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Abstract 

Phytochromes (Phys) are photoreceptor proteins that sense red/far-red light in plants, fungi, 

and bacteria. The proteins consist of a light-sensing photosensory module and a signaling 

output module, which is typically a histidine kinase (HK) domain in bacteriophytochromes. 

Although the time-resolved detection of the HK domain is essential to obtain insights into the 

reaction mechanism of photoactivation, it has been very difficult to detect the change. Here, 

the reaction of Cph1, one of the Phys found in the cyanobacterium Synechocystis sp. PCC6803, 

was studied using time-resolved translational diffusion detection. It was found that the kinetics 

of the HK domain movement of Cph1 dimer can be monitored successfully. The diffusion 

coefficient of the Cph1 dimer decreases significantly with a time constant similar to that of the 

final step of the reaction monitored by the transient absorption method (780 ms), whereas the 

monomer does not exhibit this change. We attribute this change to the close-to-open type of 

conformational change in the HK domain of the Cph1 dimer without the secondary structure 

change. The similar rate with that from the transient absorption method suggests that the proton 

uptake at His260 is the rate-determining step of the conformation change. 
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Phytochromes (Phys) are red/far-red light-sensor proteins in higher plants, fungi, and 

bacteria.1,2 Phys are converted between the thermodynamically stable red light-absorbing (Pr) 

state and the far-red light-absorbing (Pfr) state depending on the light condition. Cph1 is one 

of the Phys found in cyanobacterium Synechocystis sp. PCC6803.3 The primary structure of 

Cph1 consists of the N-terminal photosensory module (PSM) and the C-terminal histidine 

kinase (HK) domain as an output module. The PSM contains three domain structures: PAS 

(Period/ARNT/Single-minded), GAF (cGMP phosphodiesterase/adenylyl cyclase/FhlA), and 

PHY (phytochrome-associated) domains. A chromophore is the open-chain tetrapyrrole 

phycocyanobilin (PCB), which is covalently bound to the cysteine residue (C259) in the GAF 

domain. Cph1 is considered to be a light-dependent sensory HK.3,4 The Pr and Pfr states were 

phosphorylated and dephosphorylated states, respectively.3,4 The reaction and the 

conformation changes of Cph1 have been attracting much attention for a long time in attempts 

to understand the molecular mechanism of the light regulation of the kinase activity. Thus, the 

photoreaction has been studied by a variety of methods, such as UV-vis absorption 

spectroscopy,5–9 FTIR spectroscopy,10,11 resonance Raman spectroscopy,9,12,13 circular 

dichroism (CD) method,14,15 fluorescence resonance energy transfer detection,16 analytical 

ultracentrifugation method,17 and nuclear magnetic resonance spectroscopy.18–21 

To reveal the mechanism of the reaction, time-resolved studies are important and the 

reaction dynamics has been elucidated mostly by the transient absorption (TrA) method.5–9 

These studies showed that the Z to E isomerization around the C15=C16 bond of PCB in the 

Pr→Pfr reaction takes place with a rate of ~60 ps and an intermediate (Lumi-R) is created. 

Some intermediates are then formed over microseconds to several seconds and the Pfr state is 

finally created. However, the absorption detection method struggles to detect conformation 

changes except in the environment around the chromophore. It is important and essential to 

detect the dynamics of the conformation change in the HK domain to understand the 

mechanism of the kinase activity; however, it is not apparent whether a TrA signal contains 

any information of possible changes in the HK domain, because it is located rather far from the 

chromophore. The CD spectrum, which is sensitive to the secondary structure, did not exhibit 

any change in the HK domain.14 This result indicates that the conformation change in the HK 

domain is not a change in the secondary structure. Since the dimer form is known to be essential 

for the HK reaction,22–25 the kinase activity might be regulated by modulating the distance 

between the HK domains of the dimer form. Limited proteolysis26 and site-directed spin 
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labelling and pulsed electron–electron double resonance spectroscopy (SDSL-PELDOR) 

showed that the neighboring PHY domains in the PSMs became close and the relative distance 

between the PHY and the catalytic adenosine triphosphate(ATP)-binding (CA)  domains 

within the same monomer unit was increased.6 However, the reaction kinetics in the changes 

of the HK domain are still unclear, such as when does the conformation change in the HK 

domain occur? A difficulty in solving this problem is that there is no appropriate detection 

method to trace the possible conformation change in the HK domain, if it exists. 

We investigated the photoreaction dynamics of Cph1 using the transient grating (TG) 

method. The TG method has been reported as being powerful for detecting spectrally silent 

dynamics in the time domain.27–41 We previously investigated the photoreaction dynamics of 

Cph1∆2, which lacks the HK domain of Cph1.27 The diffusion coefficient was found to change 

with a time constant of 400 µs during the Pr→Pfr conversion; this change was attributed to a 

change in the orientation (quaternary structure) of the dimer. Furthermore, the measurements 

of some mutants clearly show that this dimer reorientation was triggered by a conformational 

change in the tongue region. In this study, we applied the TG technique to identify the reaction 

dynamics of full-length Cph1. We successfully detected the conformation change kinetics of 

the HK domain. As far as we know, this is the first report of dynamical detection of the HK 

domain movement. On the basis of obtained results, we discuss the conformational changes 

and dynamics of Cph1. 

