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H2 Analysis of LTI Systems via Conversion to
Externally Positive Systems

Yoshio Ebihara

Abstract—Motivated by recent advances in the study of lin-
ear time-invariant (LTI) positive systems, we explore analysis
techniques of general, not necessarily positive, LTI systems
using positive system theory. Even though a positive systemis
characterized by its peculiar property that its impulse response is
nonnegative, we often deal with nonnegative impulse responses
even in general LTI system analysis. A typical example is the
computation of theH2 norm where we focus on squared impulse
responses. To deal with such products of impulse responses in a
systematic fashion, in this paper, we first establish a construction
technique of an LTI system whose impulse response is given by
the product of impulse responses of two different LTI systems.
Then, as the main result, we reduce theH2 norm computation
problem of a general LTI system into the L∞-induced norm
computation problem (or L1 problem in short) of a positive
system, by which we can derive various formulas for theH2

norm computation.

Index Terms—system conversion, positive system,H2 norm,
L∞-induced norm.

I. I NTRODUCTION

Analysis and synthesis of linear time-invariant (LTI) positive
systems have attracted growing attention recently. An LTI
system is said to be internally positive if its state and output are
nonnegative for any nonnegative initial state and nonnegative
input [9], [13]. Since internally positive systems frequently
appear in the fields of engineering, economics, chemistry,
pharmacy, etc., and since convex optimization works partic-
ularly well for the analysis and synthesis of internally positive
systems, intensive research efforts have been made along this
direction, see, e.g., [18], [19], [26], [11], [14], [23], [25], [2],
[16], [4], [8]. As remarkable results, it is known that theH∞

norm, theL1-induced norm, and theL∞-induced norm of an
LTI SISO internally positive system coincide with its steady
state gain and hence can be computed very efficiently. On the
other hand, as a milder class of positive systems, the class of
externally positive systems is also well known. An LTI system
is said to be externally positive if its output is nonnegative
for any nonnegative input under zero initial state [13], [9].
This property can be restated equivalently that its impulse
response is nonnegative. Due to this nonnegativity property,
again theL∞-induced norm of an LTI SISO externally positive
system can be computed exactly. We emphasize that the
exact computation ofL∞-induced norm of a general, not
necessarily positive system is very hard since we need to
integrate the absolute value of its impulse response (i.e.,we
need to compute theL1 norm of the impulse response and
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this is the reason why theL∞-induced norm computation
problem is sometimes called theL1 problem). When we deal
with positive systems, it is not necessary to take the absolute
value since the impulse response is inherently nonnegative, and
due to this nonnegativity property we can obtain an analytic
formula for theL∞-induced norm.

Even though an externally positive system is characterized
by the peculiar property that its impulse response is nonneg-
ative, we often deal with nonnegative impulse responses even
in general, not necessarily positive, LTI system analysis.A
typical example is the computation of theH2 norm where
we focus on squared impulse responses. This observation
motivates us to compute theH2 norm of general LTI systems
using positive system theory. To this end, we need to deal with
such products of impulse responses in a systematic fashion.
Therefore, in this paper, we first establish a construction
technique of an LTI system whose impulse response is given
by the product of impulse responses of two (different) LTI
systems. This enables us to construct an externally positive
system whose impulse response is the square of that of the
original system. Then, as the main result, we reduce theH2

norm computation problem of a general LTI system into the
L∞-induced norm computation problem (i.e.,L1 problem) of
an externally positive system, by which we derive a closed-
form formula for theH2 norm computation. As is expected,
this result is not necessarily new and can be viewed as an al-
ternative representation of the well-known Gramian-basedH2

norm characterization [27]. However, this treatment enables
us to derive various formulas for theH2 norm computation
and they are novel to the best of the author’s knowledge. In
particular, we derive a novel linear matrix inequality (LMI)
for the H2 norm computation by newly deriving an LMI
for the L∞-induced norm computation of externally positive
systems, where we fully rely on duality-based arguments [17],
[20], [15], [6]. Our results clarify that positive system theory
works well for the computation of theH2 norm of general
LTI systems, and this sheds new light on theH2 analysis of
LTI systems.

