€ 9-5

FORCED NEGATIVE=RESISTANCE GSCILIATOR

Chihiro Hayashi and Yoshisuke Ueda
Department of Electrical Engineering, Kyoto University

Kyoto, Japan

1. Introduction

When a periodic force is applied
to a self-oscillatory system, the fre-
quency of the self-excited oscillation,
i.e., the natural frequency of the sys=
tem, falls in synchronism with the
driving frequency, provided these two
frequencies are not far different.
This phenomenon of frequency entraine
ment may also occur when the ratio of
the two frequencies is in the neighbor-
hood of an integer (different from
unity) or a fraction. Thus, if the
amplitude and frequency of the external
force are appropriately chosen, the
natural frequency of the system is
entrained by a frequency which is an
integral multiple or submultiple of
the driving frequency.! If the ratio
of the two frequencies is not in the
neighborhood of an integer or a frac-
tion, one may expect the occurrence of
an almost periodic oscillation.2

In this paper, we consider a self«
oscillatory system with nonlinear re=-
storing force governed by

2
d™v 2, dv
— e U1 = pv") = »
w2 P et
where [« is a small positive constant
and 7 1is positive also. Special at-
tention is directed toward the transi-
tion between entrained oscillations
and almost periodic oscillations in the
case where the amplitude B and the
frequency v of the external force are
varied beyond the boundary of entrain-
ment.

2. Fundamental Equations for Almost
Periodic Oscillations

When the driving frequency V is
in the neighborhood of the natural
frequency of the system, we assume the
solution of Eq. (1) of the form

=B cos vt (1)

v(t) = by (t) sin V't + bz(t) cos Yt (2)

If the amplitude B and the frequency
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V of the external force are given in
the region of entraimment, an entrained
periodic oseillation occurs; in this
case the coefficients bi(t) and bo(t)
in Eq. (2) are constants. On the other
hand, if the external force is pre=-
scribed outside the region of entraine-
ment; an alwost periodic oseillation
results. In this case the coefficients
by(t) and bz(t) in Eq. (2) would no
longer be constants, but vary slowly
with time t. Bearing this in mind we
shall derive the relations which will
determine the cvefficients by(t) and
by(t) in Eg. (2). This relations may
readily be found by the method of hare
monic balance; namely, upon substitution
of Eq. (2) into (1), equating the co-
efficients of the terms containing
cos Vt and sin Jt separately to zero
gives
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Constants a, and g are respectively
the amplitude and frequency of the

self-excited oscillation. Equations
(3) play an important role in our
following investigation, since they
are the fundamental equations for the
study of the almost periodic oscilla=-
tion as well as the entraimned periodic
oscillation.

Oscillations in the transient
state are represented by integral curves
on the x4y4 phase plane. Hence, a peri=
odic oscillation corresponds to a sin-
gular point, and an almost pericdic
oscillation to a limit cycle.



Mumerical Example
Let us consider a case in which

M =0.2, 7 =8, and V =0.9., Figure -
1 shows the amplitude characteristic
of the harmonic oscillation (B vs. ry).
This amplitude characteristic is obe
tained by equating both dxq/dT and
dy4/dT to zero in Hgs. (33. The
dolted portions of the characteristic
curve represent unstable states.
Figure 2 shows the phase portraits of
the system (3) for various values of B.
when B is given below By (see Fig. 1),
a limit cycle exists which encircles an
unstable spiral point. This state is
shown in Fig. 2a. A coalescence of
singularities occurs at B = By.
Further increase in B results in the
coexistence of a stable limit cycle
and a stable nods, when B = By, thers
exists a closed integral curve starting
from the saddle point and comming back

Amplitude characteristic of
the harmonic oscillation,
showing the transition between
entrained and almost periodic
oscillations.

Fig, 1.

to the sams point. The limit cycle
disappears when B is increased beyond
B2. However, when B reaches By the
integral curves shows the same” behavior
as in Fig. 2d; see Fig. 2f. A limit
cycle appears cnce again for B3<B<B4,
and is reduced to a stable spiral at

B = By. For values of B between B,
and B5. thers exist two types of har-
monic oscillations, i.e., the resonant
and nonresonant oscillations. No limit
cycle exists in this case. The coa=
lescence of singularities occurs at B
= Beo Wnen B is decreased, the res-
onaht oscillation is sustained down te
the value of B = B{. Below By, only
an almost periodic oscillation is ob=
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tained. Hence, it is concluded that
an almost periodic oscillation occurs
for B<B, and BB<B<BU7 a resonant os=
cillation for ~B{<B, and nonresonant
oscillation for By<BBg. It depends
on the initial condition which types
of oscillation occur. The region of
initial conditions leading to the
different types of oscillation are
bordered by the separatrices, i.e.,
the integral curves which tend to the
saddle point with increasing T . It
should also be mentioned that, for
other values of the system parameters
or for different values of V , the
situation may somewhat be different
from that mentioned above.

The result obtained in the
present analysis is confirmed by
analog=-computer analysis.
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Fig. 2. Phase portraits of Eq. (3)

for various values of B.
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