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Abstract—This paper is concerned with the analysis and syn-

thesis of interconnected systems constructed from heteregeous
positive subsystems and a nonnegative interconnection nmat.
We first show that admissibility, to be defined in this paper,
is an essential requirement in constructing such interconected

systems. Then, we clarify that the interconnected system is

admissible and stable if and only if a Metzler matrix, which
is built from the coefficient matrices of positive subsysters and
the nonnegative interconnection matrix, is Hurwitz stable By
means of this key result, we further provide several resultghat
characterize the admissibility and stability of the interconnected
system in terms of the Frobenius eigenvalue of the intercorettion
matrix and the weighted L, -induced norm of the positive subsys-
tems again to be defined in this paper. Moreover, in the case vene
every subsystem is SISO, we provide explicit conditions uret
which the interconnected system has the property of persishce,
i.e., its state converges to a unique strictly positive veet (that is
known in advance up to a strictly positive constant multiplicative
factor) for any nonnegative and nonzero initial state. As an
important consequence of this property, we show that the oytut
of the interconnected system converges to a scalar multiplef
the right eigenvector of a nonnegative matrix associated wh its
Frobenius eigenvalue, where the nonnegative matrix is nothg
but the interconnection matrix scaled by the steady-stage ans
of the positive subsystems. This result is then naturally ath
effectively applied to formation control of multi-agent systems
with positive dynamics. This result can be seen as a generadition

of a well-known consensus algorithm that has been basically

applied to interconnected systems constructed from integtors.

Index Terms—positive systems, interconnection, admissibility,
stability, multi-agent systems, formation control.

I. INTRODUCTION

such as integrators and first-order lags and their serieslga
connections are all positive, and these are often emploged a
typical models of moving objects. Even though their dynamic
are very simple, the behavior of interconnected systems con
structed from them is complicated and deserves investigati
especially in the study area of multi-agent systems [14],[2
[27], [38], [39]. This fact naturally leads us to focus on
interconnected systems constructed from positive subs\sst

The interconnected system of interest in this paper is
constructed from heterogeneous positive subsystems and a
nonnegative interconnection matrix. In the past, intercon
nected systems with nonnegative interconnection mat(izes
more precisely, interconnection matrices with nonnegadiff-
diagonal elements) are studied extensively, see, ex., [42]
A typical example is the case where the interconnectionirmatr
is given based on the graph-Laplacian. In addition, subsyst
of interest are often linear and positive as in the case where
they are simple integrators [28], [27]. Nowadays positiys-s
tem theory is fully matured and remarkable results have been
obtained by making full use of the positivity [3], [35], [16]
[1], [31], [32], [37], [25], [5], [40]. However, the positity of
subsystems and the nonnegativity of interconnection oestri
have never been used actively to obtain sharpened anahgis a
synthesis results under the interconnected systems geettin
Our goal in this paper is then to provide such sharpened
results and build a solid theoretical basis for the treatnoén
interconnected systems constructed from positive subssst
and a nonnegative interconnection matrix.

As the first and an important contribution, we show that

Recently, systems of interest in the field of engineering, Rdmissibility to be defined in this paper, is an essential
ology, economics, etc., have become more complex and farg@duirement in constructing interconnected systems efést.
scaled, and as such intensive research effort has been oradd i€ admissibility is seemingly a sufficient condition foeth
developing dedicated analysis and synthesis tools. The is¥/€ll-posedness and the positivity of the interconnectestesy.
is how to derive sharpened analysis and synthesis conslitig#owever, it has deeper implication, and we clarify that the
exploiting the properties of subsystems and interconoectiintérconnected system without admissibility is of no use in

structure [18], [28], [27], [13]. In this paper, we are peutiarly

practice since it is fragile against communication del&@s.

interested in the case where the subsystems are positivelN& Pasis of this preliminary result, we next clarify thaeth -
dynamical system is said to be (internally) positive if iténterconnected system is admissible and stable if and dnly i
state and output are nonnegative for any nonnegative linitth Metzler matrix, which is built from the coefficient matrice
state and nonnegative input [12], [21]. This property aris@f the positive subsystems and the interconnection masix,

naturally in biology, network communications, economansgl

Hurwitz stable. By means of this key result, we further pdevi

probabilistic systems. Moreover, simple dynamical systerﬁevera| results that characterize the admissibility aadilgty
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of the interconnected systems in terms of the Frobenius
eigenvalue of the interconnection matrix and the weighied
induced norm of positive subsystems again to be definedsn thi
paper. Moreover, in the case where every subsystem is SISO,
we provide explicit conditions under which the intercorteelc
system has the property of persistence, i.e., its stateecges

to a unique strictly positive vector (that is known in advanc



up to a strictly positive constant multiplicative factorprf [l. PRELIMINARIES

any nonnegative and nonzero initial state. As an important|, this section, we gather basic definitions and fundamental
consequence of this property, we show that the output Qfs,its for positive systems.

the interconnected system converges to a scalar multiple (fsinition 1 (Metzler Matrix): [12] A matrix A € R"*" is

the right eigenvector of a nonnegative matrix associatatl Wisaiq to bametzlerif its off-diagonal entries are all nonnegative,
its Frobenius eigenvalue, where the nonnegative matrix jig Aij >0 (i # j).

nothing but the interconnection matrix scaled by the steady |, the following, we denote byI"*™ (H"*") the set of

stage gains of subsystems. This result is then naturally afgl \etzler (Hurwitz stable) matrices of size Under these
effectively applied to formation control of multi-agents$¢ms  ,tations. the next lemmas hold.

[14], [28], [27], [38], [39]. For multiple agents that move| amma 1: [12], [21], [26] For a givenA € M"™*", the
over a plane, the goal is to design a communication SChe'?@)ﬂowing conditions are equivalent.

over the agents with respect to each agent's position s The matrix A is Hurwitz stable, i.e.A € H**"
that prescribed formation can be achieved. We show thé} The matrix A is nonsingular ar;dﬁll—'l <0 '

such communication scheme synthesis is possible even if RS There existsh € R™ . such thathT A < 0 '

agents have different dynamics (and hence heterogenesus%v For any g € R” \JF{B} the vector Ag hés at least one
long as they are positive and stable. Moreover, the syrghesi strictly negativg entry’

condition is given by linear equation that depends only @n th : ] ' o en 1 s
steady-state gains of subsystems. We derive this sharpeh%ﬂlrga 2: For given P ¢ M™*™, @ € RY™™, R ¢
result by making full use of the positivity. The literatureR+ » and.S € M"*"2, the following conditions are
on formation control is quite extensive, and we have n&Auivalent.

attempted a thorough review of the control scheme proposgg 17 .= { P Q } € H(ni+n2)x (n1+n2)

here. However, as illustrated later, the current result loan RS

seen as a generalization of a well-known consensus algorith(i) P € H™*™, § — RP~1Q € H"2*"2,

that has been basically applied to interconnected systefii$ s € Hm2*mz, p — QSR € Hm*™,

constructed from integrators [27]. In addition, we empbasi The proof of Lemma 2 is given in the appendix section,
that our results essentially concern consensus-baséput g psection IX-A.

cqntrp : O.f interconnectemete'rogeneoupositive systems, and 15 move on to the definition of positive systems, consider
this is in sta_rk contrast with recent results_;_[40] stte iha jinear systent? described by

consensuf interconnectedhomogeneougpositive systems _

where homogeneousness drastically facilitates the tesgtm . { © = Ax + Buw, Q)

, . . = C D

We finally note that this paper gathers the results in [8]],[10 i ot v
[9] with explicit proofs for technical lemmas and theoremsvhere A € R™*", B € R"*™, (' € R"=*", and D ¢
Moreover, we extend the persistence related results in, [18"=*"~. The definition of positive systems and a related basic
[9] to the case where the steady-state gains of subsystemsrasult are given in the following.
not uniform, and to the case where the interconnection rmatiefinition 2 (Positive Linear System): [12] The linear sys-
is not irreducible (i.e., reducible), and also apply thestedt tem (1) is said to beositiveif its state and output are both
results to an energy management problem in DC-grids.  nonnegative for any nonnegative initial state and nonmegat

We use the following notations. For given two matricés MPUt: _ o y
and B of the same size, we writd > B (A > B) if A;; > Remark 1: In the literature, a system satisfying the condition

) - 1] . . el . e

By; (Ai; > By;) holds for all (i, j), where A;; stands for the in Defnjm_on 2 is often callednterngl_ly positive, to r_nake a
(i,4)-entry of A. In relation to this notation, we also deﬁnedear dlstlnc_tloq fromexternalll)_/ positive sysf[ems.. Since we
R?, = {zcR": 2 >0} andR? := {z € R": z > 0}. o.nly Ideal with '|nternally.p03|t|v.e sys#e.n']s in this paper, we
We also defineR’}’{"™ andR’*™ with obvious modifications. simply denote it by positive as in Definition 2.

In addition, we denote b{"*" the set of diagonal matricesprc’posfx'?ln 1: [12] The system (1) is positive if and only if
of size n with all diagonal elements being strictly positive.A €M '_B eRY™, C e.Rg ,'andD SRy .

For A € R"*", we denote byr(A) and p(A) the set of the _ We next introduce the _vvelghteﬂl-lnduged norm of posi-
eigenvalues of4 and the spectral radius of, respectively. tive systems. It turns out in the next section that the weight

For A € R™", Theorem 8.3.1 in [19] states that there is al[rl—induced norm plays an important role in characterizing the

eigenvalue equal tp(A). This eigenvalue is often called theStability of i.nterconnected. positive systems.