We use the following notation. We denote byR andR+ the
set of real and nonnegative real numbers, respectively. Theset
of Hurwitz stable matrices of sizen is denoted byHn. The set
of symmetric, positive semidefinite, and positive definite ma-
trices of sizen are denoted bySn, Sn+, andSn++, respectively.
For A ∈ Rn×n, we denote byσ(A) the set of the eigenvalues
of A andHe{A} := A+AT . For a vectorv ∈ Rn, we denote
by ‖v‖∞ its ∞-norm, i.e.,‖v‖∞ = maxi |vi|. For a vector
function v : R+ → Rn, we denote by‖v‖∞ its L∞-norm,
i.e., ‖v‖∞ = sup0≤t<∞ ‖v(t)‖∞. For A1 ∈ Rn1×m1 and
A2 ∈ Rn2×m2 , we denote byA1⊗A2 their Kronecker product.
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For A1 ∈ Rn1×n1 andA2 ∈ Rn2×n2 , we denote byA1 ⊕ A2

their Kronecker sum, i.e.,A1 ⊕ A2 := A1 ⊗ In2
+ In1

⊗A2.

II. PRELIMINARIES AND MOTIVATION

Let us consider the LTI systemG described by

G :

{
ẋ(t) = Ax(t) +Bw(t),
z(t) = Cx(t),

A ∈ R
n×n, B ∈ R

n×m, C ∈ R
l×n.

(1)

The transfer function and the impulse response of the system
G are given respectively by

G(s) =

[
A B

C 0

]
= C(sI −A)−1B, (2)

g(t) = C exp(At)B (t ≥ 0). (3)

The definition of external positivity for the systemG and a
related result are now reviewed.
Definition 1: [9], [13] The systemG given by (1) is said
to be externally positive if its output is nonnegative for any
nonnegative input under zero initial state.
Proposition 1: [9], [13] The systemG given by (1) is
externally positive if and only if its impulse responseg given
by (3) is nonnegative, i.e.,g(t) ≥ 0 (∀t ≥ 0).

On the other hand, the definitions of theH2 and theL∞-
induced norms of the systemG are given as follows.
Definition 2: [27] Suppose the LTI systemG given by (1) is
asymptotically stable, i.e.,A ∈ Hn. Then, theH2 norm ofG
is defined by

‖G‖2 :=

√∫ ∞

0

trace(g(t)T g(t))dt

=

√√√√
∫ ∞

0

l∑

i=1

m∑

j=1

gij(t)2dt

(4)

whereg is the impulse response ofG given by (3).
Definition 3: Suppose the LTI systemG given by (1) is
asymptotically stable. Then, theL∞-induced norm ofG is
defined by
‖G‖∞,∞ := sup

‖w‖∞≤1

‖z‖∞. (5)

On the basis of the above preliminaries, we now clarify the
motivation and the goal of this paper. For the case whereG

is stable and SISO (i.e.,m = l = 1), we have from (4) that

‖G‖2 =

√∫ ∞

0

g(t)2dt. (6)

It is also elementary to verify that

‖G‖∞,∞ =

∫ ∞

0

|g(t)|dt.

Namely, theL∞-induced norm‖G‖∞,∞ coincides with theL1

norm of the impulse responseg. In particular, if the system
G is externally positive, the above integration can be done by
skipping the operation of taking the absolute value and hence
we readily obtain

‖G‖∞,∞ =

∫ ∞

0

g(t)dt = −CA−1B. (7)

The relationship between (6) and (7) clearly shows that, if
we can construct an externally positive and stable LTI system
Gsq with impulse responseg2 from a given stable LTI system
G with impulse responseg, we can compute theH2 norm
‖G‖2 by the closed-form formula (7) using the coefficient
matrices ofGsq. The goal of this paper is to establish such a
system operation technique to convert a given LTI system into
an externally positive system, by which we can derive various
closed-form formulas for theH2 norm computation of general
LTI systems. As clarified later on, one of such closed-form
formulas can be viewed as an alternative representation of the
well-known Gramian-basedH2 norm characterization [27].

