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Abstract 

A design method is proposed for reducing the worst value of representative response of structure under random variation of structural 
parameters. To reduce the computational cost for finding the worst value, the requirement of ‘worst’ is relaxed to the value corresponding to the 
specified quantile of the distribution function. The order statistics is used for defining the level of robustness of the approximate worst response 
value for specified confidence. Obviously, a larger estimate of response is required for ensuring larger robustness with the same confidence. 
Therefore, a trade-off relation exists between the order of response generated by random parameter values and the robustness in estimation of 
the worst response. A multiobjective optimization problem is formulated to minimize the representative responses with various order; thus, the 
solutions with various levels of robustness are simultaneously obtained. A numerical example of a 20-story shear frame is presented for 
minimizing the maximum interstory drift against seismic motions under constraint on the total amount of damping coefficient, where 
uncertainty is considered in the story stiffness and the floor mass as well as the damping coefficient that is also the design variable. It is shown 
that the distribution of additional damping coefficients depends on the level of robustness in estimation of the worst response value. 

© 2018 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

In the process of designing structures, it is desirable to decide 
the shape and stiffness considering uncertainty in design 
loads, material parameters, etc. [1, 2]. Therefore, in the field 
of structural optimization, extensive research has been carried 
out for design methods such as robust optimization [3−6], 
which maximizes a robustness function, and worst-case 
design [7, 8]. However, there exist many definitions of 
robustness, and if the worst response is considered, 
computational cost for obtaining the exact worst (extreme) 
value is very large even when simple interval variables are 
used for representing uncertainty [7, 9, 10].  

Reliability-based design is a standard approach to 
incorporate various types of uncertainty in the process of 
structural design [11−14]. Although approximation methods 
such as dimension reduction method [15] are available, 
computational cost for finding the failure point is still large 
even for small-scale structures, if limit state functions 
corresponding to multiple failure modes are considered. Thus, 
in the approach based on reliability index with the failure 
probability, the stochastic variables are often implicitly 

assumed to be normally distributed or evaluated through 
various approximations [16, 17]. Recently, stochastic 
structural mechanics including stochastic perturbation method 
has made significant progress, and stochastic finite element 
method has become a powerful tool [18]. However, design 
optimization with such sophisticated approach has not been 
fully explored. 

Order statistics is developed for evaluating the statistical 
properties of the kth best/worst value in a set of specified 
number of random variables [19−21]. The unique feature of 
tolerance intervals and confidence intervals of quantiles of 
order statistics is that it is independent of the type of 
distribution of random parameter, and ensures that the upper 
bound of 100 thγ  (0 1)γ≤ ≤  quantile value can be obtained 
with smaller computational cost than the upper bound of the 
worst value ( 1)γ =  with the specified confidence. Such 
approach is known as distribution-free tolerance intervals. 
Therefore, it can be effectively utilized for obtaining 
approximate upper bounds of the worst responses of 
structures subjected to various types of external loads 
including seismic loads. 
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The upper bound of100 thγ  quantile value of response for 
specified confidence can be quantitatively calculated using the 
theory of order statistics, and the upper bound obviously 
increases if the parameter γ  is increased. Therefore, if the 
structure is designed such that the approximate worst 
representative response is less than the specified value with 
large value of γ , then the structure has a large probability of 
its representative response less than the specified value. 
Hence, γ  may be regarded as a parameter of robustness as 
shown in Fig.1.  
 

 
 

Fig. 1.  Relation between parameter γ  and robustness.  
 

In the robust design process, it is desired to minimize the 
responses corresponding to various levels of robustness so 
that the appropriate robustness level can be found in view of 
the trade-off relation between the structural cost (volume) and 
robustness. Multiobjective programming problem is an 
optimization problem for obtaining solutions called Pareto 
optimal solutions for several objective functions that have 
trade-off relations [22]. There exist numerous researches on 
multiobjective programming; however, most of them have 
only two objective functions, and it is very difficult to 
evaluate the properties of Pareto optimal solutions for a 
problem with many objective functions [23]. 

In this paper, a new multiobjective programming problem 
is formulated for minimizing the upper-bound responses with 
various levels of robustness based on the distribution-free 
tolerance intervals of order statistics. A numerical example of 
a 20-story shear frame is presented for minimizing the 
maximum interstory drift against seismic motions under 
constraint on the total amount of damping coefficient, where 
uncertainty is considered in the story stiffness, story mass, and 
the damping coefficient of the frame. Pareto optimal solutions 
for minimizing 20 largest responses among 150 randomly 
generated responses are found using a multiobjective genetic 
algorithm. 

