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Abstract. We report an experimental study of stimulated Raman scattering in anatase TiO2 at 

4K under both resonance and off-resonance conditions. Efficient first- and higher-order 

stimulated Raman emission of the lowest optical mode was observed, especially for the 

resonance case. From the dependence of the first-order Stokes emission on laser intensity, we 

estimate values of the Raman gain coefficient which are large compared with those reported for 

other crystalline materials. The large gain values are attributed to the narrow linewidth of the 

Raman line at low temperatures. 

1.  Introduction 

Stimulated Raman scattering (SRS) is one of the nonlinear optical processes driven by coherent 

interactions between light and elementary excitations of materials [1]. Over the years, many 

applications such as Raman lasers [2] and attosecond pulse generation [3] have been developed out of 

this process. Spectroscopic applications of SRS have also been developed to obtain valuable 

information on the materials under investigation. It was pointed out that the major criteria for a 

material with efficient SRS are a narrow Raman linewidth and a high Raman scattering cross section 

[4]. Beattie and Gilson [5] observed a very intense Raman line in anatase TiO2 which is well known as 

a photocatalyst material. Thus anatase is expected to be a good candidate for SRS. We shall report an 

investigation of SRS in anatase under off-resonant and resonant excitation.  

2.  Experimental 

The samples used were single crystals of anatase TiO2 grown by chemical transport reactions. They 

were kept in a continuous flow helium cryostat. For our measurements of stimulated Raman emission,  

an optical parametric amplifier (1.94 eV or 3.14 eV, 10 Hz repetition rate, 2 ns duration) pumped by 

the third harmonic of a Nd:YAG laser was used as the excitation source.  The laser beam was focused 

into the sample by a lens of 25-cm focal length. Light scattered at nearly the right angle to the incident 

beam was analyzed with a double-grating monochromator equipped with a CCD detector. Spectral 

resolution of our setup was 0.2 (0.6) cm
-1

 for 1.94 (3.14) eV excitation.  

3.  Results and discussion 

Figure 1 shows the spontaneous Raman spectrum of anatase TiO2 measured at 5K. A cw He-Ne laser, 

1.96 eV was used as the excitation source. Since the sample is not oriented, all the Raman-active 

vibrational modes with different polarizability tensors (1A1g+2B1g+3Eg) are detected [6]. It is found 

that the spectrum of the lowest Eg phonon at 137 cm
-1

 is quite sharp and intense, indicating a large 

scattering cross section for this mode [5]. These properties are the major criteria for a high gain Raman  
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 material [4]. 

 Figure 2 shows the stimulated Raman spectra at 4 K and its dependence on incident laser intensity. 

Since the laser photon energy, 1.94 eV was well below the band-gap energy of anatase, 3.2 eV [7], the 

spectra were measured under the off-resonant excitation. At low excitation intensity, as shown in 

figure 2 (a), the spectrum is similar to the spontaneous Raman spectrum (figure 1). In addition, a weak 

anti-Stokes component (AS) due to the lowest Eg mode is seen. At higher intensities, the first-order 

Stokes emission of the Eg mode is strongly amplified through nonlinear coupling with the laser wave 

(figure 2(b)). As the excitation intensity is increased further, new Stokes lines appear, as shown in 

figure 2(c). There are intense lines at shifts of two and three times the frequency of the Eg phonon. 

Such higher-order Stokes components have been often observed in SRS experiments [1]. When the 

first-order Stokes emission becomes sufficiently intense, it acts as a source for the amplification of a 

light wave at the second-order Stokes energy. This process is iterated generating higher-order Stokes 

waves. It is found that the anti-Stokes component is also amplified.  

 Next we investigate the SRS process in resonant-scattering regime.  Figure 3 shows the observed 

Raman spectra for incident laser energy of 3.14 eV which is slightly below the band-gap energy.  As 

in the case of the off-resonant excitation, Stokes emission of the Eg mode is strongly amplified and the 

 

 

 
Figure 2. Stimulated Raman spectra at 4 K 

under off-resonant excitation for laser intensities 

equal to (a) 300, (b) 740 and (c) 2000  MW/cm
2
, 

respectively.  Each spectrum is offset by three 

decades for clarity. 