Frobenius eigenvalue and denoted>ay(A) in this paper. For Definition 3: Supposei given by (1) is positive and:(0) =

a given vectorz € R", we define its 1-norm byjz||; := 0 Then, its weighted.;-induced norm assquated with weight-
" |zl In addition, fors(t) : Ry — R", we define its N9 Vectorsg. € RA% andg,, € Ry is defined by

Ly-norm by ||s[|; = [, ||s(t)||1dt. Finally, we define the 1Gq. qull1+ = sup a: 2|1 2)

ili : n n . lgLwll1=1, wEL;”};’
families of functionsLy, Ly, as follows: Remark 2: The standard.;-induced norm of& given by (1)

. . is defined as follows [15]:
Ly = A{s|s(t): Ry = R"[s]ly < oo}, 1G]l = sup |2l ©)
LY, = {s|s(t): Ry =R, [s|l; < oo} lwlli=1, weL™




From the positivity of G, we can easily confirm that the [1l. STABILITY ANALYSIS OF

two L;-induced norms given above can be linked by INTERCONNECTEDPOSITIVE SYSTEMS
Gy llis = 1Q-GQ3Y, N I = 10.GQL L, (4) A. Interconnected Positive Systems and Admissibility
z,qw w nz 1"w w ’
Let us consider the positive subsystém (i = 1,--- , N
where Qz = dlag(QZ,lv e aQZ,nz)y Qu) = represented by p y m ( )
diag(qw,1, " ,quwn,) and 1" stands for the all-ones

vector of sizen,. The state space matrices 6f.GQ,* G. - {% = Ajr; + Bw;,

are given by (4, BQ;',Q.C,Q.DQ,'). Namely, as ' zi = Ciz; + Djw,

the denomination “weighted” L;-induced norm stands, A; € {M“ XM X“Z} B; e R}
|Gq. .40 l1+ coincides with the standard;-induced norm G}RJF D, ER+ XM,
with weightings (or scalings) on the input and output signal . .
The vector representation of weightings agjimandg,, rather As clei]rly Sho‘ﬂ’n mbl(g), we have assumed th@&t (i =

than the matrix representation as@h and Q,, is useful in ’.\/'\/.'th tr)] are a s_:;a €. d stabl bsvst let def
characterizing the weightefl; -induced norm and the stability ! €se positive and stable subsystems, let us detine a

of interconnected positive systems by linear inequalitigss Et(:astglvse 22: f;;ﬁlzztsigit;ﬁ}gy f/ei glag(Gl’ -, Gn). The
is illustrated in the next theorem. P 9 y

ni XNy, 9

Theorem 1: SupposeG given by (1) is positive. Then, for ) T = Az + B,
; n n, ; : ~ ~ I (20)
given ¢. € R, ¢, € R}, andy > 0, the following z = Cr + Duw
conditions are equivalent. where
(i) The matrix A € M"*" is Hurwitz stable and A= diag(A,- -+, Ay), B := diag(B1, - , By) 1)
.. ||qu’qw||%+ <7 C:= dla'g(cla 7CN)7 D:= dlag(Dh 7DN)a
(i) There existsh € R, such that
[WTA+¢"C W'B+¢'D—-~¢l ] <o. (5) 1 wy 21
(if) The matrix A € M"™*" is Hurwitz stable and the z:=| : |eR", w:=| ! |e€R", Z:=| ! | eR"™,
following inequality holds: r
N WN ZN (12)
q: G(0) < yay- (6) N N N

Here,G(s) is the transfer matrix of the syste@defined 4, .= ni, Mg = N,y  Ng = N, .
by G(s) :=C(sI — A)"'B + D. Z Z Z

The inequality (5) in (i) is linear with respect to the decis For a given interconnection matri® ¢ R7%*":, we
variable € R’} | . From this linear inequality, we see that theyre interested in the stability and the performance of the
weighted L;-induced norm||Gy. 4, [l1+ can be computed by interconnected systerd « Q defined by (10) ands = QZ.
solving a linear programming problem (LP) given as followsp, relation to the well-posedness of this interconnectiae,
iIlf'y,heR1+ ~ subject to (5). The condition (6) in (i) make the next definition.
is more compact and characterizes the weightednduced pefinition 4: The interconnected systeghx (2 is said to be
norm in a closed form (see Corollary 1 below as well). admissibleif the Metzler matrixDQ2 — I is Hurwitz stable.

If we let g, = 1"+ and g, = 1", the definition (2) In the following, we require the admissibility of the in-
essentially reduces to the standaig-induced norm as we terconnected systerdi « 2 whenever we analyze its stability
noted in (4). This standard;-induced norm is employed asand performance. The meaning of this presupposition, and it
a performance index in recent studies on switched positigionality as well, can be explained as follows.
systems [43], [44]. Moreover, this standakd-induced norm (i) If det(D2—I) # 0, then the interconnection is well-posed,

is used in [5] as a useful tool for robust stability analysis and the state-space description of the interconnectedmyist
uncertain positive systems. represented by

Even though related discussions on the proof of Theorem 1. R 1
can be found, for example, in [31], [5], we give a detailed * ~ AaZ,  Ac = A+ B - DR)C. (13)
proof of Theorem 1 in the appendix section, Subsection IX-Bj) The Metzler matrix D2 — I is Hurwitz and hence
for completeness. The next corollary directly follows fr@if) (7 — DQ)~! > 0 holds from (ii) of Lemma 1. Therefore the
in Theorem 1. matrix A, given above is Metzler. It follows that the positive
Corollary 1: SupposeG given by (1) is positive and stable.nature of the subsystems; (: = 1,--- , N) is inherited to
Then, for giveng. € R'%, ¢, € R}%, the weightedL;- the interconnected system, i.e., the nonnegativity of thtes

induced norml||Gy, 4., |l1+ IS given by z; (i = 1,---,N) for any nonnegative initial states is still

|Gy 41+ = min ~ subject tog? G(0) < yql (7) preserved under the interconnection.
or equivalently, (iif) More strongly, we can say that the admissibility foreth
(qZTG(O))Z- interconnected positive systeg x Q2 is mandatory from a

1Gs. g ll1+ = max ®) control engineering point of view. This is becauge (2 that

This corollary |mpI|es that ilG given by (1) is stable and does not satisfy the admissibility is of no use in practicesi
SISO, we haved|G11|l1+ = G(0). Namely, the unweighted it is fragile against communication delays. To be more eci
L;y-induced norm coincides with the steady-state gain. let us consider the case whefe(? is perturbed ag+(Qe=*"),



where h > 0 is a uniform delay on communication over
subsystems. Then, § x Q2 does not satisfy the admissibility, w13
we see thatj « (Qe~*") is unstable for any, > 0. Indeed, if
GxQ is not admissible, then the matriX2 — I is not Hurwitz
stable by definition and henggDS?) > 1 holds. From this
fact and [23], we see that the spectral radius of a monodromy
operator associated wihx (Qe~*") is not less than one and
henceg « (Qe~*") is unstable for any. > 0. Therefore, even Go
if we build theoretical results for interconnected systethet s Z52
do not satisfy the admissibility, such results are of no use
since communication delays are unavoidable in practicen(ev
if they are very small).

We also note that the admissibility is no more an issue if W31 #13
D = 0, since in this case we hav&, = A+ BQC € M"z*"a Gs
and hencé&; %) is always well-posed, positive, and its stability w32 223
is preserved against arbitrary (time-invariant) commaiiiz
delays [17]. Fig. 1. Interconnected positive systetV & 3).

For the admissibility and stability of the interconnected -
systemg * 2, we can obtain the next lemma that plays an }
important role in this paper. !

Lemma 3: The interconnected syste@« (2 is admissible and IEE 231
L

G

231

w21 212

stable if and only if the Metzler matrix
A BQ

= DQI} (14)
is Hurwitz stable.
Proof of Lemma 3: From Definition 4, the interconnected
systemG x 2 is admissible and stable if and only if the
Metzler matricesD) — I and Ay = A+ BQ(I —DQ)~IC are
both Hurwitz stable. Thus the assertion readily followsnfro
Lemma 2. ]

From this key lemma, we can obtain various conditions for -
the admissibility and stability of the interconnected systac- i
cording to the properties of the subsystefs(i = 1,--- , N) !
and the interconnection matriX. Typical examples are given ; | was 2 ] o,

L

in the following two subsections.

B. Stability for General Interconnection Structure Fig. 2. Weightings on input and output signals.
Nz, XN o X Ty,

The first result concerns the interconnected system showr;; € R,™ , Djir € ]erﬂ'

in Fig. 1 for the caseV = 3. The interconnection shown\ve assume that the size of; and z;; are identical, andV
in Fig. 1 is general, in the sense that (i) every subsystegipsystems are interconnected by

rovides different output signals to the rest of the sulesys! . .,

p-- P g . : tByt Wij = Zij (Zvj:]-v"'anl7é])‘ (16)

(i) every subsystem receives input signals from the rest of , ) L i
the subsystems independently, and (jii) there is no reismic Then, the_ mterconn_ected_sygtem is admlss@LISUanpl 'stable if
on the size of input/output signals. For the admissibiliﬁnd only if there exist weighting vectors; € R, (i,j =
and stability of the interconnected system, we can obtaln " 1V, 7# Jj) such that
the next theorem. Note that this theorem also includes thélGig. ;g lli+ <1,

k

state-space description of subsystems allowing the asbumey.; = [qf, -+ ¢’ 1, ¢'1s  ang }T, 17

interconnection structure. P R T M 17)
. w,r T —

Theorem 2: Let us consider the case where thth stable ’ ol vt ““(Z- 1 ).

subsystem(y; represented by (9) has the following Specm‘?zemark 3: From (5) of Theorem 1, we see that the inequality

structure: N condition (17) in Theor%m 2 is linear with respect to the
i, = Ay + Z BirWig, weighting vectorsg;; € R\ (i,j = 1,--- ,N,i # j) and
G, : k=1,k#£i (15) hence easily verifiable.

