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Abstract

Recent technological advance sees a rising need for secure computing protocols.
With cloud computing, data outsourcing and machine learning paradigms
widely adopted, large data exchanges between untrusted parties put unprece-
dented demand on efficient protocols that allows for blind computation over
encrypted inputs.

Examples for the need of multi-party secure protocols are abundant. For
instance, electronic voting system requires the identities of individual voters to
be remained private, while keeping the voting results verifiable by the election
observers. Meanwhile, searchable encryption schemes try to ensure that a legal
user can search through some database without leaking the search records
to the server. More recently, with the development of the machine learning
as a service (MLaaS) computing model, both user input privacy and server
model privacy are required. Privacy concerns have become one of the main
obstacles that prevent the widespread use of artificial intelligent algorithms as
basic infrastructures.

This dissertation is devoted to use cross-layer techniques to realize the above
mentioned secure protocols. In particular, emphasis is placed on lattice-based
homomorphic encryption (HE) is placed, as their simple algebraic structures and
flexible cryptographic constructions provide new solutions to practical secure
computing schemes. We refer to security schemes based on HE schemes as
homomorphic secure protocols (HSPs).

In the first part of this dissertation, better hardware primitives are
investigated to improve the performance of learning-with-error (LWE) based
cryptosystems, including HSPs. New architectures for the basic arithmetic
circuits (i.e., the multiplier units) of cryptosystems based on LWE are proposed.
Different from existing approaches that rely on built-in general-purpose multi-
pliers, the proposed modular multiplier architectures target on minimalistic
design. As a result, it is revealed that many of the software-level optimization
techniques, such as modulus selection and lazy reduction, are not as useful
on the proposed platforms. A focus is also put on the error characteristic of
approximate multipliers for LWE decryption. It is discovered that the multiplier
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architecture can be further simplified if such numerical approximation is
adopted. Compared to existing approaches, an application-specific approximate
multiplier can provide up to 4–12x area and 4–21x energy reductions.

The second part of this dissertation concentrates on secure näıve Bayesian
filter (SNBF) based on additive HE. The main objective of SNBF is a
system-level design optimization for secure email filters, such that blind filtering
on encrypted emails can be practically feasible. In the algorithmic layer, weight
quantization and parallel embedding techniques are suggested. In the hardware
layer, multiplier circuits with large integer inputs are proposed, such that
the blind filtering process, which in our case consists of more than 700,000
multiplications between 2048-bit integers, can be computed in a power-efficient
manner. Results show that on both CPU and dedicated platforms, the proposed
techniques are effective in reducing the overall system cost. An average email
in a real-world email dataset can be classified within 0.5 s.

Based on the hardware platforms and algorithmic techniques proposed
above, secure inference for MLaaS are investigated in the third part of
the dissertation. In designing a better protocol, the HE-based convolution
and fully-connect layers are targeted. For convolution layers, an oblivious
frequency-domain convolution protocol is proposed. The key idea is that by
combining homomorphic encryption with additive secret sharing, the computa-
tions involved in secure convolution can be simplified to normal discrete Fourier
transformation and a lightweight homomorphic (coefficient-wise) multiplication.
For both convolution and fully-connect layers, weight quantization and error
characterization techniques are applied to minimize the parameter expansions.
Numerical experiments show that the proposed techniques can reduce the
communication bandwidth by 2–3x in convolution and fully connected layers,
in addition to greatly improving the scalability of neural-network-based secure
inference.

With a focus on lattice cryptography, this dissertation addresses efficiency
concerns over HSPs. As increasing numbers of devices are integrated into
a single network, it is expected that more cryptographic, algorithmic and
architectural primitives will be combined to achieve low-cost trusted computing
environments. As demonstrated in this dissertation, instead of optimizing each
independent layer separately, cross-layer design techniques that are aware of
the entire system are critical to the overall performance of the interconnected
network, and are therefore essential to a practically useful secure protocol.
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Chapter 1

Introduction

1.1 Homomorphic Secure Protocols

The design and implementation of secure protocols involving multiple parties for
the computation of a joint function consist a new area of research in the age of
cloud computing. Due to the multidisciplinary nature of the topic, contributions
from various fields of expertise are drawn. In designing any protocol of this kind,
one needs to comprehend the entire system, from the high-level application
layer, to the intermediate layer of cryptographic building blocks, and finally
to the low-level hardware layer, such that the complex design trade-offs are
well-captured.

The primary motivation for multi-party secure protocols is the increasing
demand from the software as a service (SaaS) model, especially machine learning
as a service (MLaaS). Traditionally, data are encrypted over the communication
channel but remain plaintext to all the involved parties. However, in such
computing paradigm, the service user and provider often regard each other as
untrusted parties, and are hesitated to exchange private data and proprietary
models in cleartext.

While multi-party secure protocols can provide perfect solution to the
above dilemma, the main obstacle for adopting the protocols in practice is
the efficiency (or, inefficiency) problem. Most general constructions that
permit oblivious function evaluations are only theoretically viable, such as
function encryption [1] or general garbled circuit [2]. Meanwhile, secure
protocols equipped with homomorphic encryption (HE) schemes, referred to
as homomorphic secure protocols (HSPs), are gaining increasing popularities.
While the homomorphic property of certain public-key encryption (PKE)
schemes was considered as a security risk in some applications [3], it was soon
realized that HE can be highly efficient with linear function evaluations such as
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1.1. HOMOMORPHIC SECURE PROTOCOLS

Application Layer

Cryptographic Layer

Hardware Layer

{
{

{

Inference
Training
Email Filter
Private Function

Secret Sharing
Homomorphic Encryption
Garbled Circuit

Arithmetic Units
Datapath
Memory I/O
Microarchitecture

Higher

Lower

Figure 1.1: Three abstraction layers that characterize the design architectures
of HSPs focused on in this dissertation.

summing and averaging, which are natural arithmetic operations in applications
such as electronic voting systems [4]. As HE schemes allow for blind evaluations
directly on ciphertexts by untrusted parties, HSPs are generally much more
efficient in terms of the computational and communicational overhead when
compared to their traditional counterparts.

The critical question that still arises, however, is exactly how “efficient”
can such protocols be, where the efficiency requirement is on both the running
time and total energy consumption. For example, a recently proposed fully
homomorphic encryption (FHE) based secure database system requires seven
days to retrieve a single row from a 10-record database [5], where the majority
of the computational time is spent on the expensive bootstrapping operation
(bootstrapping can be thought of as a re-encryption step that allows for
additional homomorphic evaluations). It is obvious that such protocols are
neither time nor energy efficient. In contrast, some of the protocols, such as
key-exchange and secure inference schemes, have computational burdens on edge
devices with constrained resources. In such cases, the overall energy efficiency
is of particular concern. To date, most HSPs proposed and their related
implementations still reside in the research domain, but several attempts were
made for standardization [6,7] and commercialization [8,9]. The key observation
of this dissertation is that, with a number of abstraction layers and several sets
of different cryptographic tools in hand, building an HSP turns into a cross-layer
design optimization problem. As illustrated in Fig. 1.1, this dissertation defines
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CHAPTER 1. INTRODUCTION

three abstraction layers in designing an HSP, and puts an emphasis on their
relationships. First, in the application layer, a precise security model and
attack surface need to be defined according to the particular application. In
addition, security requirements are generally application-dependent, and in
HSPs, a change in the security standard can result in a completely different
set of cryptographic primitives being used. Second, the trade-off between
such primitives is also complex, as some perform better with smaller-size
datasets, and others are asymptotically more efficient. Finally, the hardware
platform upon which the protocols are executed also plays an important role,
for different cryptographic primitives depend on distinct hardness assumptions
(e.g., factoring versus lattice). With the assistance of hardware accelerators, as
shown in this dissertation, it is possible to apply techniques that improve the
time and the energy efficiency across all design layers.

1.2 Lattice Cryptography

The development of lattice cryptography has drawn major attentions in the
cryptographic community over the past decade. At first, as noted in [10], the
major benefit of cryptographic constructions that rely on lattice problems is the
worst-case to average case reductions provided in [11]. Subsequent development
of the popular learning with errors (LWE) problem introduced by Regev [12]
makes lattice problems a foundation for a plethora of cryptographic primitives as
well as constructions. For example, LWE enables fully homomorphic encryption
(FHE) [13–17] whose construction was previously unknown. Traditional crypto-
graphic constructions are also suggested, such as efficient public key encryption
(PKE) [12,18], key-exchange [6,7,19–21], and digital signature schemes [13,22].
In addition, variants of the LWE problem are also proposed, which include
Ring-LWE (RLWE) [23], Polynomial-LWE [24], Module-LWE [25], and Order-
LWE [26]. The standard LWE hardness assumption also enjoys the strong
security guarantee against quantum algorithms [12,27].

Besides being the only known hardness assumption permits FHE, the general
additive structure of LWE-based cryptosystems allows for single-instruction
multi-data (SIMD) operations in the homomorphic domain, as proposed by
Smart and Vercaueren [28]. Furthermore, slot permutation based on the
homomorphic automorphism technique proves to be extremely efficient for
handling homomorphic matrix operations [29]. Consequently, recent HSPs
often adopt LWE-based HE for efficient protocol execution, over the traditional
factoring-based schemes. However, for its short history, lattice cryptography
deserves much more optimizations, especially in the hardware layer, and
lattice-based cryptosystems exhibit properties that were not known to be viable.
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1.3. OBJECTIVES AND METHODS

Therefore, while factoring-based cryptosystems are also adopted for practical
reasons as in Chapter 5, a larger portion of this dissertation devotes to the
optimization of lattice-based cryptographic constructions and HSPs.

1.3 Objectives and Methods

Here, a brief summary of the main objectives and the techniques used in this
dissertation is provided.

1.3.1 Specialized Hardware Primitives for Lattice Cryp-
tography

The first topic discussed in this dissertation is designing better hardware
primitives for lattice cryptography. In order to further study and enhance
the efficiency of (R)LWE-based schemes, dedicated multiplier architectures
are proposed in this dissertation. First of all, in Chapter 3, (R)LWE-based
post-quantum (PQ) key exchange protocols are examined. As current art lacks
specialized multiplication units for such protocols, multiplier architectures are
developed for both LWE and RLWE. By closely inspecting the security and
error behaviors, new parameter sets are proposed for LWE to minimize client-
side computations. Upon the proposed architectures, the practical efficiencies
of general LWE versus RLWE are evaluated with respect to the instantiated
parameters. The results indicate that a hardware-software combined effort can
substantially reduce the client-side computation burdens for LWE-based PQ
key exchange, to the extent that the general LWE construction is almost as
efficient as its RLWE counterpart.

Next, in Chapter 4, a connection is made between LWE, a concept in the
cryptographic layer, and approximate computing (AC), a field of study in the
hardware layer. Different from existing hardware accelerators, the important
observation is that LWE-based cryptosystems are inherently approximate, and
that the decryption for LWE is probabilistic by design. Therefore, as long as
the parameters permit, the probabilistic nature of LWE allows approximate
hardware to be deployed virtually with no additional overhead. By carefully
bounding the error sizes resulted from numerical approximation, a set of
approximate multipliers is instantiated for a public-key encryption scheme and a
homomorphic encryption scheme. Through the experiment, essential ciphertext
size reduction and decryption speed increase are observed without affecting the
empirical decryption failure probability.

Through studying hardware primitives for lattice cryptography in detail,
the observation is that, while individual hardware component is relatively
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simple in nature, the way different components interact with each other in a
particular system can be highly complex and application-dependent. Hence, the
techniques used in this part of this dissertation, e.g., hardware-aware parameter
estimation methods, serves as an important entry point to the subsequent
development of techniques in the application and primitive layers in HSPs.

1.3.2 Homomorphic Bayesian Filter

Although it is theoretically viable for (lattice-based) FHE schemes to evaluate
circuits of polynomial depth [15, 16, 30], no known FHE, at the moment, is
practically feasible. Consequently, a solution to the privacy concerns over data
outsourcing is much needed. As a perfect example, outsourcing personal or
organizational email data to remote server presents to be challenging in terms
of balancing privacy and efficiency. On one hand, since the server possesses a
large amount training email samples, and thus a good email filter, the server
should be able to filter ham/spam emails based on publicly-available word lists.
On the other hand, in a traditional setup, this requires the server to have
access to the plaintext email data, which violates privacy requirements in many
situations [31].

The second part of this dissertation, Chapter 5, seeks a practical solution
to the blind email filtering problem with the assistance of HE. The email filter
used in this case is a Näıve Bayesian filter (NBF), which is one of the simplest
forms of machine learning. Due to the simplicity of the (plaintext) protocol, the
proposed secure Näıve Bayesian filter (SNBF) scheme is realized with only the
Paillier scheme, an additive homomorphic encryption (AHE) scheme based on
the decision composite residuosity problem. Weight quantization and parallel
filtering techniques are devised that significantly reduced the computational
overhead of SNBF. Using a real-world email dataset, it is discovered that even
with a relatively small filter size of 10,000 words, a modern CPU still needs
around 15 seconds to filter an average-length email. With an application-specific
hardware multiplier, the per-email computation time can be reduced to 0.5 s.

In designing SNBF, the critical step is to simplify the original NBF, such
that the arithmetic operations within can be efficiently implemented by HE and
accelerated by the underlying hardware platform. HE-based protocols share
many similarities with the situation where expensive algorithms are executed
on resource-constrained hardware devices. Hence, hardware-oriented design
techniques are found useful.
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1.3.3 Homomorphic Inference Engine

Based on the insights gained in the process of studying lattice-orient hardware
architectures and secure email filter, it is realized that the design of secure
inference engines, which include the filtering process of NBF, represents a
novel field of research that demands design perspectives across the application,
primitive and hardware layers.

As mentioned, the design and implementation of multi-party secure inference
in the machine learning as a service (MLaaS) model attract increasing atten-
tions, especially that are based on artificial neural networks (ANN) [32–37].
In Chapter 6, a secure inference protocol is proposed. Here, a specific
ANN-based secure inference scheme, called Gazelle [35], is targeted. Based on
the techniques developed in Chapter 4, the error behaviors of the homomorphic
layers in Gazelle are characterized both theoretically and empirically. Moreover,
it is demonstrated that frequency-domain convolution can be applied in a
homomorphic manner via a novel application of the convolution theorem. The
quantization technique from Chapter 5 is also integrated into the proposed
protocol to provide a trade-off between efficiency and prediction accuracy.
Finally, the proposed protocol obviously benefits from the hardware multipliers
proposed in Chapters 3 and 4.

1.4 Organization

The basic layout of this dissertation can be summarized as follows. First, in
Chapter 2, notations used throughout and basics on various cryptosystems are
reviewed. Preliminary knowledge on related works are also presented.

Next, Chapters 3 and 4 discuss better hardware primitives for LWE
cryptography. For PQ key exchange schemes, application-specific hardware
multipliers are proposed for both the LWE and RLWE cases. A specific
parameter set is also instantiated for the LWE-based cryptosystem, and the two
cryptosystems are compared. While RLWE is still more efficient overall, given
the security benefit, LWE remains as a competitive choice. To further advance
the practicality of LWE-based cryptosystems, approximate computing methods
are used to reduce computational cost and communicational bandwidth.

Chapter 5 then describes the protocol and implementation of SNBF. The
AHE-based protocol is first outlined, and the parallel filtering technique is then
sketched. With the proposed specialized hardware accelerator, it is shown that
an email can be securely filtered in less than a second.

Last but not least, the secure inference engine scheme, named ENSEI, is
illustrated in Chapter 6. Details on the frequency-domain secure protocol is

6



CHAPTER 1. INTRODUCTION

provided, along with rigorous error analyses for parameter instantiations across
network layers. Significant performance improvements are observed with only
negligible overheads added to the system.

Finally, this dissertation is summarized in Chapter 7, along with future
prospects of cross-layer design methodologies and open questions examined.
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Chapter 2

Backgrounds and Related Works

2.1 Ciphers, Secure Protocols and Homomor-

phic Encryption Schemes

A cipher is a set of algorithms that perform the encryption and decryption
operations on some plaintext message. When the plaintext stringm is encrypted
as a ciphertext string c, the security guarantee is that, without a legitimate
decryption procedure, m cannot (without a significant amount of effort) be
obtained from c. On the other hand, the correctness requirement states that
the decryption procedure can be easily carried out by any authorized party.

The above description can be abstractly illustrated by Fig. 2.1, where Enc
and Dec denote the encryption and decryption procedures, respectively. From
a mathematical standpoint, Enc and Dec serve merely as maps that operate
between the plaintext space P and ciphertext space C, i.e., Enc : P → C and
Dec : C → P . When these maps happen to satisfy some special properties,
they form the basis of secure protocols, such as symmetric-key encryptions
and public-key encryptions. It is natural, therefore, for the subsequent
ciphers to advance in two directions: better security, and more properties.
Unfortunately, the inevitable side-effect that comes with all the benefits is
performance degradation, which is the main issue addressed by the cross-layer
design techniques proposed in the rest of this dissertation.

In terms of security, Section 2.4 summarizes recent developments in lattice
cryptography. The importance of these ciphers lies in the fact that they remain
secure against general-purpose quantum computers, which are known to be
much more efficient than classical computers, at least over a certain set of
problems that guarantee the security of existing ciphers (e.g., the renowned
Shor’s algorithm [38]).

In studying the additional properties of existing ciphers, it is realized that
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SCHEMES

Ciphertext Space

Plaintext Space

m

c

Enc Dec

Figure 2.1: The abstract encryption and decryption functions.

Ciphertext Space

Plaintext Space

x

c

Enc Dec

cx y

y

cx+y

x + y+

+

Figure 2.2: A homomorphic encryption scheme that preserves the operation +.

Enc and Dec can also be homomorphisms. Figure 2.2 explains what it means for
an encryption function to also be a homomorphism. Informally, it means that
for some operation + in the plaintext space P , there exists a corresponding ⊞
in the ciphertext space C, such that the following property is satisfied

Enc(x+ y) = Enc(x)⊞ Enc(y). (2.1)

Note that + and ⊞ are abstract operations, and do not strictly need to
be additions. Detailed discussions on available homomorphic operations
and cryptographic constructions that satisfy the corresponding homomorphic
properties are presented in Sections 2.5 and 2.6.

10



CHAPTER 2. BACKGROUNDS AND RELATED WORKS

2.2 A Brief Summary of Homomorphic En-

cryption Schemes and HSPs

Traditionally, partially homomorphic encryption (PHE) schemes are developed
under the integer factorization assumption. These include additive and
multiplicative homomorphic encryption schemes (AHE/MHE) [39, 40], but
not fully HE schemes. As mentioned, with the fast development of lattice
cryptography, a number of FHE schemes are proposed [13–17].

The exact definitions and detailed algebraic constructions of various HE
schemes are presented in Section 2.5 and 2.6. Here, the practicality of HE
schemes and their relationships to HSPs are discussed. As said, some FHE
schemes require the bootstrapping operation to allow for the evaluation of
polynomial-depth circuits [13, 41]. The bootstrapping procedures are not
particularly “fast” in a practical sense, i.e., it takes 0.1 seconds for a recently
proposed FHE scheme to bootstrap the single-bit output of a NAND gate.
Other studies that avoid the bootstrapping procedures are known as leveled
FHE schemes [15,16]. In particular, the ring-variant [17] of the GSW scheme [16]
can multiply two ciphertexts in less than 4ms on a GPU, with a ciphertext size
of 487.5KB per word. Unfortunately, as shown in Chapter 5, even for simple
constructions such as a secure email filter, such schemes are still too costly in
time and bandwidth.

In contrast to FHE, PHE is much more efficient. A homomorphic
addition in the AHE scheme, Paillier [40] can be performed in microseconds
on a conventional CPU, and lattice-based PHE schemes also have similar
performances (e.g., HElib [42] and PALISADE [43] can both be used as
efficient AHE libraries). This performance gap is the main motivation for the
development of HSPs that rely only on PHE, instead of FHE. For example, in
Gazelle [35], AHE is used for the evaluation of linear layers, and the resulting
protocol is faster than the leveled FHE-based SecureML scheme by orders of
magnitude. Although PHE-based HSPs are (obviously) still much slower than
unencrypted protocols executed in a trusted environment, the performances of
these HSPs do reside in practical domains, and can certainly become practical
with additional optimization efforts.

Unfortunately, it is observed that previously proposed techniques and
implementations are generally layer-specific. In other words, existing works
focus on improving the efficiencies of HSPs from a certain aspect, that falls
into one of the layers defined in Section 1.1. While these optimization
efforts are important, they are insufficient, and sometimes not entirely useful
in a cross-layer sense. A typical example is the optimization of modular
multiplication on general-purpose CPUs. While a number of literatures propose
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various lazy-reduction techniques [42–44] and special prime moduli [17] for
efficient modular arithmetic, it is likely that HSPs are too costly to run
on general-purpose computing devices. Meanwhile, on dedicated hardware
platform, such techniques contribute marginally to the overall efficiency of
HSPs, as the underlying hardware components can be optimized to provide
single-cycle performance capabilities for modular arithmetic. Similar examples
can be found between the application and cryptographic layers. For example,
the HSP proposed in [45] optimizes cryptographic protocols for machine learning
applications. In their work, Bos et al. use special representations to embed
52-bit floating point numbers into the Paillier ciphertext for implementing a
secure Näıve Bayesian filter (NBF). In reality, what is discovered in Chapter 5
is that practical applications of NBFs generally do not need representations with
such high precisions. As a result, significant speed increase can be obtained by
working in a low-precision environment. The critical observation, and thereby
main motivation, of this dissertation is that, in order to avoid unnecessary op-
timization efforts and protocol slowdown, a cross-layer perspective is essential.

2.3 General Notations

Throughout the dissertation, the standard notations of Z, R, C are used to
denote the set of integers, real numbers, and complex numbers, respectively. R
is reserved for rings, and F is some field.

For vectors and matrices, a ∈ Zn
q is used to refer to a vector a with a

dimension of n and elements drawn from Zq, the residual class of some integer
modulus q. Vectors that have been transferred to the frequency domain through
the discrete Fourier transform (DFT) or number-theoretic transform (NTT) are
noted with a hat, e.g., â = NTT(a), and the Hadamard product of such vectors
are in the form â ◦ b̂. Matrices are written in capital letters without bold (A),
and lg x is the shorthand for log2 x. The set notation {x} refers to some set
containing a number of elements, and the i-th element is denoted as xi.

For lattice cryptography, this dissertation focuses exclusively on cryptosys-
tems based on the generic [12] and ring [23] learning with errors (LWE)
problems. A generic LWE instance is parameterized by (n, q, χσ), where n is the
lattice dimension, q a modulus, and χ some distribution. Meanwhile, RLWE has
similar parametrizations to LWE, where the parameters are also (n, q, χσ). For
the sake of simplicity of presentation, the same notations are used for LWE and
RLWE, while the underlying mathematical meanings differ. Here, n denotes
the degree of some irreducible polynomial f(x), which is functionally equivalent
as the number n in generic LWE (specifies a lattice dimension). q and χ also
serve similar purposes as their generic LWE counterparts.
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Finally, Enc and Dec are used to abstractly identify the encryption and
decryption functions, respectively.

2.4 Lattice-Based Cryptosystems

2.4.1 Errors and Error Distributions

Here, the notations in [46, 47] are adopted. χσ is the discrete Gaussian
distribution with a standard deviation of σ, instead of the s parameter used
in some of the literatures [12, 18] (note σ = s√

2π
). χn

σ means n independent
samples each drawn from χσ.

The security of every LWE cryptosystem depends on a certain level of errors
being artificially embedded into the LWE instances of matrix-vector (or vector-
vector) products during encryption. In other words, for two n-dimensional
vectors a, s ∈ Zn

q whose elements come from the residue classes of integer modulo
q,

b = ⟨a, s⟩+ e (2.2)

is considered indistinguishable from uniformly random when e comes from a
continuous Gaussian distribution, due to the original proofs [12,27]. Subsequent
works approximate a continuous Gaussian with discrete Gaussian, denoted
as χσ in some finite fields, where the “closeness” of discrete Gaussian to a
continuous one is measured by statistical distance [18,46] or, more recently, the
Rényi divergence [6, 48]. Theoretically, the relative error rate αrel =

√
2πσ/q

needs to satisfy the condition q · αrel ≥ 2
√
n for the reduction to follow.