 

Materials and Methods 

Expression and Purification 

For producing a protein construct with a C-terminal His6 tag , a DNA fragment encoding 

Cph1 (residues M1-N748) was cloned into the pQE70 vector(Qiagen, Venlo, The Netherlands). 

The chromophore (PCB) was induced by plasmid pKT271.27,42 Escherichia coli strain JM109 

was cotransformed with the Cph1 and pKT271 plasmids. The expression condition of Cph1 

was similar to that of Cph1∆2.27 In this case of full length Cph1, NaCl was not used for the 

Tris buffer to avoid oligomerization. The proteins were extracted by a French pressure cell. 

The extracted protein was purified by HisTrap HP affinity column (GE Healthcare, Chicago, 

IL, USA).27 The protein was further purified using a HiPrep 26/60 S-300 High Resolution (GE 

Healthcare) size exclusion chromatography (SEC) column with the Tris buffer. Aggregated 
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proteins were mainly removed in this process. After that, the proteins were incubated overnight 

in the Pr state at 4 °C in slightly acidic phosphate buffer (6.4 mM NaH2PO4, 13.6 mM Na2HPO4, 

20% [v/v] glycerol, and 1 mM DTT [pH = 6.8]). For further purification to remove higher 

oligomers and apo-proteins, the sample was injected in a SEC column (Superdex 200 Increase 

10/300 GL column; GE Healthcare), which was equilibrated in the Tris buffer containing 150 

mM NaCl, and 1mM DTT at 4 °C. The apo-protein was removed at this step to improve the 

specific absorbance ratio (SAR) value. As described above, Cph1 tends to form oligomers in 

the presence of NaCl with a rather high concentration; therefore, the samples were immediately 

diluted 20 times with the Tris buffer without NaCl to prevent the formation of the oligomers. 

Finally, Cph1 was dissolved in the Tris buffer containing 50 mM NaCl and 1 mM DTT. The 

SAR value of Cph1 in this study was about 0.8–0.9. Previous research reported that the SAR 

value of holo-Cph1 is about 1.0; therefore, our sample contained approximately 80–90% holo-

protein. The Cph1 concentration was calculated using the extinction coefficient of the Pr state 

(86 mM−1cm−1 at 660 nm). 

Cph1∆2 (residues M1-E514) was prepared in the same way as reported previously.27 

Cph1∆2 at pH = 7.8 was dissolved in the same buffer as that for Cph1. Cph1∆2 at pH = 6.5 

was dissolved in the phosphate buffer (6.4 mM NaH2PO4, 13.6 mM Na2HPO4,50 mM NaCl, 

5% (v/v) glycerol, and 1 mM DTT). 

Preparation of Pr and red light-irradiated states 

The Pr and red light-irradiated (RL) states were respectively prepared by illumination 

with 720 ± 10 nm and 660 ± 10 nm continuous light.27 In the RL state, the Pfr/Pr ratio was 

about 70/30. 

TrA measurement 

The experimental setup for TrA measurement was similar to that reported previously.27 

A laser pulse (615 nm) from a YAG laser pumped-dye laser was used for the photoexcitation 

of the sample in a 2 mm path length cell. The absorption change was detected by using a probe 

light at 720 ± 10 nm from the Xe lamp. The sample solution was irradiated by 785 nm light 

before every shot of the excitation pulse to recover the sample to the Pr state completely. All 

measurements were carried out at room temperature (23 °C). 
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CD measurements 

CD spectra were recorded by a method reported before.27 In this study, the measurements 

were carried out in the Tris buffer containing 50 mM NaCl and 1 mM DTT and the 

concentration of the sample was 2.5 µM. The CD spectra were averaged 30 times. 

SEC measurements 

The ÄKTA purifier system with Superdex 200 Increase 10/300 GL column (GE 

Healthcare) equilibrated with the Tris buffer containing 150 mM NaCl and 1 mM DTT was 

used for the SEC measurements. The SEC measurements were carried out at room temperature 

(23 °C). For the size markers, a gel filtration standard (Bio-Rad, Hercules, CA, USA) was 

used .27 The detection wavelength was 660 nm for the Pr state. The concentrations of the eluted 

solutions were determined from the absorbance at the elution peak using the extinction 

coefficient of the Pr state. 

TG measurement 

The TG measurement was performed by a similar setup to that reported previously.27 The 

same excitation pulse light as that for the TrA experiment was used. For probing the created 

grating, continuous wave light at 785 nm from a diode laser was introduced into the grating 

region. Before every shot of the photoexcitation pulse, the sample solution was irradiated by 

continuous light at 720 nm to convert back the created Pfr to Pr. The light intensity of the probe 

light was set to be weak enough (<10 mW) for avoiding the conversion from Pfr to Pr by the 

probe light.It was confirmed that the probe light did not affect the reaction dynamics by 

measuring the signal at different probe light intensities. 

The signals were detected by the photomultiplier tube and averaged about 30 times by a 

digital oscilloscope. The grating wavenumber (q) was calculated from the decay rate of the 

thermal grating signal of a calorimetric reference solution.27 All measurements were carried 

out at room temperature (23 °C). 