_C N D o As noted, the interconnection structure assumed in Theo-
2o = Ciami + ) Hyiktik (G #), rem 2 is illustrated in Fig. 1 for the cagé = 3. The subscripts
Lkt n (1,7) of w;; andz;; indicate that these are the signals that flow
A‘ c {I\/JIRLX’I’L1 ﬁHnLXnL} B c R v Wik . . .
v v Pk + ’ from the subsystemj to the subsystem. By defining



T .
o= [ o 2 A o aANa ] Theorem 4: Let us consider the case where the stable sub-
w = [wh - wlhy whiy o wly ]T (18) systemsG; (i = 1,---, N) represented by (9) are all SISO

(i=1,---,N) and share identical steady-state gqa'n> 0, i.e., G1(0) =

-+ = Gn(0) = ~. Then, for a givenQ € RY*N, the

{rerconnected systerd x 2 is admissible and stable if and
if YAr(Q2) < 1.

and by representing the interconnection (16)dby= 2z, we
can see that the interconnected system can be represente
G % Q. For N = 3, the interconnection matrix is given by

Proof of Theorem 4: Obvious from Theorem 3. [ |
0 0 ily,, 0 i 0 0 These three theorems clearly show that the admissibility
0 0 OOInme and stability of interconnected positive systems can bl ful
0_ Mg, O 10 0 0 0 (19) characterized in terms of. weighte[q-induced norms of sub- _
- 0 0 i 0o 0 i 0 In,. |’ systems and the Frobenius eigenvalue of the interconmectio
0 Tn,, 0 00 0 matrix 2 scaled byW. In particular, if all subsystems are
0 0 0 In,, 0 0 SISO, we see from Theorems 3 and 4 that the interconnected

: _— systemG x (2 is on the stability boundary ikg (¥Q2) = 1. This
By applying Lemma 3 to the resulting interconnected syste imple condition leads us to the persistence analysis-of)

G x ), we obtain Theorem 2. The complete proof is given in

the appendix section, Subsection IX-C as detailed in the next section.
The implication of the theorem is that the interconnecte emark 4: In [33], [30], stability of interconnected nonlinear

systemgG x ) is admissible and stable if and only if theresyStemS IS !nvestlgated. In pa_rtlcular, n .[33].' ea_\ch ||mﬂ|_
sHbsystem is assumed to satisfy a dissipative integralt-inpu

exists a set of weighting vectors that renders the We'ghtg){-state stability estimate. Through a comparison priegip
ability of the original interconnected nonlinear systean be

Ly-induced norm of each positive subsystem less than uni
Namely, the condition for the admissibility and stability i : N .
analyzed by a comparison system, which is an interconnected

separated into thé;-induced norm conditions of subsystems, .~ . . .
) N positive system since its state is composed of the value of
In this sense, the weighting vectors work separatorsthat . .
! . . Lyapunov function for each subsystem. Once the positive-com
have played important roles for stability analysis of gaher

. ' . parison system is obtained which is still nonlinear, themai

linear systems [20], [34], [29]. Another mterprefcatlo_nthmt, focus there is to extend linear case stability results ssdhe

as we usually do for separators as well, the weighting vector ... . . 7
condition (iv) of Lemma 1 to nonlinear positive systems. lEve

fr?évlienlfl S( 5?\:?%2;%;?“;2 ?;(; d?]l:itgsuiglzlganna:jlss't;ré?g?fdz’i;;q ough we deal with interconnected LTI positive systemy onl
. ' & x . —in this paper, we have shown that sharp stability conditions
only if the standard.;-induced norms of scaled systems (i.e

the systems encircled by dashed lines in Fig. 2) are less t%\rﬁ obtained withL;-induced norms of subsystems and the
. - o . robenius eigenvalue of the interconnection matrix b Ki
unity, where@,; = diag(g;;). What is interesting here is that us eigenvalu ! ! 'x Dy Mg

such scaling-based stability condition is necessary afffit sufUII use of the linearity. On the other hand, the paper [33]

cient, which is hardly achievable for interconnected gyste implies that the stability conditions in this paper can bpliaq

o . to interconnected nonlinear systems as long as its conqparis
constructed from general (non-positive) linear systems. . . . o ;
system is linear. It is true that this assumption is striigen

and holds only for a limited class of interconnected norime
C. Stability for Interconnection with SISO Positive Subays systems. Still, constructing a linear comparison systewepa
The results in Theorem 2 are valid for MIMO positive subthe way for applying current results to stability analysfs o
systems. On the other hand, in the case where every subsysit#erconnected nonlinear systems.
is SISO, conditions for the admissibility and stability five
interconnected systerd x 2 can be drastically simplified as IV. PERSISTENCEANALYSIS OF

we see in the next two theorems. INTERCONNECTEDPOSITIVE SYSTEMS
Theorem 3: Let us consider the case where the stable SUb'In this section, we are interested in thersistenceof the

_SrftemeG" (e = 1"9" ’Nﬂgj\fg%resﬁnt?d by (9) are da” SISOjinterconnected systei 2. After giving our main results on
en, for a givenil € Ry 7", the interconnected systemy,, persistence af x 2, we show that the persistence results

gh* & '\Sp adm'Ej\',Blf, 3”0' stable if ‘;n? only ?}fF(\I’Q) < ﬁ can be applied to formation control of multi-agent systems
where e RY is constructed from the unweig tquith positive dynamics.

Lq-induced norm (i.e., the steady-state gain) of each sub-

system as int = diag(||G1,1’1H1+,--- ’HGN,l,l 1+) = . .

diag(G1(0), -+ , Gn(0)). A. Persistence Analysis

Proof of Theorem 3: From Lemma 3, the interconnected We first give the precise definition of what we call persis-
systemG =2 is admissible and stable if and only if the Metzletence.

matrix IT defined by (14) is Hurwitz stable. From Lemma Definition 5: For given positive and stable subsystems
and the fact thafG; 1 11+ = G4(0) = —C;A; 'B;+D; (i= G; (i = 1,---,N) represented by (9) and interconnection
1,---,N), this condition holds if and only if both the Metzlermatrix Q2 € R’;?*"#, consider the interconnected syst&(.
matricesA and D — I — CA~'BQ = ¥Q — I are Hurwitz Then, the interconnected systefhx ) is said to have the
stable. Thus the assertion readily follows sindéds Hurwitz property of persistencef it is admissible and if there exist
stable from the assumptioA; € {M"i*™ N H™ *™i }, B ), ¢ € R} such that




lim F(t) = (6] 7(0))éno
for any initial statez(0) € R"=.

This definition requires that the stateof G x 2 converges
to a strictly positive scalar multiple of a strictly posgiv
vector as long ag(0) € R}” \ {0}. Namely, all the states
T (i=1,--
cited” eventually. This is the reason why we call the proper
persistence. It is also clear that persistence requirdsthiea
interconnected systeld x €2 is on the stability boundary.

To state our main results on the persistence;ef(2, i.e.,

(20)

,nz) become strictly positive and hence “ex-

Theorem 5: Let us consider the case where every stable

subsystem; represented by (9) is SISO. SuppdSe (i =

1,---,N) and a given interconnection matriz € RY*V

satisfy the following conditions.

(i) (A, B;) is controllable and 4;, C;) is observable for all
i=1,---,N.

t(i) The interconnection matrix2 € RY*" is irreducible,

i.e., the directed graph(2) is strongly connected.
(i) Ap(¥Q) =1 holds.
Then, for the interconnected systefinx 2, the next results

Theorems 5 and 6 given later, we first need to review thmld.

definition and related results ameducible matrices. Similarly

to [40], it turns out that the irreducibility of the intercoaction

matrix plays a crucial role in achieving persistence.

Definition 6: [Reducible Matrix [19] (p. 360)] A matrix\/ €

R™*" is said to bereducibleif either

(@ n=1andM =0 or

(b) n > 2 and there exist a permutation matx € R™*"
andr with 1 <r <n — 1 such that

PTMP = | ]g] , QER™T, S e RI=x(n=r),

Definition 7: [Irreducible Matrix [19] (p. 361)] A matrix
M € R™ " is said to beirreducible if it is not reducible.

(my 1f we denote the

(I) The interconnected systeg« ) is admissible, i.e., the
Metzler matrixDS) — I is Hurwitz stable.
() The matrix A given by (13) satisfies(A,) c C_, i.e.,
Re(A) <0 (VA € o(Aa)).
right and left eigenvectors of
¥ e RY*N associated with its Frobenius eigenvalue
Ar(TQ) =1 by vg € RY, andur, € RY,, respectively,
we haveA. &g = 0 and &l A = 0 where
trp = —A"'BU oy € R,
&L = —.AiTCTUL S Riﬂ,
(ér=1.
Here the eigenvectorsg, vy, € Rﬁ+ are appropriately
scaled so tha¢f'¢g = 1 is satisfied.