However, for concrete parameter instantiations, it is often the case that only
best plausible attacks are considered [6, 7, 18], where η is considerably smaller
than the theoretical requirement. In addition, while an extremely high-quality
discrete Gaussian is important for the security of LWE in certain cases (e.g.,
signatures [7, 22]) , some special assumptions can loosen this requirement. For
instance, the standard deviation of the error distribution can be extremely small
as in [6], and the distribution can be non-Gaussian as in [7], given a close enough
statistical distance.

In this work, two error bounds provided in Lindner and Peikert (LP) [18]
are extensively used.

Lemma 1. (Lemma 2.1 in [18]) Let c ≥ 1 and C = c · exp
(

1−c2

2

)
< 1. Then

for any real σ > 0 and any integer n ≥ 1, it holds that

Pr[∥χn
σ∥ ≥ c · σ

√
n] ≤ Cn. (2.3)
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Lemma 2. (Lemma 2.2 in [18]) For any real σ > 0 and T > 0, and any x ∈ Rn,
it holds that

Pr[∥⟨x, χn
σ⟩∥ ≥ Tσ∥x∥] < 2 · exp

(
−T

2

2

)
. (2.4)

Here, exp(x) = ex, and ∥x∥ is the Euclidean norm of x.

2.4.2 The Lindner-Peikert (LP) Cryptosystem

First of all, the basics on the LP cryptosystem are sketched [18], which serve
as introductory materials to LWE cryptography. The correctness condition of
LP is also analyzed in detail. A single-bit version of LP is presented without
loss of generality, since an ℓ-bit version is merely ℓ instances of the single bit
instance. All additions and multiplications are in Zq. Here, the subscript A is
used to denote the client party (Alice), and B for the server (Bob).

• LP.Setup(λ): Upon input the security parameter λ, output parameters
(n, χσ, q). Here, n is the lattice dimension, σ is the standard deviation for
the discrete Gaussian distribution χ, and q is some modulus.

• LP.KeyGen(n, χσ, q): Sample a uniform matrix A← Zn×n
q , and two vectors

sB, eB ← χn×1
σ . Let cB = eB − A · sB. Output the public key A, cB, and

secret key sB.

• LP.Enc(A, cA,m ∈ {0, 1}): For plaintext message m ∈ Z2, draw three
error vectors sA, eA ← χn×1

σ , em ∈ χσ. Output two ciphertexts cA1, cA2

where

cA1 = stAA+ etA ∈ Z1×n
q (2.5)

cA2 = stAcB + em +m · ⌊q/2⌋ ∈ Zq. (2.6)

• LP.Dec(cA1, cA2, sB): Compute

m = ⌊(cA1sB + cA2)/⌊2/q⌋⌉. (2.7)

Here, stA is the transpose of sA. ⌊·⌋ and ⌊·⌉ depict the flooring and rounding
functions, respectively.

It is easily observed that in the decryption function, the inner product
⟨cA1, sB⟩ is the most computationally intensive step, and the possibility of
computing such product approximately is explored later in this work.
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Bounding the Parameters for LP

The decryption function cA1sB + cA2 in Eq. (2.7) is internally computed as

(stAA+ etA)sB + stAeB − stAAsB + em +m · ⌊q/2⌋
= etAsB + stAeB + em +m · ⌊q/2⌋. (2.8)

The condition for correct decryption is that the absolute value of the result
|etAsB + stAeB + em| (shorthand as |e|) is less than ⌊q/4⌋. When the error is
within the range, it holds that −⌊q/4⌋ < m · ⌊q/2⌋ + e < ⌊q/4⌋ if m = 0,
and otherwise if m = 1. Since both etAsB and stAeB are n-dimensional vector
sums, em being a single Gaussian entry is considered small and often ignored.
In addition, because the elements of vectors involved in the products are drawn
independently from the Gaussian distribution, the error term can be rewritten
as |e| = |⟨e, s⟩| where e, s← χ2n

σ .
It is then trivial to use Lemma 2 to bound the size of the vector products

⟨e, s⟩. Let T = ⌊q/4⌋
σ∥e∥ , it follows that

Pr[|⟨e, s⟩| > ⌊q/4⌋] < 2 · exp

(
−1

2
·
(
⌊q/4⌋
σ∥e∥

)2
)
, (2.9)

where ∥e∥ is bounded by Lemma 1. In [18], exp
(
− ⌊q/4⌋

2σ∥e∥

)
is called the

per-symbol error probability, also defined as the failure probability in some
works [6]. Currently, the setting of this error probability is somewhat arbitrary.
For example, in [18], the error probability is set to be 0.01, which means
that there is a 2% chance that a bit encrypted under LP cannot be correctly
decrypted. Hence, LP suggests to use error correction codes to improve the
reliability of the scheme. Other works set a much lower bound on the probability,
e.g., ≈ 2−40 in [6, 7], where no error correction codes are employed.

2.4.3 LWE-based Key Exchange: The Frodo Scheme

For generic LWE, q is fixed to be a power of two, and σ a custom-defined
Gaussian-like probability density functions specified in Table 1 of [6].

The complete key exchange protocol proposed by [6] for generic LWE is
outlined in Fig. 2.3. Here, a brief summary is presented on the protocol. First,
Alice generates a seed seedA for the generation of the public key A. The
generation algorithm Gen is implemented using the AES128 algorithm in [6],
where U({0, 1}s) is a function that uniformly samples an s-bit (s = 128) integer.
Alice then samples a secret vector and an error vector S,E ∈ Zn×n

q where each
element in the matrices is drawn from the distribution χ. After computing
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Alice Bob
seedA ← U({0, 1}s)
A← Gen(seedA)
S,E ← χ(Zn×n

q )

B ← AS + E
seedA,B−−−−−−−−→ A← Gen(seedA)

S′, E′ ← χ(Zm×n
q )

B′ ← S′A+ E′

E′′ ← χ(Zm×n
q )

V ← S′B + E′′

B′,C←−−−−−− C ← ⟨V ⟩2r
K ← rec(B′S,C) K ← ⌊V ⌉2r

Figure 2.3: Key exchange from generic LWE proposed by [6].

Alice Bob
seeda ← U({0, 1}s)
â← Gen(seeda)

ŝ, ê← NTT(χ(Zn
q ))

b̂← â ◦ ŝ+ ê
seeda,b̂−−−−−−−→ â← Gen(seeda)

s′, e′ ← NTT(χ(Zn
q ))

b̂← â ◦ ŝ′ + ê′

e′′ ← χ(Zn
q )

v← INTT(b̂ ◦ ŝ′) + e′′

v← INTT(b̂′ ◦ ŝ) b̂′,c←−−−− c← HelpRec(v)
K ← rec(v, c) K ← rec(v, c)

Figure 2.4: Key exchange from RLWE proposed by [7].

the result B = AS + E, B is sent to Bob. The security of the secret key
S is guaranteed by the decisional LWE problem. Bob essentially repeats the
same process, with an additional step of generating a reconciliation matrix
V = S ′B + E ′′, where V ∈ Zm×n

q contains secrets from both parties. V is then
used to derive a shared key K for Alice and Bob through the reconciliation
algorithms ⟨V ⟩2r , rec and ⌊V ⌉2r .

The important note here is that, the only heavy computation in this type of
generic LWE construction is the step involving multiplication by the matrix
A. Since A is an n-by-n matrix, multiplication by A requires at least n2

multiplications, and n is a relatively large integer. m and n are relatively small
integers, where the equality rmn = ℓ is required for deriving ℓ-bit key K (n =
752, ℓ = 256, r = 4, and m = n = 8 for the recommended parameters set in [6]).
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Thus, while Alice needs to perform two multiplications AS and B′S, AS would
require n2n, while B′S only requires nm multiplications. Furthermore, the
aforementioned key-reconciliation algorithms are simple operations (multiply
or modulo by a power of 2) on a very small matrix of dimension m×n, and the
performance impact of this step on the whole procedure can be safely ignored.

2.4.4 RLWE-based Key Exchange: The NewHope
Scheme

The RLWE-based key exchange protocol is outlined in Fig. 2.4. The commu-
nication protocol is slightly modified for the ease of comparison with LWE,
and it can be observed that the two protocols work almost identically. One
distinct difference is that RLWE works on n-dimensional vectors that needs the
special NTT and INTT treatment. Here, NTT is the number theoretic transform
operator, and INTT is the inverse operator of NTT, i.e., it applies the inverse
number theoretic transform. The concrete parameter instantiation and thereby
detailed performance comparisons, are delayed to Section 3.2. Nevertheless,
compared to LWE, RLWE has much smaller public key size (â ∈ Zn

q compared
to A ∈ Zn×n

q ). This simplifies all subsequent computations, making RLWE
asymptotically faster.

2.5 Lattice-Based Homomorphic Cryptosys-

tems

2.5.1 Abstract Homomorphic Properties

An HE scheme is a cryptographic scheme that satisfies a certain set of properties,
resulting in the fact that the encryption (Enc) and decryption (Dec) functions
of the scheme become homomorphisms. In addition to the detailed discussions
on the specific algebraic constructions of HEs presented in the respective
sections, the list of currently-known homomorphic properties are (abstractly)
summarized here.

1. Homomorphic addition (⊞): for x, y ∈ Z, Dec(Enc(x)⊞ Enc(y)) = x+ y.

2. Homomorphic constant multiplication (⊡): for x, y ∈ Z, Dec(Enc(x)⊡y) =
x · y.

3. Homomorphic multiplication (⊡): for x, y ∈ Z, Dec(Enc(x) ⊡ Enc(y)) =
x · y.
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4. Packed homomorphic addition (⊞): for x,y ∈ Zn, Dec(Enc(x)⊞Enc(y)) =
x+ y, where + is matrix addition.

5. Packed homomorphic scalar multiplication (EMult): for x,y ∈ Zn,
Dec(EMult(Enc(x),y)) = x ◦ y, where ◦ is the Hadamard product.

6. Packed homomorphic multiplication (EMult): for x,y ∈ Zn,
Dec(EMult(Enc(x),Enc(y))) = x ◦ y.

7. Homomorphic rotation (rot): for x ∈ Zn, let x = [x0, x1, · · · , xn−1],
rot([x], k) = [xk, xk+1, · · · , xn−1, x0, · · · , xk−1] for any k ∈ {0, · · · , n− 1}.

8. Homomorphic permutation (Perm): for x ∈ Zn, let x = [x0, x1, · · · , xn−1]
and π be some permutation, Perm([x], π) = [xπ(0), xπ(1), · · · , xπ(n−1)].

In this work, an HE scheme that satisfies properties 1 and 2 is referred to as an
additive homomorphic encryption (AHE) scheme, or a PHE scheme. If property
3 also holds for an AHE scheme, it is called a fully homomorphic encryption
(FHE) scheme. AHE with properties 4, 5, 7, and 8 is known as packed AHE
(PAHE). The HE scheme that bares all the above properties is identified as a
packed FHE (PFHE) scheme.

In what follows, the Gentry-Sahai-Waters FHE scheme, the Brakerski-Fan-
Vercauteren PFHE scheme, and the Paillier AHE scheme are described in detail.

2.5.2 The Gentry-Sahai-Waters (GSW) Cryptosystem

The GSW scheme is the third-generation FHE that offers polynomial-depth
circuit evaluation without bootstrapping or relinearization [16], with its ring-
variant provided in [17, 49]. Here, the slightly modified version of GSW in [49]
is reviewed, along with its homomorphic properties. Similar to [49], G−1 and G
are used for the respect BitDecomp and BitDecom−1 in the original work [16].

• GSW.Setup(λ, L): Upon input the security parameter λ and the homo-
morphic evaluation depth L, output parameters (n, χσ, q). Here, n is the
lattice dimension, σ is the standard deviation for the discrete Gaussian
distribution χ, and q is some modulus. Let ℓ = ⌈lg q⌉ (here, lg q = log2 q)
and N = n · ℓ.

• GSW.KeyGen(n, χσ, q): Sample a uniform matrix A← ZN×(n−1)
q , and two

vectors sB ← χ
(n−1)×1
σ and eB ← χN×1

σ . Let sB =

(
sB
1

)
∈ Zn×1

q , and

cB = eB − A · sB ∈ ZN×1
q . Output the public key A = (A cB) ∈ ZN×n

q ,
and secret key sB.
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• GSW.Enc(A,m ∈ {0, 1}): For a single-bit plaintext message m, compute
C = A+m ·G and output C.

• GSW.Dec(sB, C): Use Pen to extract the penultimate row of C as c =
Pen(C) ∈ Z1×n

q , and compute

m = ⌊(c · sB)/2ℓ−3⌉. (2.10)

To be consistent with the notations used in this dissertation, G ∈ ZN×n
q is a

transposed version of the one used in [49], and the bit decomposition function is
defined as G−1 : Zn×n

q → Zn×N
q , i.e., it decomposes a number into a row vector

of ℓ entries.
The two “gadgets” G and G−1 are important for controlling error growth in

homomorphic evaluation. G−1 can be roughly thought as the column-wise bit
decomposition that expands each ⌈lg q⌉-bit entry in some matrix A ∈ Zm×n

q into
ℓ binary bits. G reverses the bit decomposition by multiplying the expanded
column vector with a row vector g = [20, 21, · · · , 2ℓ−1] to restore the original
integers in A. These operations are purely to control the error growth in
homomorphic evaluation and do not change the result of the dot products.
The readers are referred to the original works for more details on the respect
gadgets [16,49].

Correctness for GSW

Note that the decryption extracts the penultimate row of C, denoted as Pen(C),
due to the assumption that q is a prime. In this case, the penultimate row vector
is as follows.

c = [aN−2 eN−2 − aN−2 · sB + 2ℓ−2 ·m], (2.11)

where aN−2 is the (N − 2)-th (penultimate) row of A. Multiplying c with

sB =

(
sB
1

)
gives

aN−2 · sB + eN−2 − aN−2s+ 2ℓ−2 ·m. (2.12)

When |eN−2| < q/8, 2ℓ−2 ·m+ eN−2 is between 0 and q/8 when m = 0, and 2ℓ−3

to 2ℓ−2 when m = 1. Diving the result by 2ℓ−3 > q/8 can correctly recover m.
Note that if q is a power of 2, the last row is extracted, and the result is divided
by 2ℓ−2 = q/4 to obtain the correct decryption. In this case, the maximum error
tolerance goes to |eN−2| < q/4.

Even though controlling errors is an essential step in developing efficient
FHE schemes, existing theoretical studies are less interested in the exact failure
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probability of decryption for such schemes [16, 49] (even in the case where
concrete parameters are assigned, as in [17], no specific failure probability is
reported). This is partly due to the fact that FHE requires extremely large
LWE parameters, and the difference in parameters between a target decryption
failure of 2−10 and 2−40 can be negligible.

Homomorphic Evaluation

For a freshly encrypted ciphertext, the large parameter setting generally guar-
antees perfect decryption (since discrete Gaussian has cut-off tail probability).
The analysis becomes more difficult when homomorphic evaluation is taken into
account. In GSW, the homomorphic addition and multiplication operations
between two ciphertexts C0 and C1 encrypting messages m0 and m1 are defined
as follows

m0 +m1 = GSW.Dec(sB, C0 + C1) (2.13)

m0 ·m1 = GSW.Dec(sB, G
−1(C1) · C0), (2.14)

where + and · are ordinary addition and multiplication defined over integers
and matrices. The error growth for addition is trivial, where the error terms in
Eq. (2.12) are added up. For homomorphic multiplication, the decryption error
is given by

emult = G−1(C1)e0 +m0e1 (2.15)

in [49], where e0 and e1 are the respect error vectors added to C0 and C1

during encryption. Using the asymmetric error growth property, a chain of
left-associative multiplications

C = (((Cd−2 ·G−1(Cd−1)) · · · ) ·G−1(C1)) · C0 (2.16)

has quasi-linear error growth given by
∑d−1

i=0 (G
−1(Ci) · ei). This multiplication

technique is referred to as chained multiplication.
For the above analysis, if it is assumed that all Ci are freshly encrypted

ciphertexts with independent Gaussian distribution, the final error accumulated
in d multiplications is O(

√
d), as the summations are between Gaussian

distributions. However, one subtlety is that implementing G−1 as simple bit
decomposition cannot ensure this property in all cases. For example, if the same
ciphertexts are multiplied d times, the resulting error increases by O(d). On
the other hand, employing randomized G−1 as suggested in [49] can be costly
in practice. In this work, a focus on homomorphic chained multiplications
is placed, where the bit decomposition operation results in equivalent error
analysis as a randomized G−1. A more detailed explanation on error analysis
for GSW is provided in Section 4.4.2.
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2.5.3 The Brakerski-Fan-Vercauteren (BFV) Cryptosys-
tem

The BFV cryptosystem is a standard ring LWE (RLWE)-based PFHE scheme
from [15, 30]. The cryptosystem is implemented by Chen et al. in SEAL [50]
and Polyakov et al. in PALISADE [43].

In terms of notations, similar to Gazelle [35], [u] refers to a ciphertext holding
a plaintext vector u, where u ∈ Zn

p for some plaintext modulus p and lattice
dimension n. In BFV, owing to the Smart-Vercauteren packing technique [28],
a ciphertext [u] ∈ R2

q is a set of two polynomials in some quotient ring Rq for a
ciphertext modulus q. Here, a short overview on the basic properties and error
behaviors of the private-key version of BFV is provided.

• BFV.Setup(λ, L): Upon input the security parameter λ and the homo-
morphic evaluation depth L, output parameters (n, χσ, q).

• BFV.KeyGen(n, χσ, q): Sample and output the secret key polynomial s←
χn
σ.

• BFV.Enc(s,m ∈ Rq): For a plaintext polynomial m, sample an uniform
random polynomial a← Rq and an error polynomial e0 ← χn

σ. Compute
and output

c0 = −a,

c1 = a · s+ q

p
m+ e0. (2.17)

• BFV.Dec(s, c0, c1): Compute

⌊p
q
(c0 · s+ c1)⌉ (2.18)

The details on the correctness of BFV are left out as it is similar to LP and
GSW. Note that s, e0 ∈ χn

σ means that s, e0 are polynomials whose coefficients
are drawn from χσ (more precisely, s, e0 ← χn

σ, assuming s, e0 are vectors
containing the n coefficients in s and e0).

The scheme remains correct when e0 ≪ q/p, and as long as k · e0 ≪ q/p for
some constant k ∈ R, scaling the ciphertext by k does not affect the correct
decryption of the ciphertext (k ·c0, k ·c1). This applies similarly to homomorphic
addition, where [u] + [v] decrypts correctly under the same key s when the
underlying error polynomials satisfy e0,u + e0,v ≪ q/p. Since the homomorphic
multiplication operation is not used in this dissertation, the descriptions are
omitted.
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Rotating the Plaintext Slots in BFV

Since BFV is a packed HE, plaintext rotation and permutation operations are an
important part of the cryptosystem. A (left) homomorphic rotation rot([u], k)
on a ciphertext [u] permutes the underlying plaintext vector [u0, u1, · · · , un−1]
to [uk, uk+1, · · · , un−1, u0, · · · , uk−1]. The computations on ciphertext are a
simple index swapping followed by a key-switching procedure. While the
index swapping adds no additional errors to the ciphertext, some additive
error components from switching the ciphertext are introduced, such that it
is decryptable under the original secret key s. It is noted that this additive
error, denoted as ηrot in [35], is independent from the original errors contained
in the ciphertext [u].

More concretely, as demonstrated in [15], if a ciphertext [u] is rotated to
rot([u], k) for some integer k, switching rot([u], k) back to some ciphertext
[v] = SwitchKey(rot([u], k),K) using the auxiliary key K results in the following
decrypted equality

Dec([v]) = 2 · (Decompb([u]) · eK) + Dec([u]), (2.19)

where Decompb([u]) ∈ R⌈logb(q)⌉ is the component-wise decomposition function
under base b (i.e., Decompb(x) = x0 + x1b + x2b

2 + · · ·x⌈logb(x)⌉b
⌈logb(x)⌉). It

is obvious that if b is taken to be 2, the term 2 · ⟨Decomp2([u]), eK⟩ is an
inner product between a vector of 0/1 polynomial and a vector of freshly error

polynomial (eK ∈ R⌈log2 q⌉
q are the errors in K, instead of that in [u]). More

details on the exact computations involved in rot can be found in [29,51,52].

2.6 Factoring-Based Homomorphic Cryptosys-

tems

2.6.1 The Paillier Cryptosystem

In deciding the concrete cipher to be utilized in SNBF, a number of cryptosys-
tems are examined, and the finalized choice is on the PHE described by Pascal
Paillier [40]. While the Paillier cryptosystem is a slightly older cryptographic
construct based on the decision composite residuosity (DCR) assumption, its
algebraic structure permits a (practically) infinite number of homomorphic
additions (as long as the ciphertext can hold the result). This is different
from the recent LWE-based constructions where the internal error size increases
as the levels of homomorphic evaluation increase, which results in impractical
parameter size. However, it is noted that the algorithmic construct of SNBF, as
later described in Section 5.3, works on any PHE with additive homomorphism.
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Paillier.Enc depicts the encryption function under Paillier, and Paillier.Dec for
the decryption function. The basics of the Paillier cryptosystem is sketched as
follows, where lcm denotes the least common multiple.

• Paillier.KeyGen(λ): Choose two large primes p, q = O(λ) and some
element g ∈ Z∗

ν2 with order νκ. Output the public key e = (ν, g) and
private key d = lcm(p− 1, q − 1).

• Paillier.Enc(e,m ∈ Zν): Select a random integer r ∈ Zν , and compute

c = gm · rν mod ν2. (2.20)

Output ciphertext c.

• Paillier.Dec(d, c): Recover m as

m =
L(cd mod ν2)

L(gd mod ν2)
mod ν (2.21)

where L(u) = u−1
ν
. Output plaintext m.

2.6.2 Properties of the Paillier Cryptosystem

Given the encryptions of two plaintext messages Enc(m1) and Enc(m2), the
additive homomorphism in Paillier is as follows.

Enc(m1) · Enc(m2) mod ν2 = Enc(m1 +m2) mod ν. (2.22)

Additive homomorphism also means that constant multiplication by plaintext
variable can be computed. For two messages m1 and m2,

Enc(m1) · gm2 mod ν2 = Enc(m1 +m2 mod ν) (2.23)

Enc(m1)
m2 mod ν2 = Enc(m1 ·m2 mod ν). (2.24)

In this work, Eq. (2.23) is denoted as Enc(m1)⊞m2 and Eq. (2.24) as Enc(m1)⊡
m2. The two properties are essential in constructing a secure keyword search
scheme.

On the security note, the Paillier cryptosystem meets the indistinguishable
under chosen plaintext attack (IND-CPA) security notion under the DCR
assumption. Under a semi-honest server assumption, which generally holds
true for established email servers, the IND-CPA property of Paillier provides
enough security for SNBF.
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2.6.3 Comparison to Lattice-based PHE

Recently, a stream of works has been conducted to improve the practicality
of lattice-based homomorphic encryption adopted in secure learning problems,
notably [53–55]. In addition to the usual homomorphic operations, lattice-based
PHE offers single-instruction multi-data (SIMD) homomorphic operations being
carried out. Specifically, the coefficient-wise addition between two ciphertexts
[u], [v] encrypting vectors u and v can be computed with only a single ciphertext
addition [u] ⊞ [v], which shares a similar idea with the proposed batching
technique described in Section 5.3.3.

For applications such as secure email filtering in Chapter 5, Lattice-based
schemes can be better-performing than factoring-based techniques when the
length of the email is short. Roughly speaking, the same plaintext can be
put into different ciphertext slots, and use a per-coordinate SIMD constant
multiplication to achieve a single-instruction weight embedding. However, as
discussed in Section 5.5, the average length of an email in a real-world dataset
is around 200 words. Since each bit of the hashed version of each word (around
61-bit per word) needs to be embedded in a per-slot fashion, there exists no
empty slots to replicate the same plaintext vectors. As a result, in the average
case, the slot utilization in both Paillier (1024 to 2048 bits per ciphertext) and
lattice-based methods (lattice dimension n = 1024 to n = 2048) are virtually the
same. Therefore, while a lattice-based approach can be adopted if it is assumed
that all incoming emails are very short, in general, lattice-based methods do
not provide significant performance benefit from its packing ability.

