Catalytic Asymmetric Synthesis of $anti-\alpha$, β -Diamino Acid Derivatives

Sanae Izumi, Yusuke Kobayashi, and Yoshiji Takemoto*

Graduate School of Pharmaceutical Sciences, Kyoto University Institution, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan. *Supporting Information*

ABSTRACT: A novel approach to chiral anti- α , β -diamino acid derivatives through tandem orthogonal organocatalysis has been developed. Chiral phosphoric acid catalysts control the chemo-, regio-, and stereoselective addition of hydroxylamines to alkylideneoxazolones, while a phosphine catalyst promotes the isomerization of Z- alkylideneoxazolones to the more reactive E- alkylideneoxazolones.

α,β-Diamino acid derivatives have attracted much attention as important building blocks for the synthesis of various bioactive molecules. In particular, mureidomycins napsamycins are peptidylnucleoside antibiotics that contain anti-α,β-diamino acid residues, and show potent antibacterial activity against strains of Pseudomonas aeruginosa (Figure 1). 1,2 One of the most useful strategies for the synthesis of α,β diamino acid derivatives is an asymmetric Mannich reaction using an α -substituted oxazolone. However, in this type of reaction, the product is limited to α,β -diamino acids with an α tetrasubstituted carbon stereocenter.^{3,4} We planned a novel strategy for a catalytic synthesis of chiral anti-α,β-diamino acid derivatives with an α -trisubstituted carbon stereocenter⁵ using 4-alkylideneoxazolones A and hydroxylamine derivatives as substrates (Scheme 1).

Figure 1. anti-α,β-Diamino acid derivatives

The salient features of this method are as follows: (i) the stereochemistry of the two vicinal chiral centers would be controlled via aza-Michael adduct **B**, where a subsequent ring-opening reaction⁶ of the *anti*-isomer should be favored, affording the *anti*-isoxazolidinone **C**. Epimerization of *syn*-isomer to the more stable *anti*-isomer would also be expected; (ii) intermediate **C** could also be used for peptide ligation to give adduct **D**, whose hydroxylamine moiety could be further elaborated for another peptide ligation; (iii) in the first step, com-

petitive oxa-Michael reaction⁸ and 1,2-addition⁹ of the hydroxylamine would be fully regulated by a catalyst, resulting in only the desired aza-Michael reaction.

Scheme 1. Synthetic strategy

We initially sought efficient catalysts that promoted the aza-Michael reaction of alkylideneoxazolone (*Z*)-1a with Boc-NHOH (Table 1). No reaction occurred in the absence of a catalyst (entry 1). Unfortunately, thiourea catalyst 5 that our laboratory had previously developed promoted the undesired *O*-1,2-addition reaction (entry 2), ¹⁰ presumably owing to activation of the more acidic OH⁸ group of 2 with the tertiary amine moiety of the catalyst. We then screened various organocatalysts without tertiary amine moieties, and found that racemic phosphoric acid catalyst 7a provided the desired product, 5-oxoisoxazolidine (*anti*-4a) whose structure was determined by X-ray crystallographic analysis. ¹⁰ This indicated that the aza-Michael reaction had occurred, followed by ring

opening of oxazolone intermediate **B** (entry 4). Interestingly, other possible products such as the oxa-Michael and 1,2-addition adducts were not observed, and only syn-4a was detected as a minor component. After several attempts at isolation, product 4a was shown to be unstable in silica gel, which led to investigations into derivatizing 4a. Eventually, we successfully obtained stable $anti-\alpha,\beta$ -diamino acid derivative 8a via a ring-opening reaction of 4 using methanol (entry 5).

Table 1. Screening of the reaction condition

entry	catalyst	time (h)	yield of 4a (%) ^a	yield of 8a (%) ^a	ratio (anti:syn)	
1	none	69	N. R. ^b	-	-	
2	5	2.5	0^{c}	-	-	
3^{d}	6	74	N. R. ^b	-	-	
4	7a	24	72 ^e	-	84:16 ^f	
5	7a	24	n.d. ^{e,g}	92	80:20 ^h	
Ar N H H N N H N H N H N Ar Ar 3,5-(CF ₃) ₂ C ₆ H ₃ -						
5			6	7a		

^a Isolated yields. ^b No reaction. ^c 53% of **3a** was obtained. ^d 5 mol % of **6** was used as catalyst. ^e **3a** was not observed. ^f The ratio was determined based on isolated yields of **4a**. ^g Not determined. ^h The ratio was determined based on isolated yields of **8a**.