(21)

Definition 8: [Directed Graph of Matrices [19] (p. 357)] ThgIV) The matrix A, has eigenvalue) that is algebraically

directed graph ofA/ € R™*", denoted byI'(M), is the
directed graph om nodesP;, P, ---, P, such that there is
a directed arc if"(M) from P; to P; if and only if M;; # 0
or equivalently,In(M);; # 0. Here, In(M) stands for the
indicator matrix of M.

Definition 9: [Strongly Connected Graph [19] (p. 358)] A
directed grapH” is said to bestrongly connectedf between
every pair of distinct node®;, P; in I there is a directed path
of finite length that begins aP; and ends af’;.

Under these definitions, the next results hold.
Proposition 2: [19] (p. 362) For a givenM € R™*", the
following conditions are equivalent.

(@) M is irreducible.

() (I, +In(M))"~1 > 0.

(c) T(M) is strongly connected.

Proposition 3: [19] (p. 508) Supposél/ € R7}*" is irre-
ducible. Then the following conditions hold.

(i) p(M)>0andp(M) is an eigenvalue of\/.

(i) There is a vectow€R"} , such thatMv = p(M)v.

(and hence geometrically) simple. Moreover, we have
Re(A) <0 (VA € a(Aq)\ {0}).
(V) We have
lim #(t) = f(#(0))ér,  f(&(0))
for any initial statez(0) € R"=.

The results (1), (Ill) and (V) of Theorem 5 clearly show
that, under the conditions (i)-(iii), the interconnectegtem
G+ 2 has the property of persistence, and (20) in Definition 5
is satisfied with§y = &, € R'}?, and&,, = ¢r € R,

We need the following lemma for the proof of Theorem 5.
The proof of this lemma is given in the appendix section,
Subsection IX-D.

Lemma 4: For givenA4 € {M"™*" nH"*"}, B € R?*', and

C € R, we haveA™'B < 0 if (4,B) is controllable.
Similarly, we haveCA~! < 0 if (A4,C) is observable.

Proof of Theorem 5:

Proof of (I): From (i) and Lemma 4, it is clear that
~CiA'B; > 0 (i 1,---,N). If we define S

)

diag(—~C1A; "By, ,—COnAN'By) € DYXN, we have

iz

=&r0) (22

(i) p(M) is an algebraically (and hence geometrically) sim? = ¥ — S. On the other hand, from (ii), (iii), and

ple eigenvalue of\/.

The next corollary directly follows from Proposition 3,
where (iii) is particularly important.
Corollary 2: SupposeM € M™*™ is irreducible. Then the
following conditions hold wherey := max _,(ar) Re(A).

Proposition 3, we see that there exists € RY, such that
UQur = vr. Note that¥( is irreducible if and only ifQ
is since ¥ € DY N. Therefore we haveDQ — I)vg

is si
(P -8)Q—1wvg = —SQr = —S¥Y~1vr < 0. It follows

from (the dual version of) (iii) of Lemma 1 tha — I is

Hurwitz stable.

() o € R is an algebraically (and hence geometricallyproof of (I1): From Theorem 3, we see that A.) c C_ if

simple eigenvalue of\/.
(i) There is a vectow € R’} | such thatMv = av.
(i) Re(A) <a (VAeo(M)\ {a}).

and only if \g(¥Q)) < 1. Since at presentr(¥£2) = 1 holds
from (iii), we see that'(A.) € C_ holds from the continuity

of the eigenvalue ofd.; with respect to perturbations on it.

We are now ready to state our main result on the persisterR®of of (lll): By defining Qp := Q(I — DQ)~1, we readily

of G x Q and give its proof.

see



Aatr = —(A+BQpC) A B oy design the interconnection matriX satisfying (i) and (iii").

= —BU o — BOpCAT BY oy We emphasize that such synthesigltan be done by solving

= —BU log — BQp(D — W)U g linear equations (see Subsection IV-E for details). Thités

= B+ -DY) "D —¥)) ¥ g basic idea to use the results in Theorems 5 and 6 for the
= —B(I+(-0D)"'QD—-V)) ¥ g formation control of multi-agent systems.

= —BI-QD)" (I -QU) ¥ o A brief sketch of the proof of Theorem 6 is as follows. Since
= —B(I-QD)" TN (I -UQ)wg U0 e RN satisfiestQuon; = von; for von; € RY,, we can

= 0. see from Corollary 8.1.30 of [19] that=(¥2) = 1. Namely, a

The equality ¢ A, = 0 follows similarly. On the other matrix  satisfying the condition (iii’) satisfies the condition

hand, sincé A;, B;) is controllable andA;, C;) is observable, (i) in Theorem 5 as welll. It follows from Theorem 5 that
we see—A1B;, > 0 and —CiA! > 0 (i = 1,--- | N) oo = —f(x(OA))A_ l?‘lf_ Uobj where T, = limy—, o0 Z(t).
from Lemma 4. Moreover, sinc#( is irreducible, we have 1herefore, forze. := lim; . Z(t), we obtain

vg > 0 andvy, > 0 from Proposition 3. Therefore we have z = (I - DO)~'Cz.

Er = —AT1BU 1oy € R}, andéy, = —ATCTo, € RYE,. = —f(@0))(I — D) 'CA B i,
Proof of (IV): We can prove tha#l., is irreducible and hence = —f(@(0))(I —DQ) "D - \If)\I/’lvobj
the assertion readily follows from (l1), (Ill) and Corolia2. = —f(@(0))(I — D) "HDQ — o,
The proof for the irreducibility of4.;, which is indeed the core = f(#(0))vob;-

of the proof of Theorem 5, is given in the appendix section, . . L
Subsection IX-E. t]‘hls validates the assertion in Theorem 6.

Proof of (V): Since (IV) holds and sincér € R is the
right eigenvector ofd.; corresponding to the eigenvalleit C. Extensions to Reducible Interconnection Matrices

is an elementary fact thatAthe stateof the irjterconnec_ted In this subsection, we extend the results in Theorems 5 and

systemg « (2 converges tgf ((0))¢r for some linear function 6 to the case where the interconnection maftiis reducible.

[+ R" — R. Furthermore, for the dynamics of the inter-ro .o anq suppos® € RY*N is of the form

connected system represented by= Az, we can readily ’ +

see that{ = = 0. Therefore we havef 7(0) = f(Z(0))&/ér. o _ | Su Qu

Since&f'¢g = 1 from (1l1), we have f(z(0)) = £LZ(0). This 0

completes the proof. N B whereN,+N, = N and® is scalai or irreducible. Note that,
In Theorem 5, the controllability and observability comlit  from Definition 6, any reducible matriQ € RfXN can be

(i) is a natural requirement in system realization, and tre i yequced into this form by a transformation with a permutatio

ducibility (i.e., the strong connectivity) of the interamction matrix. According to the partition (24), we let
matrix in condition (ii) is frequently assumed in the study o

dynamical systems connected by network. Theorem 5 show§ = di.ag(gu’gl)v U= d.iag(\l’u’ ),

that, under these natural conditions as well as the stabilit A= d_lag(Au’Al)’ B = dl_ag(Bu’Bl)’ (29)
boundary condition (jii), the interconnected positive teys € = diag(Cu,C1), D = diag(Dy, D),

G = Q naturally has the property of persistence. S [ FT T ]T cR™,

u

}, Q, € RY N0 e RN (24)

Ny N
B. Analysis of Steady-State Output Fy €ER™u. 3 € R™1, ngy = Z”?’ ng, = Z n;
’ ’ u Al 1 &
The next result concerns the steady state outpui #f. i=1 i=Ny+1

This is a d|r.ect consequence of Theorem 5 and |IIustrates_|t%: [ 3{ ng ]T eRY, 2, e RN, 3 € RM,
usefulness in the application to formation control of multi

agent systems with positive dynamics.
Theorem 6: Consider the case where every stable subsystaijeorems 5 and 6.

G, represented by (9) is SISO and satisfies the condition (i)g,prollary 3: Consider the case where every stable subsystem

Theorem 5. Moreover, for given,,; € RL’ assume that the G represented by (9) is SISO and satisf_ies the cond_ition (@ ip
interconnection matri€ < foN has the following property gT)heor(]aVnQ]?.. Mo.reover, assume that the interconnection xnatri
in addition to (ii) of Theorem 5: €Ry is given of the form (24) and
(ii?) U Qun; = vop; holds. (i-a) @ € RYM is irreducible,
(i-b) (¥, + )Nu=1Qy € RY*M holds, and

(i) UQuonj = von; holds for givenuop; € RY, with vep; =

[ Vdpju Vapia )T (Vobju € RS, vonj 1 € RYL).
Then, the output of the interconnected sysi@m 2 satisfies

Then, we can readily obtain the following corollary from

Then, the output of the interconnected sys@m() satisfies
Jim Z() = f(2(0))von; (= (&2(0))vony)- (23)
Here, &, € RY?_is given by (21) withuy, € Rf . that satisfies
oL UQ = v, and¢f ég = 1for &g = —A71BY o,p,; € R

Jim Z() = f1(21(0))von; (= (&121(0))vaby)- (26)
This theorem implies that, for a givem,,; € RY, that Here.u € R’ is given by¢r, = —A; TClur,y with vr, ) €

represents the output position of each agent in a “desirBd", that satisfiesy, | W1 = v and¢l py =1 for &gy =
Nz

formation,” we can achieve the convergence (23) as long as WeilleI\I/flvobj,l eR,Y.