On the other hand, lattice-based HE schemes have a major drawback in
its error accumulation behavior, and an increase in the number of plaintext
slots (and thus lattice dimension) makes the error growth much worse. It is
known that every homomorphic operation induces some level of errors into the
ciphertext of a lattice-based HE scheme, so the number of total homomorphic
operations are limited by the amount of error margin provided by the ciphertext
modulus q. For applications such as comparing a word with a large list (e.g.,
10000 words in SNBF) of words, the amount of error margin required becomes
the performance bottleneck, essentially for all lattice-based HE schemes. As a
result, a 2048-bit ciphertext is used to encode a 1024-bit vector to perform SIMD
matching using the Paillier scheme (a ciphertext expansion factor of 2); whereas,
the smallest parameter set in a lattice-based ciphertext, for example in [55],
require 1742 17-bit integers (an expansion factor of roughly 29, nearly 15x less
efficient than the Paillier scheme). Moreover, such parameter instantiation is
not likely to be able to evaluate the proposed filter, since weight embedding
operations (homomorphic constant multiplication) significantly amplifies the
ciphertext error. Hence, in order to maximize the practicality of SNBF, Paillier
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is chosen as the foundation of a general-purpose email classification scheme.
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Chapter 3

Hardware Accelerators for
Lattice-based Key Exchange

3.1 Introduction

As the National Institute of Standards and Technology (NIST) initiated
the discussions on the standardization of quantum-resistant public-key cipher
suite [56], serious research efforts were devoted in evaluating and improving the
performance of cryptographic constructions based on the (ring) learning with
errors (RLWE/LWE) problem [6, 7, 20, 21]. Along with the well-established
security reductions [12, 23], recent advances show that the performance of
(R)LWE-based key exchange can be as efficient as traditional schemes such
as RSA or elliptic curve cryptography [6,7], making (R)LWE-based algorithms
an attractive candidate for the age of post-quantum security.

Due to the emerging nature of the field [57], most existing hardware
approaches on lattice cryptography focus on highly reconfigurable platforms
such as embedded processors [58] or field programmable gate array (FPGA)
devices [59, 60]. Such platforms are generally integrated with high-speed
digital signal processing (DSP) hardware multipliers, and these multipliers are
employed in almost all existing works. Hence, the architectural design for the
computational unit in (R)LWE cryptography remains somewhat untouched.

Within the realm of LWE-based cryptography, the ring variant RLWE is
generally considered much more efficient than generic LWE (also known as
standard LWE). By working with the ideal lattices instantiated by elements
of certain polynomial rings, RLWE reduces the n-by-n matrix that is required
for generic LWE to yield a full-rank lattice down to an n-by-1 vector [23].
Furthermore, RLWE allows for efficient per-coordinate plaintext packing, which
leads to efficient key exchange with only one set of polynomial coefficients [7].
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The cost that comes with this performance improvement, however, is the
security concern. At this moment, it is not known whether problems in ideal
lattices are significantly easier to solve when compared to generic lattices.
Unfortunately, these special lattices do present to be easier, where certain
algorithms obtain a constant-factor time reduction by working exclusively with
ideal lattices [61].

With all its theoretical advances, concrete parameter instantiations for LWE
present to be problematic, especially in the case of RLWE. The general practice
in instantiating LWE parameters is to ensure security against the best known
attacks, rather than in the theoretically secure domain [6,7,18,26]. In addition,
the best known attacks are designed against general lattices, which do not
contain further algebraic structure. This further complexes the security analysis
for parameters instantiated for RLWE. RLWE operates in ideal lattices that are
generated by fractional ideals in the ring of integers OK of some number field
K. By adopting this additional algebraic property, RLWE improves both the
computational and storage efficiency by an order of O(n). Nevertheless, as
noted in [6,26,47], since ideal lattices are only a subset of general lattices, it is
not known if RLWE is as secure as general LWE, especially in the suboptimal
parameter regime. Unfortunately, RLWE does present to be slightly easier
than general LWE, where certain algorithms obtain a constant factor reduction
in runtime [61].

Although instantiating parameters for (R)LWE is still not trivial, a number
of analyses have been proposed [6, 7, 18], and thereby the CPU [58] and
FPGA implementations follow [47, 59, 60, 62, 63]. Notably, while almost all
existing RLWE implementations [59, 60, 62] follow the parameter analysis
in [18], the Lindner and Peikert analysis is for their proposed general LWE
cryptosystem, instead of RLWE. As noted in [57], most existing works are
straightforward hardware implementations based on CPU or FPGA, where
designated digital signal processor (DSP) multiplier units are used. While
DSP-based architectures are flexible, the resources on such platforms are
generally not fully utilized (e.g., 18-bit multiplier for 14-bit multiplication
in [47]). For resource constrained and resource demanding applications (e.g.,
embedded devices, or HSP processors), application-specific solutions are much
needed. Moreover, since existing works either only focus on application- and
cryptographic-layer algorithms or hardware-layer architectures, it is observed
that some of the proposed techniques are not particularly useful when the entire
system is considered. For example, in [44], the K-RED technique is proposed,
where lazy reduction and modulus switching techniques are used to speed up the
modular reduction operation in RLWE cryptography. Nevertheless, K-RED does
not give significant speedup when well-pipelined hardware units are available, as
the low-level platform has already provided (asymptotic) single-cycle modular
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reduction capability. Therefore, in this chapter, and this dissertation as a whole,
hardware designs are always proposed in cooperate with algorithmic designs,
such that the overall system obtains better efficiency.

In this chapter, Filianore, an application-specific hardware accelerator for
Frodo [6], the-state-of-the-art LWE key exchange scheme, and R-Filianore for
NewHope [7], the latest RLWE-based key exchange scheme, are proposed. In
particular, a cross-layer point of view is taken towards the hardware designs.
Instead of simply adopting DSP units, algebraic properties in the cryptographic
layers are exploited, and hardware-friendly algorithms are selected to simplify
the underlying low-level architectures. Meanwhile, arithmetic units are carefully
pipelined, such that complex algorithms, such as NTT, obtains single-cycle per-
formance asymptotically. Through the experiment in Section 3.4, it is illustrated
that compared to existing FPGA-based implementations, application-specific
integrated circuit (ASIC) multiplier with optimized parameter selection gives
us better throughputs by nearly 40x compared to the most recent art [63]. For
Frodo-I, the slightly modified version of the recommended parameters suggested
in [6], reduce the average energy consumption of the client-side LWE key
exchange by roughly 6 times. For the proposed aggressive parameters, the
energy consumption is further reduced by 3x (a total of 18x) to as low as
34.97 nJ. This performance is even better than R-Filianore, which averages
around 35.04 nJ per key exchange. While generic LWE is still not quite
as efficient as RLWE when memory bandwidths are concerned, compared
to previous studies, the energy gap between generic LWE and RLWE is
significantly reduced. The contributions of this chapter are summarized as
follows.

• Better Hardware Primitives for (R)LWE Key Exchange: As [57]
points out, previous design explorations for (R)LWE have been exclusively
on embedded processors or FPGA. In this work, careful design explo-
rations are provided for the computational units used in both generic and
ring LWE. As later shown, even restricted to key exchange schemes, the
design space can still be highly application-dependent.

• Generic versus Ring LWE: For its practical efficiency, RLWE is gener-
ally preferred over generic LWE for almost all cryptographic applications
based on the LWE problem. In this chapter, an attempt is made to
reduce the performance gap by adopting ASIC multiplier architectures
that utilize the intrinsic algebraic simplicity and flexibility of generic LWE
for post-quantum key exchange schemes. Through the experiment, it is
demonstrated that generic LWE can be of practical use, and is more secure
with the aforementioned worst-case hardness reductions.
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Table 3.1: Parameter Instantiations
q n dist. σ r n m

Frodo-Rec 215 752 χ1 1.75 4 8 8
Frodo-I 215 752 χ1 1.75 4 1 64
Frodo-II 2048 570 χ2 1 1 1 256
NewHope 12289 1024 ψ16 2.83 - - -

Table 3.2: Probability Mass Function for χ1 and χ2

0 ±1 ±2 ±3 ±4 ±5 ±6
χ1 (Frodo-I) 19304 14701 6490 1659 245 20 1
χ2 (Frodo-II) 1570 990 248 24 1

• Instantiation of Asymmetric LWE Key Exchange: As [6] suggests,
LWE-based key exchange protocol is flexible, in the sense that the amount
of client- and server-side computational powers can be highly unbalanced
(asymmetric). However, no parameter instantiations or evaluations are
available in the original work [6] and the recent implementation [63]. As
an effort to lift the client-side computational burden, different sets of
asymmetric parameters are proposed and compared, and it is shown that
under such construction, generic LWE can be as energy-efficient as RLWE.

The rest of this chapter will be organized as follows. First, the proposed
parameter instantiations for the respective schemes are presented in Section 3.2.
Second, the hardware architecture is described in Section 3.3 and the synthe-
sized results are compared in Section 3.4. Finally, the chapter is summarized in
Section 3.5.

3.2 Proposed Parameter Instantiation

In this section, Frodo [6] is first instantiated under different parameter sets, and
the parameter instantiation is then provided for NewHope [7] with discussions
on its efficiency.

3.2.1 Parameter Instantiation for LWE

For the LWE-based key exchange protocol in Fig. 2.3, three sets of parameter
instantiations are used, Frodo-Rec, Frodo-I, and Frodo-II. Here, a set of
detailed analyses of the security and failure probability of each parameter set is
presented.
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Table 3.3: Security and Correctness Results for the Instantiated Parameter Sets
F-I F-II F-Rec NewHope

P.Q. Security [bit] 143 137 143 > 256
Correctness [lg] -36.5 -43 -36.5 -61

In general, LWE cryptography is parameterized entirely by the parameters
(n, q, σ). The key trade-off is between security and correctness, where larger n
and σ give better security, but result in more failed key reconciliations. In
contrast, larger q reduces the security level (in O(q1/n)), but exponentially
increases the success probability of key reconciliation. In addition, n is the
main parameter that affects the computational efficiency of LWE. In this work,
the concrete security analysis is based on the original work [6], and the bit
security is calculated from 20.265b with 0.265 the best known constant for the
post-quantum version of the BKZ algorithm [64]. Then, the least viable b
which allows BKZ to yield a successful attack (details can be found on page
11–12 in [6]) is determined. For correctness, as suggested in Claim 3.2 in [6],
as long as the (absolute) distance |e| between each entry of B′S and C is less
than q/2r+2, we have rec(B′S,C) = ⌊V ⌉2r , and the two parties derive the same
key K. The continuous Gaussian is used to bound the tail probability of the
discrete Gaussian, i.e.,

Pr[|e| > q/(2r+2)] = 2 · Φ
(
q/(2r+2)

σc

)
, (3.1)

where Φ is the cumulative distribution function of a standard normal. The
combined standard deviation σc describes the tail behavior of the Gaussian
errors presented in the product S ′B and B′S, where two Gaussian variables of
variance σ2 are multiplied and added together. Combining with the E ′′ added
for Bob, σc can be calculated as σ2

c = 2nσ4 + σ2.
The overall parameter instantiations, error distributions, and security and

failure probability estimations are summarized in Table 3.1, 3.2, and 3.3,
respectively. As noted, P.Q. security denotes post-quantum security. Frodo-Rec
is the recommended parameter set in [6] with CPU implementation in mind,
and Frodo-I is the unbalanced version of Frodo-Rec. In Frodo-I, n is set to 1,
and the computation is essentially only As. This product translates precisely
into 565,504 15-bit integer multiplications. Compared to Frodo-Rec, Frodo-I
reduces the amount of computations by 8x for Alice, but causes an 8x increase
for Bob.

Frodo-II is presented as the more aggressive parameter instance. It
essentially puts as much computational burden to Bob as possible, and let
Alice do the minimum amount of work. By decreasing the size of q, fewer bits
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of keys are derived per entry in the matrix V , which requires (either Alice or)
Bob to produce even more secret vectors to compensate. The benefit of having
a smaller q is significant: smaller q means smaller n, which leads to smaller
cumulative error causing less decryption failures, and eventually, even smaller
q. For Frodo-II, Alice only needs to compute 324,900 11-bit multiplications,
with provable 128-bit post-quantum security and improved failure probability.
Note that since the exchanged key is only 128-bit post quantum, Frodo-II is
as secure as Frodo-I and Frodo-Rec. Combining this parameter set with the
specially designed hardware, it is shown that for Alice, the core matrix-vector
multiplication for LWE and RLWE can be computed equally efficient.

Note that, for Alice who only needs to compute the matrix-vector product
against one secret vector, a certain number of rows in A are actually multiplied
by zero. As Table 3.2 indicates, according to the probability density function
that generates these secret elements, nearly an average of 29.5% of such elements
will be zeroes for χ1 (D4 in [6]) used in Frodo-I, and 38.3% for χ2 (D2 in [6])
in Frodo-II. By avoiding the actual need for multiplying and adding these
zeroes, the number of multiplications can further be reduced by 29.5% to 38.3%,
depending on the parameter instantiations. This approach has the drawback
that a side-channel adversary may be able to obtain the exact number of zeroes
in the secret vector. However, as long as the adversary does not know which
entry is zero, the lattice dimension is retained, and the security of the scheme
will not be tampered. In fact, some post-quantum LWE constructs set the
number of zeroes in the secret vector to be a fixed and public value [65].

Lastly, note that Alice may not always be the client. If the client is a
full-fledged desktop computer, and the server is an energy-efficient data center
concurrently handling millions of connections, the roles can be reversed to ease
the server-side computation, with potential benefit such as improved server
response time.

3.2.2 Parameter Set for RLWE

The parameters provided in Table 3.1 for RLWE are directly taken from
NewHope. In this section, some of the problems related to this parameter
setting is discussed.

The first problem is that n has to be a power of 2. This limitation means
that it becomes hard to balance between security and efficiency. As given,
parameters in Table 3.1 provide a post-quantum security of 256 bits. However,
since the scheme shares a 256-bit key, which only provides 128-bit post-quantum
security for the subsequent communications, this level of security is clearly an
overkill. Second, arithmetics for RLWE are also more difficult to implement on
specialized hardware. After applying NTT, the numerical range for elements in
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Figure 3.1: Proposed hardware multiplier for generic LWE.

Figure 3.2: Proposed multiply-accumulate unit for generic LWE.

s and e, which were originally sampled from Gaussian distribution with small
variance, become uniform across the 14-bit range. Combined with the need to
perform Montgomery reduction (for q is not a power of 2), RLWE inevitably
requires a much more complexed design.

3.3 Proposed Hardware Architecture

3.3.1 Filianore

The proposed architecture for the computing unit used in generic LWE-based
key exchange is shown in Fig. 3.1. The insight is that all multiplications in
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Figure 3.3: Parallelized multiply-accumulate units for generic LWE.

generic LWE are between some arbitrary lg q-bit number (with q a power of 2),

and a “small” number drawn from a Gaussian-like distribution. The range
of this number is precisely defined in Table 3.2. In both χ1 and χ2, this “small”
number does not exceed 6. Hence, the idea here is simple: multiplications by
such small numbers can be done through shifts and additions. In addition,
all multiplications by a number less than 7 can be done through exactly one
addition. Thus, the “multiplier” unit in generic LWE can be implemented using
a single adder with two multiplexers. Although the hardware complexity can
be further reduced by the assumption that only χ2 will be used (the maximum
input from s is 4 in this case), this optimization loses compatibility of different
parameter sets. Since having a slightly smaller multiplexer gives us marginal
performance benefit, this optimization is not applied on the proposed design.

The complete system for computing AS and B′S in Fig. 3.2 illustrates the
simplicity of Filianore. An extra adder is used to perform the accumulation
of matrix products, and it is also possible to use the system as is to perform
plain integer additions such that AS + E can both be computed on Filianore
(by setting a multiplication by 1). The performance discussions are delayed
into the next section where the design is synthesized, but this succinct design
is clearly small in area, low in power, and highly parallelizable.

To parallelize the design, there are two approaches available. First, in
Fig. 3.3, the a input is shared among all computational units, whereas the
s is different for each. The benefit of this approach is that it minimizes memory
bandwidth while retaining paralleled efficiency. Since the secret integer is
only 4-bit wide (lg s = 3 with an additional sign bit), even if the degree of
parallelization is k = 16, the input bus will still be 64+ lg q bits. The drawback
and the reason that Alice cannot use this method is that it relies on the fact
that the secret matrix S has dimension n × k where k > 1 strictly. For Alice
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Figure 3.4: Proposed hardware accelerator for RLWE.

Table 3.4: Operational Modes for R-Filianore
op0 op1 op2

Mode i) s 3186 0
Mode ii) a[j] ω a[j + t]

Mode iii) â b̂ ê

Figure 3.5: Hardware Montgomery reduction unit for a fixed q = 12289 and
R = 218.

where the secret is a vector, i.e., s ∈ Zn×1
q , there is no room for parallelization

using different secret vectors. In such a case, the second approach can still be
used, where the architecture in Fig. 3.2 is simply stamped k times for k-degree
parallelization. This approach requires much larger memory bandwidth when k
gets larger (320-bit when k = 16), and can be deployed if latency is extremely
important. However, as [6] explains, for a typical HTTPS connection based on
TLS, a single unit of Filianore fulfills the computational demand for Alice.

3.3.2 R-Filianore

Since all existing RLWE implementations avoid designing the core compu-
tational unit, to enable fair comparison, R-Filianore is also proposed, an
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Algorithm 1 Cooley-Tukey butterfly from [60].

Require: a[j], a[j + t], ω
1: U ← a[j], V ← a[j + t] · ω
2: a[j]← U + V
3: a[j + t]← U − V

Algorithm 2 Montgomery reduction for R = 218 from [7].

Require: p
1: u = (p · 12287) mod 218 · 12289
2: p = (p+ u)/218

Algorithm 3 Short Barrett reduction from [7].

Require: p
1: u = (p · 5)/216
2: p = p− u

accelerator for RLWE-based key exchange. The proposed architecture shares
similarity with [60], but without a convenient DSP unit, the design of modular
multiplication unit needs to be reconsidered.

The hardware accelerator proposed in this section is sketched in Fig. 3.4.
The optimization techniques suggested in [7] are adopted, where all operations
are carried out on unsigned integers in the Montgomery form. All operands
that are read from or written to the memory are of 14-bit length. This is
achieved through two consecutive reductions: the Montgomery reduction brings
32-bit integers down to 14 bits, and the short Barrett reduction is a light-weight
unit that brings any 16-bit number down to 14 bits. This structure of a two-
level reduction is distinct compared to the CPU implementation in [7], where
additional reductions mean additional CPU cycles. This is also the reason why,
instead of Gentleman-Sande (GS) butterfly, CT butterfly from [60] is utilized.
The CPU-based implementation can have 32-bit additions and multiplications
for free, but this is not the case for specialized hardware. Observe that in GS
butterfly used by [7], the maximum input to the multiplier can be 69634, which
is beyond 16 bits. Whereas, in R-Filianore, all input and output operands are
strictly 14-bit.

This cryptographic processing unit is designed to operate under three types
of arithmetic modes: i) converting the secrets into Montgomery form, ii) the
Cooley-Tukey (CT) butterfly outlined in Alg. 1, and iii) the coordinate-wise
multiplication and addition involved in computing â◦ŝ+ê. Previous works have
only focused on the design exploration for mode ii), for they either adopts a DSP
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Table 3.5: Results of Hardware Implementations
Delay [ns] Area [NAND2] Power [µW]

Filianore-I 2.8 1007 60.8
Filianore-II 2.5 639 48.1
Filianore-Rec 3.0 5822 385
R-Filianore 5.5 8229 323

that internally performs modular reduction [60], or works on general-purpose
processors where i) and iii) are trivial.

Table 3.4 indicates the assignments for inputs op0, op1, op2 under three dif-
ferent operational modes. For mode i), the 14-bit input operand s is multiplied
by 3186 = (218)2 mod 12289. This operation is to bring s into Montgomery
domain by multiplying s with R2, where R = 218, and Montgomery-reduce
to sR2 through the Montgomery reduction unit illustrated in Fig. 3.5. In
mode ii), computations for Alg. 1 can be performed in a single pipelined cycle.
These two steps essentially perform one NTT operation required in Fig. 2.4.
Lastly, coordinate-wise multiplications and additions are computed in mode
iii). By these three modes, all heavy computations in Fig. 2.4 can carried out
on R-Filianore.

Finally, the efficiency of the modular reduction units is discussed. As Fig. 3.5
shows, these reductions are optimized to work on a specific q, namely q =
3·212+1 = 12289. Thus, multiplications are computed as consecutive additions,
e.g., p · 12289 = (p + 2p) · 212 + p. For the ease of presentation, the detailed
architecture for short Barrett reduction which shares a similar structure to
Fig. 3.5, is omitted. Since these units are optimized for a fixed modulus, this
efficiency gain comes at the cost of flexibility.

3.4 Hardware Implementation and Compari-

son

The architectures shown in Fig. 3.3 and Fig. 3.4 are synthesized on a commercial
library of a 65 nm low-power process node using logic-synthesis tool [66], and the
power is analyzed by [67]. The synthesized results are summarized in Table 3.5.
Here, F-I, II, and Rec are shorthands for instantiating the parameter sets Frodo-
I/II/Rec on Filianore, and R-F means R-Filianore. The delay in Table 3.5 refers
to circuit delay, which is different from the key-exchange latency later discussed.

To compare the actual performance, the energy consumption of (R-)Filianore
over one set of key exchange is calculated. The latency for Frodo based on
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Table 3.6: Latency, Energy Consumption and Memory Bandwidth Comparison
for Alice

F-I F-II F-Rec R-F [63]
L [ms] (g = 1) 1.718 1.178 1.715 0.1084 40.01

L [ms] (g = gmax) 1.211 0.7271 - - -
E [nJ] (g = 1) 104.5 56.68 660.1 35.04 -

E [nJ] (g = gmax) 73.64 34.97 - - -
Read [KiB] 1457 781.1 3358 89.23 -
Write [KiB] 1.530 1.081 1.425 61.87 -

Filianore is calculated as

L = g · (n2n+ n+ nmn) · 2.8. (3.2)

The first term n2n + n is the cost of AS + E, and nmn for B′S. Note that
in F-I and II, n is 1, and S = s ∈ Zn

q . A constant g is defined to express the
average number of zeroes in Alice’s secret vector. gmax is taken to be 0.705 for
Frodo-I and gmax = 0.617 for Frodo-II. Computational latency for NewHope on
R-Filianore is

L =
(
2n+ 2 · n

2
lg n+ 2n+

n

2
lg n
)
· 5.5. (3.3)

Here, the first 2n represents costs for transforming errors s, e into Montgomery
form. Two NTT operations need to be performed to map s, e into ŝ, ê. Note that
the transformation of public key â is not needed, for a uniformly distributed
vector is still uniformly distributed in the frequency domain in Montgomery
form. The third 2n refers to computing â ◦ ŝ+ ê and b̂′ ◦ ŝ, and the final term
is the cost of computing INTT.

The latency, memory consumption and energy consumption for (R-)Filianore
are summarized in Table 3.6, and the results are compared with the most
relevant work in [63]. The energy consumption is calculated using the equation
E = L · P , where L is the latency and P is the power in Table 3.5. Although
LWE-based constructions are generally slower in delay, due to the simplicity of
the proposed architecture, the energy efficiency is comparable between LWE and
RLWE for F-I and II, and the area is 8 to 12x less. For the minimal parameter
set F-II, it is observed that a generic LWE instance can be even slightly
more energy-efficient than RLWE. On the other hand, in either case, under
design-specific optimizations, the proposed designs are much more efficient than
CPU-based approaches (103 to 104 energy reduction). Finally, while generic
LWE consumes extensive memory-read bandwidth, since it only writes every n
cycles, there are considerably less writes compared to read (O(n) for write). On
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the other hand, since the NTT writes two outputs per butterfly, more writes
are generated (O(n log n)).

The proposed multiplier achieves much better throughput than the existing
FPGA-based design in [63], due to custom architecture and aggressive param-
eter instantiation. It is also noted that focusing on the multiplier architecture,
Filianore is much more energy-efficient than existing studies on generic LWE.
For example, the design in [47] is 28x slower in latency while having a similar
power consumption compared to [59], on a per-bit encryption scale. Conversely,
F-I and II have similar energy consumptions compared to R-Filianore. This
performance gain comes from the faster clock and less power consumption of
the proposed architectures. Therefore, although generic LWE is still less efficient
overall when memory bandwidths are considered, the performance gap can be
reduced by adopting Filianore-like multiplier architectures.

