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Aqueous Zn-based batteries are attracting extensive interest because of their economic 

feasibility and potentially high energy density. However, poor rechargeability of Zn anode in 

conventional electrolytes resulting from dendrite formation and self-corrosion hinders the 

practical implementation. Herein, a Zn molten hydrate composed of inorganic Zn salt and water 

is demonstrated as an advantageous electrolyte for solving these issues. In this electrolyte, 

dendrite-free Zn deposition/dissolution reaction with a high coulombic efficiency (~99%) as 

well as long-term stability free from CO2 poisoning are realized. The resultant Zn–air cell 

exhibits a reversible capacity of 1000 mAh g(catalyst)
–1 over 100 cycles at 30 °C. Combined with 

the intrinsic safety associated with aqueous chemistry and cost benefit of the raw material, the 

present Zn–air battery makes a strong candidate for large-scale energy storage. 
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Since their commercialization, lithium-ion batteries (LIBs) have dominated the field of 

portable electronic devices for decades. Scaling up of LIBs to fully electrify automotives as 

well as to store and regulate intermittent renewable energy sources, however, encounters great 

challenges owing to the projected cost,[1] and safety concerns caused by the use of flammable 

organic electrolytes.[2] Against this background, rechargeable batteries employing metallic Zn 

as the anode warrant special attention owing to the following reasons;[3,4] the abundance and 

large production of Zn make it economically viable, the applicability of aqueous electrolytes 

grants an intrinsic safety, and its low reactivity and ease of handling are also advantageous for 

battery manufacturing process. In order to compensate the moderate redox potential of Zn/Zn2+ 

(–0.76 V vs standard hydrogen electrode (SHE)) compared to Li/Li+ (–3.04 V vs SHE), research 

efforts in this realm have spanned from intercalation chemistry[3–7] to conversion reaction, 

namely, Zn–air batteries.[8–12] The most notable characteristic of the latter configuration is the 

utilization of an ideally inexhaustible cathode reactant, oxygen, from the ambient atmosphere, 

which renders it prominent theoretical capacities in both gravimetric and volumetric criteria.[12] 

Efforts toward rechargeable Zn–air batteries so far mainly focused on the developments of 

bifunctional catalyst cathode materials for facilitating oxygen reduction reaction (ORR) and 

oxygen evolution reaction (OER), with alkaline electrolytes (i.e., 6–7 M KOH) widely used to 

achieve fast electrode kinetics.[8–11] However, Zn anodes are prone to form dendrite and suffer 

from passivation and corrosion in a basic environment.[12–14] This situation is further 

complicated by the solid-solute-solid mechanism (Zn–Zn(OH)4
2––ZnO) and the degradation of 

alkaline electrolyte upon operation owing to carbon dioxide poisoning and water 

consumption.[12–14] 

Although Zn deposition/dissolution reaction is as important as ORR/OER performance in 

determining the overall properties of a battery, only few attempts to ameliorate the anode 

reversibility were demonstrated. The strategy includes i) the use of neutral/acidic aqueous 

electrolytes to avoid the carbonization of electrolytes and reduce dendrite,[4,15,16] ii) surface 
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modification of Zn electrode with the aims to prevent passivation or homogenize current 

distribution,[17] and iii) a combination of them.[18,19] Recently, a pioneering work by Xu and 

Wang groups reported a nearly 100% coulombic efficiency of Zn deposition/dissolution 

employing a superconcentrated, so-called “water-in-salt” electrolytes, in which the unique 

solvation structure of Zn2+ contributed to the remarkable Zn reversibility.[20] However, typical 

Zn salts required for these studies are trifluoromethanesulfonate (TfO)[5–7,15,18,19] or 

bis(trifluoromethanesulfonyl)amide (TFSA).[20] These organic fluorinated salts are costly, 

which makes their practical application challenging and inevitably lessens the economic 

benefits anticipated for Zn-based batteries.[21] The existence of excess reaction-irrelevant ions 

in the electrolyte may also reduce the energy efficiency. Most importantly, the long-term 

reliability of Zn in most of these electrolytes is still far from satisfactory.[21] 

Herein, we report a Zn–air battery with the utilization of an affordable Zn molten hydrate 

electrolyte to address the above issues (Figure 1a and b). Zinc chloride has been known for a 

century as one of the most water-soluble inorganic metal salts.[22] In the extremely concentrated 

state, the binary mixture is defined as zinc molten hydrate or hydrate melt (Figure S1, 

supporting information),[23] with all water molecules participating in Zn2+ hydration shells. As 

such, it is no longer an aqueous solution but rather close to an ionic liquid.[24,25] The wide 

liquidus composition range of ZnCl2–H2O system at ambient temperature serves as an ideal 

platform to elucidate the relationship between the solvation structure of Zn salts and its 

electrochemical behavior. It is worthwhile to emphasize that the water-in-salt electrolytes[26,27] 

are not molten hydrate, because they still contain non-negligible amount of free water 

molecules.[28,29] Using Zn molten hydrate as an electrolyte, dendrite-free stable cycling of Zn 

anodes over 4000 cycles was achieved. This electrolyte was shown to effectively suppress Zn 

corrosion and thus an improved battery shelf life is expectable. The resultant Zn–air batteries 

was demonstrated to give a reversible capacity of 1000 mAh g–1 (on the base of cathode active 

material mass) for 100 cycles. Lastly, as many low-melting inorganic molten hydrates are 
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known,[29] the present study may provide guidelines for the development of a new class of 

electrolytes for metal deposition and energy-related applications. 