Proof of Corollary 3: Note that, under the partition (24) andD. Relationship with thef-Consensus Protocol [27], [14]
(25), the interconnected systefh 2 can be represented by Theorems 5 and 6 are closely related to (and meaningful
Fig. 3. With this in mind, let us rewrite the condition (iii9s axtensions of) the results already obtained in the study afe
T, 0 0, Ou Vot Vobin multi-agent systems [14], [27], [38], [39]. In this sectjone
{ 0w } { 0 Q ] { J’ } = { » } (27) show that thef-consensus protocol shown in [27], [14] can
1 1 . . .

readily be obtained along with Theorem 5.
This specifically shows tha®’|vh;1 = vobj,1 holds. Since  The communication over multi-agents in [27], [14] is de-
() is assumed to be irreducible as in (ii-a), we see fromrmined by the directed graph(Z, £) with the set of nodes
Theorem 6 thatim; . z1(t) = fi(Z1(0))vobj1(=: Zl,00). ON Z:={1,--- ,N} and edge€ C Z x Z. The dynamics of the
the other hand, (27) showgl,Q, — I)venj,u = —Quvobj,1-  agents are assumed to be identical integrators as in
Here, if we definey := (¥, + 1)V 1ogp;,., We see from

Uobj,1 Uobj,1

(ii-b) and vop; . € RYY thatg € RY: . Moreover, P dilt) =wilt), wi(t) €R. (30)
N1 The goal is to determine the input; (: = 1,--- ,N) by the
(Vuldy — g = (Vuld — I)gv‘l’u?u +1)™ " Vobju communication with other agents over network so that we can
= (U +1) . (IIquu — I)Vobj,u achieve
(U Qy + DN v o _ _
- 0 ( u ) ulVobj,1 th&x(t> _ f(:L'(O))].N, 7= [zl, e IN]T c RN. (31)

where we again use (ii-b) to ensure the last strict inequaliff (31) is achieved for som¢f : RY — R, we say that/-
It follows from (the dual version of) (iii) of Lemma 1 that COnNsensus is achieved. In order to achieve faronsensus,
W, 0, —1 is Hurwitz stable. Therefore, we see from Theorem e following protocol is presented in [27], [14]:

that the mterconr_lectgd systegp*{2, is an|SS|bIe and stable. w;(t) = Z (z;(t) — zi(t)). (32)
To summarize, in Fig. 3, the stable interconnected system

(Gu * ,)Q receives the input signat , at the steady . . I o
state. Thus the proof is completed if we show that, und gre,./\/i |s.the set of nelghbors of the nodeefined byN; :=
€Z: (4,i) € £}. The interconnected system constructed

(27), the output of G, x ©2,)Q with respect to the step input Y
Zoo = i(@1(0))uen;, Satisfies from (30) and (32) can be represented by

Z(t) = —LE(t), (33)

JEN;

lim 2z, (t) = fi(Z1(0))vob;,u- (28)

i—00 (£) = A& (0)vory where L € RV*V s the graph Laplacian of' defined by
The proof of this part is elementary and given in the appendix; ._ p_ 4 p.— diag(dy, - ,dy), d; = |Nj]
section, Subsection IX-F. 4 ’Aij —1 () GJ’\@) ’Aij "o T ¢;\[’i). (34)

Remark 5: The condition (ii-b) in Corollary 3 is not strin- N . N N

gent. From Proposition 2, we see that this condition holdsiS €@sy to see thal1™ = 0 holds (ie., 17 € R, is

at least ifQ, € Rfuxlvu is irreducible and each column ofth? rlght—e|genvector of. W|th_ respect to the e|genvaIL£®.

0,1 € RY*N is non-zero It is shown in [27], [14] that, if the graplr(Z, £) is strongly
u + .

Remark 6: Let us consider the case whed, = 1, connected, arf-consensus is achieved by (32) as in

(A, B1,C, D) = (=1,1,1,0), @ = 1 and 2y(0) = vopjy € lim Z(t) = F@O)IY,  f(@(0) = & z(0). (35)
R, 1 (this essentially coincides with the case where (), is N ) ]

an integratorz; = 0 with the initial conditionz;(0) = v.y;,). Heré.éo € RY is the left-eigenvector of, with respect to the
Then, since®; = 1, it is clear that the second row oféigenvaluel satisfying¢j 1™ = 1. _

(27) is satisfied, and furthermore, we S&ét) = v,p;1 and In the following, we WI|| show that. (35) follows dlrect_ly
£(Z1(0)) = 1. In this case, Corollary 3 implies that, if a steg’om Theorem 5. To this eng, we first note that (33) is a
iNput ;1 € Ry, is applied to(G, * 2,)Q2,, we can letz, POSitive system since-L € M **. Moreover, (33) can be

track a givenuoy;,, € RA" precisely if (ii-b) holds and rewritten as
o[ 2 Qu { Vobj,u } o 20) ()= —Di(t) + (1), Z(t) = @(t), @(t) = AZ(1). (36)
Uobj,1 ’

From this expression, we can regard (33) as an intercorthecte
system constructed fronV positive, SISO and stable subsys-
temsG; (i=1,--- ,N) given by

Note that this simple equality condition and the conditidp)
ensure the admissibility and stability 6f, 2, as well as the
satisfaction of the tracking requirement. We apply thisultes

to an energy management problem in DC-grids in Section VI. zi(t) = —dizi(t) +wi(t),
- A zi(t) = @i(t)
il Gu O Qu a G and the interconnection matrix
+
[ Q=AecRY*N. (38)
2 & It is clear thatG; (i = 1,---,N) in the form of (37)

satisfies the condition (i) of Theorem 5. On the other haral, th

Fig. 3. Interconnected Systeghx 2 with partition (24) and (25). ; . . ; . . .
interconnection matrix2 € RY " given in (38) is irreducible



if and only if the graphG(Z, £) is strongly connected. The subsystem defined byN; := {j : ©; ; > 0 is allowed. This
Frobenius eigenvalue o) = D~'A is 1 with the right- further implies that in general the calculation{®tan be done
eigenvectorvg = 1V ¢ Rfﬁ and the left-eigenvector in a distributed way in the sense th@t ; (j € N;) needed
v, = D&y. ThereforeQ) e fo satisfies the condition (ii) for the subsystem can be computed if,; ; (j € N;Ui) are
and (i) of Theorem 5. Moreover, it is easy to see from (21gvailable. Moreover, since the conditiohQu,,; = vop; de-
thatég = 1Y andép, = & in this case. It follows that (22) in pends only on the steady-state gdinwe can desig) with-
Theorem 5 coincides with (35). out precise information of the subsystefs (i = 1,--- , N).

To summarize, Theorem 5 turns out to be an intriguink is also true that the resulting robustly achieves the desired
extension off-consensus protocols shown in [27], [14]. Theformation as long as perturbations on each subsystem do not
orems 5 and 6 show that, under certain conditions, we caffect its steady-state gain.
achieve f-consensus (with respect to the output of each sub-
system) even if we generalize the dynamics of each agent from V. APPLICATION TO FORMATION CONTROL OF
integrators to positive systems, and interconnection imatr MULTI-AGENT POSITIVE SYSTEMS
from graph-Laplacian matrices to nonnegative matrices. In this section, we apply the results in Section IV to

formation control of multi-agent systems.

E. Parametrization of Interconnection Matrices
For the preparation of formation control of multi-agenf\- Problem Setting and Consensus-based Formation Control

systems based on Theorems 5 and 6, it is meaningful to showet us consider a multi-agent system withagents, where
a concrete way to construct a desifed: RfXN that satisfies the i-th agent(: = 1,--- ,N) can move over thgx,y)-
UQuopj = vob; andT(Q) =T for prescribedvop,; € RY, and plane. We denote byz; ,(t), z;,,(t)) the position of agent
graph structurd’. For illustration, consider the cases whére i. Furthermore, we defing; := [z1; -+ 2n ;|7 (j = z,9)
is shown in Figs. 4 and 5 faV = 3. by stacking the coordinates of the agents.

For graph structurd’a, any interconnection matrix2 € We assume that ageihhas independent dynamics along the
RN satisfying WQuon; = vob; and T'(Q) = I'a can be z- and y-axes, denoted by’ ,(s) and P, ,(s), respectively,

parametrized by and independent control inputs , (t) andw; ,(t). We further
assume that, as typical dynamics of moving age#is;(s
Q= lIj_lQ(’Uo’ijp) € R{IYIN (39) are given by ¥P y 949 EI%( )
where ki
Uvonj, p)iy = Zij(s) = P j(s)Ui;(s), Pij(s)= s ta)
(1_pl)M (i,5) = (1, N), kij >0, a;,; >0 (i=1,---,N, j=ux,y).
Vobj Vob,N . o Since P, (s) is not stable (or say, on the stability boundary),
b (I<i<N, j=i+1), we cannot apply directly the results in Theorem 6. To get
" Vobii ] o (40) around this difficulty, we apply a minor feedback as in
Uobj.j uz:](t) = _f%](z'bﬂ(t) - wl](t)) (Z = 17 e 7Na .] = l’,y)
L (i,5) = (N,1) - e 2k =1 -
Vobj1 ; s L)y with 0 < fl_’] < ai,j/4k.w, Wherewm (Z = 1, ,N7.] =
0 otherwise. x,y) is the exogenous input kept for the interconnection. Then
we have