III. CONVERSION TOEXTERNALLY POSITIVE SYSTEMS

In this section, we first establish a system operation tech-
nique by which we can construct an LTI system whose impulse
response is given by the product of impulse responses of two
(different) LTI systems. The next theorem provides such a
system operation, where we rely on the useful properties of
the Kronecker product [12].
Theorem 1: Let us consider LTI SISO systemsG1 andG2

given respectively by

G1(s) =

[
A1 B1

C1 0

]
, A1 ∈ R

n1×n1 ,

G2(s) =

[
A2 B2

C2 0

]
, A2 ∈ R

n2×n2 .

(8)

The impulse responses ofG1 andG2 are given respectively
by
g1(t) = C1 exp(A1t)B1 (t ≥ 0),
g2(t) = C2 exp(A2t)B2 (t ≥ 0).

Then, the LTI SISO systemGpr defined by

Gpr(s) =

[
Apr Bpr

Cpr 0

]
:=

[
A1 ⊕A2 B1 ⊗ B2

C1 ⊗ C2 0

]

has the impulse response of the form
gpr(t) = g1(t)g2(t) (t ≥ 0). (9)

Proof of Theorem 1: It is elementary to see that

exp(Aprt) = exp ((A1 ⊕ A2)t)
= exp ((A1 ⊗ In2

+ In1
⊗A2)t)

= exp((A1t)⊗ In2
) exp(In1

⊗ (A2t))
= (exp(A1t)⊗ In2

)(In1
⊗ exp(A2t))

= exp(A1t)⊗ exp(A2t).

It follows that for t ≥ 0 we have

gpr(t)=Cpr exp(Aprt)Bpr

= (C1 ⊗ C2)((exp(A1t)⊗ exp(A2t))(B1 ⊗ B2)
= (C1 exp(A1t)B1)(C2 exp(A2t)B2)
= g1(t)g2(t).

This completes the proof.
The next corollary directly follows from Theorem 1.

Corollary 1: Let us consider an LTI SISO systemsG given
by (1) with impulse response (3). Then, the LTI SISO system
Gsq defined by

Gsq(s) =

[
Asq Bsq

Csq 0

]
:=

[
A⊕A B ⊗B

C ⊗ C 0

]
(10)

has the impulse response of the form
gsq(t) = g(t)2 (t ≥ 0). (11)
This corollary shows that we can construct an externally

positive and stable LTI systemGsq with impulse response
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g2 from a given stable LTI systemG with impulse response
g. Note thatAsq = A ⊕ A ∈ Hn2

holds if and only if
A ∈ H

n holds. This can be readily verified sinceσ(Asq) =
{λi + λj : λi, λj ∈ σ(A)}. See [12] for details.

IV. H2 NORM CHARACTERIZATION VIA

REDUCTION TOL1 PROBLEM

A. SISO Case

For the case where the LTI systemG given by (1) is SISO,
the next result readily follows from (6), (11), (7), and (10).
Lemma 1: Suppose the LTI systemG given by (1) is
asymptotically stable and SISO, i.e.,m = l = 1. Then, we
have
‖G‖2 =

√
‖Gsq‖∞,∞

=
√
−(C ⊗ C)(A⊕ A)−1(B ⊗ B)

(12)

where the systemGsq is given by (10).

B. MIMO Case

To deal with the case where the systemG given by (1) is
MIMO, let us partitionB ∈ Rn×m andC ∈ Rl×n as

B = [ B1 · · · Bm ] , C =
[
CT

1 · · · CT
l

]T
. (13)

Namely,Bj (j = 1, · · · ,m) stands for thej-th column ofB,
andCi (i = 1, · · · , l) stands for thei-th row of C. Then, it
is straightforward to see from (12) that
∫ ∞

0

gij(t)
2dt = −(Ci ⊗ Ci)(A⊕A)−1(Bj ⊗ Bj). (14)

With this in mind, let us define a SISO externally positive
systemGsq as

Gsq(s) =

[
Asq Bsq

Csq 0

]

:=




A⊕A

m∑

j=1

Bj ⊗Bj

l∑

i=1

Ci ⊗ Ci 0



.