Cyclic voltammetry (CV) was performed to evaluate the Zn electrochemistry in a series of 

ZnCl2·nH2O (n = 50, 10, 4, 3, 2.33), where a tungsten wire was used as the working electrode 

and Zn as the reference and counter electrode in a three-electrode setup. In all electrolytes, the 

cathodic peak below 0 V (vs Zn/Zn2+) and the anodic peak around the open-circuit voltage 

(OCV) observed are associated with Zn deposition and dissolution, respectively (Figure S2).[30] 

These CV profiles superpose well during cycling, indicating the good reversibility of Zn redox 

reactions. X-ray diffraction (XRD) patterns of the deposits obtained at –0.2 V (vs Zn/Zn2+) are 

presented in Figure S3. It reveals that the deposits are crystalline Zn without any impurity phase. 

It is interesting to notice an increased relative intensity of 002 to 101 indices when the 

stoichiometric water molar ratio is lower than 4. This implies that the preferential deposition of 

Zn is altered depending on the solution structure (vide infra). Scanning electron microscopy 

(SEM) images of Zn deposits are shown in Figure 1c. Conspicuously, the morphology 

transforms from fine-size dendrites to well-defined hexagonal crystals as water content 

decreases. The high Zn concentration in molten hydrate electrolytes is supposed to significantly 

alleviate the establishment of cocnentration gradient during the deposition process, and the 

stable ion supply to the Zn anode favors the uniform deposition. The bulk and dense nature of 

the Zn deposit obtained in molten hydrate electrolytes is beneficial for complete dissolution. Zn 

deposits of similar morphology and crystallographic feature were obtained with the aid of an 

ionic liquid electrolyte.[31] In addition, the anodic stability is improved as water content 

decreases, which is possibly owing to the smaller amount of uncoordinated water causing the 

side reaction (Figure S4). On the other hand, the Zn redox reaction within the alkaline 

electrolyte (6 M KOH-0.2 M ZnCl2) exhibits low reversibility as known before (Figure S5).[4,15] 

The inferior coulombic efficiency could be ascribed to the proton reduction that simultaneously 
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occurred during Zn electrodeposition,[32] along with the highly porous and non-adherent 

microstructure of the Zn deposit (Figure S5).  

Among the electrolytes investigated, the ionic conductivity of ZnCl2·nH2O reaches a 

maximum at n = 10 and decreases with increasing ZnCl2 content (Figure 2a). The drop in the 

bulk conductivity suggests that the addition of ZnCl2 gives rise to increase in ionic interactions 

and interferes the liquid dynamics.[33] Nevertheless, a reasonably high value of 15 mS cm–1 is 

attained at the most concentrated ZnCl2·2.33H2O at 30 °C. This value is higher than that of 

most of ionic liquids[34] and is comparable to conventional Li-based nonaqueous electrolytes.[35] 

Figure 2b shows differential scanning calorimetry (DSC) thermograms for ZnCl2·nH2O. All 

electrolytes are proved to be liquid at room temperature (melting temperature ≤ 10 °C). 

Furthermore, their melting points observed are reproducible and well consistent with the 

previously reported phase diagram,[22,25] confirming that the stoichiometric ratios of our 

samples are reliable. Selected physicochemical properties of ZnCl2·nH2O electrolytes studied 

are presented in Table S1. From the viewpoint of ambient temperature energy storage and/or 

electrodeposition, further concentrated system is not appropriate because the liquidus 

temperature increases with increasing ZnCl2 content (e.g., 28.2 °C for ZnCl2·1.8H2O, Table S1 

and Figure S6). 

To characterize the liquid structure at each ZnCl2/H2O ratio, Raman spectra were obtained 

and the peaks were assigned according to previous reports (Figure 2c).[36–39] In the 3200-cm–1 

region, Raman spectrum of the neat water shows a broad band originated from O–H stretching 

of water molecules.[39] The two bands at 280–320 cm–1 and 390–400 cm–1 are assigned to the 

symmetric stretching modes of the tetrahedral [ZnCl4]2– and the octahedral aquo-complex 

[Zn(OH2)6]2+, respectively.[36,37] With the increase of ZnCl2 content, the [ZnCl4]2– peak is 

gradually intensified at the expense of the O–H stretching band. Concomitantly, the H–O–H 

bending mode at 1650 cm–1 shows red shift and the peak becomes sharpened. This is the result 

of the structure breaking effect of Cl– on the H bonding network between water molecules.[40] 
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Besides, a band assigned to the stretching mode of lower chloro-complexes of Zn2+ (e.g., 

