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Abstract—Motivated by recent advances in the study of lin- this is the reason why thé .-induced norm computation
ear time-invariant (LTI) positive systems, we explore anasis problem is sometimes called thg problem). When we deal
techniques of general, not necessarily positive, LTI systes iy nositive systems, it is not necessary to take the absolu
using positive system theory. Even though a positive systeiis | : the i | i< inh i .
characterized by its peculiar property that its impulse regonse is value S'm?e € 1mpu Se response Is inherently nqnneg .
nonnegative, we often deal with nonnegative impulse respsas due to this nonnegativity property we can obtain an analytic
even in general LTI system analysis. A typical example is the formula for the L,-induced norm.
computation of the H, norm where we focus on squared impulse  Even though an externally positive system is characterized
responses. To deal with such products of impulse responseas & by the peculiar property that its impulse response is nonneg

systematic fashion, in this paper, we first establish a conatction ti ften deal with tive i |
technique of an LTI system whose impulse response is given b ative, we often deal with nonnegative Impuise responses eve

the product of impulse responses of two different LTI systers. N general, not necessarily positive, LTI system analyAis.
Then, as the main result, we reduce thell, norm computation typical example is the computation of thé; norm where
problem of a general LTI system into the L.-induced norm we focus on squared impulse responses. This observation
computation problem (or L1 problem in short) of a positive  ntivates us to compute thé, norm of general LTI systems
system, by which we can derive various formulas for theH> - " . .
norm computation. using positive systfam theory. To this end, we need to. dedl Wlt
such products of impulse responses in a systematic fashion.
Therefore, in this paper, we first establish a construction
technique of an LTI system whose impulse response is given
by the product of impulse responses of two (different) LTI
[. INTRODUCTION systems. This enables us to construct an externally pesitiv

Analysis and synthesis of linear time-invariant (LTI) goe  SyStem whose impulse response is the square of that of the
systems have attracted growing attention recently. An LPfiginal system. Then, as the main result, we reduceHhe
system is said to be internally positive if its state and atigse NOrM computation problem of a general LTI system into the
nonnegative for any nonnegative initial state and nonmegat L~-induced norm computation problem (i.&; problem) of
input [9], [13]. Since internally positive systems fregtlgn an externally positive system, by whlch we de.rlve a closed-
appear in the fields of engineering, economics, chemistig{m formula for theH, norm computation. As is expected,
pharmacy, etc., and since convex optimization works partit!S rgsult is not necgssarlly new and can be wgwed as an al-
ularly well for the analysis and synthesis of internally itiee ~ ternative representation of the well-known Gramian-baSd
systems, intensive research efforts have been made alang M characterization [27]. However, this treatment eesbl
direction, see, e.g., [18], [19], [26], [11], [14], [23],58 [2], US tO derive various formulas for thH, norm computation
[16], [4], [8]. As remarkable results, it is known that th&,, and they are novel to the best of the author’'s knowledge. In
norm, theL,-induced norm, and thé&._-induced norm of an particular, we derive a novel linear matrix inequality (LMI
LTI SISO internally positive system coincide with its stgadfor the H» norm computation by newly deriving an LMI
state gain and hence can be computed very efficiently. On fRE the Loc-induced norm computation of externally positive
other hand, as a milder class of positive systems, the classSystems, where we fully rely on duality-based argument [17
externally positive systems is also well known. An LTI syste [20], [15], [6]. Our results clarify that positive systemetiry
is said to be externally positive if its output is nonnegativWorks well for the computation of thé/, norm of general
for any nonnegative input under zero initial state [13].. [91;I systems, and this sheds new light on tHg analysis of
This property can be restated equivalently that its impulsd! Systems. _ _
response is nonnegative. Due to this nonnegativity prgpert e use the following notation. We denote ByandR , the
again thel..-induced norm of an LTI SISO externally positiveS€t Of real and nonnegative real numbers, respectivelysghe
system can be computed exactly. We emphasize that gfdHurwitz stable matrices of size is denoted byH". The set
exact computation ofL..-induced norm of a general, notof symme_tric, positive semidefinite, and positive definita-m
necessarily positive system is very hard since we need lfiges Of sizen are denoted b§", S't, andS? |, respectively.
integrate the absolute value of its impulse response ie., FOr 4 € R™*", we denote by (A) the set of the eigenvalues

need to compute thé; norm of the impulse response andf 4 andHe{A} := A+ A”. For a vectow € R", we denote
by ||v|leo its co-norm, i.e.,||v]| = max;|v;|. For a vector
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For A; € R™*™ and A, € R"2*"2 we denote byd; & A, The relationship between (6) and (7) clearly shows that, if
their Kronecker sum, i.ed; ® Ay := 4, ® I,,, + I,,, ® As. we can construct an externally positive and stable LTI sgste
Gsq With impulse responsg? from a given stable LTI system
G with impulse responsg, we can compute théf, norm