Lastly, it is noted that as explained in [6], the latency for key exchange has
diminishing impact on the connection speed for a real-world workload. Since the
proposed hardware implementation is almost as fast as the CPU implementation
in [6], it is likely that a single-unit Filianore is practical enough to perform
LWE-based key exchange for real-world HTTPS connections. Furthermore,
instead of a standalone co-processor, the designed unit can easily be integrated
into an embedded processor as an extension to its instruction set architecture,
where existing data buses are generally adequate for the small amount of data
per cycle required (15 to 20 bits).

3.5 Summary

In this chapter, (R-)Filianore, a set of multiplier designs for the (R)LWE-based
key exchange algorithms are proposed. By adopting an ASIC approach,
compared to existing architectures, the energy efficiency of the proposed ap-
proaches are greatly improved. In addition, by carefully exploiting the algebraic
structure of generic LWE, it is demonstrated that under the asymmetric
setting, client-side computations for LWE be as energy-efficienct as RLWE,
with an extra area reduction of 8-12x. Furthermore, optimizing LWE-based
cryptosystems using tight parameter estimation along with novel hardware
designs becomes one of the main design perspectives for the subsequent chapters.
Finally, it is concluded that given its flexible nature and solid security reduction,
generic LWE remains competitive against RLWE for the post-quantum age.
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Chapter 4

Approximate Architectures for
Lattice Cryptography

4.1 Introduction

As mentioned in Chapter 3, existing hardware instantiations for generic and
ring LWE, including (R-)Filianore, are generally only exploring how hardware
architectures can be optimized to fulfill the computational demands of a set
of established algorithms in the application and cryptographic layers, i.e., the
hardware components serve solely as a tool to implement the algorithms.

This chapter explores how upper-layer algorithms can be modified to adopt
to specialized lower-layer arithmetic units. Specifically, the applicability of
approximate computing (AC) in LWE-based cryptosystems is explored. The key
observation is that any (R)LWE-based cryptosystem is approximate by nature.
For such ciphers, profiling and controlling error growth is essential in ensuring
the correctness of the scheme, especially in instantiating concrete parameters.
Theoretically, a cipher is considered correct as long as the decryption failure
probability exhibits an exponentially decaying tail with respect to some parame-
ters [18]. However, for a concrete parameter instantiation, a much more rigorous
approach is required. In this chapter, existing LWE-based cryptosystems are
modified such that numerical approximation can be adopted. As observed
in [68], since LWE cryptography is erroneous by nature, the consequences of
the proposed modifications are examined from both theoretical and empirical
perspectives. As demonstrations, the well-known LP cryptosystem in [18] and
the (R)LWE FHE scheme GSW by [16, 49] and [17] are instantiated with
concrete parameters, and show that such cryptosystems almost always permit
parameter approximation to some extent. Therefore, the proposed techniques
are important optimizations for practical implementation of LWE cryptography,
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especially in terms of the design and resource utilization of ASIC hardware.
In the experiment, the ASIC implementations of the exact and approximate

versions of the underlying hardware are designed and compared. It is shown
that in the LP case (resp., GSW case), it is possible to simultaneously achieve
1.75x (resp., 2.9x) speed increase, 4.17x (resp., 12.89x) area reduction, 2.29x
(resp., 7.4x) power reduction and an average of 27.1% (resp., 62.5%) ciphertext
size reduction in the decryption hardware without tempering the security and
correctness requirement. The main contribution of this chapter is summarized
as follows.

• Approximate LWE Decryption: A cryptosystem transformation is
proposed such that existing LWE schemes can run on a set of approximate
algorithms, instead of exact ones. As later shown in Section 4.5, additional
noises can be infused into LP and GSW without breaking its security
and correctness requirement. Hence, the practical aspect of the proposed
technique is that the speed, area, power, and ciphertext-size gain come
at (almost) zero cost. In addition, the proposed technique is general,
since all LWE-based cryptosystems perform the decryption operation by
computing products between two matrices.

• Theoretical Bound for Correct Decryption: While a similar analysis
is performed in [68], their theoretical analysis is incomplete, in that no
asymptotic failure probability bound was provided. In the case where
extremely low failure probability is required (e.g., 2−40), it is practically
impossible to use Monte-Carlo (MC) simulations to determine the failure
probability. In this chapter, the error profile of the state-of-art DRUM
multiplier proposed in [69] is rigorously studied, and develop a theoretical
bound for error growth under such approximate hardware. Fitted MC is
also used to verify the higher range of the theoretical bound.

• Approximating Homomorphic Encryptions: The complex error
growth in GSW is generally not well-studied [16, 17], where a simple
B bound is used to instantiate the parameter set. In this chapter, it
is shown that using the established error analysis, a concrete bound
that is much smaller than the absolute worst-case assumption can be
established. Combining with the approximate decryption technique, as
illustrated in Section 4.5, the proposed approximation is especially useful
for the homomorphic evaluations where, in general, have large unused
error margins.

• ASIC Multiplier for Standard LWE: To fully benefit from AC, the
DRUM multiplier is optimized to implement the computational unit of
generic LWE. As pointed out in [57], ASIC implementations for LWE-
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Figure 4.1: The DRUM [69] scheme approximates each operand in a) as b).

based cryptosystems are scarce, especially for generic LWE. Compared to
the only existing work by Howe et al. [47], where an 18-bit DSP multiplier
on an FPGA is used, the specialized multiplier further achieves 1.325x
speed improvement, 2x area reduction and 1.84x power reduction in the
decryption process of LP.

The rest of this chapter is organized as follows. First, the DRUM multiplier is
portrayed in Section 4.2. Second, in Section 4.3, the error profile for generic
LWE is analyzed, and investigate the effect of numerical approximation on the
error growth. Third, existing ciphers are transformed into approximate ones
and provide correctness analyses on their parameters in Sections 4.3 and 4.4,
respectively. Forth, the approximate hardware architecture for both PKE and
FHE with their respective implementation results are presented in Section 4.6.
Finally, this chapter is concluded in Section 4.7.

4.2 Preliminaries: The DRUM Technique

In Chapter 4, a specific approximation scheme suggested in [69] called DRUM
is used. The basic technique is outlined in Fig. 4.1. First, in a), a ⌈lg q⌉-bit
integer (i.e., log2 q) is scanned by the algorithm to find the first occurrence
of bit 1, called the leading one. The following k − 2 bits are cut from the
original integer, with the least significant bit (LSB) being fixed to 1. The
remaining bits are thrown out, and the following product are taken between
two approximated k-bit integers. Thus, the algorithm effectively compresses
each ⌈lg q⌉-bit operand involved in the multiplication into a k-bit one, where
the LSB is deterministically 1 to unbias the approximation error. Here, the
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Algorithm 4 Encoding transformation function E
Require: x ∈ Zq, k ∈ Z ∩ [1, lg q]
1: p = LOD(x)
2: x̃ = (x− 2p)≫ (p+ 1− k)
3: @p ∈ Z⌈lg q⌉, x̃ ∈ Z2k−2

Algorithm 5 Decoding transformation function D
Require: p ∈ Z⌈lg q⌉, x̃ ∈ Z2k−2

1: y = (((x̃≪ 1) + 1)≪ (p+ 1− k)) + 2p

2: @y ∈ Zq

relative approximation factor α is defined as α = ⌈lg q⌉ − k. A more detailed
error analysis will be provided in Section 4.3.2.

After the approximation, only k − 2 bits of data need to be transferred,
with additionally the position of the leading one, to the decryption side such
that an approximated product can be carried out between the ciphertext and
the secrete key. In Section 4.5.4, a leading-one encoding technique based on
Huffman coding is developed, such that the decryption algorithm only needs an
average of k bits to perform a successful decryption.

4.3 General Error Analysis

Before delving into the actual application of AC on LWE cryptography,
this section first sets on a detailed analysis on the general decryption error
characterization that lays the foundation for all subsequent analyses.

4.3.1 Formalizing DRUM

The error analysis is set off by formalizing the DRUM technique into a
pair of encoding and decoding operations E and D. First, as outlined in
Alg. 4, the encoding algorithm E takes as input a ⌈lg q⌉-bit number x and the
approximation factor k. E proceeds by locating the position p of the leading
one in x (LOD(x)), and assign the subsequent (k−2)-bit portion of x to x̃. The
resulting position p ∈ Z ∩ [0, ⌈lg q⌉ − 1] and approximated x̃ are the output of
the algorithm, which is used in the decoding algorithm. For decoding algorithm
D, x̃ is first shifted such that the least significant 1 for unbiasing can be added
back. The approximated version of x, denoted as y, is then restored by adding
2p, which is the leading one in x, to the shifted sum.
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The algorithms described above are equivalent to the DRUM scheme
described in Section 4.2, so the hardware implementation for the algorithms
can readily be found in the original work [69]. A definition of (E ,D) on vectors
and matrices is also required, where the algorithm works component-wise. For
vectors, we have π, x̃ = E(x, k), and y = D(π, x̃), where each x̃i ∈ x̃ is an
approximation of xi ∈ x. The leading one positions of each xi also form
the vector π = [p0, · · · , pn−1] ∈ Zn×1

⌈lg q⌉. For matrices, similarly, we have

Π, X̃ = E(X, k) and Y = D(Π, X̃), where X, X̃, and Π all have the same
dimensions.

4.3.2 Formulating the Approximation Error from
DRUM

It can be observed that both decryption functions in LP and GSW consist of a
simple inner product between two vectors. This generally applies to LWE-based
cryptosystems. Hence, the error characteristics of integer-valued inner products
in a finite field, i.e., ⟨a, s⟩ where a, s ∈ Zn

q , are studied, in the presence of
arithmetic approximations.

Existing approximate computing techniques generally do not specifically
target on working with uniformly random integers in a finite field [70]. As it
turns out, if trivially applied, the error rate can easily exceed 100% in such case,
rendering the approximation scheme useless. For example, consider the product
215 · (215 + 1) mod 216. Without LSB approximation, the product evaluates
to 215; whereas, by ignoring the single LSB from 215 + 1, a product of 0 is
obtained. The problem originates from the fact that, while relative to 230, an
error of 215 is “small” (less than 0.0001%), for integers modulo 216, the size
of the error is the same as the correct product (100%). The development of
profitable approximation techniques for multiplication on finite fields remain as
an interesting open field of research.

Fortunately for most applications of LWE, the secret vector can be sampled
from a Gaussian distribution with small variance (generally from the same
distribution as the errors [18], or even ternary/binary distributions [65])
without violating the security requirement [18]. Hence, since approximating
the secret vector has negligible return, the error behavior of the product ⟨ã, s⟩
is focused on, where ã = D(E(a, k)), and s not approximated. An entry-wise
analysis shows that the DRUM approximation can be thought as inducing an
(correlated) additive error to each ai ∈ a, where ãi = ai + ei, where ei is i-th
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error due to approximation. Consequently, we have the equality

⟨ã, s⟩ =
n−1∑
i=0

(ãisi) =
n−1∑
i=0

(aisi) +
n−1∑
i=0

(eisi) (4.1)

= ⟨a, s⟩+ ⟨eα, s⟩ (4.2)

where the first term ⟨a, s⟩ is the exact inner product, and the second term
⟨eα, s⟩ is the inner product between the error due to DRUM approximation,
D(E(·)), and the secret vector s. eα ← ϕn is used to denote the fact that each
entry ei ∈ eα can be thought as drawn from some probability distribution ϕ
parameterized by the approximation factor α, i.e., ei ∼ ϕα. This will be a
helpful notion in the next section.

Without loss of generality, two assumptions are made on the product of
⟨a, s⟩: i) the product contains a simple sum of a message component and an
error term (both integers mod q), and ii) the error term is the result of an inner
product between two independent random vectors, one of which being the secret
vector s sampled from some Gaussian distribution. For LWE cryptography, the
above assumptions generally hold true, where the second assumption is proved
by Lindner and Peikert in [18]. Using the assumptions, the analysis of DRUM
on LWE cryptography can be simplified into the evaluation of one equation

Pr[∥⟨ε, s⟩∥ ≥ Tσ∥ε∥] < 2 · exp
(
−T

2

2

)
, (4.3)

where ε is the combined error term including the original error from LWE (e

in Section 2.4.2) and the additive error from DRUM (eα). Taking T = ⌊q/4⌋
σ∥ε∥ ,

we get precisely Eq. (2.9) (except for ∥ε∥), and all the LWE-based correctness
analysis follows. By the above assumptions, the following equalities hold

⟨ε, s⟩ = ⟨e, s⟩+ ⟨eα, s⟩ = ⟨e+ eα, s⟩. (4.4)

Note that if e and eα have different dimensions, as in the case of LP, one of the
vectors needed to be padded with zeroes (the padding does not change the result
of the inner products). As it turns out, the L2 norm of each term in e+ eα can
be computed separately, and the final bound is given by Pythagorean additivity
as

∥ε∥ =
√
∥e∥2 + ∥eα∥2. (4.5)

Note that this theoretical derivation is not specific to DRUM (although it is
required that the error is linearly separable from the product), and applies to
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Figure 4.2: The probability mass function of DRUM approximation when α = 3
and a normal distribution with the same mean and variance.

general approximation techniques. Therefore, the conclusion here is that, as
long as the Euclidean norm of the approximation error ∥eα∥ is subexponential
in n, a polynomial q guarantees asymptotic correctness of decryption. In the
next section, the error analysis is completed by providing an upper bound on
the approximation error ε in the case of DRUM.

4.3.3 Bounding the L2 Norm of Approximation Error

Since a small q is essential to the efficiency of LWE-based cryptography,
developing an asymptotically better and tighter error bound for DRUM is
important. Figure 4.2 illustrates an example of the probability mass function
(PMF) of the approximation error resulting from DRUM with an approximation
factor α = ⌈lg q⌉ − k = 3. The benefit of DRUM is that the PMF is
precisely defined, and its moments along with the expected values can be easily
computed. Hence, the general results from studying norms of random matrices
(also originates in the field of machine learning) are used to bound the L2 norm
of ε ∈ ϕn. For example, the Chernoff-Cramer inequality is stated as follows.

Theorem 1. (Adopted from Theorem D.1 in [7]) Let ϕ be a distribution over R
and let X0, · · · , Xn−1 be independent and identically distributed variables drawn
from ϕ, with mean µ. Then, for any t such that Mϕ(t) <∞, it holds that

Pr

[
n−1∑
i=0

Xi ≥ nµ+ β

]
≤ exp(−βt+ n ln(Mϕ(t))), (4.6)
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where Mϕ(t) is the moment generating function defined as

Mϕ(t) := E[exp(t(ϕ− E[ϕ]))] (4.7)

For any bounded distribution as in the case of DRUM (and discrete
Gaussian), the t-th moments for all t ∈ R are finite. Hence, the distribution
has an exponentially decaying tail bound.

Since the L2 (Euclidean) norm of the vector ε ← ϕn
α is required, a random

variable Y = X2 is built, where X ∼ ϕα. The distribution of Y can be easily
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enumerated from the distribution of X, where each Y is the squared value
of X carrying the same probability weight ϕ(X). Here, an example of the
evaluation results for the case where α = 3 is given. The resulting distribution
is characterized in Fig. 4.3. Compared to Fig. 4.2, Fig. 4.3 contains fewer points
due to the fact that squaring is not an injective map. In addition, the PMF
is not monotonic in the sense that the probability that Y = 1 is larger than
Y = 0. This is because while Pr[X = 0] = Pr[X = 1], Pr[Y = 1] = Pr[X =
−1] + Pr[X = 1], making the probability of Y = 1 larger than that of Y = 0.

By computing the moment generating function of Y using Eq. (4.7) and
applying the Chernoff-Cramer bound in Eq. (4.6), the choices on β can be
optimized by incrementally changing the value of t and calculate the failure
probability using Theorem 1. In the example where α = 3 with n = 256 as
in [18], the optimization process of β is sketched in Fig. 4.4. The smallest β
such that there exists some t at which the failure probability is below a certain
threshold (e.g., 2−40 is used in [18]) is desired. The calculated nµ + β ≤ 5610,
and since we have

∑n−1
i=0 X

2
i = ∥eα∥22 ≤ 5610, the resulting bound is ∥eα∥ ≤ 75.

This example is actually the case for approximating the public key cryptosystem
by LP [18], further analyses on the exact decryption failure probability in the
presence of DRUM approximation are provided in Section 4.5.

4.4 Cryptosystem Transformation

In this section, a high-level description on the cryptosystem transformation on
LP and GSW is provided.

4.4.1 Approximating LP

In general, the only modification needed is on the encryption (LP.Enc) and
decryption (LP.Dec) functions, which is transformed as follows.

• L̃P.Enc(A, cA,m, k): Using the same secret and errors sA, eA, em, output
the ciphertext

π, cA1 = E(stAA+ etA, k) (4.8)

cA2 = stAcB + em +m · ⌊q/2⌋ ∈ Zq. (4.9)

• L̃P.Dec(π, cA1, cA2, sB):

m = ⌊(D(cA1,π) · sB + cA2)/⌊2/q⌋⌉. (4.10)
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Correctness

For correctness, it needs to be proven that Eq. (4.10) can recover m as Eq. (2.7)
does. From Section 2.4.2, it is shown that the decryption cA1sB + cA2 results in
Eq. (2.8). Adding the DRUM error term, we get

etAsB + eα
tsB + stAeB + em +m · ⌊q/2⌋. (4.11)

In Section 2.4.2, the original errors are concatenated into a single vector e. By

padding eα into a 2n vector filled with zeroes in the form of e∗α =

(
eα
0

)
where

0 ∈ Zn
q , a single inner product is enough to express the error term as

D(cA1,π) · sB + cA2 = ⟨e+ e∗α, s⟩+m⌊q/2⌋, (4.12)

and the analysis in Eq. (4.3) follows. The correctness of the scheme follows by
instantiating an appropriate parameter set.

Security

The security of L̃P follows immediately from LP. As suggested, E and D
compress the ciphertext c1 with loss. Thus, if an adversary is able to recover the
secret or plaintext from (cf , c2), the adversary will be able to do the same thing

for (c1, c2), with less effort. Thus, L̃P has at least the same, and presumably
stronger security compared to LP (due to additional error).

4.4.2 Approximating GSW

For GSW, the encryption and decryption functions are modified as

• G̃SW.Enc(A,m ∈ {0, 1}, k): Notice that A = (A cB), output the
ciphertext C,Π

C = A+m ·G (4.13)

Π, C̃ = E(C, k) (4.14)

Pen(C̃)n−1 = Pen(C)n−1. (4.15)

• G̃SW.Dec(Π, C̃, sB): Extract the penultimate row of C̃, c̃ = Pen(C̃) ∈
Z1×n

q , and compute

m = ⌊(c̃ · sB)/2ℓ−3⌉. (4.16)
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Note that in Eq. (4.15), an exact version of Pen(C) is used instead of the

approximate one. This is similar to Eq. (4.9) in L̃P, where an exact version of
the ciphertext gives simpler error analysis and better error bound.

Since the security proof is trivial as in the case of LP, a formal discussion is
omitted.

Correctness for Approximate Decryption

The error growth for homomorphic evaluations involving homomorphic multi-
plications is highly non-trivial, and is a part of the reason why existing works
have been employing the simple B-bounded approach as in [17]. For example,
in [17], each ciphertext C is said to be B-bounded if all the internal error terms
e ≤ B. While Khedr et al. claimed that the error growth isO(

√
N) “in practice,”

they did not provide a theoretical analysis on the exact error growth for their
homomorphic protocols. The parameters are instantiated with a trial-and-error
approach without specific bounds being suggested (Section 6 in [17]). Unlike
the LP scheme where simple error correcting codes are sufficient in the case of
decryption failure [18], the result of an arbitrary set of homomorphic evaluations
on some inputs are consequently arbitrary, and the asymptotic correctness of
such scheme needs to be ensured (more concretely, e.g., a decryption failure
probability of 2−40).

As an attempt to further formalize the analysis for decryption failure
probability in HE schemes, a general analysis on the error growth of a
homomorphic multiplication between two arbitrary ciphertext C0 and C1 is
first provided. It is assumed that C0 and C1 originally hold errors bounded by
B0 and B1, respectively. It is pointed out that the error resulted in the product
C0 · G−1(C1) can be expressed by Eq. (2.15). Since the second term m0e1 can
be trivially bounded by B1 (or goes to 0 when m0 = 0), the main focus here is
the errors generated in G−1(C1) · e0. When e0 comes from a discrete Gaussian,
the product bound follows directly from Lemma 2, where σ = σe0 . However,
when C1 is the result ciphertext of some arbitrary homomorphic encryption, it
becomes slightly harder to apply Lemma 2. The observation here is that, since
G−1(C1) is a 0-1 matrix, and by the leftover hash lemma [12], the distribution
of G−1(C1) is known to be extremely close (except for probability 2−n) to
uniform random. Therefore, the entries of G−1(C1) can be viewed as a binomial
distribution with ν = κ = 1. For p = 1/2, the following inequality can be
obtained.

Mbinomial(t) = 1/2 + 1/2et ≤ et
2

,∀t ∈ R, (4.17)

where et
2
is the moment generating function of a centered Gaussian distribution

with standard deviation σ =
√
1/2. Thus, Lemma 2 is applied in the reversed

51



4.5. PARAMETER INSTANTIATION

Table 4.1: Parameter Instantiation for L̃P and G̃SW
q n σ lg q α

L̃P 4096 256 3.33 12 3

G̃SW 0x7FFE0001 1024 3.98 31 20

order as

Pr[∥⟨e0, G−1(c1)⟩∥ ≥ Tσc1∥e0∥] < 2 · exp
(
−T

2

2

)
, (4.18)

where c1 = Pen(C1), and σc1 =
√
1/2. Since e0 is B0-bounded, ∥e0∥ = B0 by

definition, and the product bound can be easily calculated.
Consequently, after decryption, the total error becomes

eα · sB +G−1(c1) · e0 +m0 · e1. (4.19)

Although it is not entirely trivial to sum up the two error terms, by the
triangular inequality, it holds that ∥eα · sB +G−1(c1 · e0)∥ ≤ ∥⟨e0, G−1(c1)⟩∥+
∥⟨eα, sB⟩∥, and that ∥⟨e0, G−1(c1)⟩∥ + ∥⟨eα, sB⟩∥ ≤ Ts(σc1∥e0∥ + σ∥eα∥) by

overwhelming probability for some Ts. Setting Ts =
⌊q/8⌋

σc1∥e0∥+σ∥eα∥ , and ∥eH∥ =
∥eα · sB +G−1(c1 · e0)∥, we get

Pr[∥eH∥ ≥ ⌊q/8⌋] < 2 · exp
(
−1
2
(

⌊q/8⌋
σc1∥e0∥+ σ∥eα∥

)2
)
, (4.20)

albeit not entirely tight. However, as demonstrated in Section 4.5.3, since the
average error growth is much less than q/8, the above bound allows for a concrete
analysis of asymptotic correctness under large approximation factors.

4.5 Parameter Instantiation

In this section, L̃P and G̃SW are instantiated using concrete parameters
suggested in [18] and [17], respectively. Concrete DRUM approximation factor
α is also instantiated for each of the schemes.

The parameters used in this work is summarized in Table 4.1. As discussed
in [47, 71], q can be a power of 2 in generic LWE, which simplifies both the

notation and the hardware circuitry. In L̃P, the same n and σ in [18, 47] are
used to guarantee a security level roughly equivalent to AES-128. Similarly, the

parameters for G̃SW has a security level of 80-bit as discussed in [17]. For the

DRUM multiplier in L̃P (resp., G̃SW), a 9-bit (resp., 12-bit) multiplier is used
instead of a full 12-bit (resp., 32-bit) one, and both theoretical and empirical
methods are utilized to study the error growth under such approximations.
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Figure 4.5: The decryption error distributions of LP and L̃P from 10M
simulations.

4.5.1 Theoretical Bound for Errors in L̃P

As described in Section 4.3.3, using α = 3, an L2 norm bound on the
approximation error is acquired as ∥eα∥ ≤ 75. From Lemma 1, the L2 bound
on the original error vector can be calculated as ∥e∥ ≤ c · σ

√
2n where n = 256

and c = 1.25. The resulting bound is ∥e∥ ≤ 94.2. By Pythagorean additivity,
the combined bound is 120.5. Taking q/4 = 1024 into Eq. (4.3), we have

Pr[∥⟨ε, s⟩∥ ≥ 1024] < 2 · exp
(
(1024/(120.5 · 3.33))2

−2

)
, (4.21)

and a concrete probability of 7.64% is obtained. At first glance, the parameter
instantiation does not work, and a larger q is required such that the failure
probability is safely below 2%. However, since the LP failure probability is
relatively large, a simulated approach can be adopted to find a tighter bound
on the failure probability. As shown in the next section, an α = 3 assures the
correctness of LP with a failure probability of 0.127%.

