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Abstract

This paper presents conditions for self-equilibrium as well as super-stability of the truncated
regular hexahedral and octahedral tensegrity structures. Their symmetry can be described by
octahedral group in group representation theory, and furthermore, their force density matrix
is analytically rewritten in the symmetry-adapted form. The condition for self-equilibrium, in
terms of force densities, is found by satisfying the non-degeneracy condition for a tensegrity
structure. The condition for super-stability, also in terms of force densities, is further presented
by guaranteeing positive semi-definiteness of the force density matrix.
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1. Introduction
Tensegrity refers to the structure composed of continous tension and discontinuous

compression (Fuller, 1962). The concept of tensegrity was born in arts, and nowadays, it
has been widely applied in many different disciplines (Zhang and Ohsaki, 2015). For the
purpose of further understanding of the whole class of truncated regular hexahedral and
octahedral tensegrity structures, we present analytical conditions for their self-equilibrium
as well as super-stability.

A truncated regular polyhedral tensegrity structure is generated from a truncated regu-
lar polygon (Zhang et al., 2012). The cables lie along the edges of a truncated polyhedron,
which is made by symmetrically cutting off the vertices of the polyhedron; and the struts
are the diagonals connecting the vertices of the truncated polyhedron. The cables can be
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(a) regular hexahedron (b) truncated hexahedron (c) hexahedral tensegrity
Fig. 1. Generation of a truncated regular hexahedral tensegrity structure.

(a) regular octahedron (b) truncated octahedron (c) octahedral tensegrity
Fig. 2. Generation of a truncated regular octahedral tensegrity structure.

classified into two types: the edge cables lying on the original edges of the polyhedron, and
the cutting cables lying on its cut edges.

Generation of the hexahedral and octahedral tensegrity structures studied in this paper
is shown in Figs. 1 and 2, respectively. It is notable that a regular hexahedron and a
regular octahedron are dual to each other, and both of them have the symmetry that can
be described by octahedral group in group representation theory.

A truncated regular hexahedral or octahedral tensegrity structure consists of 24 nodes
and 48 members, including 12 struts in compression and 36 cables in tension. Every node
is connected by one strut, one edge cable, and two cutting cables. For both hexahedral
and octahedral structures, there are 24 cutting cables and 12 edge cables.

According to the modified version of Maxwell’s rule by Calladine (1978), the following
relation holds:

ns − nm = m− 3n+ 6

= (12 + 36)− 3× 24 + 6 = −18, (1)

where ns, nm, m, and n respectively denote number of independent prestress modes, num-
ber of infinitesimal mechanisms, number of members, and number of nodes. It should be
noted that the number of rigid-body motions, which is 6 for a three-dimensional structure,
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is included in Eq. (1) because a tensegrity structure is free-standing, without any supports
to constrain the rigid-body motions.

Both of the hexahedral and octahedral structures have only one mode of prestress; i.e.,
ns = 1, thus, there exists in total 19 infinitesimal mechanisms; i.e., nm = 19. It is this
single prestress mode that stiffens the 19 infinitesimal mechanisms to make the structure
stable, in the sense of having the minimum potential energy. The minus sign in Eq. (1)
indicates that the structure is not stable, if no prestress is introduced. However, as will
be proved later in this study, these structures can be super-stable if their members carry
appropriate prestresses (or force densities).

Post-buckling behavior of the octahedral structure has been studied by Rimoli (2018);
and it was further used as an elementary cell for a tensegrity-based planet lander (Rimoli
and Pal, 2017). For further applications of these structures, it is necessary to thouroughly
understand their (static) properties, including self-equilibrium and (super-)stability.

In our previous study (Tsuura et al., 2010), the authors have numerically presented the
conditions of self-equilibrium as well as super-stability for the tetrahedral, hexahedral,
and octahedral structures. However, numerical approaches may miss the opportunity to
have thorough understanding of self-equilibrium and stability properties of the structures,
and hence, analytical results are always preferable as long as they are available. Zhang et
al. (2012) presented a unified analytical solution for self-equilibrium of truncated regular
polyhedral tensegrity structures, including the tetrahedral, hexahedral, octahedral, dodec-
ahedral, and icosahedral structures. The conditions for super-stability of these structures,
however, have been investigated in a numerical way.

In this study, we present the equilivalent self-equlibrium and super-stability conditions
for the truncated regular hexahedral and octahedral structures in a rigorous way – with
the least numerical computations. In our previous studies (Zhang et al., 2009a, 2010;
Zhang and Ohsaki, 2012), the authors have demonstrated the power of presenting ana-
lytical solutions for the structures with high-level of symmetry via group representation
theory. In this study, we follow the same procedure as in our previous studies: (1) derive
the symmetry-adapted form of the force density matrix, (2) find the condition for self-
equilibrium by enforcing the force density matrix to have nullities of four, and (3) find
the condition for super-stability so that the force density matrix is positive semi-definite.

It is notable that the conditions were derived based on symmetry of force densities,
rather than symmetry of the structure. A tensegrity structure can have infinite possibilities
of geometry realizations with the same set of force densities; different geometry realizations
are related through affine motions (Zhang and Ohsaki, 2015). In other words, we can
always have an asymmetric geometry realization of the truncated hexahedral or octahedral
tensegrity structure, while its force densities have the hexahedral or octahedral symmetry.

Following this introductory section, the paper is organized as follows: Section 2 de-
scribes configuration and symmetry of the hexahedral and octahedral structures; Section
3 presents the analytical symmetry-adapted form of the force density matrix; Section 4
finds the self-equilibrium and super-stability conditions for the hexahedral structures, in
terms of force densities; Section 5 finds the self-equilibrium and super-stability conditions
for the octahedral structures; and Section 6 briefly concludes the study.
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Fig. 3. Duality of hexahedron and octahedron.