(15)

We note that (15) reduces to (10) whenm = l = 1, andGsq

given above is certainly an externally positive system since its
impulse responsegsq is nonnegative as

gsq(t) =

(
l∑

i=1

Ci ⊗ Ci

)
exp((A⊕A)t)




m∑

j=1

Bj ⊗ Bj




=

l∑

i=1

m∑

j=1

(Ci ⊗ Ci) exp((A⊕A)t)(Bj ⊗Bj)

=

l∑

i=1

m∑

j=1

gij(t)
2 (t ≥ 0).

(16)

By using (15) and (16) we can readily obtain the next
theorem that is the first main result of this paper.
Theorem 2: Suppose that the LTI systemG given by (1) is
asymptotically stable. Then, we have

‖G‖2 =
√
‖Gsq‖∞,∞

=

√√√√√−
(

l∑

i=1

Ci ⊗ Ci

)
(A⊕A)−1




m∑

j=1

Bj ⊗Bj




(17)

where the systemGsq is given by (15).
Proof of Theorem 2: The result (17) readily follows from
(4), (16), (7), and (15) as

‖G‖2 =

√√√√
∫ ∞

0

l∑

i=1

m∑

j=1

gij(t)2dt

=

√∫ ∞

0

gsq(t)dt

=

√√√√√−
(

l∑

i=1

Ci ⊗ Ci

)
(A⊕A)−1




m∑

j=1

Bj ⊗Bj


.

This theorem clearly shows that theH2 norm of an n-
dimensional LTI system can be obtained by computing the
L∞-induced norm (i.e., by solving theL1 problem) of ann2-
dimensional SISO externally positive LTI system. In partic-
ular, the result (17) provides a closed-form formula for the
computation of theH2 norm of LTI systems.

V. CONNECTION TO GRAMIAN -BASED

H2 NORM COMPUTATION

A. Controllability and Observability Gramians

In the last section we derived the closed-form formula (17)
for theH2 norm computation. It is expected that this formula
is an alternative representation of the well-known Gramian-
basedH2 norm characterization [27]. For the stable systemG

given by (1), recall that

‖G‖22 = trace(CXCT ) (18)

holds whereX ∈ Sn+ is the controllability Gramian determined
as the unique solution of the Lyapunov equation

AX +XAT +BBT = 0. (19)

From [12], we see that the controllability GramianX is given
by

vec(X) = −(A⊕A)−1




m∑

j=1

(Bj ⊗ Bj)


 (20)

wherevec(X) ∈ Rn2

is the column-expansion ofX. It is also
true that

trace(CXCT ) =

(
l∑

i=1

(Ci ⊗ Ci)

)
vec(X).

Therefore we can conclude that (17) also follows from the
standard Gramian-based approach. Here, if we apply (17) to
the dual systemGd given by

Gd(s) =

[
AT CT

BT 0

]
, (21)

we can readily obtain an alternative representation of theH2

norm as
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‖G‖2 =

√√√√√−




m∑

j=1

BT
j ⊗ BT

j


 (AT ⊕AT )−1

(
l∑

i=1

CT
i ⊗ CT

i

)
. (22)

Again, we can verify that this result follows from the standard
approach based on the observability Gramian. To summarize,
the closed-form formulas (17) and (22) can be viewed as
alternative representations of the well-known Gramian-based
H2 norm characterizations.

B. Cross Gramian

In the preceding section we derived Theorem 2 by focusing
on the squared impulse responseg(t)2 as shown in Corollary 1
and Lemma 1. However, in view of the treatments of MIMO
systems, it is natural to considerg(t)g(t)T or g(t)T g(t),
even if these are of course identical tog(t)2 in SISO cases.
This treatment leads us to another formula for theH2 norm
computation.