4.5.2 Empirical Bound for Errors in L̃P

As suggested, the LP bound on failure probability is relatively large, where a
simulated approach can guarantee reasonable confidence interval.
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Figure 4.6: The upper bound U for different approximation parameter lg q− k.

In this section, Monte-Carlo simulation is used to study the decryption
failure probability of 10 million randomly produced LP as well as L̃P ciphertexts.
Figure 4.5 demonstrates the simulated size of decryption errors for 10M LP
samples as defined in Eq. (2.8), and 10M L̃P samples in Eq. (4.3). In Fig. 4.5,

the original LP distribution is in light gray, and L̃P is in black. Each distribution
is fitted with a normal distribution on top. σn denotes the standard deviation
calculated for the fitted normal.

By examining the simulated results, it is found that for LP, 597 samples
have decryption error that is greater than |q/4| in 10M simulations, giving
a decryption failure probability of 0.00597% with σn = 252 for the fitted
normal. Meanwhile, for L̃P, 12429 decryption failures occurred, translating
to a 0.12429% of failure probability and a σn = 314. The failure probability can
also be obtained by from σn of the fitted normal. For σn = 252, 1024 = 4.06σn,
and we have Φ(4.06) = 0.006%. On the other hand, for a σn = 314, 1024 is
roughly 3.261σn, giving a failure probability of 0.2%. The normal fittings agree
with the Monte-Carlo simulation, and seems to serve as an upper bound. In
both cases, the decryption failure probability is much less than what Eq. (4.21)
derives.

Confidence Interval for Monte-Carlo Simulation

Since Monte-Carlo simulation is stochastic by design, the confidence internal of
the above simulation process is inspected. One of the approaches (e.g., [72]) is
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Table 4.2: Results of Experiment on Tightness for Various Bounds

∥e∥ ∥eα∥ LP Bound L̃P Bound
Theoretical 94.2 74.9 0.971% 7.64%
Empirical 92.6 73.4 0.0767% 0.127%

to use a standard technique to derive the confidence interval from a series of
small-sized simulations. In this work, the 10M simulations are divided into 10K
simulations of some random variable Z, where Z is the number of decryption
failures (i.e., |⟨e, s⟩| > q/4) per 1000 decryption trials.

As described in [72], for a simulated mean of y, some parameter zc > 0,
simulated standard deviation Sy, and total number of simulations N , the upper
bound U on the mean is derived as

U = y + zc
Sy√
N
. (4.22)

The y and Sy terms can be calculated from each set of 1000 simulations, and
zc is a parameter describing the confidence level in the interval. zc is 7.2, which
gives a confidence level of 1− 2× 10−13. In other words, Pr[Y > U ] < 2× 10−13

(roughly around 2−40).

The result of U for different α is shown in Fig. 4.6. α = 0 depicts the
case of original LP decryption error. The observation here is that, when the
approximate error eα is much smaller than the original discrete Gaussian e, the
total error increases gradually due to Pythagorean additivity of the errors, as
illustrated in Eq. (4.5). Therefore, at first, the original LP error (σn = 252
for lg q − k = 0) dominates the total error, until α = 3. At this stage, σn has
only increased to 314. Unfortunately, when α = 4, the approximation error
becomes dominant term, and a significant increase in σn = 451 and U = 23.85
is observed per 1000 decryption operations.

Based on the empirical results, it seems that the theoretical bound is not
entirely tight. The tightness of each theoretical bound in Lemma 1, Lemma 2,
and Theorem 1 is investigated. The comparison result is summarized in
Table 4.2, where the empirical bounds on ∥e∥ and ∥eα∥ is based on the 7.2σn
value calculated from 10M Monte-Carlo simulations. From Table 4.2, what is
learned is that Lemma 2 is quite loose, since both Lemma 1 and Theorem 1
agrees with Monte-Carlo simulation extremely well.

Finally, the parameter instantiations conclude with α = 3 (failure prob-
ability ≈ 0.127%) satisfies the per symbol error probability in LP [18] with
overwhelming confidence, and these parameters are used for implementing the
approximate hardware.
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4.5.3 Bounding G̃SW

Using a similar technique, parameters can be instantiated for G̃SW. The
subtle difficulty here is that without some assumptions on the underlying
homomorphic evaluations, we end up with a worst-case analysis without fruitful
approximations.

In this section, an analysis on the failure probability of GSW and G̃SW
under the parameters instantiated by [17] is provided. Khedr et al. targets a
multiplicative depth d = 10 for the proposed parameters, with q = 0x7FFE0001
a Solinas prime, and n = 1024, as summarized in Table 4.1. Since a depth-
10 circuit can evaluate 1024 multiplications, the worst-case and average-case
error behaviors are characterized in the particular application of consecutive
multiplications of 1024 ciphertexts.

First, the concrete error growth in the worst-case analysis is conducted,
where Khedr et al. claims that the error growth is O(B2dN). By examining
Eq. (2.15), it is seen that if all N entries in e0 are sampled at the maximum
bound B, the resulting error is 1

2
NB in one multiplication evaluation, where

the 1
2

is due to the fact that the GSW ciphertexts are uniform random
integers modulo q. Then, it is needed to ensure that all 2d homomorphic
multiplications are between ciphertexts that contain such (extremely unlikely)
error distributions. The resulting error evaluates to

B · 2d−1 ·N = 16252928B. (4.23)

Since we have ⌊q/8⌋ = 268419072, a maximum B ≈ 16.5 is calculated, which
corresponds to an ≈ 4.18σ. First, it is concluded that the parameter set is
reasonable. Since the discrete Gaussian samplers have cut-off probability tail
generally around 4 to 5 σ (e.g., [6]), having a B bound at 4.18 will ensure the
correctness of the scheme in the absolute worst-case scenario. However, it is also
noticed that this parameter set is clearly an overkill for 1024 multiplications,
for the probability that a Gaussian sampler consecutively gives N outputs of
values at ≥ 4σ can be practically ignored.

For a typical chain of 1024 homomorphic multiplications, on the other hand,
the errors are much small in size. Using Lemma 1, the bound of the L2 norm
of e0 is calculated as

Pr[∥e0∥ ≥ 3.94 ·
√
1024 · c] ≤ c · exp

(
1− c2

2

)
, (4.24)

and taking c ≈ 1.03, we have Pr[∥e0∥ ≥ 722.9] ≤ 2−40. With a L2 bound on e0,
Lemma 2 can be applied to bound the size of the product between C−1(c1) and
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Figure 4.7: The calculated Chernoff-Cramer bound with respect to the

approximation factor α in G̃SW.

e0 using Eq. (4.18) as

Pr
[
∥⟨e0, G−1(c1)⟩∥ ≥ T ·

√
1/2 · 722.9

]
< 2 · exp

(
−T

2

2

)
. (4.25)

To ensure a failure probability of 2−40, the right-hand side of Eq. (4.25) gives a
T ≈ 7.55, and it is known that ∥⟨e0, G−1(c1)⟩∥ ≤ 3859.4 almost certainly. For 2d

such multiplications, the final error growth will be less than 2d·3859.4 ≤ 3951939
if the ciphertexts are correlated (e.g., in the case of calculating C1024), and√
2d ·3859.4 ≤ 123499 in the independent case by the Pythagorean additivity as

explained in [49]. Compared to ⌊q/8⌋, it is clear that the error margin is, by in
large, wasted under typical homomorphic functions evaluated on some freshly
encrypted inputs.

With the original error in hand, the Chernoff-Cramer bound can be applied
on eα and sB using the instantiated ⌈lg q⌉ and α. The relationship between
α and the obtained bound, illustrated in Fig. 4.7, presents to be exponential.
This is a natural result since the approximation error increases by 2x for each
α step. With this broad range of error choices, the approximation errors can be
limited when the original errors due to homomorphic encryption are large, and
a large α can be chosen when the original errors are small. Using Eq. (4.20), the
bound on the sum of errors can be calculated by setting the decryption failure
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probability to a particular value, e.g., 2−40

σc1∥e0∥+ σ∥eα∥ =

√
(⌊q/8⌋)2

log(2−40/2) · (−2)
, (4.26)

and we get σc1∥e0∥ + σ∥eα∥ ≤ 54025843. When α = 19, σ∥eα∥ = 3626289,
the margin for the homomorphic evaluation errors is large. Both typical
multiplications of 1024 ciphertexts mentioned earlier fit into the bound, and
the conclusion here is that α = 19 works for many, if not most, applications
involving homomorphic evaluations. Even in the absolute worst-case, if a
slightly smaller cut-off tail is used for the discrete Gaussian sample (for example,
at σ ≈ 4 as in D1, D2 and D3 in [6]), the error margin can be as large as
12272926 for the approximation error, and an α = 14 works in such case. In
other words, given the large parameters used in a homomorphic encryption
scheme and the exponential approximation error growth, it is always viable to
find a certain level of profitable α that significantly affect the communication
cost (as in ciphertext reduction) and computational cost.

4.5.4 Ciphertext Size Reduction

As discussed, if E and D are used as compression algorithms with loss, the
compressed ciphertexts should contain less information, and thus be smaller
in size, than the pristine version. In what follows, the resulting ciphertext size

reductions for L̃P and G̃SW are analyzed under the instantiated parameter sets.

Ciphertext Reduction for L̃P

The data needed to be handed to the decryption side contain each entry of
cA1, a k − 2 bit integer from DRUM approximation. p also needs to be
sent, the position vector, for the dynamic range of DRUM. While trivially
transmitting p can diminish the size reduction from lg q to k − 2, p can be
expressed through its Huffman coding representation. The Huffman coding
can achieve optimal compression rate because the probability mass function of
each p can be analytically defined, which is a direct result from the uniformity
requirement of entries in cA1. For lg q = 12, we know that Pr[p = lg q−1] = 1/2,
Pr[p = lg q − 2] = 1/4, and so on. After simple calculation, an average of
n · (k − 2 + ρ) bits are transmitted to the decryption side for cA, where

ρ = 1× 1/2 + 2× 1/4 + 3× 1/8 + 3× 1/8 = 1.75, (4.27)

reducing the size of a ciphertext by roughly 1− ((7 + 1.75)/12) = 27.1%. Note
that cA2 needs to be transmitted as is, but it is only one integer in Zq. The vast
majority (n = 256) of integers are compressed by 27.1%.
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Figure 4.8: The proposed approximate hardware multiplier used in small-secret
LWE decryption.

Ciphertext Reduction for G̃SW

The analysis for G̃SW shares a similar approach with L̃P, only with different
parameters. For typical-case parameters (α = 19), k − 2 = 10, and the final
ciphertext is 10+ ρ-bit, where ρ =

∑19
i=1(i× (1/2i))+19× (1/219). Since ρ < 2,

the ciphertext reduction in this case is 1− ((10 + 2)/32) = 62.5%. Even in the
worst case with α = 14, we have k − 2 = 15, giving a ciphertext reduction of
1− (17/32) = 46.9%.

4.6 Hardware Implementation

4.6.1 Hardware Architecture

To decrypt a standard LWE-based ciphertext, it is generally needed to compute
an inner product between two n-dimensional vectors, where each multiplication
involves two modulo q integers with q a power of 2. Therefore, the main
component in such design is the multiplier, and there is minimal control logics
due to the trivial dataflow. In this work, on the performance characteristics
of three types of multiplier architectures are experimented: i) a plain full q-bit
multiplier, ii) an approximated DRUM k-bit multiplier, and iii) an LWE-specific
architecture accommodating the fact that LWE is small-secret.

Fig. 4.8 illustrates the architecture of the proposed approximate multiplier
used in small-secret LWE. Half of the LOD logics for the secret operand can be
squashed, and simplify the internal multiplier architecture as the output is only
lg q-bit instead of 2k. Using the fact that q is a power of 2, simple bit-select
operations function as modulo reductions in both the multiplier and the barrel
shifter.
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Table 4.3: Results of Hardware Implementations
Delay (ns) Area (NAND) Power (µW)

Full 12-bit 7.0 2912 33.3
DRUM9 12 5.3 1413 26.5
This work 4.0 698 14.4

Full 31-bit 16.8 23869 162.6
DRUM12 31 7.0 4092 42.7
This work 5.7 1857 22.0

4.6.2 Experiment Setup and Results

The design in Fig. 4.8 is synthesized on a commercial 65 nm low-power process
node using the standard logic-synthesis tool [66], and the power statistics are
analyzed by [67].

The synthesized results for L̃P and G̃SW are summarized in Table 4.3.
In both cases, all-round delay, area and power reductions are obtained. The
actual cost for such reductions comes in the form of increased decryption failure
probability. However, since the parameters are selected to meet the decryption
failure probability bound, the cryptographic schemes remain correct. By further
optimizing the hardware architecture for LWE, a total of 1.75x speed increase,
4.17x area reduction and 2.29x power reduction is achievable in the case of

L̃P. In the case of G̃SW, a roughly 21.7x energy reduction is demonstrated
when compared to a full 31-bit multiplier, along with the significant 12.89x
area reduction.

4.7 Summary

This chapter discusses how approximate decryption can be used in LWE
cryptography. A theoretical approach is developed to examine the decryption
failure probability under complex error behavior, and novel empirical methods
are used to verify the theoretical derivations. Using the instantiated parameters,
the complexity of decryption logics as well as ciphertext size are reduced
significantly without violating the correctness of the underlying ciphers.
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Chapter 5

Homomorphic Bayesian Filter

5.1 Introduction

In the age of cloud computing, outsourcing at least some portion of private
data to remote servers is an unavoidable option, even for organizations or
institutions [73, 74]. However, in general, the outsourced data are limited to
insensitive parts, such that the cloud efficiency is gained without compromising
privacy [73,75]. The manual classification of sensitive versus insensitive data can
be troublesome, for example, in the case of outsourcing emails. On one hand,
since a public email server usually possesses a large amount of training email
samples, high-quality email filter is available as part of the hosting service. On
the other hand, the filtering process requires the server to inspect the plaintext
content of user emails, violating privacy constraint for institutional or personal
policies [31].

To resolve the efficiency-privacy dilemma, public-key encryption with
keyword search (PEKS) [76] or partially or fully homomorphic encryption (PHE
or FHE) [77,78] are suggested as possible choice for constructing a secure email
filter. Figure 5.1 outlines the general construction of a secure email filter. A
server, here named Charlie, is presented the task to classify an email without
inspecting the plaintext message from one client, Bob, to another, Alice, as spam
or not. Without concerns for security, such filter can easily be constructed using
a näıve Bayesian filter (NBF) [79].

A secure email filter can thus be implemented by a secure NBF, where
the server blindly computes the NBF function using advanced cryptographic
constructions. For example, PEKS-based techniques proposed for secure
filtering are known to have practical performance [76]. However, since PEKS
gains its efficiency at the cost of revealing the search results to the potentially
malicious server, it violates the security requirement of an SNBF with public
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Figure 5.1: The general communication protocol for SNBF, where the server is
considered as a part of the public channel.

filter [74,80]
From the security perspective, FHE-based schemes such as [17, 45, 77, 81]

are provably secure, where the underlying FHE scheme allows for the blind
computation of arbitrary functions over a set of data. Unfortunately, FHE
does not satisfy the performance level required in practical applications. For
instance, two of the best performing FHE schemes in [17] and [82] compute a
homomorphic multiplication in 300ms and 17–22ms, respectively, on modern
CPUs. For a reasonable email filter as later shown in Section 5.5, this means
that to classify a single word, both schemes need more than three hours of
computation.

As an effort to design a secure NBF with provable security and practical
performance, a custom filter based on a partially homomorphic encryption
(PHE) scheme with designated hardware platform is proposed. Listed below
are the key contributions of this chapter.

• Cryptographic-Layer Protocol Design: A novel secure filtering
scheme is developed using an additive-homomorphic scheme. In this
chapter, the Paillier scheme [40] is used as a demonstrative implemen-
tation. However, SNBF works with arbitrary PHE schemes, such as
quantum-secure LWE-based constructs (e.g., [13]). Specific optimization
techniques are developed for SNBF, e.g., the batch filtering technique
where the wide space of Paillier ciphertext is used to batch up to 100 words
per word filter. On the designed hardware platform, an average-length
email can be classified in 0.5 s, well in the practical domain.

• Application-Layer Weight Embedding: The important observation
in this chapter is how näıve Bayesian weights can be trivially embedded
(as an integer) into the ciphertexts of any PHE scheme, instead of
adopting the fixed-point representation in previous works [17, 45]. This
weight-embedding technique is combined with an efficient homomorphic
word matching function to achieve a practical performance for the
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proposed homomorphic email filter. Through accuracy test on a realistic
email dataset, it is confirmed that the integer-embedding technique
makes negligible impact on classification recall, and the proposed SNBF
scheme is a new type of machine learning technique optimized for secure
applications.

• Hardware-Layer Support for PHE: The importance of hardware
accelerator platforms in the application of homomorphic encryption
is advocated. While the proposed CPU implementation is already
better than existing works, the scalability and energy-efficiency of such
implementation is constrained. In instantiating SNBF on specialized
hardware, the energy consumption of filtering a set of ciphertext (which
may contain one or more words) is reduced by 105 in magnitude compared
to software implementation on CPU.

The rest of this chapter is outlined as follows. First, in Section 5.2, basics on the
plaintext version of NBF is explained. Second, the algorithmic- and hardware-
level specifications of SNBF are provided in Section 5.3 and 5.4, respectively.
The accuracy and practical performance of SNBF is demonstrated in Section 5.5,
and finally, this chapter is concluded in Section 5.6.

5.2 Preliminaries: Näıve Bayesian Filter

The näıve Bayesian filter is based on the simple application of Bayes’ rule. First,
in the training phase, the probability Pr(s|w) for each word w is computed as

Pr(s|w) = Pr(w|s) Pr(s)
Pr(w)

. (5.1)

Here, Pr(w|s) is the per-email probability of word w conditioned on the email
being a spam, Pr(s) is the a priori email spam probability (it is assumed that
Pr(s) = Pr(h) = 0.5 in the dataset. This value can be adjusted and made
public by the server), and Pr(w) is the probability that the word occurs in all
emails. The trained probability Pr(s|w) is that the email is a spam given that
word w appears. In an SNBF scheme, the training phase is performed on a set
of emails independent from the classifying ones, since the server is assumed to
have access to its own set of emails. These emails are public to the server, so
they are distinct from the private (to the user) emails that need to be classified.
Thus, the trained filter is also assumed to be public to the server.

To apply the trained filter, let the incoming emails contain N words wi in
the set W = {w0, . . . , wN−1}. Let pwi

be the learned conditional probability
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Pr(s|wi), the final probability that the email is a spam can be computed as

Pr(sMAP) =

∏N−1
i=0 pwi∏N−1

i=0 pwi
+
∏N−1

i=0 (1− pwi
)
, (5.2)

where the numerator is the combined spam probabilities conditioned on each
word simultaneously being in the email (as independent random events), and
the denominator is the sum of the binary probabilities whether the email
is a spam or a ham given each word in W . The computed Pr(sMAP) is
then the maximum a posteriori probability for the email being a spam. As
the consecutive multiplications result small fractional numbers, Pr(sMAP) is
generally calculated by taking the logarithm of both sides of Eq. (5.2) and
rearranging the terms as

η =
N−1∑
i=0

(log pwi
− log (1− pwi

)), and (5.3)

Pr(sMAP) =
1

1 + e−η
. (5.4)

Equation (5.3) is the target function SNBF that needs to be implemented in
a homomorphic manner. The subsequent notations are simplified using ρi =
log pwi

− log (1− pwi
), and the user should be able to compute η =

∑N−1
i=0 ρi

after the homomorphic classifications of the email.

5.3 Secure Email Filtering: the Algorithm

In this section, the notations used throughout this section is first listed in
Section 5.3.1. Then, the plain SNBF structure including the communication
model in Section 5.3.2 is presented. The optimization techniques for SNBF are
discussed in Section 5.3.3.

5.3.1 Notations

Here, w is used for input word, and w is the binary-decomposed vector
consisting of bits in w. The bit-width of w, i.e., length of the vectorw, is denoted
as ℓ (ℓ = |w|). The pre-trained filter V is a collection of word-probability pair
(v, ρv). Each vi denotes a word where |vi| = ℓ, and ρi = log pvi − log (1− pvi) is
the Bayesian weight associated with vi. The binary decomposition of w is w =
{wℓ−1, . . . , w0}, where wi means the i-th bit of w. Similarly, vi = {bℓ−1, . . . , b0}
is used to specify the binary decomposition of vi. Thus, all words in {v} and
w are assumed to have the same bit-width ℓ, which can be achieved by simple
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Algorithm 6 The SNBF.Filter function.

Require: c ∈ Zℓ
ν2 , {(v, ρv)}

1: for each vi ∈ {(v, ρv)} do
2: cmatchi = 0
3: for each bj ∈ vi, cj ∈ c and cj ∈ c do
4: cxnor = ((cj ⊡ bj)⊞ (cj ⊡ bj))
5: cmatchi = cmatchi ⊞ cxnor

6: ri = cmatchi ⊡ ρi

7: Let r = [rN−1, . . . , r1, r0]

8: @r

Algorithm 7 The SNBF.Decrypt function.

Require: r ∈ ZN
ν2

1: ρ = 0
2: for each ri ∈ r do
3: mi = Paillier.Dec(ri)
4: if ℓ | mi then
5: ρ = mi/ℓ

6: @ρ

Figure 5.2: General communication protocol for SNBF.

padding or hashing. The total number of word-probability pairs in V is N , i.e.,
N = |V |. Additionally, lg x is the shorthand for log2 x.

5.3.2 Communication Protocol and Algorithmic Con-
struction

The basic setup of the SNBF is outlined in Fig. 5.2. Different from conventional
public-key cryptosystems, three parties are involved in the algorithm: Bob who
sends the email, Charlie who filters the email, and Alice who receives the email.
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In Fig. 5.2, Bob starts the protocol by using SNBF.Encrypt to encrypt his email
into two vectors {c0, c1, . . . , cL−1} and {c0, c1, . . . , cL−1} using the public-key
from Alice. Here, (ci, ci) is a tuple representing the encryptions of the i-
th word in the mail, and the email contains a total of L words. The two
sets of ciphertexts are sent to Charlie, where the classification SNBF.Filter is
executed. Each encrypted word (ci, ci) is classified according to the trained
filter list V , and the filtered results, {ri}, are transmitted to Alice. Alice applies
SNBF.Decrypt to decrypt each ri to obtain ρwi

. Having obtained the plaintext
Bayesian weights, Eq. (5.3) is used to calculate Pr(sMAP). This section proceeds
by giving detailed descriptions on each algorithm involved in the protocol. It is
noted that all algorithms act on a single word, and if multiple words are to be
processed, the algorithms need to be applied repetitively.

SNBF.Encrypt(w): takes as input a word w, and outputs the corresponding
ciphertext (cw, cw). SNBF.Encrypt breaks w into a binary vector w =
{wℓ−1, . . . , w0}, where wi ∈ Z2 and its negation wi are encrypted under
Paillier.Enc. The output will be two vectors cw = {cℓ−1, . . . , c0} where,
as mentioned, ci = Paillier.Enc(wi), and cw = {cℓ−1, . . . , c0} where ci =
Paillier.Enc(wi).

SNBF.Filter(cw, cw, V ): takes as input the ciphertext (cw, cw), and the
trained filter V . The outputs are the probability-weighted result rw. The
detailed algorithm is outlined in Alg. 6. The overall idea of the algorithm is
to perform a bit-wise homomorphic comparison between the inputs cw and cw,
and words in the trained filter, i.e., {v} in V . The filter function has a two-level
nested loop structure. The outer loop performs a homomorphic comparison
between the input ciphertext (cw, cw) and each filter word vi ∈ {v} ∈ V .
Inside each iteration, the inner loop from Lines 3 to 6 compares (cw, cw)
and vi, the bit decomposed vi, on a per-bit scale. The comparison result is
embedded with the corresponding Bayesian probability weight ρi, delivering
the i-th comparison result ri. Each comparison result from one iteration of the
outer loop gives one ri, and all ris’ are collected into one vector r, which is the
output of the filter function. One obvious problem is that, any ρi is not likely
to be an integer. However, the homomorphic operations permitted by PHE,
in general, are on integers. The existing approach takes a simple approach,
where real-valued weights are converted into fixed-point representations, and
embedded into the matching results as large integers [17, 45]. By thoroughly
examining the sensitivity of classification accuracy to weight approximation,
the use of the integer rounding function is proposed to convert ρi into the
nearest integer with almost no loss in classification accuracy (average difference
of less than 1%). This property of NBF is demonstrated through experiments
on real-world email dataset in Section 5.5.3.
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SNBF.Decrypt: takes as input a ciphertext vector r, outputs the Bayesian
weight ρ if the input word w matches some word v in the filter, or 0 otherwise.
The details of SNBF.Decrypt is sketched in Alg. 7. Algorithm 7 contains a
loop that takes each result in ri ∈ r and decrypts it using Paillier.Dec. The
decrypted result mi is first tested for word matching by dividing the bit length
ℓ = |w| into mi. Later, it is shown that the division of ℓ from the decrypted
mi can simultaneously test word matching and recover the embedded integer
probability weight ρ .