2. Hexahedral and Octahedral Symmetry
Symmetry of a structure can be systematically dealt with by using group representation

theory. The symmetry-adapted form of the force density matrix is necessary for derivation
of the self-equilibrium and super-stability conditions for the hexahedral and octahedral
structures. Moreover, the symmetry-adapted force density matrix relies on irreducible
representation matrices. Thus, this section gives a brief introduction to the octahedral
group and its irreducible representation matrices. More general details about group rep-
resentation theory can be found, for example, in the textbook by Bishop (1973) or Kettle
(1995).

2.1 Duality of hexahedron and octahedron
A hexahedron (cube) has 8 points, 6 faces, and 12 edges. The adjacent edges are per-

pendicular to each other, forming 90 degree angles. An octahedron has 6 points, 8 faces,
and 12 edges. Duability of a hexahedron and an octahedron can also be observed in Fig. 3:
• If the mid-points of adjacent faces of a hexahedron are jointed together, an octahedron

is generated.
• On the contrary, if the mid-points of adjacent faces of an octahedron are jointed to-

gether, a hexahedron is generated.

As shown in Fig. 4, the regular hexahedron and octahedron have the same symmetry
operations. By application of any of the symmetry operations, the structure remains the
same physical appearance. For a regular hexahedron or octahedron, there exist 6 two-fold
C′

2 rotation axes, 4 three-fold C3 rotation axes, and 3 four-fold C4 rotation axes including
3 coincident two-fold C2 rotation axes:
• Two-fold rotation axes C′

2: The C′
2 axes pass through the mid-points of pairs of opposite

edges of the hexahedron or octahedron as well.
• Three-fold rotation axes C3: Each C3 axis passes through opposite pairs of vertices of

the hexahedron, or mid-points of a pair of equilateral triangular faces on opposite sides
of the octahedron.
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Fig. 4. Symmetry operations of the regular hexahedron and octahedron.

• Four-fold rotation axes C4: The C4 and the coincident C2 axes pass through mid-points
of a pair of square faces on opposite sides of the hexahedron, or opposite pairs of vertices
of the octahedron.

Hence, there are in total 24 symmetry operations (rotations about the above-mentioned
axes), including the identity operation doing nothing. These symmetry operations form
the octahedral group, denoted by O. The octahedral group is a point group that has the
order of 24. It is also the symmetry group of the hexahedron (cube), cuboctahedron, and
truncated octahedron.

According to the coordinate system with the origin at the center as indicated in Fig. 4,
coordinates of the vertices of the regular hexahedron are given as follows:

P1 =

 1
1
1

 , P2 =

 1
−1
1

 , P3 =

 −1
−1
1

 , P4 =

 −1
1
1

 ,

P5 =

 1
1
−1

 , P6 =

 1
−1
−1

 , P7 =

 −1
−1
−1

 , P8 =

 −1
1
−1

 . (2)

Morever, coordinates of the vertices of the regular octahedron are given as
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Table 1
Character table for the octahedral group O.
O E 8C3(τ) 6C4(ϕ) 3C2(ϕ) 6C′

2(σ)

A1 1 1 1 1 1 (x2 + y2 + z2)
A2 1 1 −1 1 −1 sgn(ν)

E 2 −1 0 2 0 [1/
√
3(2z2 − x2 − y2), (x2 − y2)]

T1 3 0 1 −1 −1 (x, y, z)
T2 3 0 −1 −1 1 (xy, yz, zx)

P1 =

 0
0
1

 , P2 =

 0
−1
0

 , P3 =

 1
0
0

 ,

P4 =

 0
1
0

 , P5 =

 −1
0
0

 , P6 =

 0
0
−1

 . (3)

2.2 Octahedral group and its representation matrices
In the octahedral group O, there are 2 one-dimensional irreducible representations A1

and A2, 1 two-dimensional irreducible representation E, and 2 three-dimensional irre-
ducible representation T1, and T2. The character table for the group O is given in Table 1.

Combination of any two operations of a group must coincide with an operation of that
group. The group multiplication table describes such combinations of any two operations in
a group. If a set of matrices obeys the group multiplication table of a group, these matrices
are said to form a matrix representation of that group. These matrices are called the repre-
sentation matrices. A matrix representation that can be reduced to a linear combination
(direct sum) of several matrix representations is called a reducible matrix representa-
tion, otherwise, they form an irreducible matrix representation. Moreover, characters are
defined as traces of the irreducible representation matrices.

The (irreducible) representation matrices in the octahedral group can be generated by
the generators A and B:

< A,B|A2 = 1, B3 = 1, (AB)4 = 1 >, (4)

where A refers to the two-fold rotation σ, B refers to the three-fould rotation τ , and the
four-fold rotation ϕ can be generated by the multiplication of A and B.

As will be presented in the next section for derivation of the symmetry-adapted force
density matrix, we need only the irrducible representation matrices for the members con-
nected to the reference node. Hence, in the following, we present only the necessary irre-
ducible representation matrices: ρµ(E) for the identity operation, ρµ(σ1,2) for the two-fold
rotations σi (i = 1, 2) about two C′

2 axes, ρµ(τ1,2) for the three-fold rotations τi (i = 1, 2)
about a C3 axis, and ρµ(ϕ1,2,3) for the four-fold rotations ϕi (i = 1, 2, 3) about a C4 axis.
Here, ρµ(ν) denotes the matrix representation of symmetry operation ν correspondig to
the representation µ.

Note that ρµ(σ1) is used to describe the two-fold symmetry of edge cables, and ρµ(σ2)
is for the two-fold symmetry of struts. Furthermore, ρE(σ1) is adopted as the generator A
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in Eq. (4) for the two-fold rotation, and ρE(τ1) is used as the generator B in Eq. (4) for
the three-fold rotation.