 
Figure 3. Stimulated Raman spectra at 4 K 

under resonant excitation for laser intensities 

equal to (a) 80, (b) 370 and (c) 1200  MW/cm
2
, 

respectively.  Each spectrum is offset by five 

decades for clarity.  

 

Figure 1. Spontaneous Raman 

spectrum of anatase at 5K excited 

with the 632.8 nm line of a cw He-

Ne laser. The spectrum is plotted 

on a semi-log scale. Vibrational 

mode symmetries of the Raman 

lines are indicated.  The other 

weak lines are plasma lines of the 

laser.  
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number of the Stokes components increases with increasing excitation intensity. We observe the 

Stokes emission up to the eighth-order at laser intensity of 1.2 GW/cm
2 
as shown in figure 3(c). Thus 

the number of the Stokes components in figure 3(c) is larger than that in figure 2(c) in spite of the low 

laser intensity compared with that in figure 2(c), indicating the resonant enhancement of Raman 

scattering efficiency.  

 Besides the sharp Stokes components, there are several bands in the range above 700 cm
-1 

in 

figures 3(b) and 3(c). These bands arise from spontaneous Raman scattering caused by the Stokes 

components. For example, the band at 777 cm
-1

 corresponds to the spontaneous Raman emission of the 

640 cm
-1

-mode (Eg symmetry) induced by the first-order Stokes emission. This fact indicates that the 

conversion efficiency of laser into the Stokes emission is high. Several anti-Stokes components are 

also observed in figures 3 (b) and 3(c). These components are produced by Raman-induced four-wave 

mixing processes [1].    

The observed intensities of the first- and second-order Stokes emission are plotted as functions of 

the laser intensity in figure 4 for 1.94 eV excitation and in figure 5 for 3.14 eV excitation. For 

comparison, the intensity of the 395 cm
-1

-mode (B1g) is also shown. For both excitation energies, while 

the B1g emission shows a linear dependence on incident laser intensity over the whole intensity range 

investigated (as shown by thin solid lines), the Stokes components show different behaviors depending 

on the laser intensity. With reference to [8], four different regions can be distinguished for the first-

order Stokes emission : (A) at low intensities, the Stokes emission increases linearly with laser 

intensity (thin solid lines), indicating that spontaneous Raman scattering dominates ; (B) amplification 

of the Stokes emission occurs ; (C) substantial growth of the Stokes emission is observed, as shown by 

dotted lines (the lines are guides to the eye.) ; (D) the Stokes emission saturates under the resonant 

excitation (figure 5).  

SRS is observed in the regions (B),(C) and (D). The threshold for SRS occurs at laser intensity of 

340 (80) MW/cm
2
 for 1.94 (3.14) eV excitation. We can estimate values of the Raman gain coefficient 

g by fitting an equation IStokes=(const)Ie
 gIl

 to the first-order Stokes data in the region (B) [9]. Here I is 

the incident laser intensity and l is an effective interaction length. The bold solid curves in figures 4 

and 5 were obtained by the fitting. Taking l = 0.5 mm (the sample size), the Raman gain coefficient is 

estimated to be 0.12 (0.14) cm/MW for 1.94 (3.14) eV excitation at 4 K (the accuracy of the gain 

values is approximately ±60% due to the possible errors in estimating I and l). These values are large 

 

 

 
Figure 4. Experimental intensities of several 

Stokes lines for incident laser energy of 1.94 

eV as functions of excitation power.  