2. Approximate worst response based on order statistics 
Let 1 2( , , , )tθ θ θ= ∈ Ωθ   denote a vector of uncertain 
parameters representing, e.g., yield stress, Young’s modulus, 
cross-sectional area, and external load, where t  is the number 
of uncertain parameters, and Ω  is the prescribed uncertainty 
set. The vector of uncertain parameters are probabilistic 
values distributed in the t-dimensional region Ω , and are 
assumed to be continuous and bounded. 

The representative response of a structure such as 

maximum absolute value of stress under specified loading 
conditions is denoted by ( )g θ . We consider a problem of 
finding the worst (largest) value of ( )g θ  for specified region 
Ω  of uncertain parameters. However, finding the strictly 
worst value demands much computational cost even for the 
simple case where Ω  represents a set of interval regions. 

To alleviate the large computational cost for finding the 
worst value, we can relax the requirement of ‘worst’ response 
to the 100 thγ  (0 1)γ≤ ≤  quantile response; e.g., γ  may be 
equal to 0.9, 0.95, 0.99, etc. For this purpose, the order 
statistics can be effectively used.  

Let 1 2, , , nθ θ θ  denote a set of n  t-dimensional vectors 
of uncertain parameters generated using the same probability 
distribution on Ω . Accordingly, the representative responses 
denoted by 1 1( )Y g= θ , 2 2( )Y g= θ , …, ( )n nY g= θ  are 
random variables that have the same probability distribution, 
for which the cumulative distribution function is denoted by 

( ( )) Pr{ ( )}F g Y g= ≤θ θ . These responses are renumbered in 
decreasing order as 1, 2, ,n n n nY Y Y≥ ≥ ≥ . The kth response 

,k nY  among n  responses is a probabilistic value called kth 
order statistics. Note that they are renumbered in increasing 
order in usual order statics. However, we align them in 
decreasing order to evaluate an approximate maximum 
response.  

According to the theorem of order statistics, we can select 
k  and n  (1 )k n≤ ≤  so that there exist real values α  and γ  
(0 1; 0 1)α γ< < < <  to state that “The probability of ( )g θ  so 
that its 100 %γ  is less than ,k nY  is at least 100 %α ,” i.e., 

 ,Pr{ ( ) }k nF Y γ α≥ ≥              (1) 

From Eq. (1), ,( ,Y )k n−∞  is known as one-sided tolerance 
interval that is independent of F . Hence, the interval is called 
distribution-free interval. 

The values of k  and n  are selected based on the criterion 
described below. If k  is decreased close to 1 for constant n , 
then the response close to the worst (extremal) value can be 
obtained.  

Let ( , )I a bγ  denote the incomplete beta function defined 
as 
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Then, for specified values of k , α , and γ , the number of 
samples n  can be determined as the smallest value satisfying 
the following inequality: 

 1 ( 1, )I n k kγ α− − + ≥              (3) 

Accordingly, if n  is to be specified as the minimum required 
value satisfying the inequality (3) and k  is also given, the 
relation between the remaining two parameters α  and γ  are 
obtained from the following equation: 
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Fig. 2.  Relation between α  and γ  for fixed value of n   
and various values of k ; (a) 50n = , (b) 100n = , (c) 

150n = . 
 

 1 ( 1, )I n k kγ α− − + =              (4) 

Relation between α  and γ  is plotted in Fig. 2 for fixed 
value of n  and various specified values of k  ( 1, 20)=  . 
The curves in top-right and bottom-left in each figure 
correspond to 1k =  and 20, respectively. The following 
properties are observed from the figure: 

1. For specified values of n  and k , α  is a decreasing 
function of γ , and has a larger value for a smaller value 
of k . 

2. For specified values of n  and α , k  is a discretely 
decreasing function of γ . 

3. For specified values of n  and γ , k  is a discretely 
decreasing function of α . 

4. The curves move to top-right as n  is increased. 

 
We can also have a table for listing the values of k  and 

γ  for specified n  and α . Values of γ  corresponding to the 
various values of k  for 100n =  and 200, respectively, are 
obtained by solving Eq. (4), and listed in Tables 1(a) and (b) 
for 0.9α = . It is confirmed from these tables that γ  is a 
decreasing function of k  if n  and α  are fixed. Therefore, 
the order k  can also be regarded as a parameter of 
robustness; i.e., a smaller value of k  leads to a larger 
robustness.  

3. Multiobjective optimization problem for minimizing 
worst response 

Structural optimization problem may be simply formulated so 
as to minimize the structural cost represented by, e.g., the 
total structural volume under upper-bound constraint on the 
representative response and bound constraints on the design 
variables. If deviation of responses is not considered, the 
median value ( 1)/2,n nY +  (if n  is an odd number) may be 
minimized. Alternatively, in the framework of worst-case 
design, an upper bound is given for the worst value 1,nY  of the 
response. Our purpose here is to incorporate the responses 
corresponding to various levels of robustness into the 
structural design problem. 

