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Combinatorial game theory is a study of mathematical constructions of per-
fect information games in which there are no chance, nor hidden informations.
In this thesis, we discuss multiplayer games. Most of the notions and results
presented in this thesis are discussed in [15] by the author.

Among the early results of combinatorial game theory is a winning strategy
for NIM by Bouton[4] in 1902. NIM is a two-player game with some heaps of
stones, and the current player chooses one of the heaps and takes out some
stones. The winner of NIM is the player who takes out the last stone. We
denote the number of stones in the heaps like (3, 2) to express NIM positions.

Mathematically, a game is represented as a well-founded directed acyclic
graph. Nodes are called positions and a direct successor of a position is called
an option at the position, and a position without an option is called an end
position. We call such a graph a game tree. A play of a game starts by selecting
a current position and a current player. Each player selects one option of the
current position and update the current position to it alternatively. A game
ends when it arrives at an end position. We say a game is in normal play if we
define that the winner of the game is the player who moves last and the loser
is the player who comes to be the current player of an end position (like NIM).
This kind of game in which both players have the same set of options (like NIM)
is called an impartial game and a game which is not impartial (like go, shogi or
chess) is called a partisan game. In this thesis, we study only impartial games.

For the readers who are interested in this subject, we introduce some text-
books on which impartial and partisan games are discussed, [1], [2] and [3].

We say a player has a winning strategy if she can make herself the winner
regardless of her opponent’s move. In an impartial game, we say that a game
position is an N-position or a P-position if the next player (i.e. the current
player) or the previous player (i.e. the other player) has a winning strategy,
respectively. The following is one of the most important facts for a two-player
impartial game.

Theorem 1. A game position of an impartial two-player game is an N-position
or a P-position.
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We can analyze whether a NIM position is an N-position or a P-position in
a simple way, by calculating modulo-2 sum without carry which is denoted by
⊕ (NIM sum).

Theorem 2 (Bouton[4]). A NIM position (n1, n2, . . . , nk) is a P-position if and
only if n<2>

1 ⊕ n<2>
2 ⊕ · · · ⊕ n<2>

k = 0. Here, n<2> is the binary notation of n.

In contrast to normal play, a game is called in misère play if the last player
to move is the loser. We can also analyze misère NIM game in the following
way.

Theorem 3 (Bouton[4]). In misère NIM game, a position (n1, n2, . . . , nk) is a
P-position if and only if{

n<2>
1 ⊕ n<2>

2 ⊕ . . .⊕ n<2>
k = 0 (∃j. nj > 1)

n<2>
1 ⊕ n<2>

2 ⊕ . . .⊕ n<2>
k = 1 (∀j. nj ≤ 1).

We study multiplayer games in this thesis. Multiplayer combinatorial games
are difficult to analyze, because of the possibility of coalitions in them. For
example, consider the NIM position (1,2) in three-player NIM. If the current
player moves to (1,0) or (0,2), then the second player wins. However if the
current player moves to (1,1) then the second player moves to (1,0) and the
third player wins. So, the current player has no winning strategy but she can
choose whether the second player becomes the winner or the third player does.

With this observation, people usually study multiplayer games by adding
some assumptions to determine the game result. Li[13] defined a rank system.
Krawec[5, 6] introduced alliance matrix and Liu et al.[7, 8, 9, 10, 11, 12] studied
some multiplayer games with Krawec’s definitions.

Following the earlier results, we introduce the notion of a preference-based
play to multiplayer games in this thesis. We assume that each player has her
own preference order, which is a total ordering of all the players. We study the
situation where each player knows the content of each other’s preference, and
it is common knowledge that every player knows the preferences of the other
players, that is, each player knows that other players know the preferences of
other players, and so on. We call such a play a preference-based play. In this
thesis, we study the case that each player behaves optimally so that her most
preferred player will move last, and if she cannot, then she behaves so that her
second preferred player will move last, . . . , and so on. We call the preference
order which is equal to the play order but starting with the i-th player an
i-misère play. This notion contains Li’s rank-based play as the special case
i = 0. One of the main contributions of this thesis is the characterization of
losing positions of multiplayer i-misère games. From this characterization, we
obtained a characterization of losing positions of multiplayer NIM in i-misère
play. This result contains Theorem 2, 3 and the Li’s result as special cases.