 
Figure 5. Same as figure 4, with incident laser 

energy of 3.14 eV. 
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compared with reported values for other crystalline materials. For example, gain values of 0.04 

cm/MW for the 521 cm
-1

-mode in Si at 77K [9] and 0.044 cm/MW for the 1066 cm
-1

-mode in NaNO3 

at room temperature [10] have been reported. The gain coefficient is inversely proportional to the 

Raman linewidth [1].  The linewidth of the lowest Eg 
 
mode in anatase at 4 K is below our instrumental  

resolution  (0.2 cm
-1

 full width at half-intensity-maximum) and is much smaller than the linewidths of 

0.8 cm
-1

 for Si and of 2.0 cm
-1 

for NaNO3. Thus it is concluded that the observed large gain is (at least 

partly) due to the narrow Raman linewidth. In fact, we did not observe SRS in anatase at room 

temperature where the Raman line of the Eg 
 
mode broadened considerably (about 7 cm

-1
). It is seen 

that the estimated gain coefficient in resonance condition is almost equal to that in off-resonance 

condition. We have shown that intense photoexcitation with energies slightly below the band-gap 

energy induced resonant two-photon transitions at low temperatures [7]. Two-photon absorption at the 

laser frequency may suppress the Raman gain in resonance condition. Since the gain is inversely 

proportional to the cube of the Stokes frequency [1], the factor also contributes to the suppression.  

 In the region (C), the first-order Stokes emission increases sharply with increasing excitation 

intensity. The results are similar to those found in SRS experiments for liquid O2 and N2 [8]. In [8], the 

authors ascribed the results to the onset of Raman oscillation caused by feedback of Stokes emission 

via Rayleigh scattering.  Since our sample is not a parallel-sided slab, it is unlikely that the onset of 

oscillation arises from reflection at the sample surfaces. Then it is inferred that the feedback via 

Rayleigh scattering is the cause of oscillation, as in the case of [8]. It is to be noted that substantial 

growth of the second-order Stokes emission is also observed in the region (C), as shown by dotted 

lines (the lines are guides to the eye.). 

Under the resonant excitation (figure 5), at higher laser intensities above 1 GW/cm
2
, the Stokes 

emission saturated and further increase in laser intensity resulted in reduction of the emission intensity 

due to damage to the crystal. As mentioned above, resonant two-photon transition occurs under intense 

photoexcitation at 3.14 eV, thus producing many electron-hole pairs in the crystal [7]. Then the two-

photon excitation is expected to act as a competing nonlinear process in the region (D).  

4.   Conclusion 

We have studied stimulated Raman effect in anatase TiO2 at 4 K under the off-resonance and 

resonance conditions. It is found that anatase exhibits highly efficient first-order stimulated Stokes 

emission associated with the Eg mode at 137 cm
-1

. We also observe the high-order Stokes and anti-

Stokes emission, when we increase the incident laser intensity, especially for the resonant case.  The 

large gain values estimated from the stimulated Raman emission are assigned to the narrow linewidth 

of the Raman line of the Eg mode at low temperatures. Our results show that anatase has large Raman 

nonlinearity and suggest the possibility of stimulated Raman effect to control the material property 

through excitation of intense coherent lattice vibrations.  

 

 

References 

[1] Kaiser W and Maier M 1972 Laser Handbook vol 2, ed F T Arecchi and E O Schulz-Dubios 

(Amsterdam: North-Holland) p 1077 

[2] Spence D J  2017 Prog. Quantum Electron. 51 1 

[3] Agostini P and DiMauro L F 2004 Rep. Prog. Phys. 67 813 

[4] Murray J T, Powell R C and Peyghambarian N 1996 J. Lumin. 66&67 89 

[5] Beattie I R and Gilson T R 1968 Proc. R. Soc. Lond. A 307 407  

[6] Ohsaka T, Izumi F and Fujiki Y 1978 J. Raman Spectrosc. 7 321  

[7] Watanabe M and Hayashi T 2005 J. Lumin. 112 88 

[8] Grun J B,  McQuillan A K and Stoicheff B P 1969 Phys. Rev. 180 61 

[9] Ralston J M and Chang R K 1970 Phys. Rev. B 2 1858 

[10] Karpukhin S N and Stepanov A I 1986 Sov. J. Quantum. Electron. 16 1027 