2.2.1 Irreducible representation matrices for A1 and A2

For the one-dimensional repsentations, there are unique choices since they are 1-by-1
matrices. From Table 1, we have the representation (one-by-one) matrices corresponding
to the one-dimensional representation (µ =)A1 are all equal to one; i.e.,

ρA1(E) = ρA1(τ1,2) = ρA1(ϕ1,2,3) = ρA1(σ1,2) = 1. (5)

Similarly, for the other one-dimensional representations A2, their (one-by-one) represen-
tation matrices corresponding to each symmetry operation can be directly read off from
Table 1:

ρA2(E) = ρA2(τ1,2) = ρA2(ϕ2) = 1,

ρA2(ϕ1,3) = ρA2(σ1,2) = −1. (6)

2.2.2 Irreducible representation matrices for E
For the two-dimensional and three-dimensional repsentation matrices, they are not

unique since they are dependent upon the coordinate system. The representation ma-
trices presented in the following correspond to the selected coordinate system as indicated
in Fig. 3, and the coordinates of the vertices of the hexhedron and octahedron were re-
spectively given in Eqs. (2) and (3).

The representation matrix ρE(E) corresponding to the two-dimensional representation
E for the identity operation is an identity matrix:

ρE(E) =

(
1 0
0 1

)
, (7)

the trace of which is
tr(ρE(E)) = 2. (8)

The representation matrix ρE(σ1) and ρE(σ2) for the two-fold rotations C′
2 are given as

ρE(σ1) =

(
1 0
0 −1

)
,

ρE(σ2) =
1

2

(
−1 −1
−3 1

)
. (9)

Traces of both of the matrices ρE(σ1) and ρE(σ2) are 0:

tr(ρE(σ1,2)) = 0, (10)

satisfying the character table in Table 1.
The generator ρE(τ1) for the three-fold rotation C3 is

ρE(τ1) =
1

2

(
−1 1
−3 −1

)
, (11)
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from which we have the other three-fold rotation sharing the same rotation axis as

ρE(τ2) = ρE(τ1) · ρE(τ1) =
1

2

(
−1 −1
3 −1

)
. (12)

The traces of ρE(τ1) and ρE(τ2) are

tr(ρE(τ1,2)) = −1. (13)

From Eq. (4), the representation matrix ρE(ϕ1) for the four-fold rotation C4 is generated
as

ρE(ϕ1) = ρE(σ1) · ρE(τ1) =
1

2

(
−1 1
3 1

)
, (14)

and the other two representation matrices of the four-fold rotation sharing the same axis
are given as

ρE(ϕ2) = ρE(ϕ1) · ρE(ϕ1) =

(
1 0
0 1

)
,

ρE(ϕ3) = ρE(ϕ1) · ρE(ϕ1) · ρE(ϕ1) =
1

2

(
−1 1
3 1

)
. (15)

The traces of these representation matrices for three-fold rotations are

tr(ρE(ϕ1,3)) = 0, tr(ρE(ϕ2)) = 2. (16)

2.2.3 Irreducible representation matrices for T1

The representation matrix ρT1(E) corresponding to the three-dimensional representation
T1 for the identity operation is

ρT1(E) =

 1 0 0
0 1 0
0 0 1

 , (17)

the trace of which is
tr(ρT1(E)) = 3. (18)

The following representation matrix ρT1(σ1) for the two-fold rotations C′
2 is the gener-

ator A in Eq. (4):

ρT1(σ1) =

 0 0 1
0 −1 0
1 0 0

 , (19)

which is also used to describe the two-fold symmetry of edge cables; moreover, the following
representation matrix ρT1(σ1) for the two-fold rotations C′

2 is used to describe the two-fold
symmetry of struts:

ρT1(σ2) =

 −1 0 0
0 0 1
0 1 0

 . (20)
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Both of the matrices ρT1(σ1) and ρT1(σ2) have the trace −1; i.e.,

tr(ρT1(σ1,2)) = −1, (21)

satisfying the character table in Table 1.
The following representation matrices ρT1(τ1) for the three-fold rotation C3 is used as

the generator B in Eq. (4):

ρT1(τ1) =

 0 0 1
1 0 0
0 1 0

 , (22)

from which we have the other three-fold rotation sharing the same rotation axis

ρT1(τ2) = ρT1(τ1) · ρT1(τ1) =

 0 1 0
0 0 1
1 0 0

 . (23)

The traces of ρT1(τ1) and ρT1(τ2) are

tr(ρT1(τ1,2)) = 0. (24)

From Eq. (4), the representation matrix ρT1(ϕ1) for the four-fold rotation C4 is generated
as

ρT1(ϕ1) = ρT1(σ1) · ρT1(τ1) =

 0 −1 0
1 0 0
0 0 1

 , (25)

and the other two representation matrices of the four-fold rotation sharing the same axis
are given as

ρT1(ϕ2) = ρT1(ϕ1) · ρT1(ϕ1) =

 −1 0 0
0 −1 0
0 0 1

 ,

ρT1(ϕ3) = ρT1(ϕ1) · ρT1(ϕ1) · ρT1(ϕ1) =

 0 1 0
−1 0 0
0 0 1

 . (26)

The traces of these matrices are

tr(ρT1(ϕ1,3)) = 1, tr(ρT1(ϕ2)) = −1. (27)

2.2.4 Irreducible representation matrices for T2

Since the representations ρT1(ν) of T1 and ρT2(ν) of T2 satisfy

ρT2(ν) = sgn(ν)ρT1(ν) = ρA2(ν)ρT1(ν), (28)

where sgn(ν) for each representation can be found in the character table in Table 1 for
the A2 representation.
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The representation matrix ρT2(E) corresponding to the identity operation E for the
three-dimensional representation T2 is