Results 

Absorption detection 

Before reporting the TG measurements, we first describe the reaction kinetics monitored 

by the light absorption method. The absorption spectra of Cph1 in the Pr and the red light-

irradiated (RL) states are shown in Fig. 1 (A) and (B). The spectra of Cph1∆2 measured under 
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the same conditions are also shown for comparison. These spectra resemble each other, which 

indicates the negligible influence of the HK domain in the absorption spectrum. Fig. 1(C) 

shows the temporal profile of the absorption changes ITrA(t) of Cph1 and Cph1∆2 after 

photoexcitation at 50 µM probed at 720 nm. The qualitative features of both signals are similar. 

We analyzed ITrA(t) using a sum of exponential functions: 

 𝐼𝐼𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡) =  𝛽𝛽�∑ 𝐴𝐴𝑖𝑖exp (−𝑡𝑡 𝜏𝜏𝑖𝑖� )𝑛𝑛
𝑖𝑖=1 + 𝐶𝐶� (1) 

where β and C are constants, Ai and τi are the amplitude and the time constant of intermediate 

i, respectively. The time profiles of both signals within this experimental time window (60 µs-

10 s) are fitted well by a sum of four exponential functions. The time constants τ1–τ4 for the 

best fit of Cph1 signal are 260 µs, 1.3 ms, 33 ms, and 780 ms. These time constants are similar 

to those reported previously (300 µs, 3.0 ms, 22 ms, 500 ms).6 The best-fit parameters including 

the amplitudes are listed in Table 1. The time constants for Cph1∆2 are 260 µs, 4.6 ms, 46 ms, 

and 1.0 s. These results clearly show that the influence of the HK domain monitored by the 

absorption method is minor and it is not clear how information on the HK kinetics can be 

extracted from these signals. 

 

(A) 

 
(B) 
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Figure 1. (A) UV-vis absorption spectra of Cph1 (red) and Cph1∆ (blue). The solid lines and 

dashed lines represent Pr and RL states, respectively. The spectra of each samples were 

normalized to the peak intensity of the Qy band in the Pr state. (B) The difference absorption 

spectra of Cph1 (red) and Cph1∆2 (blue). The spectra were normalized at the peak of the Pr 

state. (C) Time traces of the absorption change of Cph1 (red) and Cph1∆2 (blue) at 50 µM 

probed at 720 nm. The fitted curves with eq.1 is shown by dotted black lines. 

 

Table 1 Time constants (τ1) and relative amplitudes (Ai) determined by the fitting of the TrA 

signal of Cph1 and Cph1∆2 

 τ1 (A1) τ2 (A2) τ3 (A3) τ4 (A4) 

Cph1 260 µs (9%) 1.3 ms (18%) 33 ms (41%) 780 ms (32%) 

Cph1∆2 260 µs (13%) 4.6 ms (30%) 46 ms (19%) 1.0 s (38%) 
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Secondary structure and oligomeric states 

To examine the secondary structure content and the oligomeric state of Cph1, the CD 

and SEC measurements were performed. The CD spectra of Cph1 in the Pr and RL states are 

shown in Fig. 2(A). Although a slight decrease in the CD intensity was observed for the RL 

state, both spectra are very similar. Since the difference in the CD spectra (Pr - RL) of Cph1 

and Cph1Δ227 are similar within the experimental uncertainty (Fig.S1), the observed slight CD 

change may be attributed to the secondary structural change in the “tongue region”, of which 

conformation change has been reported for Cph1∆2.27 Since the size of the tongue region 

(P442-Q490) is very small compared with the full length Cph1 (M1-N748), the weak change 

in the CD spectrum due to this region is reasonable.  

 

 

(A) 

 

(B) 
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Figure 2. (A) CD spectra of Cph1 in the Pr (blue) and RL (green) states. (B) SEC elution 

profile of Cph1 in Pr state detected at 660 nm. The initial concentrations of the sample are 

listed in the legend. 

 

 

Figure 2(B) shows the elution profiles of Cph1 in the Pr state at several concentrations. 

The profiles are normalized by the peak intensity. Two peaks were observed at the low 

concentration (5 µM for injection). The apparent molecular masses of the major and minor 

bands correspond to 130 kDa and 230 kDa, respectively. The theoretical molecular mass of the 

Cph1 monomer is 85 kDa, and the apparent masses of the monomer and the dimer measured 

by the SEC method were reported previously as 110 kDa and 210 kDa, respectively.22 

According to these data, the major and minor bands of Fig. 2(B) are assigned to the monomer 

and dimer, respectively. 

With increasing concentrations, the peak position of the major band shifts to a larger 

molecular mass. At the injection concentrations of 20 µM and 100 µM, the molecular masses 

of the major bands were 170 kDa, and 190 kDa, respectively. We consider that this peak shift 

is due to the dynamical equilibrium between the monomer and the dimer during the elution. 