In this thesis, we assume that there are m players P0, P1, . . . , Pm−1 and they
play in this order. For simplicity, any arithmetic in the subscript (e.g. Pi+k) is
done modulo m.
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As we noted above, we introduce the notion of a preference-based play to
multiplayer games. We write the preference order of a player as Pi(0) > Pi(1) >
· · · > Pi(m−1) if she wants player Pi(0) to be the last player to move, and if that
is impossible, she wants player Pi(1) to play last, . . . , and it is the worst result
that player Pi(m−1) becomes the last player to move.

Definition 1 (Preference matrix). Following Krawec[5], we introduce an m×m
matrix notation to express the preference orders of all the players.

A0,0 A0,1 · · · A0,m−1

A1,0 A1,1 · · · A1,m−1

...
...

...
Am−1,0 Am−1,1 · · · Am−1,m−1


Here, Aj,k is the index of the k-th preferred player of Pj relative to j with

the most preferred player called the 0-th preferred player. That is, the preference
order of Pj is Pj+Aj,0 > Pj+Aj,1 > · · · > Pj+Aj,m−1 .

Our notion of preference-based play is similar to the notion of alliance by
Krawec[5]. The difference is that the objective of alliance-based play is to let
the specified player have no moves, where the objective of our play is to let the
specified player play last. The two notions are convertible and we can express our
results with the notion of alliance-based play. However, then the constructions
in this thesis becomes complicated and we cannot state our result(Theorem 6)
as a generalization of Li’s result. The following notion of a last moving player
is a reformulation of Krawec’s notion of game value and Theorem 4 is his result
expressed with the position of the last moving player.

Definition 2. For a game position G, we write opt(G) as the set of all options
at G. That is, for every G′ ∈ opt(G), one can move from G to G′.

Definition 3. We define the function l to be

l(G, t) =

{
m− 1 if G is an end position

At,q otherwise

for q = min{j ∈ N | l(G′, t+ 1) + 1 = At,j with G′ ∈ opt(G)}.

Theorem 4 (Krawec). If every player plays optimally, then Pt+l(G,t) moves last
in the game that starts with position G and player Pt. If the starting position
G is an end position, then we consider Pt−1 to have moved last.

By using this theorem, it is guaranteed that for multiplayer games in preference-
based play, the result of each game is uniquely determined as using Theorem 1
for two-player games.

Definition 4. We say a multiplayer game is preference-impartial if the game
is impartial and its preference matrix satisfies, Ai,k = Aj,k for every i, j, k < m.
In this case, we abbreviate the preference matrix as:[

A0 A1 · · · Am−1

]
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Definition 5. In a preference-impartial game, l(X, t) = l(X, t′) for any t and
t′. Therefore we simply describe it as a unary function l(X).

l(G) =

{
m− 1 if G is an end position

Aq otherwise

for q = min{j ∈ N | l(G′) + 1 = Aj with G′ ∈ opt(G)}.

For G = (n1, n2, . . . , nk), we will abbreviate l(G) as l(n1, n2, . . . , nk) when
they will be no confusion.

Definition 6. If a game is a preference-impartial game and its preference ma-
trix is [

i (i+ 1) · · · (m− 1) 0 1 · · · (i− 1)
]
,

then we say that it is in i-misère play.

In i-misère play, each player wants the i-th player to be the last moving
player. The reason why we call it misère is that we obtain two-player misère
play when m = 2 and i = 1. In a preference impartial game, according to
Theorem 4, if every player plays optimally, then Pl(G) plays last in the game
G starting with player P0. Therefore, the person whose preference order starts
(resp. ends) with Pl(G) obtains the most pleasant (resp. unpleasant) result. We
call them the winner and the loser of the game, and say that a position is a
winning (resp. losing) position if the starting player is the winner (resp. loser).
Note that an N-position is a winning position and a P-position is a losing position
for two-player games. In an i-misère game, a position is a winning position if
l(G) = i and is a losing position if l(G) = i− 1.