ρT2(E) = ρA2(E)ρT1(E) = ρT1(E) =

 1 0 0
0 1 0
0 0 1

 . (29)

Similarly, for the three-fold rotations C3, we have their representation matrices ρT2(τi)
as

ρT2(τi) = ρT1(τi), i = 1, 2; (30)
because from the characters corresponding to the three-fold rotations C3 of A2 represen-
tation in Table 1 we know that

sgn(τi) = ρA2(τi) = 1. (31)

Thus, we further have
tr(ρT2(τ1)) = tr(ρT1(τ2)) = 0. (32)

For the four-fold rotations C4, we have two cases: the pure four-fold rotations C4 and
the corresponding two-fold rotations C2, where

sgn(ϕi) = −1, i = 1, 3;

sgn(ϕ2) = 1. (33)

Thus, their irreducible representation matrices for T2 are given as

ρT2(ϕi) = −ρT1(ϕi), i = 1, 3;

ρT2(ϕ2) = ρT1(ϕ2). (34)

and their traces are
tr(ρT2(ϕi)) = −1, i = 1, 2, 3. (35)

Moreover, for the pure two-fold rotations C′
2, the representation matrices ρT2(σi) of T2

are
ρT2(σi) = sgn(σi)ρ

T1(σi) = −ρT1(σi), i = 1, 2, (36)
and therefore, their traces are

tr(ρT2(σi)) = −tr(ρT1(σi)) = 1, i = 1, 2. (37)

3. Symmetry-adapted Force Density Matrix
The conditions for self-equilibrium and super-stability of a tensegrity structure can

be found by respectively investigating the nullities and positive-definiteness of its force
density matrix. For such purpose, we present the analytical symmetry-adapted (block-
diagonalized) force density matrix in this section.

3.1 Force density matrix
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The force density matrix of a structure is determined only by connectivity pattern as
well as force densities of the members. The term force density is defined as the ratio
of prestress to member length. It was initially introduced by Schek (1974) to transform
the originally nonlinear equilibrium equations into linear equations with respect to nodal
coordinates for self-equilibrium analysis of cable nets.

Denoting by I the set of members connected to node i, the (i, j)-component E(i,j) of
the force density matrix E is given as

E(i,j) =


∑
k∈I

qk for i = j,

−qk if nodes i and j are connected by member k,
0 for other cases,

(38)

where qk is the force density of member k connecting nodes i and j. Obviously, the force
density matrix is symmetric, and thus, has real eigenvalues.

The self-equilibrium equations of a tensegrity structure can be written as follows with
respect to the nodal coordinates x, y, z:

Ex = Ey = Ez = 0, (39)

where 0 indicates that there is no external loads applied at the structure.
Tensegrity structures are generally free-standing; i.e., any boundary conditions are not

imposed to constrain the rigid-body motions. Hence, there exists no fixed node in a tenseg-
rity structure, and sum of the entries in each row or each column of the force density matrix
is zero. Thus, the force density matrix has nullity of at lease one, or equivalently, the ma-
trix has at least one zero eigenvalue. In fact, it has more nullities: Zhang and Ohsaki
(2015) discussed that the force density matrix should have nullities of at least four for a
non-degenerate tensegrity structure in three-dimensional space. This is to ensure that the
geometry realization of a tensegrity structure, in terms of nodal coordinates x, y, and z,
has non-trivial solutions for the self-equilibrium equations in Eq. (39) (Zhang and Ohsaki,
2006).

3.2 Stability and super-stability
In the traditional stability theory in engineering, a structure is stable if its (tangent)

stiffness matrix is positive definite, while the rigid-body motions have been properly con-
strained; i.e., the quadratic form of the tangent stiffness matrix with respect to any non-
trivial motion, excluding the rigid-body motions, is positive (Thompson and Hunt, 1984).
The tangent stiffness matrix K is the sum of the linear stiffness matrix KE and the
geometrical stiffness matrix KG:

K = KE +KG. (40)

Moreover, KG is composed of the force density matrix (Guest, 2006; Zhang and Ohsaki,
2006):

KG = E⊕ E⊕ E, (41)
where the notation ⊕ indicates that three copies of E are lying on the leading diagonal of
KG.
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Since the force density matrix E has more than four zero eigenvalues, the geometrical
stiffness matrix KG has more than 12 zero eigenvalues for a three-dimensional tensegrity.
Among these, six of the zero eigenvalues in KG correspond to the rigid-body motions of
the structures, and the other six correspond to the non-trivial affine motions (Zhang and
Ohsaki, 2007).

It is notable that the geometrical stiffness matrix (or the force density matrix) is only
relevant to (level and distribution of) prestress. Increasing the prestress level would in-
crease or decrease the geometrical stiffness depending on property of KG: If KG is positive
semi-definite, then increasing prestress level will increase the (geometrical) stiffness of the
structure; If there exists negative eigenvalues in KG, high level of prestress could decrease
the (geometrical) stiffness, and even results in an unstable structure. Hence, positive
semi-definiteness of KG or E is the necessary condition for super-stability of tensegrity
structures (Connelly and Back, 1998; Zhang and Ohsaki, 2007). A super-stable structure
is always stable irrespective of material properties as well as the level of prestress.

Regarding the six non-trivial affine motions, they result in zero quadratic form of KG

because the affine motions lie in the null space of KG. Hence, the quadratic form of KE

with respect to the affine motions should not be zero to ensure a stable structure. This is
guaranteed by full rank of the geometry matrix as discussed by Zhang and Ohsaki (2007).

To guarantee a super-stable tensegrity structure, Zhang and Ohsaki (2007) presented
the following three sufficient conditions:

(1) The geometry matrix of the structure has rank of six for a three-dimensional struc-
ture, or equivalently, the member directions do not lie on the same conic at infinity
(Connelly, 1999);

(2) The force density matrix is positive semi-definite;
(3) The force density matrix has minimum number of nullities, which is four for a three-

dimensional tensegrity structure.