To see this, let us focus ong(t)T g(t). Then we readily
obtain the next corollary and lemma from Theorem 1 and (7),
respectively.
Corollary 2: Let us consider an LTI SISO systemsG given
by (1) with impulse response (3). Then, the LTI SISO system
Gip defined by

Gip(s) =

[
Aip Bip

Cip 0

]
:=

[
AT ⊕A CT ⊗B

BT ⊗ C 0

]
(23)

has the impulse response of the form
gip(t) = g(t)T g(t) (t ≥ 0). (24)

Lemma 2: Suppose the LTI systemG given by (1) is
asymptotically stable and SISO. Then, we have

‖G‖2 =
√
‖Gip‖∞,∞

=
√
−(BT ⊗ C)(AT ⊕A)−1(CT ⊗B)

(25)

where the systemGip is given by (23).
We can further rewrite theH2 norm characterization in this

lemma. If we trace back the arguments around (19) and (20),
it is not hard to see that−(AT ⊕ A)−1(CT ⊗ B) = vec(F )
holds whereF ∈ Rn×n is the column expansion of the unique
solution for the Sylvester equationAF+FA+BC = 0. On the
other hand, we can readily obtain(BT ⊗C)vec(F ) = CFB.
To summarize, we see that the next result holds.
Lemma 3: Suppose the LTI systemG given by (1) is
asymptotically stable and SISO. Then, we have
‖G‖2 =

√
CFB (26)

whereF is the unique solution of the Sylvester equation
AF + FA+BC = 0. (27)

Remark 1: The matrixF that satisfies the Sylvester equation
(27) is called the cross-Gramian [10] and theH2 norm
characterization (26) is also known [10]. At a quick glance,
it must be hard (or at least not easy) to see thatCFB given
by (26) and (27) is nonnegative. From the viewpoint of the
present paper, however, it is easy to see that this nonnegativity
is ensured by the external positivity of the systemGip defined
by (23).

The rest of this subsection is devoted to the extension of
the results in Lemma 3 to MIMO cases. To achieve this, let
us focus on the partition (13). Then, from Lemma 3, we can
readily see that

∫ ∞

0

gij(t)
T gij(t)dt = CiFijBj

whereFij (i = 1, · · · , l, j = 1, · · · ,m) is the unique solution
of the Sylvester equationAFij + FijA+BjCi = 0. We thus
obtain the next theorem that provides another formula for the
H2 norm computation of LTI MIMO systems.
Theorem 3: Suppose that the LTI systemG given by (1) is
asymptotically stable. Then, we have

‖G‖2 =

√√√√
l∑

i=1

m∑

j=1

CiFijBj (28)

whereFij (i = 1, · · · , l, j = 1, · · · ,m) is the unique solution
of the Sylvester equation
AFij + FijA+ BjCi = 0. (29)

Remark 2: Let us apply the result in Theorem 3 to the dual
systemGd given by (21). Then, from the elementary fact that
‖G‖2 = ‖Gd‖2, we have

‖G‖2 =

√√√√
m∑

j=1

l∑

i=1

BT
j JjiC

T
i

(30)

whereJji (i = 1, · · · , l, j = 1, · · · ,m) is the unique solution
of the Sylvester equation
ATJji + JjiA

T + CT
i B

T
j = 0. (31)

However, by comparing (29) and (31), it is clear thatJji = FT
ij

and hence (30) reduces to (28). Namely, the dual system repre-
sentation leads to the same characterization as the original sys-
tem representation. This is in stark contrast with the Gramian-
basedH2 norm characterizations [27] where the dual system
leads to different (observer-Gramian-based) characterization.

VI. N EW FORMULAS VIA LMI

It is well known that the systemG given by (1) is asymp-
totically stable and satisfies‖G‖2 < γ if and only if there
exists X ∈ Sn++ such thatAX + XAT + BBT ≺ 0 and
trace(CXCT ) < γ2, see, e.g., [24]. This LMI characterization
is useful in dealing with a wide variety of problems, including
robustH2 performance analysis of LTI systems affected by
parametric uncertainties [3]. This motivates us to explore
another LMI-based characterization of‖G‖2 on the basis of
the externally positive system representation (15). From (17),
such an LMI can readily be obtained if we characterize the
L∞-induced norm of SISO externally positive systems by
LMIs. We can indeed derive such LMIs as we see in the next
theorem.
Theorem 4: Suppose the LTI systemG given by (1) is SISO
and externally positive. Then, for a givenγ > 0, the next
conditions are equivalent.

