaos in neural networks to be a 
non-autonomous dynamical system on the space of connection weights driven by a chaotic 
teacher signal. On the other hand, we can regard the learning as a time evolution process in 
an extended system of the system of connection weights combined with the system (I),  which 
generates the chaotic teacher signal. In this section, we show that the optimal state of the 
learning is a chaotic invariant set restricted to a low-dimensional subspace in the extended 
system, and that due to the non-minimality of the invariant set caused by the UPOs contained 
in it, the basin of the set can be a complicated one called a riddled basin [13]. 

We deal with the following extended system, which is a combination of the learning system 
(6) with a chaotic system (I) ,  which generates the teacher signal, 

w(k + 1) = 3(w(k), q(f)),  

q(k+ 1) = f(q(k)). (16) 

We denotes the chaotic attractor that contains the teacher signal q by A, c Rm. The 
extended system (16) is an m x n-dimensional autonomous system defined on A, x Rn. The 
optimal state of the learning is an m-dimensional subspace, A = A, x {w*), which is a chaotic 
invariant set. Hence the convergence of the leaning can be analyzed as the stability of this 
chaotic invariant set A. 

A typical example of such a chaotic invariant set restricted to a subspace is a state of 
chaotic synchronization. For example, chaotic synchronization of master-slave type proposed 
by Pecora & Carroll [14] is described by a continuous dynarnical system, 

~ ( t )  = 4(x(t), ~ ( t ) ) ,  ~ ( t )  = $(x(t), ~ ( t ) ) ,  i ( t )  = *(x(t), (17) 

Where x is an n-dimensional vector and y and z are m-dimensional vectors. We suppose 
x and y are oscillating chaotically with interaction described by the first and the second 
equations of (17). Since the forms of the second and the third equations of (17) are identical, 
there exists a solution satisfying y(t) - z(t). That is, it is possible that y and z synchronize 
chaotically. Furthermore y affects z via the interaction with x,  while z does not affect other 
variables but only receives external forcing. Therefore this is called the master (9) and slave 
(2) type chaotic synchronization. 

With a change of variable from z to w = z - y, the third equation of (17) is transformed 
into, 

~ ( t )  = $(x(t), w(t) + ~ ( t ) )  - *(x(t), Y(t)). (18) 

The state of chaotic synchronization is defined by w = o,  and this is a chaotic invariant 
set restricted to an (n + m)-dimensional subspace, { (x, y, w) I w = 0 ), of the (n + 2m)- 
dimensional system composed of the first and the second equations of (17) and Eq. (18). 



Consequently, the learning of chaos and chaotic synchronization can be formulated in the 
basically same form. 

Alexander et al. [13] discovered that the basin of such a chaotic invariant set restricted to 
a subspace can be a very complicated one that is eroded everywhere by another attractor's 
basin. Such a basin is called a riddled basin, which is defined as follows: 
Definition 3 If an invariant set A of a dynamical system is an attractor in the sense of 
Milnor, and if for every point x in its basin B(A) and for every open neighborhood U(x) of 
x, U(x) n B(A)' has positive measure, then B(A) is called a riddled basin. 

Where the basin B(A) is defined as the set of points whose w-limit set is contained in A. 
An attractor in the sense of Milnor is defined as follows [15]: 
Definition 4 A compact invariant set A of a dynamical system is called an attractor in the 
sense of Milnor if the following two conditions are satisfied: 
(1) The basin B(A) has positive Lebesgue measure. 
(2) There exists no proper subset A' of A, whose basin B(A1) is equal to B(A) up to a set 

of zero measure. 
An attractor is ordinarily defined as an invariant set whose basin is a neighborhood of 

it. Milnor's definition is an extended version of conventional definitions, which regards an 
invariant set whose basin has positive measure as an attractor even if it is not a neighborhood. 
The basin B(A) of an invariant set A is a riddled basin implies it is everywhere eroded by its 
conlpliment set to arbitrarily near the points of A and is not a neighborhood of A, although it 
has positive measure. An attractor A with a riddled basin attracts many orbits starting from 
its neighborhood, but the set of initial points the orbits starting from where do not converge 
to A is also dense and has positive measure. 