Encouraged by these results, we next tried an asymmetric reaction using chiral phosphoric acid 7b (Scheme 2). We were interested in the differing reactivity between the E- and Zisomers, 11,12 so (**Z**)-1a and (**E**)-1a¹⁰ were investigated under the same reaction conditions. In the presence of 4 mol % of 7b, the reaction of (Z)-1a proceeded slowly to furnish the desired compound 8a in 72% yield (anti: syn = 74: 26) with 25% ee (major anti isomer) after ring opening with methanol. The absolute configuration of both anti-4a and syn-4a was determined by derivatization to known compounds. 13 Very interestingly, the reaction of (E)-1a occurred much faster than (Z)-1a to give ent-8a in higher enantioselectivity. To confirm the reaction rate of each of the isomers, time course analysis of product formation by ¹H NMR was conducted, indicating that the reactivity of (E)-1 was much higher. ¹⁰ More importantly, the isomerization of each isomer occurred under the reaction conditions, leading to an equilibrium mixture (Z:E ca. 89:11). This made us revise our strategy to achieve high yield and stereoselectivity; (i) E-isomers would be a suitable substrate for achieving excellent stereoselectivity, although

suppression of the reaction from the *Z*-isomer would be necessary (Table 2); (ii) the more stable *Z*-isomers could be used as substrates if an additional catalyst could enable isomerization to the *E*-isomers during the reaction, maintaining high stereoselectivities (Table 3).

Scheme 2. Aza-Michael/ring-opening of Z- and E-1a

Table 2. Phosphoric acid-catalyzed aza-Michael/ring opening of propylideneoxazolone (E)-1

entry	1	cat	temp	<i>ent-</i> 8 (yield, %) ^a	anti:syn ^b	ee c (%)
				(yieiu, /o)	of 8	of 8
1	1a	7b	rt	ent-8a (50)	65:35	58
2	1a	7c	rt	ent-8a (70)	65:35	10
3	1a	7d	rt	ent-8a (67)	64:36	15
4	1a	7e	rt	ent-8a (50)	76:24	68
5	1a	7 f	rt	ent-8a (53)	75:25	76
6	1a	7 f	0°C	ent-8a (56)	76:24	90
7	1b	7 f	0°C	ent-8b (48)	81:19	98
8	1c	7 f	0°C	ent-8c (59)	71:29	91
9	1d	7 f	0°C	ent-8d (44)	75:25	94
10	1e	7 f	0°C	ent-8e (46)	70:30	85
Ar 7c (Ar = C_6F_5)					SiPh ₃	
		D. P.OH	7d (Ar = 3,5-(CF ₃) ₂ C ₆ H ₃)		OPOH	
7e (Ar = 2,4,6-(<i>i</i> -Pr) ₃ C ₆ H ₂) SiPh ₃						SiPh ₃
					7f	

^a Isolated yields of *ent-8* in 2 steps. ^b The ratio was determined by isolated yields. ^c Determined by chiral HPLC analyses.

Thus, we moved on to investigate the reaction of *E*-isomers (Table 2). First, we screened several chiral phosphoric acids **7b**–**f** at room temperature (entries 1–5), and found that **7f** gave the product in 53% yield with 76% ee (entry 5). Lowering the reaction temperature improved the enantioselectivity to 90% ee, possibly because of suppression of the isomerization of

(*E*)-1 to (*Z*)-1, and the direct reaction of (*Z*)-1 (entry 5 vs 6). We next investigated the effect of the aryl substituent on the oxazolone (entries 7–10). Although the reaction rate was not affected by the presence of either electron-donating or withdrawing groups, 4-methoxy analog (*E*)-1b was found to be an excellent substrate in terms of enantioselectivity (98% ee, entry 7), and the diastereoselectivities were slightly improved as well (*anti:syn*=81:19).

Table 3. Phosphoric acid-catalyzed aza-Michael/ring opening of propylideneoxazolone (Z)-1 with 2

entry	1	phosphine	ent-8 (yield, %) ^a	anti:syn ^b of 8	ee c (%)
4 d		D1 D	3 , ,		
1 ^d	1b	Ph_3P	ent-8b (52)	83:17	78
2^{d}	1b	dppf	ent-8b (38)	72:28	79
3	1b	Ph_3P	ent-8b (70)	75:25	71
4	1f	Ph_3P	ent-8f (88)	64:36	52
5	1g	Ph_3P	ent-8g (60)	75:25	78
6	1h	Ph_3P	ent-8h (64)	72:28	84
7 ^e	1i	Ph_3P	ent-8i (44)	71:29	81
8	1j	Ph_3P	ent-8j (60)	73:27	69
9	1k	Ph_3P	ent-8k (39)	73:27	80
10	11	Ph_3P	ent-81 (62)	70:30	78

^a Isolated yields of *ent-8* over 2 steps. ^b The ratio was determined by isolated yields. ^c Determined by chiral HPLC analyses. ^d The reaction (first step) was performed at 0 °C for 120 h. ^e 10 mol % of 7f was used.