(i) A ∈ Hn and‖G‖∞,∞ = G(0) < γ.
(ii) There existsP ∈ Sn++ such that[

PA+ATP PB + CT

BTP + C −2γ

]
≺ 0. (32)

(iii) There existsX ∈ Sn++ such that[
AX +XAT XCT +B

CX +BT −2γ

]
≺ 0. (33)

Remark 3: Most of existing studies on positive system anal-
ysis using LMIs are restricted to internally positive systems
[19], [4], [25], [7]. This is because we can make good use
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of internal positivity to derive new LMI conditions. In stark
contrast, in Theorem 4, we deal with externally positive
systems and the LMI results (32) and (33) are new to the best
of the author’s knowledge. For the proof of Theorem 4, we
follow the duality-based arguments [17], [20], [15], [6] and at
the final stage of the proof we make good use of the external
positivity. See Appendix A for details. From Lemma 4 given
there, we see that Theorem 4 is still valid even if we replace
(i) with “A ∈ Hn and ‖G‖∞ < γ,” i.e., the LMIs (32) and
(33) also characterize theH∞ norm of the externally positive
systemG.
Remark 4: The LMI (32) can be rewritten as

He

{[
P 0
0 1

]
Aa(γ)

}
≺ 0, Aa(γ) :=

[
A B

C −γ

]
.

It follows that (i) holds if only if Aa(γ) admits a block-
diagonal Lyapunov matrix of the formdiag(P, 1). On the other
hand, ifG is internally positive, then (i) holds if and only if
Aa(γ) admits a purely diagonal Lyapunov matrix [4], [18].
In the next section, we show by numerical examples on an
externally positive system thatAa(γ) does not admit diagonal
Lyapunov matrices even if (i) holds. Namely, there is a certain
gap between internal and external positive systems.

The next corollary, which provides new LMIs that char-
acterize theH2 norm of the systemG given by (1), readily
follows from (15) and Theorems 2 and 4.
Corollary 3: Let us consider the LTI systemG given by (1).
Then, for a givenγ > 0, the next conditions are equivalent.
(i) A ∈ Hn and‖G‖2 < γ.
(ii) There existsP ∈ S

n2

++ such that[
PAsq +AT

sqP PBsq + CT
sq

BT
sqP + Csq −2γ2

]
≺ 0. (34)

(iii) There existsX ∈ Sn
2

++ such that[
AsqX +XAT

sq XCT
sq + Bsq

CsqX +BT
sq −2γ2

]
≺ 0. (35)

Here,Asq ∈ Rn2×n2

, Bsq ∈ Rn2×1, andCsq ∈ R1×n2

are
defined in (15).

In the new LMIs (34) and (35), the size of the Lyapunov
matrix is n2 while in the standard LMI [24] the size isn as
quickly reviewed at the beginning of this section. Therefore,
the LMIs (34) and (35) are computationally more demanding
than the standard LMIs. However, the extra freedom of the
Lyapunov matrix of sizen2 works fine, e.g., in deriving tighter
upper bounds for the worst caseH2 performance analysis
problems of LTI systems affected by parametric uncertainties.

Another possible application of Corollary 3 is the state-
feedbackH2 control problem of positive systems. The problem
is to design a state-feedback controller so that the closed-loop
system remains positive and itsH2 norm is minimized. To the
best of the author’s knowledge, this is an open problem, and
no convex (SDP) formulation is known. We expect that we
can obtain numerically tractable conditions for this problem
along the lines of Corollary 3. Rigorous treatments of these
problems are future research topics.