Therefore, the apparent molecular mass of this band should be an average mass weighted by 

the relative population. We roughly estimated the dissociation constant KD from this apparent 

molecular mass. Assuming that 130 kDa and 230 kDa are apparent molecular masses of the 

monomer and the dimer, the relative fraction ratio of the monomer to the dimer at the injection 

of 20 µM (170 kDa band) is calculated to be 60/40 (monomer/dimer). Moreover, the 

concentration of the eluted solution at this injection of 20 µM was determined to be 1.3 µM 

using the absorbance of the main peak and extinction coefficient of the Pr state (86 mM−1cm−1 

at 660 nm). From these data, KD of Pr is estimated to be 1.2 µM. Previously, KD of Cph1 in a 

buffer (50 mM Tris, 5mM EDTA, pH7.8) at 15 °C was estimated to be 5 ± 3 µM using the 

fluorescence resonance energy transfer method.16 Thus, the above interpretation of the peak 

shift is reasonable because these values were not very different. 

Other than the concentration-dependent major band, it is interesting to observe the minor 

band at the apparent molecular mass of the dimer. The peak position of this minor peak was 

almost independent of the concentration and the relative intensity became higher with increased 

concentrations. This band is separated from the major band; therefore, the equilibrium between 



10 

 

the monomer and the dimer is slow enough not to be averaged during the elusion process. These 

observations suggest that two types of the dimer may exist in the Pr state. 

Conformation change detected by diffusion 

The TG method was used to investigate the reaction dynamics of Cph1. The sample 

solution is photoexcited by an interference pattern of the excitation light and the light-induced 

refractive index change is detected by the diffraction of another probe beam in the time domain. 

The principle of the TG measurement has been described in more detail previously.27–41 Since 

the dimer form is important for the photoreaction of Cph1, we focused on the TG signal of the 

dimer. Fig. 3(A) shows a typical TG signal of Cph1 at 20 µM, q2 = 3.6 × 1010 m−2, and 

sufficiently strong excitation light intensity (>300 µJ/mm2). According to KD in the above 

section, Cph1 at this concentration exists mostly in the dimer form and the signal dominantly 

comes from the dimer. This observation was confirmed by the concentration-dependent 

experiment and is described later. Furthermore, the excitation light intensity is strong enough 

to saturate the light absorption of the dimer to produce the RL state. The light-intensity 

dependence of the TG signal is shown in Supporting Information, Fig. S2. 

 

(A) 

 
(B) 
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Figure 3. (A) Typical TG signals of Cph1 (red) and Cph1∆2 (pH = 6.5, blue, and pH = 7.8, 

green) measured under the same conditions (20 µM and a q2 of 3.6 × 1010 m−2 probed at 785nm). 

The signals are magnified and shown in the inset.  (B) The q2 dependence of the TG signal of 

Cph1 at a concentration of 20 µM. The signals in a short time region are magnified and shown 

in the inset. The q2 values are listed in the legend. The best-fit curves are shown by the broken 

lines. 

 

 

Table 2 Relative refractive index changes (δn) and diffusion coefficients (D/10−11m2 s−1) 

determined from the TG signal after photoexcitation of the full-length Cph1 

 Pr I1 I2 I3 Pfr 

δn 1.0 (fixed) 1.0042 0.9877 0.9979 0.9699 

D 4.2 (fixed) 4.0 2.8 

 

 

The observed TG signal initially rose with the time response of our system (~10 ns), it 

decayed until ~100 µs and two rise–decay components appeared (Fig. 3(A)). Since the rate 

constant of the initial decay component agrees with Dthq2 (Dth: thermal diffusivity) under this 

condition, this decay component is assigned to the thermal grating signal. The signal after the 

thermal grating should be the species grating components, which represent transformation of 
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chemical species and the diffusion processes. Thus, the time profile should be expressed by an 

equation: 

 ITG(t) = α{δnthexp(−Dthq2t) + δnspe(t)}2 (2) 

where α is a constant representing the system sensitivity, δnth is the pre-exponential factor of 

the thermal grating component, and δnspe(t) represents the species grating component. It has 

been shown that the time profile of the species grating component reflects chemical reaction 

kinetics and diffusion processes.27–41 Since the first rise-decay profile of the signal is rather 

insensitive to q2 as shown in Fig. 3(B), this component mostly determined by the reaction 

kinetics. On the other hand, the rise-decay profile in the last part of the signal significantly 

depends on q2 indicating that it represents the protein diffusion (diffusion signal). We first 

qualitatively explain the diffusion signal.  

As described before,27 if a reaction completes and the diffusion coefficient does not 

change in the observation time window, the profile of the species grating signal may be 

expressed by: 

 𝛿𝛿𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) =  −𝛿𝛿𝑛𝑛𝑃𝑃𝑃𝑃exp (−𝐷𝐷𝑃𝑃𝑃𝑃𝑞𝑞2𝑡𝑡) +  𝛿𝛿𝑛𝑛𝑃𝑃𝑃𝑃𝑃𝑃exp (−𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑞𝑞2𝑡𝑡)  (3) 

where δnPr(>0) and δnPfr(>0) are the initial refractive index changes due to the reactant and the 

product, respectively. DPr and DPfr are the diffusion coefficients of the reactant (Pr) and the 

product (Pfr), respectively. The TG signal of this component generally exhibits a rise-decay 

profile (diffusion signal) and the intensity of this diffusion signal depends on the difference in 

the diffusion coefficients between the reactant and product as well as the magnitudes of the 

refractive index change. 