Although high enantioselectivities were achieved using the Eisomers as substrates (Table 2), unfortunately these were difficult to prepare. 11 A method using readily available (Z)-1 would therefore be attractive. To solve this problem, we focused on finding a co-catalyst that promoted isomerization of the al-kylideneoxazolone (Table 3). ^{14,15} After testing various organic molecules, iodine was found to promote the reaction. However, ¹H NMR experiments showed that iodine itself also catalyzed the racemic aza-Michael/ring opening reaction, which led to only modest enantioselectivities. Further investigations into the orthogonal tandem catalysts led to the discovery that phosphines such as (4-MeOC₆H₄)₃P and CvPh₂P catalyzed not only the isomerization, but also the undesired 1,2-addition reaction. However, Ph₃P only catalyzed the isomerization reaction, and was chosen as the catalyst for the reaction, affording ent-8b in 52% yield and in 78% ee (entry 1 vs 2).10 This result strongly suggests that the reaction proceeded mainly through (E)-1b, which was produced by phosphine-catalyzed isomerization of (Z)-1b. After optimization of the reaction temperature, this orthogonal tandem reaction was shown to proceed faster at room temperature than at 0 °C without much loss of ee (entry 1 vs 3), probably because the isomerization reaction catalyzed by Ph₃P occurred smoothly at room temperature. The substrate scope of (*Z*)-1 was then examined under the optimized conditions. Substrates with bulky substitution were likely to provide relatively high enantioselectivity, albeit with slightly decreased yields (entries 3–7). The reactivity of (*Z*)-1f itself was high enough to react with 2 without Ph₃P, ¹⁰ which decreased the selectivity though the yield of *ent*-8f was excellent (entry 4). (*Z*)-1j-l with phenyl, alkenyl, and alkynyl groups were also tolerated in this reaction (entries 8–10).

Finally, the coupling reaction of *ent*-4b with an α -amino acid was investigated. ¹⁷ In this reaction, **1b** was used without separating the Z- and E-isomers (Z: E=81:19). As *ent*-4b has a tendency to yield racemic crystals, the filtrate obtained by trituration with ether provided *ent-anti*-4b with high ee. In this case, 95% ee of *ent*-4b was obtained, and was used for the coupling reaction. Instead of MeOH, 2 equivalents of phenylalanine ethyl ester hydrochloride were used in the ring-opening reaction, and gave the desired product **9** in 82% yield (d.r. = 97.4 : 2.6) without any epimerization, indicating that **4** can be used as a substrate for peptide ligations.

Scheme 3. Coupling Reaction

In conclusion, we have developed a novel method for the asymmetric synthesis of anti- α , β -diamino acid derivatives with an α -trisubstituted carbon stereocenter using alkylidene-oxazolones 1 and a hydroxylamine as substrates, through chiral phosphoric acid-catalyzed the difference in the reactivity of both E- and Z-isomers of 1. To overcome the low reactivity of (Z)-1, a phosphine was used to catalyze the isomerization of (Z)-1 to (E)-1. We believe that the present reaction offers an efficient method for the synthesis of peptide-based bioactive compounds through ligation. This is now under investigation and will be reported in due course.

ASSOCIATED CONTENT

Supporting Information

The experimental details, compound characterization data for all new compounds, the complete copies of NMR and HPLC charts, and CIF file of *anti-4a*. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*takemoto@pharm.kyoto-u.ac.jp

ACKNOWLEDGMENT

We gratefully acknowledge a Grant-in-Aid for Scientific Research (YT) on Innovative Areas "Advanced Molecular Transformations by Organocatalysis" and a Grant-in-Aid for Challenging Exploratory Research (YK) from MEXT, Japan.