VII. N UMERICAL EXAMPLES

Let us consider the case where the coefficient matrices of
the systemG given by (1) are

A =




−0.8 −0.1 −0.6
0.5 −0.3 −0.7

−0.2 0.1 0


 , B =




−0.7 0.2
−0.5 −0.5
0.7 −0.3


 ,

C =

[
0.4 0 −0.2
0.6 −0.4 −0.5

]
.

Note thatσ(A) = {−0.9140,−0.0930 ± 0.2477j} and hence
A ∈ H3. To confirm the validity of Theorems 2, 3, and
Corollary 3, we computed‖G‖2 by these three methods. Then,
we obtained‖G‖2 = 1.6673 for every case as expected. When
applying Corollary 3, we solved the SDP infimizingγ2 subject
to the LMI (34). If we solve this SDP under the additional
constraint thatP is diagonal, we obtainedγ = 405.9977. This
result clearly shows that diagonal Lyapunov matrices cannot
provide the exact result.

VIII. C ONCLUSION

In this paper, we showed a system operation technique by
which we can construct an LTI system whose impulse response
is given by the product of impulse responses of two different
LTI systems. On the basis of this system operation technique,
we showed that theH2 norm of an LTI system can be obtained
by computing theL∞-induced norm of an externally-positive
SISO LTI system. By this problem reduction, we derived
various formulas for theH2 norm computation of LTI systems.

Even though we have concentrated our attention on the
H2 norm computation, we expect that the system operation
technique proposed in this paper is useful for the computation
of the peak value of the impulse responses as well. To the
best of the author’s knowledge, exact computation of the peak
value is hard, and only its upper bound can be computed using
SDPs [22], [5]. By using the system operation, it is expected
that we can obtain tighter upper bounds by solving SDPs. This
topic is currently under investigation.
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APPENDIX A
PROOF OFTHEOREM 4

For the proof we need the next lemma.
Lemma 4: Suppose the LTI systemG given by (1) is SISO,
externally positive, and asymptotically stable. Then, we have
G(0) ≥ |G(jω)| (∀ω ∈ R).
Proof of Lemma 4: For a givenω ∈ R, let us apply the
nonnegative inputw(t) = 1 + sinωt to the systemG. Then,
sinceG is stable, the corresponding output at the steady-state
is of the formz(t) = G(0) + |G(jω)| sin(ωt+ θω). SinceG
is externally positive, we havez(t) ≥ 0 (t ≥ 0) and hence
G(0) ≥ |G(jω)| holds. This completes the proof.

We are now ready to state the proof of Theorem 4. Since the
equivalence of (ii) and (iii) readily follows via an elementary
congruence transformation, we prove (i)⇔ (ii).
(i)⇐(ii): Suppose (ii) holds. Then, it is clear thatA ∈ Hn.
Moreover, it should be noted that (32) can be rewritten
equivalently as
[

0 CT

C −2γ

]
+He

{[
P

0

] [
A B

]}
≺ 0. (36)

Then, multiplying by [ −BTA−T 1 ] from left and by its
transpose from right, we have−CA−1B−BTA−TCT −2γ <

0 or equivalently,G(0) < γ. This completes the proof.

(i)⇒(ii): For the proof we actually prove that (i)⇒(ii)’ holds
where the statements of (ii)’ is as follows.

(ii)’ There existsP ∈ Sn such that (32) holds.

Once (i)⇒(ii)’ is validated, we haveA ∈ Hn and PA +
ATP ≺ 0 and henceP ∈ S

n
++ follows. Namely, we can

conclude that (i)⇒(ii) holds.
To prove (i)⇒(ii)’ by contradiction, suppose (ii)’ does not

hold. Then, from the LMI duality [1], [3], [21], there exists
H ∈ S

n+1
+ \ {0} such that

trace

([
PA+ ATP PB + CT

BTP + C −2γ

]
H

)
≥ 0 ∀P ∈ S

n.(37)

If we partition H as

H =:

[
H11 H12

HT
12 H22

]
, H11 ∈ S

n
+, H22 ∈ R+,

we can restate (37) equivalently as

trace
(
PHe{AH11 +BHT

12}
)
≥ 0 ∀P ∈ S

n,

CH12 − γH22 ≥ 0.
(38)

The above condition holds if and only if

He{AH11 + BHT
12} = 0, CH12 − γH22 ≥ 0. (39)

This implies thatH11 6= 0 since otherwise we haveH11 = 0,
H12 = 0 from H ∈ S

n+1
+ and hence the second inequality

above does not hold due toH22 > 0. It is also true that
H12 6= 0 since otherwise we have

He{AH11} = 0, H11 ∈ S
n
+ \ {0}.