We found that the changes in the refractive index for the rise and decay components of 

the diffusion signal are negative and positive, respectively. From the signs and eq. (3), we 

identified that the rise and decay components represent, respectively,  the diffusion of the 

reactant (Pr) and the intermediates in this time range or the final product (Pfr). Since the rate 

of the rise component was faster than that of the decay, it is apparent that the diffusion 

coefficient decreases during the Pr→Pfr reaction of Cph1. 

For comparison, the TG signal of Cph1∆2 was measured under the same conditions (Fig. 

3(A)). Interestingly, although the reactions monitored by the light-absorption detection method 

of Cph1∆2 are very similar to that of Cph1, the TG signals are very different. In particular, the 

amplitude of the diffusion signal is significantly enhanced for Cph1. The equation describing 

the diffusion signal (eq. (3)) shows that the intensity of the diffusion signal depends on the 
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difference between DPr and DPfr. Qualitatively, the intensity is larger as the difference increases. 

Therefore, the stronger diffusion signal for Cph1 indicates that the diffusion change is larger 

for Cph1 compared with that for Cph1∆2, which lacks the HK domain. This observation 

indicates that the large diffusion change in Cph1 came from the changes in the HK domain. 

This is a very interesting and important result, because detection of movement in the HK 

domain has been very difficult. Indeed, despite the extensive studies on Cph1 to date, the 

dynamics of the HK domain have not been reported. However, it is now possible to use the 

diffusion coefficient to monitor the kinetics of the HK movement. 

Fig. 3(B) shows the TG signals of Cph1 at various q2 at 20 µM. For this measurement, 

we used the enough strong light intensity (>300 µJ/mm2) to saturate the excitation. To compare 

the diffusion signal intensity measured at different q2, the signals were normalized with the 

intensity of the species grating, in which the diffusion and thermal contributions were 

negligible.  By this way, the q2 dependence of the TG signal normalized by the concentration 

of photoreacted species was determined. The diffusion signal increased gradually with 

increased observation time, i.e., decreasing q2 (Fig. 3(B)). Since the diffusion signal intensity 

increases with an increase in the difference of the diffusion coefficients, the dramatic increase 

in intensity after ~300 ms clearly shows that structural change in the protein occurs during this 

time period. 

We then quantitatively analyzed the q2-dependent signals. Considering the q2-

dependence of the diffusion signal and the reaction dynamics probed by the TrA method, we 

attempted to fit the signal based on scheme I: 

 Pr 
ℎ𝜈𝜈
��  I1

k1
→ I2

k2
→ I3

k3
→ Pfr (Scheme I) 

where k1–k3 denote the reaction rate constants. Moreover, I1–I3 represent the intermediate 

species of this reaction. The I1 intermediate is the first intermediate created after our system 

response time. An analytical equation for fitting the TG signal  is given in Supporting 

Information SI-3. Since there are many parameters in the equation, ambiguities in the 

adjustable parameters by the signal fitting cannot be avoided without any restriction. For 

reducing ambiguity of the fitting, we estimated DPr using the SOMO (SOlution MOdeller) 

program with the crystal structure of the full-length phytochrome-activated diguanylyl cyclases 

from Idiomarina sp. (IsPadC) (PDB: 5LLX, DPr = 4.2 × 10−11 m2/s).43,44 Even using this 

restriction, the signal can be fitted reasonably well by a rather wide range of the time constants 

k1
-1 – k3

-1 of 1.2±0.1 ms, 50±20 ms, and 700±100 ms. It is interesting to note that the time 
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constants from the TrA signal (1.3 ms, 33 ms, and 780 ms) are within this range. Of course, 

the rates of the diffusion change are not necessary to be the same as the rates from the TrA 

signal. However, the similarity of the rates determined from the TrA detection and diffusion 

detection suggests that these time constants could be the same. Here, for reducing the ambiguity 

of the fitting, we assume the adjustable parameters, k1
-1 – k3

-1 to be 1.3 ms, 33 ms, and 780 ms, 

respectively, which were obtained from the TrA analysis. We discuss this point later, and show 

that this assumption is reasonable. Using these restrictions, the adjustable parameters for the 

fitting (eqs. S-1 and S-2) are the diffusion coefficients for these species (Di, where i = I1, I2, I3, 

and Pfr) and the refractive index changes (δni, where i = Pr, I1, I2, I3, and Pfr). All TG signals 

were globally fitted with the same Di and δni. The signals were well reproduced using eqs. S-

1 and S-2, and the diffusion coefficients were determined to be DI1 = 4.2 × 10−11 m2/s, DI2 = 

DI3 = 4.0 ± 0.1 × 10−11 m2/s, and DPfr = 2.8 ± 0.1 × 10−11 m2/s. The other parameters are listed 

in Table 2. The origin of the diffusion change is discussed in the next section. 

It should be noted that the diffusion coefficient change mostly occurs with the time 

constants of k1
-1 and k3

-1. Interestingly, even though the HK domain is located far from the 

chromophore, the rates of the motion of the HK domain are similar to those of the absorption 

change in the chromophore. This observation indicates that the conformational change in the 

HK domain is strongly coupled with the chromophore environment. This coupling is discussed 

in a later section. 