Here, parametep € RY, can be chosen arbitrarily among i -
0 < p < 1V. On the other hand, for graph structdrg, any Zij(s) = Gij(s)Wi;(s),

interconnection matrif2 € RY™" satisfying ¥ Qvonj = vob; (s) = _g” _i_ 1 _OC_ _ 1)
andI'(Q) = I's can be parametrized again by (39) and (40) ~ /" — 1 0“ | WO“ ’

where parametep € RL can be chosen such that =
IL,py =0,and0 < p; <1 (i =2,---,N —1). In both
cases, we can confirm that resulting interconnection métrixIt follows from Proposition 1 thaty; ; (i = 1,---, N, j =
is irreducible (sincd' s andT'g are both strongly connected).z,y) are positive (with respect to the minimal realizations
(41)), SISO, and stable systems with; ;(0) = 1 (1 =
Remark 7: The parametrization (39) and (40) have been de;... [N, j = x,y). The last property is a natural conse-
rived based on the fact that the linear equatidiv.,; = von;  quence from the fact that each open-loop transfer function
can be solved row by row as i6;(0) >=;cx. Qi,jvobj; = P (s) (i = 1,---,N, j = x,y) includes an integrator.
Vobji (i = 1,---,N), where \; is the set of neighbors of We emphasize that the properties®f;(s) mentioned above
robustly hold against “small” perturbations on the planiapa-

eters and the minor-feedback gains. For description saitygli
(/ \\ @ = @ — @ we deﬁne’l/ﬁj = [wl,j e 'LUN’j]T (_] = .’E,y)
- We assume tha-agents independently communicate their
@ @ x and y positions each other. Our goal here is to design
Fig. 4. Graph structur& s . Fig. 5. Graph structur&'s. interconnection matrice$?, and 2, such that, under the

bijj +¢ij = aij, bijcij = fijkij.



interconnection with(2,, and 2, for (z,,w,) and (z,,w,),
respectively, the following formation can be achieved:

Jim [2(6) 2, (6)] = [ (@ (0)vonsa f3(@4(0))von ). (42)

Here, von,; € RL (j = z,y) are given vectors that specify
the desired formation, arig}; (0) (j = «,y) stand for the initial
states of the corresponding interconnected systems. On th
other hand,f; : R*¥ — R (j = z,y) stand for the scaling
factors. It is obvious that we can readily solve this problem
by following Theorem 6.

Remark 8: Since the synthesis method of the interconnection
matrices proposed in Theorem 6 is based on the idea o

consensus, and since we do not allow to incorporate any 6
external signals to the interconnected systems, we canng*

exclude the effect of initial states at the limits of the aup
The problem setting (42) has been defined keeping this fac
in mind. Similar problem setting can be found in [40].
Remark 9: To illustrate our results in Theorem 6 in a real-
istic situation, we assumed typical second-order dynamics
moving agents (i.e., integrator plus first-order lag) anolsd
that we can make them positive and stable by applying minor-
feedbacks. For those cases where the dynamics of moving
agents are of higher-order, however, retrieving posjtiahd
stability by minor-feedback becomes hard. This poses &asen
limitation on the application of Theorem 6 to such cases.

B. Numerical Examples

Fig.
Along with the basic problem settings stated in Subsec-

tion V-A, we generateda; ; and k; ; randomly over the
closed interval[10 20] and [1 2], respectively, and then
let fi; as fi; = 0.8 x a7;/4k; ;. We thus constructed
Giﬁj (Z =1, ,N, j = (L‘,y). We let ['Uobj,m vobjyy]i =
[2 + cos(2mi/N) 2 + sin(27i/N)] so that the agents can
form a (scaled) circle. As for the graph structure of the
interconnection matrices, we considéy (see Fig. 4). Namely,
we designedQ,[EA], QLA]) with F(QLA]) =T (j =x,y) by the
parametrization shown in (40) withh = 1/2 (i =1,--- ,N).
Figs 6-9 are the simulation results for the cdge= 20.
We see that the agents gradually form a (scaled) circle anc
converge to the position shown by blue dot which is computed
in advance from (23).

Remark 10: In the case where subsystems are homogenedig, 8.

and henceG{(0) = --- = Gn(0) =: v holds, we see
from Theorem 6 that the desired formation is achieved if
Quonj = (1/7)von;. Namely, the achievement of the formation
solely depends on the Frobenius eigenvalgé2) = 1/ and

its associated right eigenvector and other eigenvalue§ of
are not relevant. However, the location of the eigenvaludes o
Q strongly affects the speed of convergence. In particular, i
the interconnection matri® has real eigenvalues only, it has
been shown that the second largest positive eigenvalug (nex
to Ar(£2)) is a key factor in determining the speed of conver-
gence. See [11] for details. Note that this result conforms t
the well-known fact that, irf-consensus protocol discussed in
Subsection IV-D, the second smallest eigenvalue of thehgrap
Laplacian determines the speed of convergence of Consen'§L
(this eigenvalue is often called algebraic connectivity]]2
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i3 ——— d3i3 iy —— daia iy —— dii1
[
E—= Ri3| |vs||DC-DC|dz v3 + v2||DC-DC| dy'va| R 'Ul‘ DC-DC|d; v
|
load3 — battery — load 1 —

Fig. 10. A DC-grid composed of one DC voltage source, two $oahd one battery.

VI. APPLICATION TO ENERGY MANAGEMENT IN It follows that the DC-grid can be modeled as an intercon-
DC-GRrIDS nected system of the forG x Q)Qrr Where

Recently, intensive research effort has been made for anal- R+d %R, |1
ysis and synthesis of power-grid networks. In particulaG D g = diag(G,,Gs.Gs), Gi:=| L Z] 7
(Direct Current)-grids are expected to play an importaté ro Ri1 [0
in future power electronic systems, in view of recent dcasti 0 110
increases and technological developments in DC generation 2d;?> R|1 R+2d3°Ris| 1
DC storage tanks (such as lithium-ion rechargeable besteri G2:= | ~ K1 LI|L |+ G3:= L L,
and electric double-layer capacitors), and DC loads [2Z],[2 L 0o lo Rrs [0
[24], [36]. In this section, we apply the theoretical result K 1
Corollary 3 to an energy management problem in a DC-grid. 710 . dy " dy 710 . 0

Q= |dy d, 0 dyds |, Qee=1] 0 |.(44)

A. DC-Grid and Problem Setting 0 dytdst 0 d3!

Let us consider the DC-grid shown in Fig. 10. This DCNote that the interconnected systéghx Q)Qpr receives the
grid is composed of DC voltage source with voltage step inputE. The outputs of the subsystends;, G, and
transmission lines with resistande and inductanceL, two G arev;, vo(= K~ 's), andwvs, respectively. It is clear that
DC loads with resistancél,; and Rr3, and a battery. The G, G,, and G5 are all stable, and?; and G5 are positive
voltage and current of the load 1, the battery, and the loadrgespective ofd; andds. Moreover, it is easy to confirm that
are denoted byv:,i1), (v2,42), and(vs, i), respectively. We @G, is positive (under appropriate state-space realizatibn) i
assume that the SOC (State of Charge) of the battery, denoted only if d, > v8L/(RVK)(:= do min). TO summarize,
by s, is linear with respect ta, and given bys = Kwvz we can conclude that the DC-grid in Fig. 10 can be modeled
where K is a given constant. As shown in Fig. 10, the loags an interconnected positive system with step inputis
1, the battery, and the load 3 are equipped with ideal DC-DOgng asd, > d2.min- Note thatds i, is small in general
converters with voltage gaing, dz, andds, respectively.  since R > L in practice. By enforcing positivity, we can

The objective here is to supply desired voltages for the tvépecifically guarantee that(t) > 0 (t > 0) always holds
loads and achieve a desired SOC of the battery at the stegéiler any reasonable initial conditions.
state by appropriately determining the DC-DC convertengai
dy, do, andds. Namely, for given reference values, s*, and . .
v, the goal is to determind,, d», andds such that C. Computation of Gaing, dz, and d;

. T e . AT Since Q and Qrr given by (44) satisfy the condition

Jim [0(®) s@) ws(t) | =[of & 03] (43) corresponding to (ii-b) of Corollary 3, we see from (29) of
Even though we might be able to approach this problefRémark 6 that the design objective (43) is satisfied if

by standard electric circuit analysis, we demonstrate tiieat vk )
results in Corollary 3 and Remark 6 is effective for highly Klgr 911 .
constructive treatment. VO Qe | v =| K s (45)
(%
. " E 3
B. Modeling as an Interconnected Positive System
We assume that the dynamics of the battery can be modenﬂids wher§
ass = i,. Then the state-space equation of the DC-grid shown? = diag(G1(0), G22(0), G;(O)) ,
in Fig. 10 is given by _ i ( Rpidi  dy  Rpsds ) . (46)
R4 dPRpditdy! . Rd?+ Rp1’ 27 Rd%+ 2R3
ol | Lo KL S il |9 From (44) and (46), the condition (45) can be rewritten row
§ 0 P01y 0 s 0 by row as
7| Al Roy 24y Riody'dy'Rug ST o [ B )
o LKL L' L S g Rpadidy K7's* (472)
i3 o g TR 2R | Lis] | T R& + Ry =1,

" KL ! L
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(dy of +dg 'v5)

5 =dy ' K1s%, (47b) 55 ; : x x
Rpsds(dy'K~1s* + E) ll R
Rd% n 2RL3 = V3. (47C) 45 | v,| 1

40
The problem to determind; (i = 1,2,3) is essentially

. . . . . 35 + g
nonlinear sinced; acts proportionally ort; and reciprocally

onwv; (i = 1,2,3) and hence hard to solve seemingly. T 0k 1
nonlinearity can be seen also from the fact that all the wed 25 | 1
Q, Qpp, and ¥ depend nonlinearly onrl; (i = 1,2,3) as 20 b [ L .
clearly shown in (44) and (46). However, the subsystem+b