In the following, we will concentrate only on the last two conditions in the super-stability
investigation, since the first condition is usually satisfied (Zhang and Ohsaki, 2007).
Furthermore, both of the number of nullities and positive (semi-)definiteness of a matrix
are directly related to its eigenvalues. Hence, self-equilibrium analysis as well as stability
investigation of a tensegrity structure can be conducted by studying the eigenvalues of
the force density matrix.

3.3 Symmetry-adapted structure
By making use of symmetry properties of the structure, self-equilibrium analysis and

stability investigation become much easier since the force density matrix is rearranged
in a symmetry-adapted form, with the independent sub-matrices lying on the leading
diagonal. Eigenvalues of the force density matrix can then be calculated by using these
sub-matrices with much smaller size than the original matrix.

The block (sub-matrix) Ẽµ of the symmetry-adapted force density matrix Ẽ corre-
sponding to the representation µ can be obtained by applying (coordinate) transformation
matrices on both sides of the original force density matrix. A (stiffness) matrix can be
block-diagonalized by using numerical methods (Ikeda and Murota, 1991; Kangwai et al.,
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1999).
To present the analytical conditions for self-equilibrium as well as super-stability of

the hexahedral and octahedral structures, we follow the analytical procedure proposed
by Zhang et al. (2009b) for block-diagonalization of the force density matrix, directly
using the irreducible representation matrices. This analytical method based on group
representation theory can be directly applied to any symmetric structures, as long as
the nodes belong to a single regular orbit; i.e., positions of the nodes can be exchanged
by another node by application of one proper symmetry operation of the group. For
the structures with multiple orbits or non-regular orbit of nodes, e.g., the star-shaped
structures (Zhang et al., 2010) with two orbits of nodes, special techniques are necessary
to block-diagonalize the force density matrix.

Since any symmetry operation of a regular hexahedron or octahedron, except the iden-
tity operation E, will exchange positions of the nodes, we have the numbers of nodes that
will not change their positions by the corresponding symmetry operations as

Symmetry operation: E 8C3(τ) 6C4(ϕ) 3C2(ϕ) 6C′
2(σ)

Number of unchanged nodes: 24 0 0 0 0
(42)

From characters of the irreducible representations of octahedral group as listed in Table 1,
the reducible representation Γ(N) of the nodes can be written as a linear combination of
the irreducible representations in a general form as

Γ(N) = A1 + A2 + 2E + 3T1 + 3T2. (43)

Eq. (43) comes from the fact that sum of the characters of the representations correspond-
ing to each symmetry operation is equal to the number of unchanged nodes:

E 8C3(τ) 6C4(ϕ) 3C2(ϕ) 6C′
2(σ)

A1 1 1 1 1 1
A2 1 1 −1 1 −1
2E 4 −2 0 4 0
3T1 9 0 3 −3 −3
3T2 9 0 −3 −3 3
= 24 0 0 0 0

(44)

The linear combination of representations for nodes characterizes the structure of the
symmetry-adapted force density matrix Ẽ, where (̃·) is used to denote the symmetry-
adapted form of a matrix: there are

• 1 one-dimensional block ẼA1 corresponding to representation A1,
• 1 one-dimensional block ẼA2 corresponding to representation A2,
• 2 copies of the two-dimensional block ẼE corresponding to representation E,
• 3 copies of the three-dimensional block ẼT1 corresponding to representation T1, and
• 3 copies of the three-dimensional block ẼT2 corresponding to representation T2.

Hence, the structure of Ẽ can be summarized as follows, with the independent sub-
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matrices Ẽµ lying on the leading diagonal

Ẽ
24×24

= ẼA1

1×1
⊕ ẼA2

1×1
⊕ 2ẼE

2×2
⊕ 3ẼT1

3×3
⊕ 3ẼT2

3×3
. (45)

3.4 Symmetry-adapted blocks
The members of a hexahedral or octahedral structure are classified into three types:

edge cables, cutting cables, and struts. Each type of members has the same force density
according to symmetry, which are denoted by qe, qc, and qs, respectively.

Because each (reference) node of the structure is connected by only one edge cable, the
reference node moves to the same position of the other end of the edge cable, no matter it
is rotated by the angles θ or −θ about a specified rotation axis. Thus, the rotation angle θ
can only be π, or −π. This is indeed the two-fold rotation C′

2 denoted by σ1. Similarly, the
two nodes connecting to a strut can exchange their positions by another two-fold rotation
σ2.

On the other hand, each node of the structure is connected by two cutting cables, and
the rotation angle θ is less than π. Hence, the reference node is connected to the nodes
according to the three-fold rotations τ1 and τ2 in the case of hexahedral symmetry; and
it is connected to the nodes according to two of the four-fold rotations ϕ1 and ϕ3 in the
case of octahedral symmetry.