Concentration dependence  

The TG signal at various concentrations were measured and shown in Fig. 4(A), which 

is normalized by the intensity of the species grating signal in a 2–4 ms time range; i.e., the 

concentration of the photoexcited species. The intensity of the diffusion signal became weaker 

with decreasing the concentration of Cph1. This concentration dependence is related to the 

origin of the diffusion change. Decreases in the diffusion coefficients in many photosensor 

proteins have been reported to date and are explained in terms of oligomer formations and/or 

conformation changes of the proteins.27–41 In the case of Cph1, we excluded the possibility of 

oligomer formation based on the following two reasons. First, if the decrease in the diffusion 

coefficient is due to the oligomer formation of the photoexcited species, the decrease in the 

diffusion signal intensity with decreased concentrations should be explained in terms of the 

decrease in the oligomer-formation rate. We tried to reproduce the observed concentration-
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dependent diffusion signal by adjusting the rate constant of k3 of Scheme I. However, the 

signals cannot be fitted consistently by eq. S-2 with a concentration-dependent reaction rate 

(k3). Second, although the monomer and dimer forms are well known for Cph1, there has been 

no indication of the tetramer formation from the photoexcited dimer of Cph1. Therefore, the 

observed diffusion coefficient change must be due to the conformation change after the 

transformation from Pr to Pfr. 

Based on the above assignment, the observed concentration dependence was attributed 

to the different reactions of the dimer and monomer, the fraction of which depends on the 

concentration. This explanation is reasonable, because previous studies showed different 

higher structural changes between the monomer and dimer. For example, the proteolysis study 

demonstrated that the light-dependent conformation change in the monomer is minor.26 

 

(A) 

 

(B) 

 

(C) 
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Figure 4. (A) Concentration dependence of the TG signal of Cph1 at a q2 of 1.8 × 1011 m−2. 

The concentrations are listed in the legend. The broken lines are the best fitted curves calculated 

by eq. (4). (B) The relative concentrations of monomer (f1) and dimer (f2) are plotted against 

the total protein concentration (C). (C) The decomposed TG signals of the monomer (blue) and 

dimer (red) at 20 µM. 

 

 

The concentration dependence of the diffusion signal was analyzed by using the sum of 

the reactions of the dimer and the monomer. By expressing the time dependence of the species 

grating component of the monomer and the dimer as 𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀 (𝑡𝑡) and 𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝐷𝐷 (𝑡𝑡), the observed 

diffusion signals may be expressed by: 

 𝛿𝛿𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠(𝑡𝑡) =  𝑓𝑓1𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝑀𝑀 (𝑡𝑡) + 2𝑓𝑓2𝛿𝛿𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝐷𝐷 (𝑡𝑡) (4) 

where f1 and f2 are the relative fractions of the monomer and dimer, respectively; i.e., they are 

given by f1=[M]/C and f2=[D]/C, where C, [M] and [D] are the total protein, monomer, and 

dimer concentrations, respectively. The total protein concentration was measured using the 

absorbance of the solution. The factor 2 on the right-hand side of eq. (4) represents two 

chromophores in the dimer. To simplify the analysis in this study, we assumed that the reaction 

rates of the absorption change and the refractive index changes in the monomer are the same 

as those in the dimer. Moreover, our SEC experiment found that dimeric Cph1 was dominant 

in 9 µM (corresponding to the injection concentration of 100µM (Fig. 2(B))). Therefore, we 

initially assumed that the TG signal at 20 µM is almost the same as the dimer signal. 

Since the diffusion signal became weaker with decreasing the concentrations, we first 

tried to analyze the molecular diffusion signals using eq. S-2, assuming no diffusion coefficient 
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change for the monomeric Cph1. The diffusion coefficient of the monomer (5.3 × 10−11 m2/s) 

was calculated from DPr of the dimer (4.2 × 10−11 m2/s) using the Stokes–Einstein relationship. 

However, the signal could not be reproduced. Next, we assumed that the diffusion coefficient 

was very slightly changed at the first step (formation of I1). Under this assumption, the observed 

concentration-dependent signals were reproduced well as shown in Fig. 4(A) with adjustable 

parameters of f1, f2, and the diffusion coefficient of the intermediate and the product of the 

monomer (5.2 ± 0.1 × 10−11 m2/s). In Fig. 4(B), f1 and f2 are plotted against C, and the 

determined TG signals of the dimer and the monomer at 20 µM are shown in Fig. 4(C). The 

TG signal of the monomer is apparently negligibly weak compared with that of the dimer, 

which confirms that the large diffusion changes dominantly originated from the reaction of the 

dimer. This result also indicates that the conformation change in the monomer is small and 

consistent with the previous study using the limited proteolysis.26 

Discussion 

Although the crystal structure of PSM of Cph1 (Cph1∆2) has been reported previously (PDB: 

2VEA, 3ZQ5),45,46 the structure of the full-length Cph1 (including the HK domain) is not yet 

known. However, since the sequence homology of the HK domain of Cph1 is very high 

compared with other HK proteins,3 it is reasonable to consider that the C-terminal region of 

Cph1 is similar to other HK domains. Generally, the HK domains consist of two domain 

structures; the dimerization and histidine phosphotransfer (DHp) domain and the CA 

domain.23–25 The DHp domain is composed of two helical structures, which typically form a 

stable parallel homodimer through a four-helix bundle and the catalytic histidine (His538 in 

Cph1) exists at the DHp domain. Therefore, it is highly probable that Cph1 forms a parallel 

dimer through the HK domain. Indeed, the previous study using the SDSL-PELDOR method 

suggests a parallel dimer form for Cph1.6 Here, we discuss the conformational dynamics of 

Cph1 based on the parallel dimer model. 