Correctness

To illustrate that SNBF properly functions as an email filter, a proof that
the set of (probabilistic polynomial) algorithms (SNBF.Encrypt, SNBF.Filter,
SNBF.Decrypt) works as claimed is needed. First, observe that the correctness
proof for SNBF.Encrypt is simple: it follows trivially from the correctness of
the Paillier scheme. Thus, it only remains to prove that after SNBF.Filter,
SNBF.Decrypt can recover the Bayesian weights of matching words.

The following claim is used to construct a proof for the proposed scheme.

Claim 1. Let ℓ be a prime, and mi = ρi · k for some integer k ∈ {0, · · · , ℓ}.
Assuming ℓ ∤ ρi, if ℓ | mi, then ρi = mi/ℓ.

Since the claim follows trivially from Euclid’s Lemma, a formal proof is left
out. Nonetheless, note that two constraints exist on ℓ, which requires careful
parameter settings. In Section 5.5.3, it is shown that, in a typical parameter
set, these assumptions are relatively easy to fulfill. The correctness for SNBF
can then be guaranteed by the following Lemma.

Lemma 3. SNBF.Decrypt(SNBF.Filter(w)) = ρw if w ∈ V , 0 otherwise.

Proof. First, note that Eq. (2.24) allows for direct computation of a single-bit
XNOR gate using pure additive homomorphism. Line 4 in Alg. 6 is the exact
computation to obtain cxnor by evaluating

(cj ⊡ bj)⊞ (cj ⊡ bj). (5.5)

Since negation requires homomorphic multiplication, the user also needs to
provide the negated bit c to compute homomorphic XNOR. The truth table
of Eq. (5.5) is sketched in Table 5.1. After the XNOR comparison, the bit-wise
result is summed up in Line 5. Therefore, if all bits result in matches (XNOR
gives 1), the numbers (homomorphically) add up to ℓ. Meanwhile, if at least
one bit is a mismatch, the encrypted sum will result in one of the encryptions
in {Enc(0),Enc(1), · · · ,Enc(ℓ − 1)}. Finally on Line 7 of Alg. 6, the integer
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Table 5.1: Truth Table for XNOR

cj cj bj bj ((cj ⊡ bj)⊞ (cj ⊡ bj))
Enc(0) Enc(1) 0 1 Enc(1)
Enc(0) Enc(1) 1 0 Enc(0)
Enc(1) Enc(0) 0 1 Enc(0)
Enc(1) Enc(0) 1 0 Enc(1)

Bayesian weight associated with vi, ρi, is embedded into the result. Here, it is
observed that if w and vi are a match, ri = Enc(ρi · ℓ). If there was a mismatch,
ri = Enc(ρi · k) for some k ∈ {0, · · · , ℓ− 1}.

To prove that the above procedure correctly filters a word w, the decrypted
result needs to be ρi if w = vi, and 0 otherwise. In either case, when ℓ is divided
into the decrypted result, it holds that mi = Dec(ri). Line 3 in Alg. 7 performs
this division test on the decryption of ri. By Claim 1, if ri contains an encrypted
match, mi = ρi · ℓ, and we get ρi by dividing ℓ. If the division test fails, the
output defaults to 0.

Lastly, it is emphasized that if ℓ is not a prime, Claim 1 is not necessarily
true, and the proof breaks apart.

Securing the Email Contents

In SNBF, the main security goal is to protect the content of the email, i.e., w
from Bob to Alice. Hence, the encrypted words need to be protected against
a potentially corrupted Charlie. Under such construction, SNBF.Encrypt and
SNBF.Decrypt are secure, since they involve no trust on the server.

On the other hand, the security of SNBF.Filter follows directly from that
of the Paillier scheme. More specifically, since all Charlie sees are Paillier
ciphertexts, Charlie cannot distinguish any incoming ciphertext from uniform
random. As a result, Charlie will also not be able to distinguish any of the
intermediate ciphertexts from uniform random, as he only observes random
ciphertexts being added and scaled, which also remain random.

5.3.3 The Batch Filtering Technique

Most emails contain more than one word. However, the proposed algorithm
works on a per-word scale, which is clearly inefficient. The main insight here is
that, the ciphertext space for the Paillier scheme is large (up to 1024-bit), but
only a handful of bits are actually used by ri. For example, since ri = Enc(ℓ ·ρi),
under the parameter instantiation, ℓ · ρi is at most a 10-bit integer. As a result,
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large ciphertext space is wasted. Fortunately, a batch filtering approach can be
used to pack more than one search bit into a ciphertext, while maintaining the
correctness requirement of SNBF.

Consider the following simple example that illustrates the concept of the
batching technique. In this example, a toy parameter set of ℓ = 2 is used, and
there are two input words x and y where x = {x1, x0} and y = {y1, y0}. For
SNBF.Encrypt, instead of a bit-wise encryption, both words are encrypted for
each bit position, i.e.,

c0 = Enc((x0 ≪ k) + y0), where, (5.6)

k = ⌈lg((ℓ+ 1) ·max({ρ}))⌉. (5.7)

Since ℓ = 2, let us assume max({ρ}) = 16, which means k = ⌈lg((ℓ + 1) ·
max({ρ}))⌉ = 6. The content of c0, i.e., Dec(c0), then becomes

Dec(c0) = 0 0 0 0 0 x0 0 0 0 0 0 y0

Dec(c0) = 0 0 0 0 0 x0 0 0 0 0 0 y0

Now consider a filter with only one word v = {b1, b0}, where b1 = 1 and b0 = 0.
Without modifying Alg. 6, line 4 processes as

cxnor0 = ((c0 ⊡ 0)⊞ (c0 ⊡ 1)). (5.8)

Under Paillier, c0 ⊡ 0 = c00 = 1, and 1⊞ (c0 ⊡ 1) = 1 · c10 = c0. Hence, for zeroth
bit, cxnor0 = c0. Similarly, for first bit, cxnor1 = c1. The match bit can thus
be computed as cmatch = cxnor1 ⊞ cxnor0. In plaintext space, calculating cmatch

translates to the following procedure

0 0 0 0 0 x0 0 0 0 0 0 y0

+ 0 0 0 0 0 x1 0 0 0 0 0 y1

Instantiating x and y as {x1 = 1, x0 = 0}, and {y1 = 0, y0 = 0}, respectively,
we get

0 0 0 0 0 1 0 0 0 0 0 1

+ 0 0 0 0 0 1 0 0 0 0 0 0

= 0 0 0 0 1 0 0 0 0 0 0 1

where max({ρ}) = 16. In order to satisfy the constraint ℓ ∤ ρ in Claim 1, ρv is
set to be 15. Note that when ℓ > ρ, as in the real parameter instantiation, any
ρ ≤ 16 works. Following Line 6 in Alg. 6, the Bayesian weight is embedded into
the matching result as

1 1 1 1 1 0 0 0 1 1 1 1 (5.9)
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Figure 5.3: The architecture of a single recursive layer of the proposed RKM
multiplier.

Equation (5.9) is basically the decrypted cmatch, and the result is examined
slot-by-slot. The first plaintext slot represents the match result for y and v,
and the output is 01111 = 15. Because 2 ∤ 15, y does not match v. Next,
for the second slot where x and v are compared, the result is 11110 = 30 and
2 | 30 = 15. This is a match, and the corresponding Bayesian weight for v is
ρv = 15.

The batching technique is general, as long as the ciphertext can hold the
shifted value without overflow modulo ν. In addition, it is noted that the only
modifications are on SNBF.Encrypt and SNBF.Decrypt, where simple shifts can
be applied to pack multiple words in an email into one set of ciphertexts. Since
SNBF.Filter is not modified, the view of the server on the ciphertext remains
unchanged. Hence, essentially, the server will not be able to distinguish between
a single-word and a multi-word filter. As later shown in Section 5.5, under
the proposed parameters, more than 100 words can be packed into one set of
ciphertext vectors c and c, greatly improving the practicality of SNBF.
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Figure 5.4: The general architecture of the proposed RKM multiplier with the
recursive layers unfolded.

5.4 Hardware Architecture

Accelerating cryptographic primitives through hardware is a popular field
of study. In particular, large integer multipliers are known to be used to
accelerate encryption and decryption process of factoring-based cryptosystems
like RSA [83–85] and ECC [86]. Nevertheless, many of the existing architectures
mainly targets on prototyping on FPGA for embedded use [84,86]. While high-
speed architectures do exist [83, 85], they generally only rely on Montgomery
algorithm, and have poor extendibility for even larger bit-width.

Different from existing cryptographic needs [83–85], the proposed SNBF has
a distinct requirement for the underlying cryptographic hardware: the amount
of computation required by SNBF is much larger than existing applications.
Abstractly, the filter requires ℓ · ⌈lg(pi)⌉ multiplications per filter word, and
there are N words. Any practical instantiation of the SNBF results in hundreds
of thousands of large (e.g., 2048-bit) integer multiplications mod the Paillier
modulus ν2. Thus, for the design of a hardware multiplier targeting on
accelerating SNBF, flexible solutions are desired. In addition to the low-power
requirement, the hardware platform also needs to be fast enough to make SNBF
a practical solution for secure email filtering.

In this work, the recursive Karatsuba-Montgomery (RKM) multiplier based
on the work in [84] is adotped. The major benefit of this approach is its
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flexibility and design simplicity. Since previous cryptographic applications does
not require such large modulus, Chow et al. implemented an unoptimized
version of the RKM algorithm, and only tested their design up to 512-bit
multiplications. To maximize the practicality of SNBF, a full-custom design
for the RKM multiplier is devised.

The basic structure of RKM follows the idea of the Karatsuba multiplication
algorithm. Two 2k-bit integer inputs X and Y are broken up into the respective
upper and lower partX = 2kX1+X0 and Y = 2kY1+Y0. The algorithm proceeds
by computing three intermediate sums

z2 = X1Y1, z0 = X0Y0, and (5.10)

z1 = z2 + z0 − (X1 −X0)(Y1 − Y0). (5.11)

The product can then be computed as XY = 22kz2 + 2kz1 + z0. By simply
rearranging the terms, the algorithm can be further optimized as

XY = (22k + 2k)z2 + 2k(X0 −X1)(Y1 − Y0)
+(2k + 1)z0. (5.12)

The hardware architecture of the adopted RKM multiplier is outlined in
Figs. 5.3 and 5.4. First, in Fig. 5.3, a single recursive layer is depicted, where
four pipeline stages are required. The amount of recursions can be adjusted
according to design trade-offs, and in this work, the recursion is unfolded
down to 32-bit, as shown in Fig. 5.4. To count the total number of pipeline
stages, it is observed that both the first and second stages will have lg(2k/32)
levels of recursions, where each recursion expands one multiplier into four
levels of pipelined multipliers. Thus, the total number of pipeline stages is
2 · 4 · lg(2k/32) + 2 in the proposed design. The third and fourth stages
do not expand, so they only add two levels to the total number of stages.
The asymptotic performance is unlikely to be impacted by the deep pipeline
structure, for that SNBF executes a large number of modular multiplications
per word filtering (more than 70K in the proposed parameter instantiation).
Therefore, even with a large number of pipeline stages, asymptotic single cycle
performance is still achievable.

On the other hand, Montgomery multiplication can be easily implemented
on top of Karatsuba. Let R = 2κ, gcd(R, ν2) = 1 where ν2 is the Paillier
modulus, and R > M . Pre-compute R−1 and M−1 where RR−1 = ν2M−1.
For each incoming pair of ciphertext A and B where the goal is to compute
A · B mod ν2, T = AR · BR is first computed, and then U is set to be (T +
(T ·M−1 mod R) ·M)/R. If U ≥ M , the algorithm returns U −M , and U
otherwise. The result of this multiplication will be ABR modM , which allows
us to multiply another integer using the same algorithm without the need to
convert the input by multiplying R.
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5.5 Experiment

5.5.1 Dataset

In the experiment, the Enron email dataset parsed by [79] is used. The Enron
dataset contains six sets of real-world emails, where each set belongs to one
particular employee in the Enron investigation. The emails are pre-classified
into hams or spams.

One subtle difference between SNBF and a regular NBF is that self-learning,
i.e., optimizing the filter weights using the encrypted mails, is impossible. Thus,
different from the study in [79], the email filter is trained using emails in Enron1
to Enron5 (total of 27,716 emails), and test the accuracy with Enron6 (total of
6,000 emails). The best filter size |V | = N is examined, since larger N means
higher computational cost, especially in the case of SNBF. The accuracy is
measured through ham/spam recall. For a set of testing emails, if the ham
recall is low, more ham emails are being misclassified as spams. Similarly, if
spam recall is low, spams are misclassified as hams. In the context of email
classification, users generally do not tolerate low ham recall, and occasional
misclassification of spams as hams (low spam recall) are more bearable.

5.5.2 Cryptographic Instantiations

For the cryptographic parameters, the Paillier scheme is instantiated with a
1024-bit key size, which translates to 80-bit security. 1024-bit key requires the
Paillier modulus ν2 to be 2048-bit, and the RKM multiplier is instantiated with
a k = 1024. Consequently, the multiplier contains 50 pipeline stages. All words
in the emails and filters are hashed into 61-bit bit strings, making ℓ = 61, which
is a prime. This number directly affect the number of distinct words that can
exist (2ℓ), so 61 is chosen to ensure a large word space.

The software version of SNBF is implemented in C++ and tested its
performance on an Intel Xeon E5-2630 2.3GHz processor using a single core with
32GB of memory. The 2048-bit RKM multiplier is synthesized on a commercial
65 nm low-power process node using a logic-synthesis tool [66].

5.5.3 Filter Accuracy

This section starts by experimenting on the impact of filter size on the
ham/spam recalls. The results are shown in Figs. 5.5 and 5.6. The first
conclusion here is that, even training on emails sets from different employees,
there is still a diminishing effect of filter size N on classification recalls. Since N
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Figure 5.5: Ham/spam recall for dif-
ferent filter size N with floating point
ρ.
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Figure 5.6: Ham/spam recall for differ-
ent filter size N with integer ρ.
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Figure 5.7: Ham/spam recall for differ-
ent threshold probabilities with N =
10000.
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Figure 5.8: Ham/spam recall for differ-
ent threshold probabilities with N =
30000.

is linearly related to the computational cost, N = 10000 is chosen for subsequent
comparisons.

The second key observation here is that changing from integer to float
weights does not lead to significant recall improvement. The maximum
difference occurs at N = 10000, where the spam recall decreases by 3.8%.
The average recall difference is around 1%, and as discussed in [79], for email
classification, the user can hardly notice such level of recall difference. In return,
the performance is significantly improved. For example, Bost et al. converts a
real number into a 52-bit fixed point representation [45]. The embedding of
such a large number into a PHE scheme, in the worst case, needs to compute∑51

i=0(Enc(ℓ)⊡ 2i), which translates to more than 1000 homomorphic additions
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Table 5.2: Synthesis Result for RKM Multiplier
Bit Width Power Area (NAND2) Delay
2048-bit 49.5mW 18557560 69 ns

Table 5.3: Detailed Performance Data for SNBF
Setup Encryption Filtering Decryption
113ms 2382ms 4981ms 141ms

over the ciphertext containing match result. In the proposed case, the dataset
is examined, and it is discovered that the maximum trained Bayesian exponent
is only 17 (i.e., max({ρ}) = 17 using the notation in Section 5.3.3). Therefore,
all exponents are restricted to be less than the integer 16. In general, large
Bayesian exponent bias the result towards one direction (very ham or very
spam), and should be avoided after all. Thus, by using integer weights whose
size is less than 16, at most 7 homomorphic additions will suffice (Enc(ℓ)3+2+1+0

for Enc(ℓ)⊡15) for weight embedding. More importantly, the embedded result is
also a small number (lg 61 · 16 <10 bits), where existing study requires at least
52 bits [45]. Hence, the practical efficiency of SNBF is orders of magnitude
better than existing works.

Finally, it is noted that larger filter sizes do give more stable responses. In
Figs. 5.7 and 5.8, the recalls are tested with respect to the threshold probability
pth, where only emails with Pr(sMAP) > pth are classified as spam. Both figures
exhibit a discontinuity at pth = 0.5, indicating that a number of emails have
uncertain spam probabilities near 0.5, where a small change in pth affects the
ham/spam recalls significantly. In comparison, when N = 30000, the jump is
much smaller in size, and the overall curve is smoother. Therefore, while for
this particular dataset, N = 10000 gives better numerical recalls, for arbitrary
dataset, the filter size may need to be adjusted accordingly.

5.5.4 Performance Comparison

Table 5.2 summarizes the statistics of the synthesized RKM multiplier. The
stage delay is 69 ns at 49.5mW with area at around 18.5M gates. The stage
delay measured by the longest path between two stage registers, which is
basically a 32-bit multiplier. For a complete Montgomery reduction, three
2048-bit multiplications are needed, with a throughput of 4.8M 2048-bit
multiplications per second.

For SNBF, a total of 734,147 modular multiplications per word using a
10,000-word filter is required. A large amount of multiplications is devoted
to per-line ciphertext comparison, where each line requires ℓ − 1 modular
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Table 5.4: Summary of the Performance Comparison SNBF and Other Existing
Works

[17] [82] CPU RKM
Ctxt size 487.5KB 567KB 512B 512B
Time/Mult 3.48ms 17ms 9–29µs 207 ns
Time/Word 2.55Ks 12.4Ks 4.98 s 0.15 s

Power 165W 130W 95W 49.5mW
Energy/Word 420KJ 1.61MJ 473 J 7.42mJ

multiplications. While traditional NBF filter can easily handle this amount of
computation, it proves to be the main performance bottleneck for FHE/PHE-
based schemes. The runtime breakdown for different operations of SNBF
is outlined in Table 5.3, where it is observed that SNBF.Encrypt (Bob) and
SNBF.Filter (Charlie) take the most amount of time, and SNBF.Decrypt (Alice)
is a lightweight computation (which is a general property for factoring-based
cryptosystems). Note that the runtime is recorded for one set of ℓ-bit Paillier
ciphertexts, which is capable of evaluating up to 100 words using the batching
technique. As summarized in Table 5.4, using the proposed RKM multiplier,
a single ciphertext pair can be filtered in 0.15 second, 33x faster than CPU
implementation. Compared to existing FHE-based schemes, the proposed
scheme is 104–105x faster, and obtain 108–109x energy reduction when combined
with the power reduction of RKM multiplier. Furthermore, by adopting
the plaintext batching technique, more than 100 words can be concurrently
evaluated with one ciphertext pair. In the Enron6 dataset, an average-length
email contains 287 words, which can be classified within 0.5 s using SNBF
running on the RKM accelerator. Therefore, the proposed SNBF can be safely
considered as a practical secure email filtering scheme.

5.5.5 Comparison to Trivial Approach

It is observed that when the filter is public to Alice, Alice can download the
entire filter to her local workspace and filters the mail on her own, which is
referred to as the “trivial” approach for SNBF. For the proposed instantiated
parameter set where ℓ = 61 and N = 10000, this is arguably true, since the
whole filter is only roughly 77KB in size. However, the SNBF can actually be
thought of as a searchable encryption (SE) scheme, which also receives wide
research interests in recent years [87–92]. The basic idea of SE is that the user
does not want to keep the large database, the filter per se in SNBF, on her local
workspace.

The performance difference between PHE SNBF and a trivial SNBF becomes
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apparent when ℓ gets larger. For example, if images also appear on the list, a
large ℓ = 65536 = 8KB may be required. For N = 10000, this makes the filter
size to be 80MB, which is a fair amount of memory for an embedded user to
consume. In addition, the user needs to compute 65536 · 10000 bit comparisons
per word filtering, which can be resource-taking for long emails.

In comparison, most of the works and storage burdens for such parameter
instantiation can be lifted using SNBF. Since lg ℓ = 16, if max({ρ}) = 17 as
discovered in Section 5.5.3, the maximum comparison result takes 16 + lg 17 <
21 bits to store. Therefore, SNBF can be used as is with slightly decreased
batching capability, where 1024/21 > 48 words can be batched per ciphertext.
On the user’s perspective, for an email of length less than 48 words, the storage
requirement is only N 2048-bit Paillier ciphertext, which translates to a total of
256KB, instead of the 80MB filter. From the computational perspective, Alice
does the same amount of work whether ℓ equals to or 61 or 65536, while in a
trivial approach, the computational burden of Alice increases significantly. In
summary, by outsourcing the filter database to Charlie and letting Charlie do
the heavy works, both the storage and computational burden of Alice decreases
from O(Nℓ) to O(N log2 ℓ), due to lines 4 and 5 in Alg. 6.

5.6 Summary

A secure näıve Bayesian filter with provable security and practical performance
is proposed in this chapter. Additive-homomorphic bit comparison and integer
weights are employed, which allows the proposed SNBF to be instantiated using
efficient PHE schemes. In addition to the cryptographic-layer protocol design
and application-level optimization, this chapter also proposes an accelerator in
the hardware-layer for the modular multiplications that are extensively used in
performing homomorphic operations. By implementing SNBF on both software
and hardware, the proposed scheme is orders of magnitude better than existing
works. The experimental results indicate that SNBF is able to classify an
average-length email in 0.5 s, making SNBF an attractive candidate for secure
email filtering.
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Chapter 6

Lattice-based Homomorphic
Inference

6.1 Introduction

In a secure inference setting, Bob as a client wants to perform inference on
some pre-trained inference engines (e.g., deep neural networks), but he does not
want to reveal his inputs to the engine. On the other hand, it is also financially
unwise for Alice, the proprietary owner of the engine, to transfer the pre-trained
knowledge base into the public domain. Due to the multidisciplinary nature
of the topic, secure inference based on neural networks involves contributions
from various fields of research. Initial design explorations focused on the
feasibility of the secure execution of the inference engine, which generally carries
impractical performance overheads [32, 34]. Recent advances in cryptographic
primitives [29] and adversary models [33, 35] have brought input-hiding secure
inference into practical domain, where realistic image datasets can be classified
within seconds [35]. It is also observed that hardware-friendly network
architectures (e.g., binarized neural networks (BNN) [93,94]) can be adopted in
a secure setting to reduce the computational and communicational overheads.
Furthermore, design optimizations on the fundamental operations (e.g., secure
matrix multiplication [95], secure convolution [35]) involved in secure inference
can also greatly improve its practical efficiency.

In this chapter, DArL-ENSEI, a secure inference framework based on the
Gazelle protocol proposed in [35], is proposed. The framework consists of two
main components, namely, ENSEI and DArL. ENSEI is an oblivious frequency-
domain convolution technique, and DArL provides dynamic parameter adjust-
ment for ENSEI. Specifically, for ENSEI, the main objective is to reduce the
number of multiply-accumulate (MAC) operations in the homomorphic domain,
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as MAC requires not only homomorphic multiplications, but also expensive
homomorphic permutations (automorphisms) for the accumulation process.
By applying NTT in an oblivious manner, homomorphic convolution can be
simplified to efficient element-wise homomorphic multiplication, completely
eliminating the necessity of homomorphic MACs. Meanwhile, DArL targets
on exploiting the unused correctness margin to improve the computational and
communicational efficiency of HE without security loss. To achieve these goals,
two approaches are used: i) application-specific theoretical derivations for error
bounds, and ii) a fast empirical method for simulating rare failure events. As
a proof-of-concept, the BFV cryptosystem [30, 51] adopted in Gazelle [35] is
used as a demonstration. Here, BFV serves as a fundamental design element
in implementing secure neural network inference. First, theoretical bounds
are applied to examine the error behavior of BFV in ENSEI, and minimize
the unused error margin by dynamically switching parameter sets during the
inference stage. Second, the sigma-scaled sampling technique [96] is adopted to
obtain the exact decryption failure probability, which is important in fine-tuning
the parameters by techniques such as approximate computing [68].