Let x  denote the vector of design variables such as 
stiffnesses of members, nodal coordinates, and damping 
coefficients of dampers. The representative response is 
denoted by ( , )g x θ , which is a function of x  and θ , and the 
k th largest value among n  samples ( , )ig x θ  ( 1, , )i n=   of 
design x  is denoted by , ( )k nY x . The following problem may 

be solved if the order k  is specified as *k k=  according to 
an appropriate robustness level: 

 * ,
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where ( )f x  is a function such as the total structural volume 
representing the structural cost, χ  is the feasible region of x , 
and g  is the upper bound for ( , )g x θ . 

As discussed in Sec. 2, the estimated value of the maximum 
response becomes more robust if k  is smaller. However, 
larger robustness leads to larger estimate of the response, and 
they are in trade-off relations. Therefore, it is practically 
important to compare the solutions with various robustness 
levels to decide the appropriate value of robustness. For this 
purpose, we formulate a multiobjective optimization problem 
to minimize k ( )n≤  order statistics 1, ,,( ), ( )n k nY Yx x
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where f  is the upper bound of the structural cost. Since we 
are interested in approximate worst values, an appropriate 
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value of about k  may be, e.g., /10n  corresponding to the 
90% quantile of the response. 
 
4. Numerical example 

Problem (6) is formulated for a 20-story shear frame with 
viscous dampers as shown in Fig. 3. Note that only the first 
and top stories are illustrated in Fig. 3, and the intermediate 
stories have similar properties.  
 

 
Fig. 3.  A 20-story shear frame model. 

 
 

Structural damping is not considered, and the damping 
coefficients 1 20,( , )f fcc   due to viscous dampers in the 
stories are taken as the design variables that are also denoted 
by the vector 1 20( , ),x x=x   in problem (6). Uncertainty is 
considered for story mass, stiffness, and damping coefficient 
that is also a design variable. The nominal value of mass at 
each story is 4.0×105 kg, and the vector of story mass is 
denoted as 1 20,( , )mm  . The nominal values of story stiffness 

1 20,( , )K K  are proportional to the seismic shear coefficient 
defined by Japanese building code, which are listed in Table 2. 
The fundamental natural period of the frame is 1.6 sec. for the 
frame with nominal values of mass and stiffness. 

Seismic responses are evaluated for the design 
displacement response spectrum d ( , )S T h , which is defined 
by the natural period T  and the damping factor h of the 
frame as well as and the design acceleration response 
spectrum a ( , )S T h  defined as 

2

d a
2( , ) ( , )S T h S T h
T
π =  

 
                         (5) 

The following definition of a ( , )S T h  (m/s2) in Japanese 
building code with damping correction coefficient ( )H h is 
used: 
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which is plotted in Fig. 4 for 0.02h = , 0.05, and 0.10. 
 

 
Fig. 4. Deign acceleration response spectra for damping 

factors 0.02, 0.05, and 0.10. 
 
The extended CQC (complete quadratic combination) 

method [24, 25] is used for response evaluation of the 
structure with non-proportional damping matrix due to 
existence of viscous dampers in the stories. The maximum 
value among all stories of the maximum interstory drift is 
chosen as the representative response ( )g x . All 20 
eigenmodes are used for evaluation by the CQC method. 

Since uncertainty is considered for the vectors of mass, 
stiffness, and damping coefficient, which have 20 components, 
respectively, the vector θ  of uncertain parameters have 60 
components in total. Uniform distribution in the range of 

10%±  to the mean value in 20 stories is considered in each 
parameter. Hence, θ  is defined as 

( )1 60,,θ θ= ∈ Ωθ      (7) 

{ }1 60( , ) | 0.1 00.1 1, ,6; ,i iθ θ θΩ = − ≤ ≤ =    (8) 

The parameter is multiplied to each of the mean values of 
story mass, stiffness, and damping coefficient, and added to 
the nominal value as  
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Eigenvalue analysis is carried out for each solution with each 
set of 60 random parameter values to obtain the natural 
periods and eigenmodes. Then the representative response is 
computed using the CQC method. 

The multiobjective optimization problem is formulated as 
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where c  is the upper bound for the total value of damping 
coefficients.  
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(a) 

 
(b) 

Fig. 5.  Relation between maximum interstory drift and 
order k for nominal solution and three Pareto optimal 
solutions; (a) plot including nominal solution, (b) detailed plot 
of Pareto optimal solutions. 

 
Pareto optimal solutions are found using NSGA-II (non-

dominated sorting genetic algorithm II) [26] available in 
Global Optimization Toolbox of Matlab 2018a. The 
population size is 200, the number of generations is 117, and 
the elitist strategy is used; i.e., we have 200 solutions that may 
converge to Pareto optimal solutions. 