This clearly contradictsA ∈ H
n. Therefore it suffices to

consider the case whereH11 6= 0, H12 6= 0, and hence
H22 6= 0 as well.

With this in mind, let us consider the full-rank factorization
of H as

H =:

[
H1

H2

] [
H1

H2

]T
, H1 ∈ R

n×rH , H2 ∈ R
1×rH . (40)

If H1 is not of full-column rank, there exists an orthogonal
matrix V ∈ R

rH×rH such that[
Ĥ1 0

Ĥ2,1 Ĥ2,2

]
:=

[
H1

H2

]
V

whereĤ1 is of full-column rank. We note that̂H2,1 6= 0 since
otherwiseH12 = 0. Then, if we define

Ĥ =

[
Ĥ1

Ĥ2,1

][
Ĥ1

Ĥ2,1

]T (
=

[
H11 H12

HT
12 Ĥ22

])
,

0 < Ĥ22 ≤ H22,

it is very clear from (39) that

He{AĤ11 + BĤT
12} = 0, CĤ12 − γĤ22 ≥ 0. (41)

To summarize, we can assume w.l.o.g. thatH1 is of full-
column rank in (39) and (40). From linearity, it is also true
that we can assume w.l.o.g. thatH22 = 1.

We now move on to the final stage for the proof. We first
note that the first equation in (39) can be rewritten, equiva-
lently, asHe

{
(AH1 +BH2)H

T
1

}
= 0. SinceH1 ∈ Rn×rH
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is of full column rank, this equation holds if and only if
there exists a skew symmetric matrixΩ ∈ RrH×rH such that
AH1 + BH2 = H1Ω holds [5]. SinceΩ is skew symmetric,
its spectral factorization is given by

Ω = UΛU∗,

Λ = diag(jω1, · · · , jωrH ), ωi ∈ R (i = 1, · · · , rH)

whereU ∈ CrH×rH is a unitary matrix. If we define

H̄1 := H1U = [ f1, · · · , frH ], fi ∈ C
n,

H̄2 := H2U = [ g1, · · · , grH ], gi ∈ C,

we can readily obtain fromAH1 + BH2 = H1Ω that

AH̄1 +BH̄2 = H̄1Λ
⇒ Afi + Bgi = jωifi (i = 1, · · · , rH)
⇒ fi = (jωiI −A)−1Bgi (i = 1, · · · , rH).

(42)

Here, it suffices to consider the casejωi 6∈ σ(A) (i =
1, · · · , rH) as above since, ifjωi ∈ σ(A), this contradicts
A ∈ Hn in (i). On the other hand, fromCH12 − γ ≥ 0, we
readily obtainC[ f1, · · · , frH ][ g1, · · · , grH ]∗ ≥ γ. From
(42) andH22 = 1, it turns out that

rH∑

i=1

C(jωiI − A)−1Bgig
∗
i ≥ γ,

rH∑

i=1

gig
∗
i = 1

or equivalently,
rH∑

i=1

G(jωi)gig
∗
i ≥ γ,

rH∑

i=1

gig
∗
i = 1.

This clearly shows that
rH∑

i=1

|G(jωi)|gig∗i ≥ γ,

rH∑

i=1

gig
∗
i = 1.

SinceG(0) ≥ |G(jωi)| (i = 1, · · · , rH) holds from Lemma 4,
we obtain

rH∑

i=1

G(0)gig
∗
i ≥ γ,

rH∑

i=1

gig
∗
i = 1

or equivalently,G(0) ≥ γ. This clearly contradicts (i). We
thus complete the proof.