Il. PRELIMINARIES AND MOTIVATION . -
IGll2 by the closed-form formula (7) using the coefficient

Let us consider the LTI systei@ described by matrices ofG,. The goal of this paper is to establish such a
i(t) = Ax(t)+ Buw(t), system operation't.echnique to convgrt a given LTI s'ystem.int
G: At) = Ca(t) 1) an externally positive system, by which we can derive variou

X nxm Ixn closed-form formulas for thél, norm computation of general
AERY", BeR™™, CeR™™ LTI systems. As clarified later on, one of such closed-form
The transfer function and the impulse response of the systérmulas can be viewed as an alternative representationeof t

G are given respectively by well-known Gramian-basedl, norm characterization [27].
G(s) = { g jg ] =C(sI — A)7'B, (2)  lll. CONVERSION TOEXTERNALLY POSITIVE SYSTEMS
In this section, we first establish a system operation tech-
g(t) = Cexp(At)B (t > 0). (3)  nique by which we can construct an LTI system whose impulse

The definition of external positivity for the syste6i and a [€SPONSe is given by the product of impulse responses of two
related result are now reviewed. (different) LTI systems. The next theorem provides such a

Definition 1: [9], [13] The systemG given by (1) is said system operation, where we rely on the useful properties of

to be externally positive if its output is nonnegative foryantne Kronecker product [12].

nonnegative input under zero initial state. Theorem 1. Let us consider LTI SISO systen, and G,

Proposition 1: [9], [13] The systemG given by (1) is given respectE/erBby

externally positive if and only if its impulse respongagiven Gi(s) = Cl Tl , A e Rmxm

by (3) is nonnegative, i.eg(t) > 0 (V¢ > 0). ! ®)
On the other hand, the definitions of tfi& and theL..- Ga(s) = Ay | By . Ay € R™2XM2,

induced norms of the systetd are given as follows. The i | Cy | O ot dc . ivel

Definition 2: [27] Suppose the LTI syster®¥ given by (1) is € Impulse responses o, and G are given respectively

asymptotically stable, i.eA € H". Then, theH,; norm of G g1(t) = Crexp(Ait) B, (¢ > 0),

o cetneaty o ThQ(t) h_ CIV_QT?XSI%AOMB2 (fﬂ% 021 fined b
o T en, the systerty,,, defined by
IGlla = \// trace(g(t)Tg(t))dt Gos) = Ap | B ] [ A1© A | Bi®B,
@ e Coe | 0 | " | CieCa| 0
/ Z Zg has the |mpulse response of the form
Ly 29 gor(t) = 1 (Dga(t) (¢ > 0). ©
whereg is the impulse response ¢t given by (3). Proof of Theorem 1: It is elementary to see that
Definition 3: Suppose the LTI systend: given by (1) is exp(Apt) = exp((4A1 @ A2)t)
asymptotically stable. Then, thé..-induced norm ofG is = exp((A1 @I, +I,, ® As)t)
defined by = exp((A1t) ® Ip,) exp(l,, ® (Aat))
[Glloc,00 == sup |[[z]|oo- (5) = (exp(A1t) ® In,)(In, ® exp(Aat))
l[wlleo <1 Lo . = exp(4;it) ® exp(Aat).