Optimization is carried out for 150n = , 20k = , and 
0.9α = ; therefore, as seen from Table 1(b), the robustness 

level γ  decreases from 0.985 to 0.831 as k is increased from 
1 to 20. Time-history analysis is carried out 150 times for 
each solution by generating 150 different sets of uncertain 
parameter values with uniform distribution. 

As a result of optimization, the 200 solutions converged to 
a set of 70 different Pareto optimal solutions. Among them, 
the values of 1, ,,( ), ( )n k nY Yx x



  of three Pareto optimal 
solutions A, B, and C are plotted in Fig. 5(a) and (b). Note 
that there are nine solutions, among the Pareto optimal 
solutions, that minimize , ( )k nY x  for different values of k in 1, 
…, 20.  

The nominal solution is defined so that all of the uncertain 
parameters have the nominal values in the process of 
optimization. Random parameter values are assigned for the 
nominal solution to compute 1, ,,( ), ( )n k nY Yx x



  as plotted in 
Fig. 5(a). As seen from the figure, the nominal solution is far 
from optimal, and obviously the responses of all orders have 
large values. 

 

 
(a) 

 

 
(b) 

Fig. 6.  Distributions of additional damping coefficients; 
(a) Pareto optimal solutions A, B, and C, (b) solution A and 

nominal solution. 
 
Fig. 5(b) shows the detailed view of the values of 

1, ,,( ), ( )n k nY Yx x


  of the three Pareto optimal solutions. 

Solution A has the smallest value for 1k =  among all 70 
Pareto optimal solutions; solution B has the smallest value for 

16, 18, 19k = ; and solution C for 2, , 6k =  . Solution C has 
the minimum variance of 1, ,,( ), ( )n k nY Yx x



  among 70 

solutions. Solutions A and B have small values if k  is small; 
however, decrease of , ( )k nY x  for larger k  is very small for 
these solutions. By contrast, for solution C, , ( )k nY x  has a 
large value if k  is small; however, it rapidly decreases as k  
is increased.  

The values of additional damping coefficients, which are 
the design variables, are plotted in Fig. 6(a) for the three 
Pareto optimal solutions. As seen in the figure, the three 
Pareto optimal solutions have a similar distribution with small 
difference in the middle stories. Optimal additional damping 
coefficients of solution A and the nominal solution are 
compared in Fig. 6(b). As seen from the figure, the nominal 
solution has smaller damping ratios in the upper stories and 
larger damping coefficients in the lower stories than the 
Pareto optimal solution. 

5.  Conclusions 

A new formulation of multiobjective optimization problem for 
robust design has been presented based on the distribution-
free tolerance interval of order statistics. If the parameter α  
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for the confidence of solution and the number of solutions are 
fixed, the order k of the solution corresponds to the parameter 
γ  related to the robustness of the solution. Therefore, the kth 
maximum value of the representative response may be 
regarded as an approximate worst response with the specified 
robustness level. Accordingly, the Pareto optimal solutions 
with various levels of robustness can be obtained by solving 
the multiobjective optimization problem of minimizing the 
representative responses with various order. 

Effectiveness of the proposed method has been 
demonstrated through the example of a 20-story shear frame 
subjected to seismic motions. The design variables are the 
additional damping coefficients due to the viscous dampers in 
the stories, and uncertainty is considered in the mass, stiffness, 
and the damping coefficient that is also the design variable. It 
is observed in the optimization results of minimizing 20 
largest response values obtained using the NSGA II that the 
optimal solution corresponding to the minimum response of 
each order in the Pareto optimal set depends on the order of 
response, which suggests that the optimal distribution of 
additional damping coefficients depends on the level of 
robustness to be specified by the designer. 
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Table 1.  Population quantile for order statistics of α = 0.9. 

(a) n = 100 
k 1 2 3 4 5 6 7 8 9 10 
γ 0.977 0.962 0.948 0.934 0.922 0.909 0.897 0.885 0.873 0.862 
k 11 12 13 14 15 16 17 18 19 20 
γ 0.850 0.839 0.827 0.816 0.805 0.794 0.783 0.772 0.761 0.750 

 
(b) n = 200 

k 1 2 3 4 5 6 7 8 9 10 

γ 0.989 0.981 0.974 0.967 0.960 0.954 0.948 0.942 0.936 0.930 

k 11 12 13 14 15 16 17 18 19 20 

γ 0.924 0.918 0.912 0.907 0.901 0.895 0.890 0.884 0.878 0.873 
 

 
Table 2.  Nominal values of story stiffness of shear frame model (×109 N/m). 

i 1 2 3 4 5 6 7 8 9 10 

iK  1.244 1.234 1.220 1.202 1.180 1.154 1.123 1.088 1.048 1.004 

i 11 12 13 14 15 16 17 18 19 20 

iK  0.955 0.901 0.841 0.777 0.706 0.629 0.545 0.452 0.347 0.223 
 
 

 
 