Because the nodes of a hexahedral or octahedral structure belong to a regular orbit,
the sub-matrices corresponding to each distinct representation are formulated as sum of
the multiplication of irreducible representation matrices and force densities connected to
the reference node (Zhang et al., 2009b). Accordingly, the sub-matrix Ẽµ corresponding
to representation µ can be written in a general form as follows:
• For the hexahedral structure, Ẽµ

H is given as

Ẽµ
H = (2qc + qe + qs)ρ

µ(E)− qcρ
µ(τ1)− qcρ

µ(τ2)− qeρ
µ(σ1)− qsρ

µ(σ2). (46)

• For the octahedral structure, Ẽµ
O is given as

Ẽµ
O = (2qc + qe + qs)ρ

µ(E)− qcρ
µ(ϕ1)− qcρ

µ(ϕ3)− qeρ
µ(σ1)− qsρ

µ(σ2). (47)

3.4.5 One-dimensional blocks ẼA1 and ẼA2

According to Eq. (46), Eq. (47), and Table 1, we have the one-dimensional blocks ẼA1
H

and ẼA1
O for the one-dimensional representation A1 as

ẼA1
H = ẼA1

O = (2qc + qe + qs)− qc − qc − qe − qs = 0, (48)

which indicates that ẼA1
H and ẼA1

O are always zero.
For the other one-dimensional representations A2, the one-dimensional block ẼA2

H for
the hexahedral structure is

ẼA2
H = (2qc + qe + qs)− qc − qc − (−1)qe − (−1)qs = 2(qe + qs), (49)
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and the one-dimensional block ẼA2
H for the octahedral structure is

ẼA2
O = (2qc + qe + qs)− (−1)qc − (−1)qc − (−1)qe − (−1)qs = 4qc + 2qe + 2qs. (50)

3.4.6 Two-dimensional block ẼE

The two-dimensional block ẼE
H of the hexahedral structure corresponding to E repre-

sentation is

ẼE
H = (2qc + qe + qs)ρ

E(E)− qcρ
E(τ1)− qcρ

E(τ2)− qeρ
E(σ1)− qsρ

E(σ2)

=

(
3qc + 3qs/2 q2/2

3qs/2 3qc + 2qe + qs/2

)
. (51)

The two-dimensional block ẼE
O of the octahedral structure corresponding to E represen-

tation is

ẼE
O = (2qc + qe + qs)ρ

E(E)− qcρ
E(ϕ1)− qcρ

E(ϕ3)− qeρ
E(σ1)− qsρ

E(σ2)

=

(
3qc + 3qs/2 −qc + q2/2
−3qc + 3qs/2 qc + 2qe + qs/2

)
. (52)

3.4.7 Three-dimensional block ẼT1

The three-dimensional block ẼT1
H of the hexahedral structure corresponding to T1 rep-

resentation is

ẼT1
H = (2qc + qe + qs)ρ

T1(E)− qcρ
T1(τ1)− qcρ

T1(τ2)− qeρ
T1(σ1)− qsρ

T1(σ2)

=

 2qc + qe + 2qs −qc −qc − qe
−qc 2qc + 2qe + qs −qc − qs

−qc − qe −qc − qs 2qc + qe + qs

 . (53)

The three-dimensional block ẼT1
O of the octahedral structure corresponding to T1 repre-

sentation is

ẼT1
O = (2qc + qe + qs)ρ

T1(E)− qcρ
T1(ϕ1)− qcρ

T1(ϕ3)− qeρ
T1(σ1)− qsρ

T1(σ2)

=

 2qc + qe + 2qs 0 −qe
0 2qc + 2qe + qs −qs

−qe −qs qe + qs

 . (54)

3.4.8 Three-dimensional block ẼT2

The three-dimensional block ẼT2
H of the hexahedral structure corresponding to T2 rep-

resentation is

ẼT2
H = (2qc + qe + qs)ρ

T2(E)− qcρ
T2(τ1)− qcρ

T2(τ2)− qeρ
T2(σ1)− qsρ

T2(σ2)

=

 2qc + qe −qc −qc + qe
−qc 2qc + qs −qc + qs

−qc + qe −qc + qs 2qc + qe + qs

 . (55)
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The three-dimensional block ẼT2
O of the octahedral structure corresponding to T2 repre-

sentation is

ẼT2
O = (2qc + qe + qs)ρ

T2(E)− qcρ
T2(ϕ1)− qcρ

T2(ϕ3)− qeρ
T2(σ1)− qsρ

T2(σ2)

=

 qe + qs −qs −qe
−qs 2qc + qs 0
−qe 0 2qc + qe

 . (56)

4. Hexahedral Structures
This section presents the conditions for self-equilibrium as well as super-stability of the

truncated regular hexahedral structure.

4.1 Self-equilibrium conditions
For the self-equilibrium of a tensegrity structure, its force density necessarily has four

zero eigenvalues. In the symmetry-adapted form, there always exists one zero eigenvalue
in ẼA1

H as in Eq. (48). The other three zero eigenvalues come from the three copies of the
three-dimensional block ẼT1

H , as also indicated in the character table.
Eigenvalues λ of ẼT1

H are calculated by enforcing the following equation to zero

det(ẼT1
H − λI)

= −λ[λ2 − (6qc + 4qe + 4qs)λ+ 9q2c + 14(qe + qs)qc + 4q2e + 4q2s + 11qeqs]

+2[3(qe + qs)q
2
c + 2(q2e + q2s + 4qeqs)qc + 3qeqs(qe + qs)]

= 0. (57)

Having zero eigenvalue (λ = 0) means that

3(qe + qs)q
2
c + 2(q2e + q2s + 4qeqs)qc + 3qeqs(qe + qs) = 0, (58)

and the other (non-)zero eigenvalues are solved from the following equation

λ2 − (6qc + 4qe + 4qs)λ+ 9q2c + 14(qe + qs)qc + 4q2e + 4q2s + 11qeqs = 0. (59)

Denoting

qe = p+ q (> 0),

qs = p− q (< 0), (60)

we have

p =
qe + qs

2
,

q =
qe − qs

2
(> 0). (61)

By using Eq. (61), Eq. (58) is rearranged as

6pq2c + (12p2 − 4q2)qc + 6p(p2 − q2) = 0, (62)
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Fig. 5. Self-equilibrated configuration corresponding with p = 1, q = 2 or qe = 3, qs = −1.

which is solved as follows by considering the value of p:
• p = 0: The solution of Eq. (62) results in

qc = 0, (63)

which is a trivial solution since the force (density qc) of the cutting cables should be
positive to carry tension. Thus, this case is ignored for further investigation.