On the basis of the above preliminaries, we now clarify the
motivation and the goal of this paper. For the case wiggre It follows that for¢ > 0 we have
is stable and SISO (i.em = = 1), we have from (4) that Gpr(t) = Cpr exp(Apet) By,
= (C1 ® C2)((exp(A1t) ® exp(Aszt)) (B @ B)

1Gllz = / g(t)2dt. ©) — (Cy exp(A1t) By )(Cs exp(Ast) Ba)
0 = g1(t)ga(t).
It is also elementary to verify that This completes the proof. m
oo The next corollary directly follows from Theorem 1.
[Glloo,00 = /0 lg(t)]dt. Corollary 1: Let us consider an LTI SISO systens given

. o . by (1) with impulse response (3). Then, the LTI SISO system
Namely, theL ..-induced normj| G|, coincides with thel; G, defined by

norm of the impulse responsg In particular, if the system . | B, Ao A | BB

G is externally positive, the above integration can be done byGsq(s) = Cug > Oq =\l CceC 0 (10)
skipping the operation of taking the absolute value and éengas the |mpulse response of the form

we readily obtain gsq(t) = g(t)* (t > 0). (11)

100 . This corollary shows that we can construct an externally
1Gloo,00 /O (t)dt = —CA™'B. ) positive and stable LTI systert’s, with impulse response



g> from a given stable LTI syster® with impulse response

g. Note thatA,, = A@® A € H" holds if and only if
A € H" holds. This can be readily verified sineg¢A,,) =
{ANi+ X A\ €0(A)}. See [12] for details.

IV. Hy NORM CHARACTERIZATION VIA
REDUCTION TO L; PROBLEM

A. SISO Case

For the case where the LTI systeggiven by (1) is SISO,

the next result readily follows from (6), (11), (7), and (10)
Lemma 1: Suppose the LTI systentz given by (1) is
asymptotically stable and SISO, i.en, = [ = 1. Then, we

have
\/ 1Gsalloo,00

1Gl2
= V-(C®C) A& A)~Y(B®B)
where the systenir, is given by (10).

(12)

B. MIMO Case

To deal with the case where the systémgiven by (1) is
MIMO, let us partition B € R**™ andC € R'*" as

B=[B, - B,], c=[cT...cl']" (13)
Namely,B; (j = 1,--- ,m) stands for thej-th column of B,
andC; (1 = 1,--- 1) stands for the-th row of C. Then, it

is straightforward to see from (12) that

/ gij (t)2dt =
0

—(C;2C) (A AN (B;@B;).  (14)

With this in mind, let us define a SISO externally posﬂwgas

systemGy, as

[ Ag BS
Guls) = gt
Ad A Z Bj ® Bj (15)
=1
L =1

We note that (15) reduces to (10) when=1[ = 1, and G
given above is certainly an externally positive systemesiite
impulse responsegs, is nonnegative as

Gsql(t (ZC ®C>exp (Aa At (ZB ®B)

i=1

= Z Z(Ci ® Cj) exp((A @ A)t)( (16)

11]1

—ZZ%

i=1 j=1

B; ® Bj)

(t>0).

By using (15) and (16) we can readily obtain the next G,(s) =

theorem that is the first main result of this paper.
Theorem 2: Suppose that the LTI syste given by (1) is
asymptotically stable. Then, we have

G2 =

\ [1Gsalloo 00
= —(ﬁc&@ci) (Ao A)~ (ZB ®B>

where the systeniss, is given by (15).
Proof of Theorem 2: The result (17) readily follows from
(4), (16), (7), and (15) as

[ S

i=1 j=1

/000 gsq(t)dt

= —<§Ci®ci> (Ao A)- (ZB@B)

17

G2

]
This theorem clearly shows that thd, norm of ann-
dimensional LTI system can be obtained by computing the
Loo-induced norm (i.e., by solving the; problem) of amn?-
dimensional SISO externally positive LTI system. In partic
ular, the result (17) provides a closed-form formula for the
computation of thefl{ norm of LTI systems.

V. CONNECTION TO GRAMIAN -BASED
H; NORM COMPUTATION
A. Controllability and Observability Gramians

In the last section we derived the closed-form formula (17)
for the H, norm computation. It is expected that this formula
is an alternative representation of the well-known Gramian
edH, norm characterization [27]. For the stable syst&8m
en by (1), recall that

|G||2 = trace(CXCT) (18)

holds whereX € S, is the controllability Gramian determined

as the unique solution of the Lyapunov equation
AX + XAT + BBT =o. (19)

