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ABSTRACT: A novel approach to chiral anti-α,β-diamino acid derivatives through tandem orthogonal organocatalysis has been 
developed. Chiral phosphoric acid catalysts control the chemo-, regio-, and stereoselective addition of hydroxylamines to alkyli-
deneoxazolones, while a phosphine catalyst promotes the isomerization of Z- alkylideneoxazolones to the more reactive E- alkyli-
deneoxazolones.

α,β-Diamino acid derivatives have attracted much attention as 
important building blocks for the synthesis of various bioac-
tive molecules.1 In particular, mureidomycins and 
napsamycins are peptidylnucleoside antibiotics that contain 
anti-α,β-diamino acid residues, and show potent antibacterial 
activity against strains of Pseudomonas aeruginosa (Figure 
1).1,2 One of the most useful strategies for the synthesis of α,β-
diamino acid derivatives is an asymmetric Mannich reaction 
using an α-substituted oxazolone.1 However, in this type of 
reaction, the product is limited to α,β-diamino acids with an α-
tetrasubstituted carbon stereocenter.3,4 We planned a novel 
strategy for a catalytic synthesis of chiral anti-α,β-diamino 
acid derivatives with an α-trisubstituted carbon stereocenter5 
using 4-alkylideneoxazolones A and hydroxylamine deriva-
tives as substrates (Scheme 1).  

 
Figure 1. anti-α,β-Diamino acid derivatives 

The salient features of this method are as follows: (i) the ste-
reochemistry of the two vicinal chiral centers would be con-
trolled via aza-Michael adduct B, where a subsequent ring-
opening reaction6 of the anti-isomer should be favored, afford-
ing the anti-isoxazolidinone C. Epimerization of syn-isomer to 
the more stable anti-isomer would also be expected; (ii) inter-
mediate C could also be used for peptide ligation to give ad-
duct D, whose hydroxylamine moiety could be further elabo-
rated for another peptide ligation;7 (iii) in the first step, com-

petitive oxa-Michael reaction8 and 1,2-addition9 of the hy-
droxylamine would be fully regulated by a catalyst, resulting 
in only the desired aza-Michael reaction. 
Scheme 1. Synthetic strategy 

 
We initially sought efficient catalysts that promoted the aza-
Michael reaction of alkylideneoxazolone (Z)-1a with Boc-
NHOH (Table 1). No reaction occurred in the absence of a 
catalyst (entry 1). Unfortunately, thiourea catalyst 5 that our 
laboratory had previously developed promoted the undesired 
O-1,2-addition reaction (entry 2),10 presumably owing to acti-
vation of the more acidic OH8 group of 2 with the tertiary 
amine moiety of the catalyst. We then screened various or-
ganocatalysts without tertiary amine moieties, and found that 
racemic phosphoric acid catalyst 7a provided the desired 
product, 5-oxoisoxazolidine (anti-4a) whose structure was 
determined by X-ray crystallographic analysis.10 This indicated 
that the aza-Michael reaction had occurred, followed by ring 



 

opening of oxazolone intermediate B (entry 4). Interestingly, 
other possible products such as the oxa-Michael and 1,2-
addition adducts were not observed, and only syn-4a was de-
tected as a minor component. After several attempts at isola-
tion, product 4a was shown to be unstable in silica gel, which 
led to investigations into derivatizing 4a. Eventually, we suc-
cessfully obtained stable anti-α,β-diamino acid derivative 8a 
via a ring-opening reaction of 4 using methanol (entry 5).  
Table 1. Screening of the reaction condition 

 

entry catalyst time 
(h) 

yield of   
4a (%)a 

yield of 
8a (%)a 

ratio  
(anti:syn) 

1 none 69 N. R.b - - 

2 5 2.5 0c - - 

3d 6  74 N. R.b - - 

4 7a  24 72e - 84:16f 

5 7a 24 n.d.e,g 92 80:20h 

 
a Isolated yields. b No reaction. c 53% of 3a was obtained. d 5 

mol % of 6 was used as catalyst. e 3a was not observed. f The 
ratio was determined based on isolated yields of 4a. g Not de-
termined. h The ratio was determined based on isolated yields 
of 8a. 