In the experiment, DArL-ENSEI is compared with Gazelle on well-known
datasets such as MNIST [97] and CIFAR [98]. Using ENSEI, 4–10x online and
31x offline time reductions, as well as 2x bandwidth reduction for the convo-
lutional layers are observed. For FC layers, by instantiating tighter parameter
sets with a smaller ciphertext modulus q, the ciphertext size can be reduced
by as much as 67%. More importantly, by switching to hardware-friendly
network architectures such as BNN, a further 2x–3x ciphertext size reduction
and computation speedup are simultaneously attainable in DArL-ENSEI.
As a result, DArL-ENSEI can execute an instance of secure inference of
the (relatively) complex network architecture in [33] within 0.378 s on the
CIFAR dataset, greatly enhancing the practicality of secure inference based
on convolutional neural networks (CNN). The contributions are summarized as
follows.

• Frequency-Domain Secure Inference: While the original idea of
FDC [99,100] is widely adopted in CNN libraries, its design in the secure
domain remains unexplored. In this chapter, it is shown that a secure
version of FDCNN also profoundly impacts the inference efficiency, and is
crucial to the scalability of CNN-based secure inference schemes. With the
assistance of a packed additive homomorphic encryption (PAHE) scheme,
the online inference time can be reduced by 4–10x, along with at most
a 31x setup time reduction. Moreover, ENSEI is applicable to all types
of (interactive) protocols that require the computation of convolutions in
the encrypted domain.
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• Dynamic Parameter Adjustment: Existing HE applications generally
assume one set of parameters being used throughout the whole evaluation
process. In this chapter, by realizing that different neural network
architecture can give rise to significant performance gap, rigorous analyses
on the error behaviors in the linear kernel used in Gazelle [35] and ENSEI
is conducted, with a set of candidate parameters proposed to exploit the
unused error margin.

• Fast Simulation of Decryption Failures: Previous works on LWE
generally focused on developing theoretical bounds on the size of the
decryption errors, except for [68] where a Monte-Carlo approach was
employed. While empirical simulation provides a tighter bound as shown
in [68], it is clearly not practical to simulate a failure probability of
2−40 using brute-force Monte-Carlo. In this chapter, the sigma-scaled
sampling [96] is used to further optimize the runtime parameters of DArL.

• A New Precision-Accuracy Trade-off: Existing works on trading
a small portion of prediction accuracy for more efficient network im-
plementation generally target resource-constrained devices that operate
in embedded environment [93, 94, 101]. This chapter demonstrates that
these techniques also yield trade-offs that inspire better network designs
in the secure domain. In particular, three sets of RLWE parameters
are instantiated for CNN with different precisions to demonstrate their
influence on the practical performance of CNN-based secure inference.

The rest of this chapter is organized as follows. First of all, preliminary
knowledge on Gazelle and the concrete BFV instantiation are delivered in
Section 6.2. Second, the design of ENSEI is laid out in Section 6.3. Third,
ENSEI is integrated into the Gazelle protocol, and the parameter requirements
are discussed in Section 6.4. Forth, theoretical error analyses on the general
linear kernel is performed in Section 6.5. Fifth, in Section 6.6, the dynamic
parameter adjustment procedure is described in detail, and the application of
fast empirical methods for even tighter bound analysis. Sixth, the proposed
parameter sets and experiment results are presented in Section 6.7. Last but
not least, this chapter is summarized in Section 6.8.

6.2 Gazelle: Secure Neural Network Inference

Gazelle [35] represents one of the most recent advances in the line of prior
arts [33,34] on designing secure inference. The general protocol and architecture
of Gazelle is outlined in Fig. 6.1, where Bob wants to classify some input (e.g.,

77



6.2. GAZELLE: SECURE NEURAL NETWORK INFERENCE

HE
Conv ReLU ...

Bob
(User)

GC GC

ReLU FC

Alice (Server)

u

v

...

Figure 6.1: An example of the architecture in Gazelle with two Conv (convo-
lutional) layers, two non-linear layers and one FC (fully-connected) layer. The
FC layer, much like the Conv layers, is internally a homomorphic matrix-vector
product.

image), and Alice holds the weights. The threat model is that both Alice and
Bob are semi-honest, in the sense that both parties follow the described protocol,
but want to learn as much information as possible from the other party. Here,
the error behaviors of the linear Conv (convolutional) and FC (fully-connected)
layers are summarized, as these layers are implemented by the PAHE-based
matrix-vector multiplication techniques.

Homomorphic Linear Kernels

In both Conv and FC, the main arithmetic procedure is computing a set of
inner products between some plaintext matrix (or vector) and a ciphertext
vector, as shown in Fig. 6.1. The basic approach (called näıve method in [35])
for computing an inner product is as follows. For some row vector w in the
weight matrix W and ciphertext [u], the coefficient-wise homomorphic product
is computed as [v] = [u] ⊡ w, where each vi ∈ v satisfies vi = ui · wi for ui ∈
u, wi ∈ w. Then, to obtain the sum

∑n−1
i vi, i) a rotated version of [v] by a step

size of k = n/2 is first created, and ii) a coefficient-wise homomorphic addition
between [v] and rot([v], k) is computed. Repeating i) and ii) log2(n) times, each
time decreasing the value of k by half (i.e., ki = n/2i for i ∈ [1, log2(n)] ∩ Z),
the desired sum is obtained in the first plaintext slot.

The shortcoming of the basic technique is that, for a weight matrix
of dimension no × n, computing W · [u] results in no many ciphertexts,
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Table 6.1: Example of Parameter Instantiation in Gazelle
n q lg q p lg p σ b

2048 260 − 212 · 63549 + 1 60 307201 18 4 10

each containing only one result of the inner product, which blows up the
communication bandwidth. The proposed approach in Gazelle, called the
hybrid method in [35], is to align the weight matrix with the rotating input
ciphertext (instead of the rotating product ciphertext as in the basic approach).
In summary, the hybrid approach computes W ⊡ [u] as follows.

[v] =
no−1∑
i=0

wi ⊡ rot([u], i) (6.1)

= w0 ⊡ [u] + · · ·+wno−1 ⊡ rot([u], no − 1), (6.2)

[r] =

lg (n/no)∑
i=1

rot
(
[v],

n

2i

)
, (6.3)

where [r] holds the result vector r = Wv ∈ Zno
p , wi’s are the diagonally aligned

columns of W with dimension wi ∈ Zn
p , and lg (·) denotes log2 (·). In the

hybrid approach shown in Eq. (6.2), [u] is first rotated no times, each time
multiplying it with the aligned vectorswi ∈ {w0, · · · ,wno}. Each multiplication
generates an intermediate ciphertext that holds only one entry in vi with respect
towi. Summing these ciphertexts gives us a single ciphertext that contains n/no

partial sums of the corresponding inner products, and then the basic approach
is used to rotate this packed result to obtain the final sum, as in Eq. (6.3).

Parameter Instantiation for BFV in Gazelle

The parameters instantiated by Gazelle are summarized in Table 6.1, where
lg x denotes log2(x). Unfortunately, Gazelle did not provide any correctness
discussion on the instantiated 60-bit modulus q. However, a more rigorous
correctness analysis can potentially allow us to use smaller q while fixing other
parameters, which in turn gives us stronger security, better modular reduction
efficiency and smaller ciphertexts.

6.3 Oblivious Convolution in the Frequency

Domain

If homomorphic convolution is expensive, as observed in Section 6.2, a natural
question to ask is that if this operation can be avoided in the first place. In
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what follows, it is shown that by applying NTT, a homomorphic convolution
operation can be replaced by a simple SIMD scalar homomorphic multiplication.
It is noted that ENSEI is general in a multi-party secure computing (MPC)
setting, where the cost of computations are asymmetric across different parties.

6.3.1 Finite Fields versus the Complex Field

The use of finite-field NTT in replacing complex-valued discrete Fourier
transform (DFT) for faster and simpler convolution in digital circuits is a
well-known technique [102]. The convolution theorem tells us that for two
discrete sequences w and u, there exists a general transformation in the form

F (x) =
n−1∑
i=0

x(i) · ωik, (6.4)

where the following property holds

F (w ∗ u) = F (w) ◦ F (u), (6.5)

Here, ◦ denotes element-wise multiplication, and ω is the n-th root of unity in
some field F (i.e., ωn = 1 over F). As shown in [102], using the complex number
field as F is a viable choice, but not the only choice. If finite fields, e.g., F,
are chosen, we obtain NTT, and Eq. (6.5) still holds. However, since modern
machines can easily evaluates 64-bit to 128-bit floating point arithmetic, NTT-
based convolution is not particularly attractive in terms of its performance, due
to the additional reductions modulo some large field prime.

The main observation for adopting NTT in this work is that, in a
cryptographic setting, finite fields are much more natural to use than the
complex number field. Most cryptographic primitives that build on established
hardness assumptions live in finite fields, where arithmetic operations do not
handle floating numbers (and complex numbers) particularly well. This is
especially true for homomorphic encryption schemes whose securities are based
on hard lattice problems. Therefore, NTT-based convolution is considered as
a natural choice for secure convolution. However, since the proposed method
is applicable to any transformation F , the complex number field can also be
adopted as the ground field.

6.3.2 ENSEI: The General Protocol

Figure 6.2 outlines the general protocol for an input-hiding oblivious convolution
in the frequency domain. This protocol assumes the existence of a linear ran-
domization technique. Here, it is assumed that Bob holds some two-dimensional
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Encrypt

Derandomize

Decrypt NTT2D-1

RandomizeAlice

Bob

& Filter

Input Output
NTT2D

Figure 6.2: The general protocol of a round of NTT-based oblivious FDC.

(randomized) plaintext input image U ∈ Zn×n
p , and this input is randomized

using additive secret sharing (ASS), i.e., U = (X + R) mod p for some (real)
input X and random matrix R ∈ Zn×n

p . Bob wants to compute a convolution
between U and the filter W ∈ Zn×n held by Alice (if the real weight matrix is
smaller, then it is assumed to be zero-padded). The protocol goes as follows.

1. Bob: Bob first pads the input according to the convolution type (e.g.,
same or valid), and computes a two-dimensional NTT on U as Û =
NTT2D(U). Note that since DFT is a linear operation, we have that
NTT2D(X +R mod p) = (NTT2D(X) + NTT2D(R)) mod p.

2. Bob: The transformed Û is encrypted using an abstract encryption
function Enc. There is only one requirement for Enc, which is that it
permits finite-field addition operation, i.e., Dec(Enc(x)+Enc(y)) mod p =
(x + y) mod p for x, y ∈ P for some plaintext space P . This can be
fulfilled by most AHE schemes and interactive protocols such as garbled
circuit (GC). Since the filtering step becomes a trivial element-wise
multiplication, Bob flattens the frequency-domain matrix Û to û and
encrypts it using Enc. The encrypted ciphertext [û] = Enc(û) is
transferred to Alice through public channels.

3. Alice: Upon receiving [û], Alice first de-randomize the input by comput-
ing [x̂] = [û]⊟ r̂, where r̂ is a flatten version of R̂ = NTT2D(R), and ⊟ is
a homomorphic (or oblivious) subtraction operator.

4. Alice: Alice performs similar NTT-flatten operation as ŵ =
flatten(NTT2D(W )), and carries out an element-wise multiplication as
[x̂ ◦ ŵ] = EMult([x̂], ŵ). In order to prevent weight leakages, Alice
re-randomizes the filtered result using a new randomization vector [r1]
as [v̂] = [x̂ ◦ ŵ − r1]. [v̂] is sent back to Bob.

5. Bob: Bob decrypts [v̂] as v̂ and apply INTT to obtain v = (x ∗ w −
INTT(r1)) mod p.
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Upon receiving v, with the assistance of Alice, the two parties can perform
further computations based on the convolution results of x and v, without
Alice knowing x and Bob knowing w.

Correctness

Claim 2. The protocol in Section 6.3.2 correctly evaluates the convolution
between X and W .

The correctness proof is quite simple, and a formal presentation is not
included. The most important properties used are the two-dimensional versions
of

((NTT((x+ r) mod p)− NTT(r)) mod p ◦ NTT(w)) mod p

= NTT(x ∗w), (6.6)

and

INTT((NTT(x) ◦ NTT(w)) + r1) mod p) = x ∗w + INTT(r1). (6.7)

Assuming that the underlying AHE scheme can carry the computation in
Eq. (6.6) correctly, based on Eq. (6.5) and the correctness of ASS, Claim 3
can be easily proved.

Security

Claim 3. The protocol in Section 6.3.2 remains secure if either Alice or Bob is
compromised by a semi-honest adversary, but not both.

It is pointed out that security-wise, the proposed protocol is basically
identical to the linear kernel in Gazelle [35], so a formal proof is also left out.
Briefly speaking, given Enc and Dec, Alice cannot temper the inputs of Bob (x),
and with ASS, Bob gains no knowledge of Alice’s inputs (w).

6.4 Integration and Parameter Instantiation

First, it is noticed that by simply replacing the “HE Conv” block in Fig. 6.1
by ENSEI in Fig. 6.2, frequency-domain secure inference is achieved. However,
the integration and parameter selection processes need careful examination. In
this section, an integration technique that reduces the number of total NTTs
required is devised, and the precision requirement of this approach is discussed.
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Figure 6.3: The overview for a sequence of Enc-SIMDScMult-Dec procedures
based on ENSEI for general AHE schemes.
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Figure 6.4: Modified Enc-SIMDScMult-Dec for Gazelle-like networks to reduce
the extra NTTs for plaintext packing.

6.4.1 Reducing the Number of NTT

The plaintext packing technique [28] used for embedding a vector of plaintext
integers u ∈ Zn

p into a single ciphertext pair relies on the idea that a large-degree
polynomials (with proper modulus) can be decomposed into a set of independent
polynomials that are of smaller degrees. The exact operation for lattice-based
PAHE is sketched in Fig. 6.3. During encryption, a vector of plaintext is
transformed into a polynomial via the INTT operation and embedded into
the ciphertext. Later in the evaluation stage, SIMDScMult re-applies NTT
on the ciphertext (and thus simultaneously on the plaintext) followed by an
element-wise multiplication. While Fig. 6.3 is a straightforward application if
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the general ENSEI protocol in Fig. 6.2 is adopted, it clearly involves redundant
NTTs.

The key observation here is that, the internal operation of a SIMDScMult
is merely conducting frequency-domain multiplication on polynomials, as it
is known that a multiplication between two polynomials in some particular
quotient rings equates to a convolution of their coefficients. Therefore, the
NTT-transformed frequency-domain image can be directly embedded into the
NTT transformed ciphertext (i.e., â · ŝ + NTT2D(U)), as depicted in Fig. 6.4,
and execute SIMDScMult without the NTT in the front and INTT in the back.
By performing the entire Enc-SIMDScMult-Dec process in the frequency domain,
as much as two NTT and one INTT per convolution can be eliminated. The
number of NTTs required is even less than the time-domain convolution because
homomorphic rotations employed in Gazelle (rot) force excess applications
of NTTs for the key-switching procedure. The only restriction here is that
the plaintext modulus pm needs to be larger than the ENSEI modulus pE.
Further elaborations on the exact precision settings that satisfiy the requirement
pm ≥ pE is discussed in Section 6.4.2.

6.4.2 The NTT Moduli and RLWE Parameters

It is known that FFT, in general, suffers when the underlying floating point
operations does not have enough precision [102, 103]. By adopting NTT, the
operands are all exact integers, and this problem can be safely disregarded.
However, if the input operands are of floating-point, the precision problem
persists in nature, and is reflected in the chosen modulus pE. As mentioned
in Section 6.4.1, pE is closely related to pm, the PAHE plaintext modulus.
Specifically, for the inputs to be correctly encrypted, it needs to hold that
pm ≥ pE. In other words, if more precisions are needed, pE becomes larger, and
all operations become less efficient.

As it turns out, pE is determined by two factors: i) the maximum value in
the matrix operands, and ii) the length of the convolving sequence. For two
sequences u ∈ Znu and w ∈ Znf , the lower bound on pE can be written as

pE ≥ max(u) ·max(w) · nf , (6.8)

and pE needs to be a prime where pnE = 1 mod max(nu, nf ) [104]. Here, we
have nf = fh · fw. In a typical CNN setting, compared to the RLWE lattice
dimension n, nf is generally small (e.g., nf = 9 for the 3 × 3 filters used in
Section 6.7). In addition, in hardware-friendly network architectures, such as
BinaryConnect [93] or BinaryNet [94], max(u) is generally less than 10-bit,
and max(w) is even smaller. Moreover, the lower bound on pE can hardly be
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reached practically, as it represents the extreme case of all white inputs with
meaningless filter weights.

When pE is large, since pm only needs to be as large as pE, the NTT merge
technique in Section 6.4.1 can be adopted. When all the terms in Eq. (6.8) is
small, however, a much smaller pE can be used, but the underlying RLWE-based
PAHE scheme cannot benefit from a pE that is too small. For security reasons,
n needs to be a relative large power of 2 (e.g., 1024 to 2048), and pm can only be
as small as the smallest prime that splits over the field xn+1 (e.g., for n = 2048,
pm ≥ 12289). Fortunately in this case, multiple filter channels or even multiple
images can be batched into one RLWE ciphertext for efficient plaintext slot
utilization.

6.5 Modeling the Matrix Multiplication Error

In both Conv and FC layers, the basic arithmetics are generally matrix-vector
multiplications of different input and output dimensions. Therefore, it is
important to rigorously study the error behavior of this operation. It is also
noted that since every linear layer is followed by a non-linear protocol in Gazelle,
the errors do not propagate through layers, i.e., the parameters only need to be
large enough to endure homomorphic evaluations within a single linear layer.

6.5.1 Formulating the Error

Since a matrix-vector multiplication is merely multiple vector-vector inner
products (with a subtle difference in how the plaintext elements are aligned), the
error behavior in the hybrid matrix-vector multiplication in the FC layer is first
focused on. Here, the multiplication involves a weight matrix that is usually a
rectangular matrix W ∈ Zno×ni with the important property that no ≪ ni, and
a ciphertext [u] as inputs. Without loss of generality, it is assumed that ni = n
for the rest of this work.

Homomorphic operations always incur an additive or multiplicative error
scaling to the ciphertext in Eq. (2.17). However, the important observation
here is that the original error polynomial e0 has its coefficients sampled from χ,
and we have powerful tail bounds available on the product distribution where
one operand involved comes from χ, as in Lemma 2. According to [35], assuming
a fresh [u] is η0-bounded, the error growth from this operation is

((η0 + ηrot) · ηmult · no + ηrot) · lg (n/no)

= k0η0ηmult + k0ηrotηmult + k1ηrot, (6.9)
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where k0 = no lg (n/no), k1 = lg (n/no). In Eq. (6.9), it is assumed that a rot
induces an additive ηrot factor, and multiplying the weight scales the error by
ηmult. There exists no formal discussion on the correctness proof in Gazelle [35],
and a straightforward calculation of Eq. (6.9) is clearly over-pessimistic in terms
of the error bounds. In what follows, theoretical bounds for each error term in
Eq. (6.9) are developed.

6.5.2 The Error η0 · ηmult

Recall that a freshly encrypted ciphertext [u] in BFV is a linear sum of a · s,
q
p
m encoding u, and e0 bounded by η0. Therefore, a bound on η0 · ηmult is

essentially a bound on the polynomial product e0 · w. Here e0 is a simple
polynomial whose coefficients come from the distribution χ, but the construction
of w ∈ Rp makes its coefficients obeying no explicit distributions. In this
chapter, a combined approach is taken. First, it is assumed that the coefficients
of w follow a uniformly random distribution, and asymptotically, the central
limit theorem (CLT) tells us that the underlying distribution actually does not
matter. Furthermore, in Section 6.6, the theoretical analyses are reaffirmed
through empirical examinations.

Assuming w ← Ub is uniformly random over the integers in [−b/2, b/2)∩Z,
the L2-norm of the coefficients in ep1 = e0 · w needs to be bounded. Similar
to [7], it is observed that the coefficients in ep is in the form

(ep1)i =
n−1∑
i=0

±
(
(e0)i · (w)(i−j) mod n

)
, (6.10)

where (x)i is the i-th coefficient of x in its coefficient representation. In other
words, each new coefficient (ep)i is the sum of products of coefficients from e0
and w. Since Eq. (6.10) can also be written as an inner product between two
vectors e0 = [(e0)0, · · · , (e0)n−1] and w = [(w)0, · · · , (w)n−1], Lemma 2 can be
applied to obtain a bound on the L2-norm as

Pr[||⟨e0,w⟩|| > Tσ||w||] < 2 · exp(−T 2/2). (6.11)

In this work, an asymptotic bound of 2−40 (2 · exp(−T 2/2) ≤ 2−40) is used.
This bound translates to a T value of roughly 7.54, and this T is used for
all the subsequent analyses. Since Eq. (6.11) also requires a bound on the
L2-norm of the vector w, the Chernoff-Cramer inequality can be applied in a
similar manner to Section 4.3.3 to set up a series of independent and identically
distributed random variables X0 = (w)20, · · · , Xn−1 = (w)2n−1, and Eq. (4.6)
holds for this random variable X. Last but not least, it is pointed out that
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Eq. (6.10) only bound the size of one coefficient in the polynomial ep2 . For the
L2 norm on the size of the whole polynomial, a simple summation in the form

||ep2|| =
√∑n−1

i=0 ||(ep2)2i || can be applied, which is basically
√
n · ||(ep2)i||, since

all coefficients in ep2 are independent random variables by design.

6.5.3 The Error ηrot · ηmult

The error distribution of ηrot · ηmult is slightly harder to analyze, due to the fact
that it is a product of three terms,

Decomp2([u]) · eK · w, (6.12)

where Decomp2([u]) and eK (defined in Eq. (2.19)) are vectors of dimension
⌈lg q⌉ over the ring Rq, and the vector product is multiplied by w as indicated
in Eq. (6.1).

First, notice the following equality: (Decomp2([u]) · eK) ·w = Decomp2([u]) ·
(eK · w). Second, observe that the bound on the L2-norm of the coefficients
in eK,w = eK · w follows immediately from the previous analysis, where each
eK,i ∈ eK follows exactly the same distribution as e0 in Eq. (6.10) with the same
σ. Therefore, the task left is to use the L2-norm bound on ||eK,w|| = ||eK ·w|| to
derive a bound on the L2-norm of the product Decomp2([u]) · eK,w. Note that
this multiplication is an inner product between vectors of dimension ⌈lg q⌉, so
there is a final scaling factor

√
⌈lg q⌉ from the L2 (Euclidean) summation of

⌈lg q⌉ product polynomials.

Focusing on a single polynomial multiplication, the second step is to think
of Decomp2([u]) ∈ R

⌈lg q⌉
q as a vector of uniformly random binary polynomials.

In other words, the coefficients in such polynomials can be seen as drawn from
a Bernoulli distribution with a success probability of exactly 1/2. The source
of the uniformity comes from the fact that, Decomp2([u]) is a decomposition of
the ciphertext [u]. In the perspective of an eavesdropper, the ciphertext is (and
has to be) indistinguishable from uniformly random. In addition, it is observed
in [7] that a Bernoulli is 1/2-subgaussian, which allows us to apply Lemma 2
again. Let ep2,i = eK,w,i ·Decomp2,i([u]) be the i-th product polynomial, we have

Pr[||(ep2,i)j|| > (T/
√
2)||eK,w,i||] < 2 · exp(−T 2/2), (6.13)

and ||(ep2)j|| =
√
⌈lg q⌉||(ep2,i)j|| as explained.
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Algorithm 8 Per-Layer Adjustment of Parameters

Require: Security parameter λ, neural network architecture A
1: for each linear layer l ∈ A do
2: Fix no according to l
3: Determine the plaintext modulus p such that it can fit the maximum

value during the evaluation of l.
4: for each qj ∈ q, nj ∈ n do
5: Estimate the size of evaluation errors, ||e||, using Eq. (6.15).
6: if lg ||e|| < lg q − lg p− 1 then
7: Add (p, qj, nj) valid parameter list Params.