From [12], we see that the controllability Gramiahis given
by

vee(X) = —-(Ap A)~! (i(Bj ® Bj))

j=1

(20)

wherevec(X) € R"” is the column-expansion of . It is also
true that
l
trace(CXCT) = (Z(CZ ® CZ)> vec(X).
i=1
Therefore we can conclude that (17) also follows from the
standard Gramian-based approach. Here, if we apply (17) to
the dual systent?y given by
CT
Yl
we can readily obtain an alternative representation ofihe
norm as

(21)



m ] > .. T .. P . .. .
el = J ) (Z 5o B! ) ureany (Yereer). @2 Jy oute st = Cikp
j=1

= whereF;; (i =1,---,l,j =1,--- ,m) is the unique solution
Again, we can verify that this result follows from the stardia of the Sylvester equatiodF;; + F;; A + B;C; = 0. We thus
approach based on the observability Gramian. To summariaetain the next theorem that provides another formula fer th
the closed-form formulas (17) and (22) can be viewed &$, norm computation of LTI MIMO systems.
alternative representations of the well-known Gramiaseba Theorem 3: Suppose that the LTI syste@ given by (1) is

Hs, norm characterizations. asymptotically stable. Then, we have
l m
_ _ F..B. 28
B. Cross Gramian 1112 ;;CZF”BJ (28)
1=1 j=
In the preceding section we derived Theorem 2 by focusinghereF;; (i =1,---,1, j =1,--- ,m) is the unique solution
on the squared impulse respongeé)? as shown in Corollary 1 of the Sylvester equation
and Lemma 1. However, in view of the treatments of MIMO AF;; + F;;A+ B;C; = 0. (29)

systems, it is natural to considern(t)g(t)T or g(t)Tg(t), Remark 2: Let us apply the result in Theorem 3 to the dual
even if these are of course identical ¢&)? in SISO cases. systemGq given by (21). Then, from the elementary fact that
This treatment leads us to another formula for #ig norm ||G||2 = ||G4ll2, we have

computation.

m 1

To see this, let us focus on(t)"g(t). Then we readily ||Glla = | > BY.J;CT (30)
obtain the next corollary and lemma from Theorem 1 and (7), j=11i=1
respectively. whereJj; (i=1,---,1, j =1,---,m) is the unique solution
Corollary 2: Let us consider an LTI SISO systemis given Of the Sylvester equation
by (1) with impulse response (3). Then, the LTI SISO systemA” J;; + J;; AT + CT B = 0. (31)
G;, defined by However, by comparing (29) and (31), itis clear thiat = FZ?JC

[ A | B | AT A | cTwB and hence (30) reduces to (28). Namely, the dual system-repre

Gip(s) = Cp| 0 | [ BTeC| 0 (23)  sentation leads to the same characterization as the drigyisa
has the impulse response of the form tem representation. This is in stark contrast with the Gaami

gip(t) = g(t)Tg(t) (t > 0). (24) basedH, norm characterizations [27] where the dual system

Lemma 2: Suppose the LTI systenG given by (1) is leads to different (observer-Gramian-based) charaetigsiz
asymptotically stable and SISO. Then, we have

Gl = /HGipHoo,oo (25) VI. NEW FORMULAS VIA LMI

It is well known that the systertr given by (1) is asymp-
totically stable and satisfie$G|2 < ~ if and only if there
exists X € S7, such thatAX + XA” + BB < 0 and

ace(CXCT) < 42, see, e.g., [24]. This LMI characterization

useful in dealing with a wide variety of problems, inclugli
robust H, performance analysis of LTI systems affected by
eparametric uncertainties [3]. This motivates us to explore
another LMI-based characterization [pf7||» on the basis of
the externally positive system representation (15). Fraw),(
such an LMI can readily be obtained if we characterize the
L,-induced norm of SISO externally positive systems by
LMIs. We can indeed derive such LMIs as we see in the next

= /(BT O)(AT & A)-1(CT © B)
where the systendr, is given by (23).

We can further rewrite thél, norm characterization in this
lemma. If we trace back the arguments around (19) and (2
it is not hard to see that (A7 & A)~}(CT ® B) = vec(F)
holds whereF' € R"*" is the column expansion of the uniqu
solution for the Sylvester equatiohF'+ F'A+BC = 0. On the
other hand, we can readily obtaiB” @ C')vec(F) = CFB.
To summarize, we see that the next result holds.