Encouraged by these results, we next tried an asymmetric re-
action using chiral phosphoric acid 7b (Scheme 2). We were 
interested in the differing reactivity between the E- and Z-
isomers,11,12 so (Z)-1a and (E)-1a10 were investigated under 
the same reaction conditions. In the presence of 4 mol % of 7b, 
the reaction of (Z)-1a proceeded slowly to furnish the desired 
compound 8a in 72% yield (anti : syn = 74 : 26) with 25% ee 
(major anti isomer) after ring opening with methanol. The 
absolute configuration of both anti-4a and syn-4a was deter-
mined by derivatization to known compounds.13 Very interest-
ingly, the reaction of (E)-1a occurred much faster than (Z)-1a 
to give ent-8a in higher enantioselectivity. To confirm the 
reaction rate of each of the isomers, time course analysis of 
product formation by 1H NMR was conducted, indicating that 
the reactivity of (E)-1 was much higher.10 More importantly, 
the isomerization of each isomer occurred under the reaction 
conditions, leading to an equilibrium mixture (Z:E ca. 
89:11).10 This made us revise our strategy to achieve high 
yield and stereoselectivity; (i) E-isomers would be a suitable 
substrate for achieving excellent stereoselectivity, although 

suppression of the reaction from the Z-isomer would be neces-
sary (Table 2); (ii) the more stable Z-isomers could be used as 
substrates if an additional catalyst could enable isomerization 
to the E-isomers during the reaction, maintaining high stere-
oselectivities (Table 3).   
 
Scheme 2. Aza-Michael/ring-opening of Z- and E-1a 

 
Table 2. Phosphoric acid-catalyzed aza-Michael/ring open-
ing of propylideneoxazolone (E)-1  

 

entry 1 cat temp ent-8 
(yield, %)a 

anti:synb 

of 8 
ee c (%)

of 8 

1 1a 7b rt ent-8a (50) 65:35 58 

2 1a 7c rt ent-8a (70) 65:35 10 

3 1a 7d rt ent-8a (67) 64:36 15 

4 1a 7e rt ent-8a (50) 76:24 68 

5 1a 7f rt ent-8a (53) 75:25 76 

6 1a 7f 0ºC ent-8a (56) 76:24 90 

7 1b 7f 0ºC ent-8b (48) 81:19 98 

8 1c 7f 0ºC ent-8c (59) 71:29 91 

9 1d 7f 0ºC ent-8d (44) 75:25 94 

10 1e 7f 0ºC ent-8e (46) 70:30 85 

 
 a Isolated yields of ent-8 in 2 steps. b The ratio was determined 

by isolated yields. c Determined by chiral HPLC analyses. 

Thus, we moved on to investigate the reaction of E-isomers 
(Table 2). First, we screened several chiral phosphoric acids 
7b‒f at room temperature (entries 1‒5), and found that 7f gave 
the product in 53% yield with 76% ee (entry 5).  Lowering the 
reaction temperature improved the enantioselectivity to 90% 
ee, possibly because of suppression of the isomerization of 



 

(E)-1 to (Z)-1, and the direct reaction of (Z)-1 (entry 5 vs 6). 
We next investigated the effect of the aryl substituent on the 
oxazolone (entries 7‒10).1 Although the reaction rate was not 
affected by the presence of either electron-donating or -
withdrawing groups, 4-methoxy analog (E)-1b was found to 
be an excellent substrate in terms of enantioselectivity (98% 
ee, entry 7), and the diastereoselectivities were slightly im-
proved as well (anti:syn=81:19). 
Table 3. Phosphoric acid-catalyzed aza-Michael/ring open-
ing of propylideneoxazolone (Z)-1 with 2 

N O

O

(Z)-1

2
7f (4 mol%)

CH2Cl2
rt, 72 h

R O

N OMe
Boc

N
H

O

OH

MeOH
rt, 12 h

Et3N

R

ent-8

OMe
OMe

1f: R = Me

1g: R = n-Pr

1h: R = n-Bu

1i: R = i-Bu

1j: R =
phosphine
(10 mol%)