First, we consider the minor diffusion coefficient change with the time constant of 1.3 

ms. Previously, we studied the reaction of Cph1∆2 by the TG method and found that the 

diffusion coefficient changes with a time constant of 400 µs, 10 ms, and 40 ms.27 In particular, 

the major change in the diffusion coefficient occurs with the time constant of 400 µs. Although 

many studies of Phys suggested the secondary structural change in the ‘tongue region,’47–54 

which is located in the PHY domain and highly conserved over the whole phytochrome 
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superfamily, we found that the conformation change of the tongue region is not a cause of the 

major diffusion change.27 Furthermore, since this change was observed only for the dimer of 

Cph1∆2, this change was attributed to the orientation change in the dimer form. The small 

diffusion coefficient changes in Cph1 with the time constant of 1.3 ms is attributed to the 

orientation change between two PSMs. Previous SDSL-PELDOR measurements showed that 

the distance between neighboring PHY domains became shorter by the reaction from Pr to Pfr.6 

Thus, we consider that the small diffusion coefficient changes in Cph1 on this short time scale 

reflects the interaction change in the neighboring PHY domains of the dimer. 

Here, we compare the difference in the diffusion change in PSM between Cph1 and 

Cph1∆2. For this purpose, we used the equation ∆f=kBT(1/DI2 - 1/DPr), where kB is the 

Boltzmann constant and T is the temperature, to calculated the increase in friction (∆f) for the 

translational diffusion in the initial step (DPr/DI2 =1.04) . The increase in friction for Cph1 

calculated by this equation is 4.4 × 10−12 kg/s. On the other hand, the increase in friction by the 

orientation change in the dimer structure of Cph1∆2 is 4.9 × 10−11 kg/s, which is much larger 

than that of Cph1.27 There are two possibilities to explain this difference. 

A possible origin could be the different orientations of PSM between Cph1 and Cph1∆2. 

In our previous study, the photoreaction dynamics of Cph1∆2 were studied in a buffer solution 

at pH = 6.5, and this pH is the same as the crystallization pH of Cph1∆2, which forms the 

antiparallel dimer.45,46 Therefore, ∆f of Cph1∆2 may be due to the orientation change in the 

antiparallel dimer structure. However, since Cph1 most possibly forms the parallel dimer as 

stated above, the smaller ∆f caused by the PSM change may reflect the orientation change in 

the parallel dimer. In any cases, it is clear that the conformation change in Cph1 until a few 

hundreds milliseconds is minor. 

Another possible cause of the smaller change may be the restriction effect by the presence 

of the HK domain. Since the HK domain is relatively large, the presence of the HK domain 

with PSM may hinder the movement of PSM. Furthermore, since the DHp domain in the HK 

domain is considered to be the dimerization site, it is highly probable that this dimerization 

effect restricts the orientation movement of PSM. 

We next consider the major diffusion change during the 780 ms process, which is 

attributed to the conformation change in the two HK domains. Although there have been 

numerous researches on Phys, molecular details of the conformation change in the HK domain 

has been still unclear. It has been proposed that the dimer interface is broken in the Pfr state 



19 

 

from the small-angle X-ray scattering (SAXS) measurements of the bacteriophytochrome from 

Deinococcus radiodurans (DrBphP).55 A recent single-particle electron microscopy study on 

DrBphP reported that there are two kinds of arrangements of the HK domain in the Pfr state.56 

One is that the two HK domains are in contact (closed), and the other is the two HK domains 

separated (open). This close-open scheme is consistent with the crystal structures and SAXS 

measurement of the PSM fragments.47,50,55,57 On the other hand, the time-resolved SAXS data 

of DrBphP suggests a rotation motion of the CA domain.58 It is difficult to determine which 

model is appropriate for Cph1. However, according to the Stokes–Einstein relationship and the 

Perrin equation, the diffusion coefficient is known to be rather insensitive to small shape 

changes in macromolecules.59 Thus, we consider that the observed large change in the diffusion 

coefficient is an indication of a significant conformation change in the HK domain, such as to 

induce a significant increase in the hydration area of the HK domain. Furthermore, it is shown 

here that this change occurs only for the dimer of Cph1. Therefore, we consider that the closed-

to-open structural change in the CA domain is plausible for the Pr to Pfr reaction of Cph1, even 

though the dimer interface of the DHp domain could be intact. 

This model (closed-to-open structural change in the CA domain maintaining the 

secondary structure) is consistent with the observed small change in the CD spectrum. 