Lemma 3: Suppose the LTI systentz given by (1) is
asymptotically stable and SISO. Then, we have

|Gll2 = VCFB (26)  theorem.
where F' is the unique solution of the Sylvester equation

Theorem 4: Suppose the LTI syster@ given by (1) is SISO

AF+FA+BC =0. o (27)  and externally positive. Then, for a givep > 0, the next
Remark 1: The matrix F’ that satisfies the Sylvester equation,nditions are equivalent.

(27) is c.aIIe_d the cr_oss—Gram|an [10] and th‘fg norm () AcH and |G = G0) < 7.
characterization (26) is also known [10]. At a quick glance(ii) There existsP € S" . such that
it must be hard (or at least not easy) to see thatB given ++

by (26) and (27) is nonnegative. From the viewpoint of the { PAT+ AP PB+CT ] <0. (32)

present paper, however, it is easy to see that this nonmitgati B P +C 2y

is ensured by the external positivity of the systém defined (i) There existsX < S, such that

by (23). [AX+XH mﬁ+3}<0 (33)
The rest of this subsection is devoted to the extension of CX + BT —2v '

the results in Lemma 3 to MIMO cases. To achieve this, I&emark 3: Most of existing studies on positive system anal-
us focus on the partition (13). Then, from Lemma 3, we carsis using LMIs are restricted to internally positive syste
readily see that [19], [4], [25], [7]. This is because we can make good use



of internal positivity to derive new LMI conditions. In star —-0.8 —0.1 -06 0.7 02

contrast, in Theorem 4, we deal with externally positve 4= | 05 —03 07, B= ) -05 -05,
systems and the LMI results (32) and (33) are new to the best —-02 01 0 0.7 -0.3

of the author’s knowledge. For the proof of Theorem 4, we ., 0.4 0 —-02

follow the duality-based arguments [17], [20], [15], [6]chat - 06 —-04 —-05 |°

the fi_ngl stage of the p_roof we mak_e good use of the exf[err}\%te thato (A) = {—0.9140, —0.0930 + 0.24774} and hence
positivity. See Appendix A for details. From Lemma 4 givery - w3 To confirm the validity of Theorems 2, 3, and
there_, we see that Theorem 4 is st_iII valid even if we repla(@orollary 3, we computeiG|» by these three methods. Then,
(i) with “A € H" and |G| < 7," i.e., the LMIs (32) and ;o obtained|G||; = 1.6673 for every case as expected. When
(33) also characterize thH,, norm of the externally positive applying Corollary 3, we solved the SDP infimizing subject

systemé. _ _ to the LMI (34). If we solve this SDP under the additional
Remark ‘]13 Tr01e LMI (32) can be rewritten ZS B constraint that? is diagonal, we obtainedl = 405.9977. This

He 0 1 114&(7) <0, A,(7) := o _ . result clearly shows that diagonal Lyapunov matrices canno
It follows that (i) holds if only if A,(+) admits & block- Provide the exact result.

diagonal Lyapunov matrix of the foraiag(P, 1). On the other
hand, if G is internally positive, then (i) holds if and only if VIIl. CONCLUSION
A.(v) admits a purely diagonal Lyapunov matrix [4], [18]. In this paper, we showed a system operation technique by
In the next section, we show by numerical examples on arhich we can construct an LTI system whose impulse response
externally positive system that, () does not admit diagonal is given by the product of impulse responses of two different
Lyapunov matrices even if (i) holds. Namely, there is a dertalL Tl systems. On the basis of this system operation technique
gap between internal and external positive systems. we showed that thél, norm of an LTI system can be obtained
The next corollary, which provides new LMIs that charby computing thel..-induced norm of an externally-positive
acterize theH, norm of the systenG given by (1), readily SISO LTI system. By this problem reduction, we derived
follows from (15) and Theorems 2 and 4. various formulas for théf, norm computation of LTI systems.
Corollary 3: Let us consider the LTI systei@d given by (1). Even though we have concentrated our attention on the
Then, for a givery > 0, the next conditions are equivalent. Hy norm computation, we expect that the system operation

(i) AeH" and||G|2 < 7. technique proposed in this paper is useful for the compmrtati
(i) There existsP e Siﬁi such that of the peak value of the impulse responses as well. To the
PA. +ATP PB. +CT best of the author’s knowledge, exact computation of th& pea
Sq sq sq sq < 0 (34) . . .
BTPLC 22 value is hard, and only its upper bound can be computed using
sq sq