15 7
condition (47), which is derived from general positive sys

theory in Corollary 3, allows us to solve the problem i or |

straightforward fashion. Namely, once we §ix, then we cal 5t 1
determined; by solving the second order algebraic equa o " - = " %
(47a). Here, if (47a) has two nonnegative solutions, we sé t [sec]

smaller one in view of the fact that smaller gain is prefezani
in practical application. Similarly fods and (47c). It follows Fig. 11. Simulation results for Cases | and II.

that, for each fixedd,, the left-hand side of (47b) can be

determined uniquely by (47a) and (47c). Therefore, by ipigtt ~ 2) Case II: (v7, s*,v}) = (16V,40C, 16V): Again by the
the difference of the left and right terms of (47b) for eah suggested procedure, we computdd, d, d3) satisfying (47)
and by finding the valué, on which the difference vanishes,and obtainedd, d», ds) = (0.5277,0.1301,0.5134).

we can obtaind;, do, andds satisfying (47). In Fig. 11, we show the simulation results. We assume
Remark 11: We have derived the synthesis condition (47) bthat the DC-grid is initially at the steady-state with DC-DC
applying (29) given in Remark 6. A merit of such treatmentonverter gaingd,,ds,ds) = (1,0.1,1) and we switched the
over standard equilibrium analysis is that, by viewing thegains to the computed values for Case 1@sec and for Case
DC-grid as an interconnected positive system, we can enjtyat 30sec. We can confirm that the design objective (43) is
subsystem-based treatment and derive the compact candisoccessfully achieved.

(47) in a constructive fashion. Here, it is of course trud tha

(29) represents the condition to achieve the desired équith VIl. CONCLUSION

for the interconnected positive syst Q.)Qu in Fig. 3. .
P YSt&, * 2u) 2w 9 In this paper, we presented several novel results on the

To see this clearly, let us rewrite (29) as in analysis and synthesis of interconnected systems cotesiruc
Vobju = Wi (Quvibiu +Q“‘U°b-“)' . _from heterogeneous positive subsystems and a nonnegative

Then, we see that (29) is a necessary condition t0 achiggrconnection matrix. In particular, we showed that the

limy 00 Zu(t) = vobju fOr Zi(t) = wonj1 (¢ > 0) even pqmissibility, stability, and persistence can be charime

for those cases wher@, is a general (non-positive) systemy,mjetely in terms of the (weighted),-induced norm of

and (2, and ., are general matrices (with negative entrieshych positive subsystem and the Frobenius eigenvalue of the

However, in such cases the condition (29) is far from suffitie;nerconnection matrix scaled by steady-stage gains of sub

to achieve the desired equilibrium in general, since we 68NNy gtoms \We llustrated the usefulness of the analysistsesu

ensure the stability ofj, €2, by relying merely on (29). by applying them to formation control of multi-agent system

What is important in Remark 6 is that, &, is positive and \ih nositive dynamics and an energy management problem
Q, and (2, are nonnegative, the condition (29) ensures thg DC-grids.

Stat?"!ty of Gy *,Qu and hence (29) becqmes a necessary andlt is nonetheless true that the application results arerdan f
sufflt_:!ent condition _to achleve_ the desired equilibrium.isTh complete and positive system theory developed in this paper
stability guarantee is the key in Remark 6, even though sugfl, 14 pe better illustrated in more realistic applicatiofio
stability issue is not necessarily relevant in this patécidC- find out such convincing applications, we made continuing
grid example since we see from physical interpretation thaftoits and partial results have been obtained on positivit
the DC-grid system is stable for amy > 0, d> > 0, ds > 0. pa5eq time-headway control of vehicle platoons [7], [6]. We
emphasize that theoretical results in this paper form trsésba
in this application as well. Still, the application resuits[7],
D. Design Examples [6] remain to be academic, and it is an important future issue
We let £ = 32V, R = 1Q, L — 1mH, K = 10F, R, — to conceive more practical positivity-based control agadions

Rz = 209 and consider the two cases for the reference valuté)smake linear positive system theory most fruitful.
v}, %, andvi. Note thatds min ~ 0.0283 in both cases.
1) Case I: (vf,s*,05) = (12V,50C,24V): By the sug- VIIl. A CKNOWLEDGEMENTS
gested procedure, we computet, ds, d3) satisfying (47) and  This work was supported by JSPS KAKENHI Grant Num-
obtained(d;, dz2, ds) = (0.3953,0.1634, 0.7785). ber 25420436.
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IX. APPENDICES

A. Proof of Lemma 2

Proof of Lemma 2: We will prove the equivalence of (i) and
(ii). The equivalence of (i) and (iii) follows similarly.

(i) = (i) Suppose (i) holds. Then, from (iii) of Lemma 1,
there existh; € R}, andh, € R'}?_ such that

hiP+hIR <0,

rfQ +nis <o. (48)

2014.

K. Konishi, Y. Sugitani, and N. Hara. Dynamics of DC bustworks and
their stabilization by decentralized delayed feedbakysical Review
E, 91(1):012911, 2015.

P. Li and J. Lam. Positive state-bounding observer fasitive interval
continuous-time systems with time delaylnternational Journal of
Robust and Nonlinear ControP2(11):1244-1257, 2011.

The first inequality impliesh’ P < —hlIR < 0 since
hy € R7? andR € R}2*™ . Hence, due to (iii) in Lemma 1,
P is Hurwitz stable and due to (ii) in Lemma 1 we have
P~! < 0. The first inequality in (48) therefore implies
¥ > —hT RP~'. By combining this inequality to the second
inequality and noting thaf) € R’'*"*, we have



hl(S — RP71Q) < 0. (49)

It is obvious thatS — RP~'Q is Metzler sinceP~! < 0

and hence, again from (iii) of Lemma 1, we conclude th

S — RP~1Q is Hurwitz stable.

(i) = (i) Suppose (i) holds. Then, from (iii) of Lemma 1, Agi + Bg2 >0,
there existsh, € R'?, such that (49) holds. It follows that

there exist > 0 such thathl'S — (hI R+e1mT)P~1Q < 0

14

Since (a) clearly contradicts (i), we only consider the case
(b). Then, from the strong alternative for linear inequedit

Jﬁ} Section 5.8], there exisy; € R’} and g, € R’}™, not

Simultaneously zero, such that
4: Cg1 + (42 D — 7qy)g2 > 0.

If go = 0, we haveg; # 0, g1 > 0, and Ag; > 0, which
contradicts the Hurwitz stability ofi (see (iv) of Lemma 1).

where1™ € R™ stands for the all-ones vector. If we de'c'nefherefore it suffices to consider the case whares Hurwitz

hi := —((hd R+e1™T)P~1T we haveh, € R, sinceP

is Hurwitz and hence’?~! < 0. In addition, we readily obtain

AMfQ+hris <0, RIP+hIR=—-c1m" <.

stable andg, # 0. With this in mind, let us note that the
first inequality above implieg; < —A~'Bg, since A~ <0
from (ii) of Lemma 1. By substituting this into the second
inequality, we obtair(¢? G(0) —~yqL)g2 > 0. Moreover, since

Again, from (iii) of Lemma 1, this shows that the Metzlerg2 > 0 and g, # 0 as noted above, the following inequality

matrix IT in (i) is Hurwitz stable. ]

B. Proof of Theorem 1
Proof of Theorem 1: We prove (ii}=-(i), (i)=-(ii), (i) =(iii)
and (iii)=-(ii) in order.
(ii))=-(i) Suppose (ii) holds for somk > 0. Then A € M"*"
is obviously Hurwitz from (iii) of Lemma 1. In addition, ther
existse > 0 such that

[ K"A+¢IC W'B+¢D—(v-e)q, | <O.

It follows that, for anyz € R™ and w € R™ satisfying
[ 27 w? |T >0, we have
] x
w
This can be rearranged as
hT(Az + Bw) + q2 (Cx + Dw) — (v — &)ghw < 0.

SinceG is positive, we note that(t) > 0 V¢ € [0,00) holds

for any input signakw € L}y and2(0) = 0. From this fact

[hWT'A+¢IC W"B+¢!'D — (v —e)q), < 0. (50)

and the above inequality, we see that along the trajectory ja{> T.)

the system the following relation holds:

hTa(t) + g2 2(1) — (v — €)ggw(t) <0
Vt € [0,00) VYw e LY.

By integrating the above inequality ovéY, T'], we have

(51)

T
qLw(t)dt <0

Yw e Ly,

T, TTZ o
h(ﬂ+AqZ@ﬁ (v aA

By noting thath”z(T') > 0, it is obvious that

T T
/ qlz(t)dt — (y — é‘)/ qhw(t)dt <0 Vwe LTy,
0 0

Moreover, by restrictingo to be such thatlgZw|; = 1 and
letting T’ — oo, we see thalf,” ¢ z(t)dt — (y—¢) < 0 holds
for all w € LTy such that||q%wH1 = 1. It follows that (i) is
satisfied.

must hold for at least one indeX (1 < j* < ny):

(¢ G(0);+ = Vquw,+ > 0. (52)

In the following, we assumey, j« = 1 without loss of
generality. For a givefi’ > 0, we also define a linear operator
Ir as follows:

_Jct) (0<t<T)
HTC'_{ 0 (T<t)

Now we move on to the final stage of the proof. To this
end, let us define a constant input signgl(t) := e;« € R,
wheree; is thei-th standard basis d&"~. We also denote by
zst (t) the response of the systeto the inputws(¢). Then,
sincelim;_, 2 (t) = G(0)e;+, we see that for any > 0
satisfyingy — ¢ > 0, there existsl, > 0 such that

L 2 (t) — g7 G(0)ejr > —% vt > T..
From (52), this implies
ql 2 (t) > v — % >0 Vt>T..