REFERENCES

- (1) (a) Viso, A.; Fernández de la Pradilla, R.; García, A.; Flores, A. *Chem. Rev.* **2005**, *105*, 3167. (b) Viso, A.; Fernández de la Pradilla, R.; Tortosa, M.; García, A.; Flores, A. *Chem. Rev.* **2011**, *111*, PR1.
- (2) Okamoto, K.; Sakagami, M.: Feng, F.; Togame, H.; Takemoto, H.; Ichikawa, S.; Matsuda, A. J. Org. Chem. 2012, 77, 1367.
- (3) For catalytic asymmetric Mannich reactions using α-substituted oxazolone nucleophiles, see (a) Ávila, E. P.; Justo, R. M. S.; Gonçalves, V. P.; Pereira, A. A.; Diniz, R.; Amarante, G. W. J. Org. Chem. 2015, 80, 590. (b) Zhang, W.-Q.; Cheng, L.-F.; Yu, J.; Gong, L.-Z. Angew. Chem. Int. Ed. 2012, 51, 4085. (c) Shi, S.-H.; Huang, F.-P.; Zhu, P.; Yan, W.; Dong, Z.-W.; Hui, X.-P. Org. Lett. 2012, 14, 2010. (d) Melhado, A. D.; Amarante, G. W.; Wang, Z. J.; Luparia, M.; Toste, F. D. J. Am. Chem. Soc. 2011, 133, 3517. (e) Liu, X.; Deng, L.; Jiang, X.; Yan, W.; Liu, C.; Wang, R. Org. Lett. 2010, 12, 876. (f) Uraguchi, D.; Ueki, Y.; Ooi, T. J. Am. Chem. Soc. 2008, 130, 14088. (4) Uraguchi, D.; Koshimoto, K.; Ooi, T. Chem. Commun. 2010, 46,
- (5) (a) Liang, G.; Tong, M.-C.; Tao, H.; Wang, C.-J.; Adv. Synth. Catal. 2010, 352, 1851. (b) Shang, D.; Liu, Y.; Zhou, X.; Liu, X.; Feng, X. Chem. Eur. J. 2009, 15, 3678. (c) Hernández-Toribio, J.; Gómez Arrayás, R.; Carretero, J. C. J. Am. Chem. Soc. 2008, 130, 16150. (d) Yan, X.-X.; Peng, Q.; Li, Q.; Zhang, K.; Yao, J.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2008, 130, 14362.
- (6) For Michael addition/ring opening reactions with other nucleophiles, see (a) Cui, B.-D.; Zuo, J.; Zhao, J.-Q.; Zhou, M.-Q.; Wu, Z.-J.; Zhang, X.-M.; Yuan, W.-C. *J. Org. Chem.* **2014**, *79*, 5305. (b) Geng, Z.-C.; Li, N.; Chen, J.; Huang, X.-F.; Wu, B.; Liu, G.-G.; Wang, X.-W. *Chem. Commun.* **2012**, *48*, 4713.
- (7) Bode, J. W.; Fox, R. M.; Baucom, K. D. Angew. Chem. Int. Ed. 2006, 45, 1248.
- (8) (a) Noël, R.; Gembus, V.; Levacher, V.; Brière, J.-F. *Org. Biomol. Chem.* **2014**, *12*, 1245. (b) Matoba, K.; Kawai, H.; Furukawa, T.; Kusuda, A.; Tokunaga, E.; Nakamura, S.; Shiro, M.; Shibata, N. *Angew. Chem. Int. Ed.* **2010**, *49*, 5762. (c) Pohjakallio, A.; Pihko, P. M. *Chem.–Eur. J.* **2009**, *15*, 3960. (d) Ibrahem, I.; Rios, R.; Vesely, J.; Zhao, G.-L.; Córdova, A. *Chem. Commun.* **2007**, 849.
- (9) Kumar, S. V.; Saraiah, B.; Misra, N. C.; Ila, H. J. Org. Chem. 2012, 77, 10752.
- (10) CCDC 1442977 (anti-4a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif. See the Supporting Information for details of the product characterization data.
- (11) Rao, Y. S.; Filler, R. Synthesis 1975, 12, 749.
- (12) (a) Bianco-Lomas, M.; Funes-Ardoiz, I.; Campos, P. J.; Sampedro, D. Eur. J. Org. Chem. 2013, 6611. (b) Bianco-Lomas, M.; Campos, P. J.; Sampedro, D. Org. Lett. 2012, 14, 4334.
- (13) Robinson, A. J.; Stanislawski, P.; Mulholland, D.; He, L.; Li, H.-Y. *J. Org. Chem.* **2001**, *66*, 4148.
- (14) Lohr, T. L.; Marks, T. J. Nature Chem. 2015, 7, 477.
- (15) Pellissier, H. Tetrahedron 2013, 69, 7171.
- (16) Ahmed, N.; Babu, B. V. Synth. Commun. 2013, 43, 3044.
- (17) (a) Azumaya, I.; Aebi, R.; Kubik, S.; Rebek, J., Jr. *Proc. Natl. Acad. Sci. USA* **1995**, 92, 12013. (b) Obrecht, D.; Karajiannis, H.; Lehmann, C.; Schönholzer, P.; Spiegler, C.; Müller, K. *Helv. Chim. Acta* **1995**, 78, 703.
- (18) (a) For reviews, see: (a) Akiyama, T. Chem. Rev. 2007, 107, 5744. (b) Doyle, A. G.; Jacobsen, E. N. Chem. Rev. 2007, 107, 5173. (c) Terada, M. Chem. Commun. 2008, 4097. (d) Rueping, M.; Kuenkel, A.; Atodiresei, I.; Chem. Soc. Rev. 2011, 40, 4539. (e) Parmar, D.; Sugiono, E.; Raja, S.; Rueping, M. Chem. Rev. 2014, 114, 9047.