SDPs [22], [5]. By using the system operation, it is expected

(i) There existsX € S, such that that we can obtain tighter upper bounds by solving SDPs. This

{ AqX + XAl XCJ, + By } <o (35) topic is currently under investigation.
CeqX + B, —272
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With this in mind, let us consider the full-rank factorizati

APPENDIX A of H as
PROOF OFTHEOREM 4

The above condition holds if and only if

m[H]"
H =: [ 1} { 1] , Hy e R™" - H, e RYX7H . (40)
For the proof we need the next lemma. Hy | | Hy
Lemma 4: Suppose the LTI syster& given by (1) is SISO, If H; is not of full-column rank, there exists an orthogonal
externally positive, and asymptotically stable. Then, vageh matrix V € R"#*"# such that
G(0) > |G(jw)| (Vw € R). -
Proof of Lemma 4: For a givenw € R, let us apply the [ 0 ] = { , ] 1%
nonnegative inputv(t) = 1 + sinwt to the system. Then, Hax Hap H,
since(G is stable, the corresponding output at the steady—st%ﬁereﬁ is of full-column rank. We note that £ 0 since
is of the formz(t) = G(0) + |G (jw)|sin(wt + 6,,). SinceG OtherwisleH — 0. Then if we define 21
is externally positive, we have(t) > 0 (¢ > 0) and hence 2= ’
G(0) > |G(jw)| holds. This completes the proof. [ | . H, H, T Hy, Hp

We are now ready to state the proof of Theorem 4. Since thel = Hy, 4 < [ Jig Hyy ])
equivalence of (ii) and (iii) readily follows via an elemany A ' '
congruence transformation, we prove €) (ii). 0 < Hp < Hag,
(i)<=(ii)): Suppose (i) holds. Then, it is clear thdte H". it is very clear from (39) that
g/lqouri?/(;\l/;:,ﬂyltazhould be noted that (32) can be rewritten He{AFy, + BAT} = 0, CHyy — s > 0. (41)

0 T p To summarize, we can assume w.l.o.g. ti#at is of full-
{ C 9 } +He{[ 0 ] [ A B ]} =< 0. (36) column rank in (39) and (40). From linearity, it is also true
~
that we can assume w.l.0.g. thAb, = 1.

Then, multiplying by[ —BTA~T 1 ] from left and by its We now move on to the final stage for the proof. We first
transpose from right, we haveCA~'B—-BTA=-TCT -2y < note that the first equation in (39) can be rewritten, equiva-
0 or equivalently,G(0) < . This completes the proof. lently, asHe{(AH1 + BHQ)HlT} = 0. Since H; € R"*"#



is of full column rank, this equation holds if and only if
there exists a skew symmetric mattixe R™#*"# such that
AH, + BHs; = H:Q) holds [5]. Sincef2 is skew symmetric,
its spectral factorization is given by

Q=UAU",

A =diag(jwr, - ,jwry), wi ER(i=1,--- ,ry)
whereU € C"2*"H js a unitary matrix. If we define

}:Il ::HlU:[fla R fTH ]7 fi E(Cn7

Hy ::HQU:[gl, oty Oryg ], giE(C,
we can readily obtain fromdH; + BH, = H, {2 that

AH, + BHy = H\A

= fl = (]LJZI — A)_lBgl (Z = ].7 BRI 7TH)~

Here, it suffices to consider the cage; ¢ o(A) (i =
1,---,ryg) as above since, ifiw; € o(A), this contradicts

)

A € H" in (i). On the other hand, fron®'H;5 — v > 0, we
readily Obtainc[ fla Tty fT‘H ][ g1, 5 Gry ]* Z - From
(42) andH,, = 1, it turns out that

TH TH
> Cljwil — A)'Bgigr =, Y _gigi =1

=1 1=1
or equivalently,

TH TH
ZG(jwi)gigf >, Zgig;k =1
i=1 i=1

This clearly shows that
TH TH
Z |G (jwi)lgigi = 7, Zgigf =1
=1 =1

SinceG(0) > |G(jw;)| (i =1,--- ,ry) holds from Lemma 4,
we obtain

TH TH
> G0)gigr =y, Y gigi =1
1=1 i=1

or equivalently,G(0) > ~. This clearly contradicts (i). We
thus complete the proof.