Of course, we can define other positions by using the values of l(G). However,
it seems to be difficult to characterize the positions.

In 1978, Li[13] considered multiplayer NIM with rank system. He defined the
winner of the game is the person who moves last like two-player normal play. In
addition, players are assigned a rank, ranging from bottom to top in the order
of Pk+1, Pk+2, . . . , Pm−1, P0, P1, . . . , Pk−1, Pk when Pk is the winner and
each player adopts an optimal strategy toward her own highest possible rank.
That is, by definitions above, Li’s theory is in 0-misère play or under following
preference matrix: [

0 1 · · · m− 1
]

and with our terminology, the highest ranked player is the winner and the lowest
ranked player is the loser.

In order to describe Li’s result, we define a notion of modulo-m NIM sum.

Definition 7. For k ≥ 2, let SEQk be the set of sequences of {0, 1, . . . , k − 1}
that do not start with 0. For simplicity, we write 0 ∈ SEQk for the empty
sequence. Note that SEQk ⊆ SEQm if k ≤ m. For a non-negative integer
x, we write x<k> ∈ SEQk for the k-ary notation of x. That is, x<k> =
(xt, xt−1, . . . , x1, x0) if x = Σ0≤s≤txsk

s.
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Definition 8 (Generalized NIM sum). On SEQm, we define the component-
wise modulo-m addition operation ⊕m as follows. For x, y ∈ SEQm, if x and y
have different length, then we prepend 0s to the shorter sequence to adjust their
length and then do modulo-m addition without carry on each component and
then remove the leading 0s from the result so that x ⊕m y do not start with 0.
We simply write ⊕ for ⊕2.

By using these definitions and notations, Li’s result is described in the fol-
lowing theorem.

Theorem 5 (Li[13]). In 0-misère NIM, (n1, n2, . . . , nk) is a losing position if
and only if n<2>

1 ⊕m n<2>
2 ⊕m · · · ⊕m n<2>

k = 0.

We show following theorem which contains Bouton’s theory and Li’s theory.

Theorem 6. In i-misère NIM, (n1, n2, . . . , nk) is a losing position if and only
if {

n<2>
1 ⊕m n<2>

2 ⊕m · · · ⊕m n<2>
k = 0 (∃j. nj > 1)

n<2>
1 ⊕m n<2>

2 ⊕m · · · ⊕m n<2>
k = i (∀j. nj ≤ 1).

This theorem also means that we can know whether a given game position
G is a winning position by checking whether G has an option G′ which satisfies
this condition.

For the case (m, i) = (2, 0) we can obtain Theorem 2, for the case (m, i) =
(2, 1), we can obtain Theorem 3 and for the case (m, i) = (m, 0), we can obtain
Theorem 5 from this theorem. That is, this theorem reveal a hidden connection
between misère NIM and multiplayer NIM. We also found a characterization of
the set of losing positions.

Definition 9. For r ≥ 1, we define Mr(G) as the set of game positions which
are reached in no more than r moves from G. That is, M1(G) = opt(G) and
Mr(G) = opt(Mr−1(G) ∪G) for r > 1. In addition, we define Mr(G) = ϕ for
r < 1.

Theorem 7. Let S be a set of game positions of i-misère play. S is the set of
losing positions if and only if

(i) ∀G ∈ S ∀G′ ∈ E. G′ ̸∈ M i−1(G)

(ii) ∀G,G′ ∈ S. G′ ̸∈ Mm−1(G)

(iii) ∀G ̸∈ S. (∃G′ ∈ S,G′ ∈ Mm−1(G)) ∨ (∃G′′ ∈ E,G′′ ∈ M i−1(G)).

Here, E is the set of end positions.

This theorem extends the characterization of the sets of P-positions in two-
player games. Actually, for the case of m = 2, this theorem characterize the set
of P-positions in two-player normal and misère play.

Moore’s game, or NIMt, is a game in which players can choose up to t heaps
and take any numbers of stones from them[14]. Therefore, NIM1 is the original
NIM.
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Theorem 8 (Moore[14]). A game position (n1, n2, . . . , nk) of NIMt is a P-
position if and only if n<2>

1 ⊕t+1 n
<2>
2 ⊕t+1 · · · ⊕t+1 n

<2>
k = 0.