Now we introduce an example of a system for learning chaos in which a riddled basin is 
observed [3, 41. Here we consider the learning of the tent map, 

in a learning system with one-dimensional adjustable parameter w, 

The learning is described by the following gradient descent procedure, 

It is proved that a chaotic invariant set, A = { (q, w) I q E [I, 01, w = 0 ), in this system is an 
attractor in the sense of Milnor and its basin is a riddled basin [3, 41. Figure 1 is a numerical 
example of the riddled basin. The basin B(A) (the white region) is riddled by its compliment 
set. 

It is nothing but the non-minimality of chaos caused by the UPOs contained in it, which 
makes the analysis of the convergence of learning chaos based on linear approximation difficult, 
that generates such a strange structure of the basin. 



In general, the stability of the 
chaotic invariant set A in the sys- 
tem (16) can be evaluated by an 
exponent called a normal Lya- 
punov exponent, which is an ex- 
pansion rate of orbits along the w- 
direction, 

1 
X = lim - log llv(k) 11. (23) k*oo k 

Where v(k) is a solution of the lin- 
earized equation of (16) about w- 
component, 

- 

Fig. 1 A riddled basin of A in (22) 
v(k + 1) = DwS(w*, q(k))v(k), (77 = 22.0. The white region is the basin of A.) 

(24) 
and q ( k )  is a chaotic orbit dense 
in Aq. 

It is known that if the exponent X is negative, the null solution of the linearized system 
(24) is asymptotically stable and the measure of the basin of A is positive in general. However, 
X is an expansion rate averaged along the chaotic orbit, q(k), which conserves the natural 
invariant measure on A. Hence even if it is negative, the expansion rate calculated in the 
neighborhood of the UPOs contained in A, which UPOs do not conserve the natural invariant 
measure, may be positive. In such a case, there may exist a route from the neighborhood of 
the UPOs to another attractor and the basin B(A) may be eroded. Moreover, since the stable 
rnanifolds of the UPOs are dense in A in general, the erosion occurs everywhere arbitrarily 
near A. This is the mechanism of the generation of a riddled basin. 

The riddled basin in learning is a manifestation of the spatial nonuniformity (non- 
n~inimality) of the learning of chaos described by an autonomous system (16), which appears 
in Theorem 1 as the temporal nonuniformity that makes it hard to analyze the convergence 
condition of the learning described by a non-autonomous system (6). 

In the analysis of chaotic synchronization, the normal Lyapunov exponent (23) is called 
a conditional Lyapunov exponent (or a transversal Lyapunov exponent). In general, the syn- 
chronization state is asymptotically stable if this exponent is negative [14]. Does this fact 
contradict the existence of a riddled basin? The answer is ''No". The stability analysis using 
Lyapunov exponents is based on linear approximation. Therefore, in the system (18) for ex- 
ample, if the initial value w(0) is sufficiently near the synchronization state, w = o, then the 
synchronization is guaranteed by the negative Lyapunov exponents. However, the sufficiency 
depends on the initial conditions of signals, x and y. And there cannot exist such a value, the 
orbits with a initial value w(0) less than which in its magnitude are guaranteed to converge 
the synchronization state for all initial conditions of x and y if they are chaotic. That is, the 
fact that w* cannot be uniformly asymptotically stable, as is shown in Theorem 1, generates 
the riddled basin. 

5. Conclusion 

The results are summarized as follows: When we analyze the convergence condition to 
the optimal state of the learning of chaotic dynanlical systems in neural networks as the 
stability of a fixed point of a dynamical system defined on the space of connection weights 



driven by chaotic forcing, the linear approximation-based analysis is difficult, and the diffi- 
culty is caused by the non-minimality of chaotic invariant set containing UPOs and is related 
to riddled basins. We intuitively explained these results including the relation to chaotic 
synchronization, which we could not contained in Refs. [I, 2, 31, while one can find the math- 
ematical discussion about it in these references. 

This paper was presented in part a t  the 9th SICE Symposium on Decentralized Au- 
tonomous Systems. 
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