• p ̸= 0: The solution of Eq. (62) results in

qc1 =
(−3p2 + q2) + q

√
3p2 + q2

3p
,

qc2 =
(−3p2 + q2)− q

√
3p2 + q2

3p
. (64)

From Eq. (60), we know that

q2 − p2 = −(p+ q)(p− q) > 0, (65)

therefore, we have

(q
√
3p2 + q2)2 − (−3p2 + q2)2 = 9p2(q2 − p2) > 0. (66)

Hence, in order to ensure qc > 0 for carrying tension in the cutting cables, we need to
consider the following two cases
· For qc1 > 0, we need

p > 0. (67)
· For qc2 > 0, we need

p < 0. (68)

4.2 Super-stability condition
Except for the four zero eigenvalues in the (symmetr-adapted) force density matrix for

self-equilibrium, all other eigenvalues have to be positive to guarantee super-stability.
According to Eq. (49), the one-dimensional block ẼA2

H becomes

ẼA2
H = 2(qe + qs) = 2p. (69)

17



To guarantee that the cutting cables carry tension and positive definiteness of ẼA2
H , qc1 in

Eq. (67) with p > 0 is the only possible solution for cutting cables. Hereafter, we consider
only this solution for the discussions on super-stability.

By solving Eq. (59), the two non-zero eigenvalues λT1
2,3 of ẼT1

H are calculated as

λT1
2,3 = (3qc + 2qe + 2qs)±

√
−(2qcqe + 2qcqs + 3qeqs) = b±

√
c, (70)

where

b = 3qc + 2qe + 2qs =
1

p
(p2 + q2 + q

√
3p2 + q2),

c = −(2qcqe + 2qcqs + 3qeqs) =
1

3
(3p2 + 5q2 − 4q

√
3p2 + q2). (71)

Since
(3p2 + 5q2)2 − (4q

√
3p2 + q2)2 = 9(q2 − p2)2, (72)

and q > p > 0, we may conclude that c > 0. Moreover, the following inequality holds

b2 − c =
1

3p2
(3q4 + 3q2

√
3p2 + q2 + p2q2 + 10p2q

√
3p2 + q2 + 6q3

√
3p2 + q2)

> 0, (73)

because q > p > 0. Therefore, both of the eigenvalues λT1
2,3 in Eq. (70) are positive.

Trace of ẼE
H given in Eq. (51) is equal to the sum of its eigenvalues

tr(ẼE
H) = λE

1 + λE
2

= 6qc + 2qc + 2qs = 6qc + 4p

> 0, (74)

since p > 0 for qc1. Moreover, determinant of ẼE
H is equal to multiplication of its eigenvalues

det(ẼE
H) = λE

1 λ
E
2

= 9q2e + 6qe(qs + 6qeqc) + 3qsqc

= 9q2e − 9p2 + q2 + 4q
√
3p2 + q2

> 9q2e − 9p2 + p2 + 4q
√
3p2 + p2

> 9q2e > 0, (75)

where q2 > p2 has been applied. Accordingly, the two-dimensional block ẼE
H must be

positive definite.
Trace of ẼT2

H given in Eq. (55) is equal to the sum of its eigenvalues

tr(ẼT2
H ) = λT2

1 + λT2
2 + λT2

3

= 6qc + 2qc + 2qs = 6qc + 4p

> 0. (76)
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Fig. 6. Eigenvalues λT2 of ẼT2
H with respect to qs/qe.

Moreover, determinant of ẼT2
H is equal to multiplication of its eigenvalues

det(ẼT2
H ) = λT2

1 λT2
2 λT2

3

= 4qc(3qcqs + 3qcqe + 2qeqs)

= 4qc(6qcp+ 2p2 − 2q2)

= 8qc(−2p2 + q
√
3p2 + q2)

> 8qc(−2p2 + p
√
3p2 + p2) = 0, (77)

where q > p > 0 has been applied. Accordingly, the three eigenvalues of ẼT2
H are highly

possible to be positive. Furthermore, its eigenvalues with respect to qs/qe are plotted
in Fig. 6. It can be observed that they are always positive in the shaded region where
−1 < qs/qe < 0; or equivalently, p = (qe − qs)/2 > 0.

5. Octahedral Structures
This section presents the conditions for self-equilibrium as well as super-stability of the

truncated regular octahedral structure.

5.1 Self-equilibrium conditions
In the symmetry-adapted form, there exists always one zero eigenvalue in ẼA1

O as in
Eq. (48). The other three zero eigenvalues come from the three copies of the three-
dimensional block ẼT1

O , as also indicated in the character table.
Eigenvalues λ of ẼT1

O are calculated by enforcing the following equation to zero:

det(ẼT1
O − λI3)

= λ[−λ2 + 4(qc + qe + qs)λ− 4q2c − 10qc(qe + qs)− 4q2e − 4q2s − 11qeqs]

+2[2(qe + qs)q
2
c + 2(q2e + q2s + 3qeqs)qc + 3qeqs(qe + qs)]

= 0. (78)

19



Having zero eigenvalue (λ = 0) means that

2(qe + qs)q
2
c + 2(q2e + q2s + 3qeqs)qc + 3qeqs(qe + qs)

=4pq2e + (10p2 − 2q2)qe + 6p(p2 − q2) = 0, (79)

and the other (non-)zero eigenvalues are solved from the following equation:

λ2 − 4(qc + qe + qs)λ+ 4q2c + 10qc(qe + qs) + 4q2e + 4q2s − 11qeqs = 0. (80)

From Eq. (79), we have the force density qc of cutting cables solved as follows

qc1 =
q2 − 5p2 +

√
p4 + 14p2q2 + q4

4p
,

qc2 =
q2 − 5p2 −

√
p4 + 14p2q2 + q4

4p
. (81)