If we define another input signab}.(t) := Irwg, for a given
and denote by7.(¢) the corresponding output signal,
then we havd|qlwk ||, = T, 25.(t) = 2z (t) (0 <t < T) and
hence

g2 7|l

g wyp s

1

T. T oo
_! / ﬁ@@ﬁ+/'£@@w+/ f@@ﬁ)
T 0 T: T

e
1T, (W—§)(T—T5)
> 7 ) dEd > —2—
€ e T,
—7—5—(7—5)?~

Therefore, for the particular choice of
g
€ 2 T =

2

v 2y —¢

T>

T.(> T¢),

3

(i)=(ii) To prove the assertion by contradiction, suppose (Y€ have||_qZTz_;H1/Hq£w}|[1 > 7 —¢. Sincee > 0 can be
does not hold for any: > 0. Then only the following two taken arbitrarily small, this implie§G,. 4, (l1+ > ~, which

cases are possible:

(a) A is not Hurwitz stable.
(b) A is Hurwitz stable but (5) does not hold for ahy> 0.

contradicts (i).
(ii)=-(iii) The linear inequality (5) impliesi € H"*" and

R > —¢fcA™', WTB+¢'D <~k
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since we havel—! < 0 from (ii) of Lemma 1. By substituting D. Proof of Lemma 4

the former into the Iatter,nwe obtain (6)-T Proof of Lemma 4: We give the proof for the controllability

(iii) =(ii) Letus fixv € R’ such that® A < 0. Then, the only. The result for the observability readily follows frotie

condition (6) implies that there exists> 0 such that system duality. For contradiction, suppose= A~'B < 0
"D+ (—qTCA™" + ev")B < yq2. does not hold. From the underlying assumptigns {M"*"N

) o1 . ) . H™*"} and B € R, we see that < 0 definitely holds since
If we defineh := (—q, CA™ +ev™)" > 0, we readily obtain 4—1 < (. Therefore there exists a nonempty index Bet

WA+ ¢T'C=evTA<0, WT"B+¢'D—~¢E <. {1,--- ,n} such thaty; = 0 (i € Z), v; < 0 (i € Z°) where
) Z¢ is the complement of. Again from B(= Av) € RY, it
This clearly shows that (5) holds. B ollows that
C. Proof of Theorem 2 Av >0, v;=00G€el), v<0(@GecI. (57)

Proof of Theorem 2: For each subsystem, let us define Since A € M"*", the above conditions implyl;; =0 (i €
e N .
B;i=[Bi1 - Biso1 Biiy1 - Bin |, T, j € I°). Therefore we havg¢Av);, = 0 (i € Z). Repeating

Cu Diiy -+ Disir Disisr - Dian the same argument, we obtajpl*v); = 0 (i € Z, k =
: : : : : 0,1,--- ,n—1). Then, if we denote by/. the controllability
C, = | Gori | p, o | Pimtia = Dicviims Diciin -+ Do | MaALrix for the pair(A, B), we have
E T Cipna |0 7T | Disran - Diviior Disviivt -+ Divig,
fl H N H:" ' “: o e rank(U,) = rank([B AB ---A""'B])
CNz D;’\;.i,l D;’\".;',z—l DN,‘L.H»I DN“,'L,N = rank([Av AQU "'A;L’U ])
= k(lv Av --- A"~
andz;, w; (i =1,--- ,N) by (18). Then, the systeg can be < ;ai &T v v])

written in the form of (10) with (11) and (12). Therefore the
interconnection of subsysteni with (16) can be seen as anwhere|Z| is the cardinality ofZ. This implies that(A, B) is
interconnection withg and a matrix2 precisely given in the not controllable and hence the proof is completed. ~ m
following. From (16) and (18), we see that the interconmercti

matrix  of this case is nothlng but a permutation matrix thag- Proof of (IV) in Theorem 5

permutesz;; andz;; in z, i.e., For the proof, we need the next lemma.
. . T . . T Lemma 5: For givend € M"*", B € R*!, andC € R}*",
QLo zg oz = a2y ] (59 suppose€ A, B) is controllable and A, C) is observable. Then,
A concrete example of2 is given in (19). Since2 is a for agivena € R such than/ +A € R}™", we haveC'(al +
permutation matrix, we see tha? > 0. It follows from A)'B > 0 for at least one index € {0, -+ ,n —1}.
Lemma 3 that the interconnected system is admissible aRtpof of Lemma 5: Since(A, B) is controllable and 4, C')
stable if and only if the Metzler matrix is observable(al + A, B) is controllable andal + A, C) is
A B9 observable. Therefore we see tliat= U, ,Uc, € R}*" is
{ C DO ] nonsingular wheré/J, , andU, ,, stand for the controllability
and observability matrices for the paifel + A, B) and

is Hurwitz stable. This can be restated equwalently thateh (a1 + A,C), respectively. The first row ofU given by
existsh; € R, andgq; € R} (i,j =1,--- ,N,i #j) [CB C(a[ + A)B ---C(al + A)""'B] is nonzero since

such that U is nonsingular from the controllability and observability
N T A BQ assumption. Therefore the assertion readily follows. ®
{ ~ } { C DQ—1T ] 0 (54) Proof of (IV) in Theorem 5: Let us defineQp := Q(I —
L= T T DQ)~! as in the proof of (Ill). Then, from the assertion (1)
h‘—[hTm hT] . = | T gt ] : . : .
=1l N » 9= 19, 4N - already validated, the matri®$) — I is Hurwitz and hence

Here,q.; (i = 1,---,N) are given by (17). Sincé) is a p(DS2) = Ap(DQ2) < 1. It follows that
permutation matrix, we see that (54) holds if and only if
T Qp = QI — D)~ :QZDQ >Q>0.
h A B
By c p_qof | < 0 (55) i=0
4z B Since is irreducible from (iii), the above inequality implies
Moreover, we see from the property represented by (53) th@ts is also irreducible an@)p € Rf“’.

iTOT = (G g o~ 1T T T With this in mind, supposed.; is reducible for contradic-
Q)" =ah, Gw=1lab1 - don] - tion. Then, fora > 0 such thatal + A > 0, there exists a
Here,q,; (i = 1,--- ,N) are given by (17). It follows that permutation matrix” such that
(55) can be divided intdV inequalities as in PT(OJ + A+ BQpC)P e W,
[ b Ai+ql.Ci B Bi+qlDi—qp,; ] <0 _Jw_l @ RJ|. rxr
z z, (Z_]_U ’N) (56) W:=<W = Oniinr Nk QEeER s

From Theorem 1, (56) holds if and only [iG; 4. ,.¢.. |1+ < S e RaIXM0 1 < < — 1},
1(i=1,---,N). This completes the proof. [ ] Wy = WnRE*",
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Since al + A and BQpC are both nonnegative, the above Ce ., = (I — Du) 'Cu, Detn = Du(l — 2Dy) Q.

condition implies Here, sinceg, * (2, is admissible and stable as proved, and

Va:=Plal + AP eW,, Vsc := PTBOpCP c W,. (58) since(G,*,)Q, is linear, we can rewrite the condition (28)

To proceed, let us define as a condition with respect to the steady-state gain as in

Tmax—1 (—Cc17u¢45}u5c1,u + Deiu)Vobj,l = Vobj,u- (62)
— . R T i
Thmax 7=, THEX Ty U= ZO (P7(al + A)P)" € W, By using —C A 'B, = ¥, — D,, we can confirm the
= term Cay Ay, in the above equality read€..Ay) =

Then, from Lemma 5, we hav&' := CPUP'B ¢ DY, (g - U, Q)" 1C AL, Therefore we can rewrite (62) as
With the matrixU € W defined above, we also have
Ve = PTBQpCP € W,
VeeUVise = PTBQpXQpCP € W, i X
Vie(UVse)? = PTBQp(XQp)°CP e W, (Cody Bu = Do+ WullyDu)(I = QD)™ Qo
. = (\I]uQu - I)Uobj,w
Again from —C, A B, + D, = ¥, this holds if and only if
(W4 — I)Vobju = —VuQuivobj,1. This is equivalent to

((\I’uQu - 1)71611A111611 + Du)(I - Q1J.’Du)7IQu1’Uo‘bj,l = vobj,u

or equivalently,

Ve (UVse)N 1 = PTBOp(XQp)VN~ICP e W,
It follows that

N1 . \I/u [Qu Qul] |:1;Obj.,u:| = 'Uobj,u.
PTBZCP e W,, Z:=Qp» (XQp). (59) obj.1
i=0 This completes the proof. ]

Since Qp is irreducible andt € DY Y, it is obvious that
XQp is ireducible. Moreover, sinc&Qp € RY*YN, we see
from (b) of Proposition 2 thal -~ ' (X Qp)* € RY V. Since

Qp is irreducible andlp € Rf“\?, this further indicates that
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observable fori = 1,--- , N (and henceA, B) and (A,C)
are controllable and observable, respectively). This detap
the proof. ]
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F. Proof of Corollary 3

Proof of Corollary 3: The state-space equation (f,
Q.)€ is given by
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