Furthermore, this model is also consistent with the mechanism of the autophosphorylation of 

the HK domains proposed so far.23–25 In many cases, the HKs exist as the dimer and the CA 

domains are activated by changing the binding site of the catalytic histidine residue, and this 

change is induced by the tertiary structural change in the DHp domain. In Cph1, since the Pr 

and Pfr states are, respectively, autophosphorylated (active) and dephosphorylated (inactive) 

states, it is reasonable to consider that the CA domain dissociates from the DHp domain to be 

open during the Pr→Pfr reaction. 

In this study, we found that this significant structural change in the HK domain takes 

place in the final step of the Pr→Pfr reaction monitored by the TG and TrA method. Initially, 

we thought that the HK domain could be controlled by the orientation change in PSM, which 

contains the chromophore. However, the conformation change in PSM occurs in a much faster 

time region (1.3 ms). Therefore, it is apparent that the HK domain movement is governed by 

another factor. We explain this difference in terms of the proton uptake and the secondary 

structural change in the tongue region as follows. The tongue region forms the β-sheet structure 

in the Pr state and converts to the α-helix in the Pfr state. This change leads to the alteration of 
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the tongue region length and may result in orientation change in the dimer of PSM.53 

Furthermore, using resonance Raman scattering and Fourier transform infrared measurements 

of the bathy bacteriophytochrome from Agrobacterium tumefaciens (Agp2), it was reported 

that conformation change in the tongue region is governed by the proton translocation in the 

vicinity of the chromophore;49 i.e., the proton uptake by highly conserved His278 (His260 in 

Cph1) residue near the chromophore induces the α-helix formation of the tongue region. Based 

on these findings, we consider that a trigger reaction that induces the conformation change in 

the HK domain occurs by a scheme of: 

proton uptake → α-helix formation of the tongue region  

→ conformation change in the HK domain. 

These processes may be very fast. In the case of Cph1, the TrA method with a pH indicator 

dye was used to study the proton release and uptake processes.8 The proton uptake was found 

to occur in the final step of the Pr→Pfr reaction. Thus, the same rate of the proton uptake as 

that of the HK domain movement determined in this research supports the above signal 

transduction scheme and suggests that the proton-uptake process is the rate-determining step. 

Furthermore, this signal transduction scheme suggests that the rate of the HK domain 

movement detected by the diffusion detection can be the same as that detected by the 

chromophore absorption change. Since the HK domain is located far from the chromophore-

binding site, the global change in the HK domain can be spectrally silent. However, it has been 

reported that an important residue for the proton uptake is a His residue, which is highly 

conserved in every Phys and located near the chromophore. For example, the TrA measurement 

of the prototypical bacteriophytochrome from Agrobacterium tumefaciens (Agp1) showed that 

the light-induced proton uptake from the solvent is accompanied by the protonation change in 

His250 residue.60 A similar role of His260 in Cph1 was reported using site-directed 

mutagenesis.61 These data strongly indicate that His260 plays a crucial role for the proton-

uptake phase. Since this residue locates near the chromophore, the protonation change, hence 

the dislocation of the HK domain, is detectable by the absorption detection method. This 

consideration supports that the assumption used in the analysis of the TG signal is appropriate.  

The time-resolved SAXS measurements showed that the major structural change in 

DrBphP occurs during the second-to-last step of the absorption change (2.6 ms). This time 

constant is two orders of magnitude shorter than that observed in this study. It is interesting to 

note that not only the time scale of the HK domain movement, but also the kinetics of 
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absorption changes are different between DrBphP and Cph1. There are three intermediates 

(Lumi-R, Meta-Ra, and Meta-Rc) for DrBphP, whereas four intermediates were reported for 

Cph1. Moreover, the light-induced conformation change in PSM is different. In the Pr→Pfr 

reaction, while the distance between the neighboring PHY domains becomes shorter for Cph1,6 

the two PHY domains are separated in DrBphP.56 These reports strongly indicate that the light-

induced conformational changes are different between Cph1 and DrBphP, although the 

structures of the PSM domains are similar each other.53 The conformation changes of Phys 

could possess diversity depending on the proteins, even though the structures are similar. The 

reactions of various Phys should be elucidated in more detail. 

In summary, we demonstrated that the translational diffusion coefficient is a useful 

physical quantity to detect the conformation change in the HK domain of full-length Cph1. A 

significant change in the diffusion coefficient was observed for the Cph1 dimer, but not for the 

Cph1 monomer, which indicates that the conformation change in the HK domain to increase 

the friction for translational diffusion of the monomer is minor. The cause of the diffusion 

change is attributed to the conformation change in the HK domain, such as the closed-to-open 

type, which should enhance the hydration. The rate of the conformation change was 

successfully determined to be 780 ms, which is the final step of the reaction kinetics monitored 

by the TrA method. Since this final step of the reaction is attributed to the protonation process 

of His260 of Cph1, we consider that the proton uptake induces the α-helix formation of the 

tongue region and this change is associated with the conformation change in the HK domain. 

We consider that the light-induced conformational changes are different between Cph1 and 

DrBphP suggesting diversity of the conformation changes of Phys depending on the proteins. 

 

SUPPORTING INFORMATION  

The difference CD spectra of Cph1 and Cph1Δ2 (SI-1), the laser power dependence of 

the TG signal (SI-2), and fitting equation of the TG signal (SI-3).  
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