1k: R =

1l: R =

 

entry 1 phosphine 
ent-8 

(yield, %)a 
anti:synb 

of 8 
ee c (%) 

of 8 

1d 1b Ph3P ent-8b (52) 83:17 78 

2d 1b dppf ent-8b (38) 72:28 79 

3 1b Ph3P ent-8b (70) 75:25 71 

4 1f Ph3P ent-8f (88) 64:36 52 

5 1g Ph3P ent-8g (60) 75:25 78 

6 1h Ph3P ent-8h (64) 72:28 84 

7e 1i Ph3P ent-8i (44) 71:29 81 

8 1j Ph3P ent-8j (60) 73:27 69 

9 1k Ph3P ent-8k (39) 73:27 80 

10 1l Ph3P ent-8l (62) 70:30 78 
a Isolated yields of ent-8 over 2 steps. b The ratio was deter-

mined by isolated yields. c Determined by chiral HPLC anal-
yses. d The reaction (first step) was performed at 0 ºC for 120 h. 
e 10 mol % of 7f was used. 

Although high enantioselectivities were achieved using the E-
isomers as substrates (Table 2), unfortunately these were diffi-
cult to prepare.11 A method using readily available (Z)-1 would 
therefore be attractive. To solve this problem, we focused on 
finding a co-catalyst that promoted isomerization of the al-
kylideneoxazolone (Table 3).14,15 After testing various organic 
molecules, iodine was found to promote the reaction. However, 
1H NMR experiments showed that iodine itself also catalyzed 
the racemic aza-Michael/ring opening reaction, which led to 
only modest enantioselectivities.10,16 Further investigations 
into the orthogonal tandem catalysts led to the discovery that 
phosphines such as (4-MeOC6H4)3P and CyPh2P catalyzed not 
only the isomerization, but also the undesired 1,2-addition 
reaction. However, Ph3P only catalyzed the isomerization re-
action, and was chosen as the catalyst for the reaction, afford-
ing ent-8b in 52% yield and in 78% ee (entry 1 vs 2).10 This 
result strongly suggests that the reaction proceeded mainly 
through (E)-1b, which was produced by phosphine-catalyzed 
isomerization of (Z)-1b. After optimization of the reaction 
temperature, this orthogonal tandem reaction was shown to 
proceed faster at room temperature than at 0 °C without much 
loss of ee (entry 1 vs 3), probably because the isomerization 
reaction catalyzed by Ph3P occurred smoothly at room temper-

ature. The substrate scope of (Z)-1 was then examined under 
the optimized conditions. Substrates with bulky substitution 
were likely to provide relatively high enantioselectivity, albeit 
with slightly decreased yields (entries 3‒7). The reactivity of 
(Z)-1f itself was high enough to react with 2 without Ph3P,10 
which decreased the selectivity though the yield of ent-8f was 
excellent (entry 4). (Z)-1j‒l with phenyl, alkenyl, and alkynyl 
groups were also tolerated in this reaction (entries 8‒10). 
Finally, the coupling reaction of ent-4b with an α-amino acid 
was investigated.17 In this reaction, 1b was used without sepa-
rating the Z- and E-isomers (Z : E = 81 : 19). As ent-4b has a 
tendency to yield racemic crystals, the filtrate obtained by 
trituration with ether provided ent-anti-4b with high ee. In this 
case, 95% ee of ent-4b was obtained, and was used for the 
coupling reaction. Instead of MeOH, 2 equivalents of phenyl-
alanine ethyl ester hydrochloride were used in the ring-
opening reaction, and gave the desired product 9 in 82% yield 
(d.r. = 97.4 : 2.6) without any epimerization, indicating that 4 
can be used as a substrate for peptide ligations. 
Scheme 3. Coupling Reaction 

 
In conclusion, we have developed a novel method for the 
asymmetric synthesis of anti-α,β-diamino acid derivatives 
with an α-trisubstituted carbon stereocenter using alkylidene-
oxazolones 1 and a hydroxylamine as substrates, through chi-
ral phosphoric acid-catalyzed18 tandem aza-Michael/ring open-
ing reaction. We investigated the difference in the reactivity of 
both E- and Z-isomers of 1. To overcome the low reactivity of 
(Z)-1, a phosphine was used to catalyze the isomerization of 
(Z)-1 to (E)-1. We believe that the present reaction offers an 
efficient method for the synthesis of peptide-based bioactive 
compounds through ligation. This is now under investigation 
and will be reported in due course. 
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