8: Output q, n = minq,n(Params)

6.5.4 The Error ηrot

Finally, for the last term in Eq. (6.9), Lemma 2 can be applied on the i-th
product polynomial ep3,i = Decomp2,i([u]) · eK,i as

Pr[||(ep3,i)j|| > (T/
√
2)||eK,i||] < 2 · exp(−T 2/2), (6.14)

where ||eK,i|| is bounded by Lemma 1, and the scaling factor ⌈lg q⌉ due to the
inner product remains the same. Finally, to calculate Eq. (6.9), one can simply
compute

k0(||ep1||+ ||ep2||) + k1||ep3||. (6.15)

6.6 Dynamic Parameter Estimation

6.6.1 The Overall Procedure

The proposed dynamic parameter estimation technique can be summarized by
the procedures outlined in Alg. 8. Note that this is mainly an offline procedure
that involves only the server (here, offline means that the optimization does not
depend on user input). First, by looking at the network architecture, on no

and p are chosen accordingly. Note that while p can depend on the user inputs,
the server already knows what type of workloads (i.e., an image represented by
8-bit integers) are expected, and can set p accordingly. Next, the algorithm
enters a loop where it estimates the error growths from secure inference under
the instantiation of the parameters (p, qj, nj, no). Here, qj ∈ q and nj ∈ n are
pre-computed candidates of the ciphertext modulus q and lattice dimension n
in the lists q and n (in practice, while q can vary, n is generally either 1024 or
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2048). The q’s and n’s can be generated according to the parameter selection
procedures described in [35]. Subsequently, if the calculated error ensures a
correct decryption up to some probabilities derived in the corresponding bounds,
the parameter set is accepted. Finally, the smallest q and n are selected as the
parameters for concrete instantiation.

As mentioned, the size of the parameters depends critically on p and the
failure probability estimation. The concrete parameter instantiations and
analyses are presented in Section 6.7, and this section first discusses how to
apply fast Monte-Carlo methods to further improve the correctness analysis,
when the weight matrices in A are known.

6.6.2 Failure Probability via Sigma-Scaled Sampling

As suggested in [68], theoretical bounds on the decryption failure probability
of LWE-based cryptosystems tend to be loose. However, simulating such
probability can be practically challenging, as simulating a failure probability
of 2−40 requires roughly 280 brute-force Monte-Carlo runs. In Chapter 4, a
straightforward Monte-Carlo technique is used to simulate the failure bound
by generating 10 million decryption samples. Nonetheless, this method only
works when such probability is large, e.g., ≥ 0.01% in their example. Different
from a public-key encryption scheme, it is hard to adopt error correction code
into a homomorphic encryption scheme where the evaluation function can be
arbitrary.

Fortunately, it is observed that simulating the LWE decryption failure
probability shares many similarities with simulating circuit failure probability in
the field of design automation. In particular, the sigma-scaled sampling (SSS)
method [96] is known to be efficient at handling high-dimensional Gaussian
random variables. In short, the objective is to calculate some rare failure
probability Pf ≤ 2−40, which is the probability of the decryption error ||e|| being
greater than some threshold ηt. If the homomorphic evaluation is abstracted as
some function f on the initial error vector e as f(e), Pf can be calculated as

Pf =

∫ +∞

−∞
I(e)f(e)de, (6.16)

where I(e) = 1 if and only if ||e|| ≥ ηt, and I(e) = 0 otherwise. Apparently, Pf

is hard to simulate directly, and the SSS relies on the simple idea of sampling
from a different density function g, where g is exactly like f but scales the sigma
of e by some constant s. Then, the failure probability of Pg is estimated instead
of Pf . Since Pg gives a much larger probability (g(e) is much more likely to fail
compared to f(e)), brute-force Monte-Carlo can be used to obtain an accurate
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version of Pg. Converting Pg back to Pf involves multiple runs of Pg using
different scaling factors and model fittings. A more detailed presentation can
be found in [96].

However, when the dimension N is large, transforming Pg back to Pf is
non-trivial (the importance sampling method fails, as noted by [96]). SSS solves
this problem by generating a set of scaled probabilities {Pg,i|i = 0, · · · ,M} with
different scaling parameters {si|i = 0, · · · ,M} to obtain an accurate estimation
of the original probability Pf . However, one subtle obstacle persists in adopting
SSS in simulating decryption failures. SSS requires f to be a joint Gaussian
distribution. In DArL, error growths in products of the form e ·w are estimated,
where the resulting distribution is not entirely Gaussian (making the case even
worse, w may not come from a perfectly uniform distribution). Therefore, SSS
is only applied in the case where the weight matrix W is known, i.e., the server
finds that a certain filter is used extensively, and want to further optimize the
PAHE parameters to reduce computational cost. In such case, the product e ·w
can be thought as a high-dimensional vector of sigma-scaled Gaussian variables
by the entries in w, and perform efficient failure event simulations using SSS.

6.7 Numerical Experiments and Parameter In-

stantiations

In order to quantitatively assess the impact of DArL-ENSEI-based secure
inference, DArL-ENSEI is implemented using the SEAL library [50] in C++.
DArL is used to instantiate parameter sets for two sets of plaintext weight filters
of different dimensions: 1× 2048 and 16× 1024, taken from Gazelle. Rigorous
accuracy tests are also performed to estimate the smallest NTT modulus pE for
the CIFAR-10 dataset [98] consisting of 50,000 training and 10,000 test images
that are of dimension 32× 32× 3.

For the sake of fair comparison, in evaluating CIFAR-10, the same network
architecture as in [33, 35] are used. The network consists of 7 layers of
Conv, ReLU, two layers of average pooling, and a final layer of FC. The
accuracy results are obtained using the Tensorflow library [105], and the runtime
of homomorphic convolution is recorded on an Intel Xeon E5-2630 2.3GHz
processor.

6.7.1 Concrete Analysis on the Theoretical Bounds

An example derivation of error bounds is demonstrated using parameters
provided in Gazelle outlined in Table 6.1. First, note that by having an 18-bit
plaintext modulus and a b = 210, two copies of the same ciphertext ([210u], [u])

90



CHAPTER 6. LATTICE-BASED HOMOMORPHIC INFERENCE

Table 6.2: Proposed Selection of Candidate Parameter Sets
p ⌈lg p⌉ q ⌈lg q⌉ b Security

12289 14 137438822401 37 p >214-bit
12289 14 36028797018910721 55 p >157-bit
65537 16 2199023251457 41 p >189-bit
65537 16 144115188075835393 57 p >128-bit
307201 18 260 − 212 · 63549 + 1 60 210 >121-bit

needs to be transferred to conduct a decomposed multiplication, which doubles
the amount of communications and computations needed (when p is 22-bit
as suggested in Gazelle, it triples resources needed). Before delving into the
analysis, it is noted that when no = 1, no rotations are needed, and the error
margin increases significantly as a result of this fact.

First, in the case where no = 8 (two rows are packed into one ciphertext,
since ni = 1024 and n = 2048), Eq. (4.6) is used to calculate the norm
||w|| ≤ 55143, where wi ∈ w is drawn from a uniform distribution in
the range [−512, 512) ∩ Z (since b = 210). Then, Eq. (6.10) gives us a
bound on e0 as 7.54 · 4 · 55143 < 1663113. Applying the same procedure
on ||eK,w,i|| infers that ||eK,w,i|| ≤ 1663113 ·

√
2048 < 75263903, and hence

||ep2|| =
√
60 · 7.54 · 1/

√
2 · 75263903 < 3108269803. Meanwhile, taking c = 1.12

in Lemma. 1 gives us a 2−40 bound on the norm of eK,i as ||eK,i|| < 203,
and ||ep3|| =

√
60 · 7.54/

√
2 · 203 < 8383. Finally, summing all norms, the

total error accumulated in one evaluation of the ciphertext [u] is less than
3108269803k0 + 8383k1, which is roughly 42 bits.

On the other hand, if no = 1, the total error contains e0 only, and this error
is bounded by 1663113, which is only around 20-bit. Combined with an 18-bit
(or even 22-bit) plaintext modulus, q only needs to be at most 42-bit. Compared
to the 60-bit q required when no = 8, by dynamically adjusting the per-layer
parameters, the ciphertext size in a 1×2048 layer can be reduced by as much as
67%. Moreover, if application-specific hardware is adopted, the computational
efficiency can also be improved by customizing to a 38-bit modulus, instead of
a fixed 64-bit machine word.

Lastly, note that the proposed technique reveals no more information than
Gazelle already does. Namely, Bob as the client already knew the filter
dimension and the integer b, and these are all the server needs to know to
adjust the per-layer parameters accordingly.
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Figure 6.5: The distribution of 240 runs of Pf simulation using SSS.

6.7.2 A Different Plaintext Space

Using the previously demonstrated error bounds, the steps in Alg. 8 are followed
to generate a set of plausible parameters with respect to different plaintext
modulus up to the 18-bit p suggested in [35], and the results are summarized
in Table 6.2 with the security levels estimated using the framework provided
by [106].

Obviously, the size of the plaintext space has a strong impact on the
parameter sets. First of all, for both 14-bit and 16-bit plaintext spaces,
the weight matrix decomposition that is used to prevent noise overflow is
unnecessary . This immediately gives us at least 2x (compared to 18-bit p) and
even 3x (22-bit p) ciphertext size reduction. Moreover, due to the fact that,
essentially, there are less ciphertexts to rotate and add, all of the homomorphic
computations are speed up by 2x–3x as well. By fixing n = 2048 to allow for
efficient packing, a smaller q drastically increases the security of the HE scheme.

6.7.3 Monte-Carlo on BNN-based Secure Inference

The SSS technique is applied on a 10×1024-dimensional packed binary weights
pre-trained using the MNIST [97] dataset with a plaintext modulus of p =
12289. ηt is set to be slightly less than 40-bit, and step σ in the error distribution
χ from 3·σ to 5·σ with a step size of 0.1. 50K simulations are run in each σ step,
which totals to 1M simulation runs per calculation of Pf . On an Intel Xeon E5-
2630 processor with 32GB of memory, one Pf run roughly takes 2425 seconds.
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Table 6.3: Comparison of Communicational and Computational Efficiency
Between Different Parameter Instantiations

Method ⌈lg p⌉ ⌈lg q⌉ Ciphertext Size Fail. Prob.
DArL Empirical 14 54 ≈ 29.2KB 2−60

DArL Theoretical 14 55 ≈ 29.2KB 2−40

Gazelle 18 60 ≈ 65.5KB 2−40

Gazelle 22 60 ≈ 98.4KB > 2−40

Hence, the computational cost of fast Monte-Carlo is still quite heavy, and it
will be up to the server if further optimizations are needed for the particular
filter.

Figure 6.5 shows the repeated calculation of 240 Pf estimations using SSS.
As noted in [96], the derived Pf tends to follow a normal distribution on the

logarithmic scale, and the calculated upper bound is PUp
f < 2−60.89 on the

95% confidence interval. The best-case performance difference between DArL
and Gazelle is summarized in Table 6.3. In addition, since the Monte-Carlo
simulation indicates that the instantiated parameters are not entirely tight, the
efficiency of homomorphic evaluations can be further improved by approximate
computing techniques, as suggested in Chapter 4.

6.7.4 The Prediction Accuracy of ENSEI

Given the parameter sets, the classification accuracy of the corresponding
instantiated ENSEI is examined. Figure 6.6 illustrates how the prediction
accuracy of CNN improves as the bit width increases during secure inference.
Here, the inputs are fixed to 10-bit integers, and the filter weights vary in bit
widths. In the binary case, binarized weights are used in both the training and
inference phase. Observe that while precision does have a strong impact on the
overall prediction accuracy, the performance is highly adjustable. In particular,
although not shown in Fig. 6.6, the binary-weight can reach a final prediction
accuracy of 0.78, which is as accurate as the medium case. This is only around
0.03 (3%) less than the originally reported accuracy in [33]. Consequently, it is
observed that for high accuracy instantiation with 6-bit weights, the accuracy
is on an equivalent level to the full-bit precision case, and RLWE parameters
are instantiated accordingly to examine the impact of different bit widths.

From the accuracy results, what is learned is that instead of setting all
plaintext modulus as the same integer like Gazelle, secure inference parameters
should be determined in a layer-by-layer manner. For example, depending on
the exact cryptographic parameterization, the bit precisions can be decreased
in the upper convolutional layers where the input lengths are long, and return
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Figure 6.6: CIFAR-10 prediction accuracy with respect to time-domain bit
width.

Table 6.4: Proposed Candidate Parameter Sets
Precision p ⌈lg p⌉ q ⌈lg q⌉
Binary 12289 14 35184372060161 45
Medium 65537 16 9007199254614017 53
High 307201 18 260 − 212 · 63549 + 1 60

to higher precision convolutions in later short layers. Unfortunately, due to the
complexity of the analysis and large design space, the efficient automation of
the such process remains as an interesting open field of research.

6.7.5 Efficiency Comparison

In this chapter, the results from Section 6.7.4 and Eq. (6.8) are used to choose
three sets of RLWE parameters for adopting the fine-grained layer-to-layer (and
network-to-network) precision adjustment. The minimal pm ≥ pE is determined
for the pE required, and then the lattice dimension n and ciphertext modulus
q are adjusted accordingly to ensure a 128-bit security with overwhelming
decryption success probability (the discrete Gaussian paremeter σ is set to 4).

The instantiated parameters are shown in Table 6.4. Here, the Binary
parameter set is for binarized, Medium is for 4-bit, and High is for 6-bit weights.
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Table 6.5: Convolution Benchmarks w.r.t Precision Levels
Input Dim. Filter Dim. Precision tsetup tonline Bandwidth

ENSEI (28× 28× 1) (5× 5× 5) Binary 22.7ms 2.31ms 46.0KB
ENSEI (28× 28× 1) (5× 5× 5) Medium 22.7ms 2.31ms 51.2KB
ENSEI (28× 28× 1) (5× 5× 5) High 26.7ms 2.60ms 61.4KB
Gazelle (28× 28× 1) (5× 5× 5) - 11.4ms 9.20ms 130KB
ENSEI (32× 32× 32) (3× 3× 32) Binary 24.5ms 18.5ms 184KB
ENSEI (32× 32× 32) (3× 3× 32) Medium 24.5ms 18.5ms 204KB
ENSEI (32× 32× 32) (3× 3× 32) High 26.6ms 20.8ms 246KB
Gazelle (32× 32× 32) (3× 3× 32) - 704ms 195ms -

First, it is noted that since ENSEI only requires SIMDScMult, the weight
matrices and Galois keys decomposition can also be avoided in section 6.7.2
(wpt and wrelin in [35]), and that the ciphertext modulus naturally fits into a
64-bit machine word. Second, for ENSEI involves no ciphertext rotation at all,
the entire process of generating and transferring Galois keys is eliminated in the
Conv layers (note that this process may still be necessary in the FC layers).

Using the instantiated parameters, the performance comparison of ENSEI
and Gazelle on a set of convolution benchmarks are summarized in Table 6.5.
Here, tsetup is the amount of time consumed by procedures that do not involve
user inputs (e.g., initializing SEAL, reading in filters), and tonline refers to the
time for input-dependent steps. In Table 6.5, it is observed that by using ENSEI,
the online convolution time is reduced by 4x–10x across all precisions. Since the
implementation in this work uses a different library from Gazelle, for smaller
convolutions, the resulting setup time is not as fast. However, it is noticed that
the setup time of ENSEI is (almost) invariant from the image, filter sizes, and
color channels. Therefore, on larger benchmarks, a 31x reduction in setup and
nearly 10x reduction in online time are observed. The reductions are primarily
due to the fact that the sophisticated packing techniques used in Gazelle is not
optimized for larger input and output channels. In contrast, the setup time for
ENSEI remains almost constant, and owing to the efficient FDC technique, the
online time of ENSEI scales much slower than Gazelle. Moreover, similar trends
in the communication bandwidth occur, where the elimination of Galois keys
and window sizing, along with the fine-tuned precision control, brings us more
than 2x reduction in the communication bandwidth across all convolution sizes.

By adopting the less-accurate but more efficient activation functions such
as the square activation function used in [33, 35], an execution of secure
inference using a relatively deep neural network on the CIFAR-10 dataset can be
completed within 0.378 s, making ENSEI-based CNN one of the most practical
MLaaS schemes to date.
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6.8 Summary

In this work, DArL-ENSEI is proposed to dynamically optimize the parameter
instantiations for frequency-domain oblivious convolution that accelerates
CNN-based secure inference. In DArL, a theoretical approach to systematically
characterize the error growth in different network settings is established,
and developed a Monte-Carlo-based sampling method to tighten the bound
on decryption failures. In ENSEI, by using NTT, it is demonstrated that
oblivious convolution can be built on any encryption scheme that is additively
homomorphic. Then, DArL-ENSEI is integrated to one of the most recent work
on secure inference, and observed 4x–10x reduction in online inference time, and
as much as 31x reduction in setup time. It is demonstrated that PAHE-based
secure inference can be simple and practical for real-world datasets.
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Chapter 7

Conclusion

In conclusion, this dissertation brings novel design concepts into the cross-layer
design exploration of advanced secure protocols for the age of cloud computing.
In what follows, three contributions shall be briefly summarized in Section 7.1.
Discussions and future prospects are also provided in Section 7.2 and 7.3.

7.1 Summary

First, focusing on better hardware primitives for LWE cryptography, multiplier
architectures are proposed. By exploiting the algebraic structures of generic
LWE instances, modulo reduction circuits are squashed, and approximate
multipliers are adopted. For RLWE, with application-specific pipeline ar-
chitectures, it is discovered that many proposed optimization techniques,
such as Montgomery-like reduction and lazy reduction, are not necessary,
resulting in a simplistic algorithmic design. Energy efficiencies for LWE-based
cryptosystems are improved by 4–21x, with an extra 27%–46% decryption
bandwidth reductions.

Second, design techniques are examined for the proposed secure email
filtering scheme. The observation is that, even with the most efficient PHE
scheme and simplest filtering scheme, homomorphic email filtering is still a
demanding task. Therefore, in addition to the proposed quantization and
parallel filtering methods, a 2048-bit hardware multiplier is also utilized to
reduce the latency and power consumption of the system as much as possible.
Experiment results indicate that such secure filter can only be considered as
practical on a dedicated hardware platform, with a filtering throughput of 0.5 s
per email, and a power consumption of 50mW for the multiplier unit.

Lastly, neural-network-based secure inference schemes are examined. As
such schemes are generally dependent on (either lattice or factoring) homo-
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morphic encryption schemes, previously proposed techniques can be easily
integrated. Furthermore, a frequency-domain secure convolution protocol is
proposed to minimize the amount of homomorphic operations. Along with
rigorous parameter analysis and dynamic instantiation techniques, the online
and off-line computation time of secure inference can be reduced by up to 31x
and 4–10x, respectively. The communication bandwidth is also reduced by 2–3x
across all the linear layers of convolutional neural networks.

7.2 Discussions

As observed in the above summary, this dissertation touches on a large
number of drastically different secure needs, cryptographic constructions and
hardware architectures. However, the design concept remains consistent.
For each application, cryptographic tools are selected with proper parameter
instantiations, and new hardware platforms are architected to ensure efficient
protocol execution. In this whole design process, optimizations are conducted
without strict layer scopes, and techniques from different layers are applied in
an integrated manner.

At this point, it is obvious that HSPs, or any secure protocol in general, carry
heavy computational and communicational burdens. Therefore, developing
a practical HSP shares many similarities to the design of early electronic
computing systems. At the time, the concept of abstraction layers was not
well-developed, and cross-layer techniques are naturally adopted by computer
architects. The goal of this dissertation is to show that, the same design concept
should also be applied in the case of HSPs, and by adopting this cross-layer
concept, significant speed and efficiency gains are attainable. Moreover, as
outlined in Section 7.3, the cross-layer point of view opens up new fields of
research that greatly reduce the cost of adopting HSPs in practice. It is
envisioned that, HSPs, much like modern-day smartphones, will become an
essential commodity in the future, and work as means to protect personal
privacy and safety in the age of cloud computing.

7.3 Future Prospects

In closing this dissertation, open questions and potential research directions are
summarized.

• HSP Compiler: As the number of cryptographic primitives and target
applications grows, fine-tuning the entire system becomes increasingly
hard. Meanwhile, due to the high computational and communicational
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cost of general multi-party secure protocols, designs without cross-layer
optimizations can turn out to have prohibitive overheads. Conse-
quently, for higher design layers, compilers need to be implemented
such that enough abstraction are provided for the efficient design of
application-specific protocols. Until very recently, high-level compilers
for HE started to emerge [8, 107]. However, existing works generally
only focus on compiling programs using HE-based instructions (e.g.,
homomorphic addition and multiplication), instead of a mixed design of a
heterogeneous HSP employing different types of cryptographic primitives.
As observed in Gazelle and ENSEI, the mixing of protocols can provide
significant performance improvement over a single-protocol scheme, and
a higher-level compiler shall be aware of such complex design trade-offs.

• Better Hardware Primitives for Modular Reduction: Although
factoring-based PKE schemes have already put forth a strong demand for
modular arithmetic, optimizations for modular arithmetic are generally
conducted in the software layer. For example, Barrett reduction,
Montgomery reduction and lookup-table-based approaches are the classic
examples. However, PKE schemes are generally only executed once to
exchange a private key and are not as resource-hungry as HE schemes.
Moreover, factoring-based schemes generally target on single large integer,
instead of a large number of small integers as in lattice-based systems.
At the moment, it is not known if specialized hardware primitives exist
for modular arithmetic. However, given the flexibility and post-quantum
security of (R)LWE-based schemes, especially in designing efficient HSPs,
it is expected that hardware-accelerated modular arithmetic is one of the
key components in fulfilling practical HSPs.

• Process-In-Memory Architectures for (R)LWE Cryptography:
The fundamental assumption of LWE cryptosystems is that certain
problems in lattices are hard to solve. As mentioned in Chapter 3, in
constructing a lattice-like structure, both the random matrix approach in
LWE or the random polynomial approach in RLWE require a relatively
large number of integers (103–105), which result in large public key sizes.
In addition to the fact that (R)LWE computational units are relatively
simple, the result is that moving public keys from memory to processor
and back to the memory become the main performance bottleneck
of lattice cryptology, for both traditional and advanced cryptographic
constructions. Hence, in-memory computing can be a promising hardware
solution, as data movements can be minimized on such computing
platforms.
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[59] T. Pöppelmann and T. Güneysu, “Towards practical lattice-based public-
key encryption on reconfigurable hardware,” in International Conference
on Selected Areas in Cryptography. Springer, 2013, pp. 68–85.

[60] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact ring-LWE cryptoprocessor,” in International Workshop on
Cryptographic Hardware and Embedded Systems. Springer, 2014, pp.
371–391.

[61] M. Schneider, “Sieving for shortest vectors in ideal lattices,” in Interna-
tional Conference on Cryptology in Africa. Springer, 2013, pp. 375–391.

[62] N. Göttert, T. Feller, M. Schneider, J. Buchmann, and S. Huss, “On the
design of hardware building blocks for modern lattice-based encryption
schemes,” in International Workshop on Cryptographic Hardware and
Embedded Systems. Springer, 2012, pp. 512–529.

[63] J. Howe, T. Oder, M. Krausz, and T. Güneysu, “Standard lattice-based
key encapsulation on embedded devices,” IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pp. 372–393, 2018.

106

https://csrc.nist.gov/Projects/Post-Quantum-Cryptography


BIBLIOGRAPHY

[64] Y. Chen and P. Q. Nguyen, “Bkz 2.0: Better lattice security estimates,”
in International Conference on the Theory and Application of Cryptology
and Information Security. Springer, 2011, pp. 1–20.

[65] J. H. Cheon, D. Kim, J. Lee, and Y. S. Song, “Lizard: Cut off
the tail!//practical post-quantum public-key encryption from LWE and
LWR.” IACR Cryptology ePrint Archive, vol. 2016, p. 1126, 2016.

[66] Design Compiler I-2013.06, Synopsys, Inc.

[67] PrimeTime PX H-2013.06, Synopsys, Inc.

[68] S. Bian, M. Hiromoto, and T. Sato, “DWE: Decrypting learning with
errors with errors,” in Design Automation Conference (DAC), 2018 55th
ACM/EDAC/IEEE. IEEE, 2018, pp. 1–6.

[69] S. Hashemi, R. Bahar, and S. Reda, “Drum: A dynamic range un-
biased multiplier for approximate applications,” in Proceedings of the
IEEE/ACM International Conference on Computer-Aided Design. IEEE
Press, 2015, pp. 418–425.

[70] S. Mittal, “A survey of techniques for approximate computing,” ACM
Computing Surveys (CSUR), vol. 48, no. 4, p. 62, 2016.

[71] Z. Brakerski, A. Langlois, C. Peikert, O. Regev, and D. Stehlé, “Classical
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