Since
(q2 − 5p2)2 − (p4 + 14p2q2 + q4) = 24p2(p2 − q2) < 0, (82)

and
√
p4 + 14p2q2 + q4 > 0, we have

q2 − 5p2 +
√
p4 + 14p2q2 + q4 > 0,

q2 − 5p2 −
√
p4 + 14p2q2 + q4 < 0. (83)

In order to ensure qc > 0 for carrying tension in cutting cables, we need to consider the
following two cases
• For qc1 > 0, we need

p > 0. (84)
• For qc2 > 0, we need

p < 0. (85)

5.2 Super-stability condition
The one-dimensional block ẼA2

O for the octahedral structure is

ẼA2
O = 4qc + 2qe + 2qs = 4qc + 4p

=
q2 − p2 ±

√
p4 + 14p2q2 + q4

p
. (86)

Because
(q2 − p2)2 − (p4 + 14p2q2 + q4) = −16q2p2 < 0, (87)

both solutions for qc > 0 with the right p result in positive ẼA2
O .

From Eq. (80), we can solve the two non-zero eigenvalues for ẼT1
O as

λT1
2,3 = ξ1 ±

√
ξ2 = 2qc + 2qe + 2qs ±

√
−2qc(qe + qs)− 3qeqs, (88)
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where

ξ1 = 2qc + 2qe + 2qs =
q2 + 3p2 ±

√
p4 + 14p2q2 + q4

2p
,

ξ2 = −2qc(qe + qs)− 3qeqs = 2q2 + 2p2 ∓
√
p4 + 14p2q2 + q4. (89)

• For the first solution qc1, we have

ξ21 − ξ2 =
q4 + 6q2p2 + p4 + (q2 + 5p2)

√
p4 + 14p2q2 + q4

2p2
> 0. (90)

Therefore, the two non-zero eigenvalues λT1
2,3 corresponding to qc1 are positive.

• For the second solution qc2, we have

ξ21 − ξ2 =
q4 + 6q2p2 + p4 − (q2 + 5p2)

√
p4 + 14p2q2 + q4

2p2
< 0, (91)

because

q4 + 6q2p2 + p4 − (q2 + 5p2)
√
p4 + 14p2q2 + q4

<q4 + 6q2p2 + p4 − (q2 + 5p2)(q2 + p2) = −4p2

<0. (92)

Therefore, the smaller one of the two non-zero eigenvalues λT1
2,3 corresponding to qc1 is

negative.

The second solution qc2 with p < 0 is excluded from further discussions, because there
exists one negative eigenvalue in the three-dimensional block ẼT1

O , and the corresponding
structure cannot be super-stable.

Trace of ẼE
O given in Eq. (52) is equal to the sum of its eigenvalues

tr(ẼE
O) = λE

1 + λE
2

= 4qc + 2qc + 2qs = 4qc + 4p

> 0, (93)

since p > 0 for qc1. Moreover, determinant of ẼE
O is equal to multiplication of its eigenvalues

det(ẼE
O) = λE

1 λ
E
2

= 6qe(qs + qc) + 3qsqc

= 3(
√
p4 + 14p2q2 + q4 − 4p2)

> 3(
√
p4 + 14p2p2 + p4 − 4p2)

> 0, (94)

where q2 > p2 has been applied. Accordingly, the two-dimensional block ẼE
O must be

positive definite.
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Fig. 7. Eigenvalues λT2 of ẼT2
O with respect to qs/qe.

Trace of ẼT2
O given in Eq. (56) is equal to sum of its eigenvalues

tr(ẼT2
O ) = λT2

1 + λT2
2 + λT2

3

= 4qc + 2qc + 2qs = 4qc + 4p

> 0, (95)

since p > 0 for qc1. Moreover, determinant of ẼT2
O is equal to multiplication of its eigen-

values

det(ẼT2
O ) = λT2

1 λT2
2 λT2

3

= 4qcqe(qe + q2) + 4qcqe(qe + qs) + 2q2eqs
= 8qcp+ 2qe(4qcp+ p2 − q2)

> 8qcp > 0, (96)

since qc > 0, p > 0, qe > 0, and

4qcp+ p2 − q2 = −4p2 +
√
p4 + 14p2q2 + q4

> −4p2 +
√
p4 + 14p2p2 + p4 = 0. (97)

Accordingly, the eigenvalues of ẼT2
O are highly possible to be positive. Furthermore, its

eigenvalues with respect to qs/qe are plotted in Fig. 7. It can be observed from the shaded
region in Fig. 7 that they are always positive when −1 < qs/qe < 0; i.e., p = (qe−qs)/2 > 0.

6. Conclusions
In this study, we have presented the conditions for self-equilibrium as well as super-

stability for the structures with hexahedral or octahedral symmetry. The conditions are
derived in terms of force densities of different types of members. The present analytical
method based on group representation theory can be directly applied to any symmetric
structures, the nodes of which belong to a single regular orbit; i.e., positions of the nodes
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can be exchanged by another node by application of a proper symmetry operation of the
group.

The structures with hexahedral or octahedral symmetry consist of only one self-equilibrium
prestress mode; although they have two possible solutions, which have been analytically
derived by enforcing the symmetry-adapted force density matrix to be singular. The struc-
tures with hexahedral or octahedral symmetry have been proved in the study that they
are super-stable if and only if the force density of cutting cables is positive and larger
than the absolute value of the force density of the struts.

For the truncated regular dodecahedral and icosahedral tensegrity structures, their
force density matrices can also be decomposed into smaller blocks by using the same
method. However, due to existence of the five-dimensional irreducible representation in
the dodecahedral and icosahedral groups, it becomes much difficult to analtically derive
the super-stability condition.
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