Li[13] showed the following theorem for multiplayer NIMt.

Theorem 9 (Li[13]). In 0-misère play of m-player NIMt, l(n1, n2, . . . , nk) = 0
if and only if n<2>

1 ⊕v n
<2>
2 ⊕v · · · ⊕v n

<2>
k = 0 where v = t(m− 1) + 1.

We can also extend this theorem to i-misère play.

Theorem 10. In i-misère play of m-player NIMt, (n1, n2, . . . , nk) is a losing
position if and only if{

n<2>
1 ⊕v n

<2>
2 ⊕v · · · ⊕v n

<2>
k = 0 (∃j. nj > 1)

n<2>
1 ⊕v n

<2>
2 ⊕v · · · ⊕v n

<2>
k = u (∀j. nj ≤ 1)

where v = t(m− 1) + 1 and{
u = 0 (i = 0)

u = t(i− 1) + 1 (1 ≤ i ≤ m− 1).

.

We have considered i-misère play where each player’s preference order is the
same as the play order. Next, we study the situation that for all player Pi, her
preference order is reverse to the play order.

Definition 10. For 0 ≤ i ≤ m − 1, we say that preference-based play of an
m-player game is an i-reverse play if it is a preference-impartial game and the
preference matrix is the following:[

i (i− 1) · · · 1 0 (m− 1) · · · (i+ 1)
]

In i-misère play, if l(G) = (i − 1) mod m, then G is a losing position. On
the other hand, in i-reverse play, if l(G) = (i − 1) mod m then the secondly
preferred player of the current player is going to be the last moving player of G.

In two-play normal and misère NIM. for all j(1 ≤ j ≤ k) and for all
non-negative integers n1, n2, . . . , nj−1, nj+1, . . . , nk, there is exactly one non-
negative integer nj such that (n1, n2, . . . , nj−1, nj , nj+1, . . . , nk) is a P-position.
In i-misère play with m > 2, there is no such uniqueness. However, we show
that there exists such a uniqueness in i-reverse play. This result suggests that
i-reverse play is also a natural extension of two-player normal and misère play.

Theorem 11. In i-reverse play, for all j(1 ≤ j ≤ k) and for all non-negative
integers n1, n2, . . . , nj−1, nj+1, . . . , nk, there is exactly one non-negative integer
nj such that l(n1, n2, . . . , nj−1, nj , nj+1, . . . , nk) = (i− 1) mod m.

Finally, we study the case that each player has a different preference order
for the case of three-player NIM. We have already studied the cases named
0-misère, 1-misère, and 2-misère play;
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 0 1 2
0 1 2
0 1 2

 ,

 1 2 0
1 2 0
1 2 0

 ,

 2 0 1
2 0 1
2 0 1


and the cases named 0-reverse, 1-reverse, and 2-reverse play; 0 2 1

0 2 1
0 2 1

 ,

 1 0 2
1 0 2
1 0 2

 ,

 2 1 0
2 1 0
2 1 0

 .

We showed some properties of l(G, t) though its characterization is an open
problem for some of the cases. Now, we study the following preference orders
which are not symmetric.

Semi-normal form: Each player prefers herself first. Two players secondly pre-
fer the same player and the other player secondly prefers her next player.
There are three possibilities of preference orders which are essentially the
same.  0 1 2

0 2 1
0 1 2

 ,

 0 1 2
0 1 2
0 2 1

 ,

 0 2 1
0 1 2
0 1 2


Semi-reverse form: Each player prefers herself first. Two players secondly

prefer the same player and the other player secondly prefers her previ-
ous player. There are three possibilities of preference orders which are
essentially the same. 0 2 1

0 2 1
0 1 2

 ,

 0 1 2
0 2 1
0 2 1

 ,

 0 2 1
0 1 2
0 2 1


Without loss of generality, we consider semi-normal form 0 1 2

0 2 1
0 1 2


and semi-reverse form  0 2 1

0 2 1
0 1 2

 .

We also obtained overall result for semi-normal NIM and semi-reverse NIM.
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