[ZnCl3]–)[37,38] appears around 330 cm–1 as a shoulder overlapping the predominant [ZnCl4]2– 

band. These observations are in qualitative agreement with previous measurements[37,38,41] and 

directly indicate that the bulk water nature is diminished in the ZnCl2 concentrated states (n = 

4, 3, 2.33). Consequently, the Zn surface chemistry and double-layer structure can be tailored 

by controlling the ZnCl2 content, which leads to the favorable deposit morphology of Zn.[31] 

For the most concentrated ZnCl2·2.33H2O, a new band at 230 cm–1 is discernible. This band is 

derived from the polynuclear aggregation of [ZnCl4]2– via Cl–, [36] which resembles molten 

ZnCl2.[42] At this composition, the average number of coordinating water around Zn is less than 

6 and thus incomplete hydration shells are formed. In addition, it is considered that competition 

between the Cl– and water molecules for positions adjacent to Zn2+ occurs.[23] Compared to 

other compositions (n ≥ 3), the peculiar solution structure and competing association between 

Cl– and H2O within ZnCl2·2.33H2O are supposed to affect the ion conduction behavior and the 

electrochemical characteristics. It was reported that the transference number of Zn ionic species 

decreased from +0.33 to –0.52 as the ZnCl2 concentration increased from 0.5 to 12 M.[43] The 

negative transference number indicates that at higher ZnCl2 concentrations most of the Zn ions 

are in the form of anionic complexes, and this can happen in molten hydrate electrolytes.[43,44]  

Coulombic efficiency (C.E.) is an important parameter for any rechargeable batteries and is 

defined here as the ratio of the amount of Zn stripped from the working electrode versus the 

amount that is plated.[45] To evaluate it, coin cells were assembled with molybdenum working 

and Zn counter electrodes. The ten-cycle averaged coulombic efficiency in ZnCl2·2.33H2O is 

98.7% after the initial two conditioning cycles (Figure 3a).[46] This value significantly 

outperformed that (C.E.< 50%) in the alkaline electrolyte under the same condition (Figure 3b). 

The inferior coulombic efficiency reflects that the majority of Zn deposit in the alkaline 

electrolyte is electrochemically inactive (dead Zn) and/or parasitic reactions occur. Symmetric 

Zn/Zn cells were further fabricated to study the long-term cycling performance. Figure 3c 
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shows the discharge-charge profiles using the ZnCl2·2.33H2O electrolyte at various current 

densities and a fixed areal capacity of 1 mAh cm–2. At a current density of 1 mA cm–2, the 

Zn/Zn cell could be durably cycled for 1000 h, with an overpotential less than 100 mV. At 

higher current density of 2 and 5 mA cm–2, the cell could still give a stable capacity over 1000 

h. Notably, the cell could even sustain cycling at a demanding condition of 10 mA cm–2 for 800 

h, corresponding to 4000 cycles, despite a slight fluctuation observed in the voltage-time 

profiles. The small voltage hysteresis between deposition and dissolution is a good indicator of 

the facile electrode kinetics. The current densities employed here correspond to C/2~5C rate 

for a cell of a nominal areal capacity of 2 mAh cm–2, which are sufficient for most practical 

applications.[46] As shown by ex-situ SEM images, cycled Zn electrode is fairly dense and 

dendrite-free, while energy dispersive X-ray spectroscopy (EDX) and XRD patterns reveal that 

the deposited element is exclusively metallic Zn (Figue S7). It is evident that the molten hydrate 

electrolyte offers the opportunities for Zn anode to achieve satisfactory coulombic efficiency, 

rate capability, and long cycle life over a wide current range. To the best of our knowledge, this 

is the first demonstration of a Zn anode with such a long-term cyclability. Of interest is the fact 

that these results are achieved under a lean electrolyte condition (i.e., minimum amount of 

electrolyte),[17] which is desirable for heightening the cell-level energy density of Zn-based 

rechargeable battery. Besides, it can be seen that the cyclability of Zn anode in ZnCl2·2.33H2O 

exceeds those using ZnCl2·3H2O and ZnCl2·4H2O (Figure S8). These data illustrate that the 

bulk ionic conductivity of electrolyte is not a key requirement for stable Zn deposition/stripping 

performance, but more likely the solution structure as discussed above. Under the same 

condition, the Zn/Zn cell using the alkaline electrolyte exhibited much worse cyclability (Figure 

S9a). It shows obvious voltage oscillation over time, which eventually leads to cell failure at 

150 h at a current density of 1 mA cm–2 and only 80 h at a current density of 5 mA cm–2. 

Terminal failure observed here could be ascribed to the depletion of reducible Zn species and 

electrode surface passivation owing to the accumulation of needle-like, insulating zinc oxide as 
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evidenced by ex-situ XRD and SEM analysis (Figure S9b and c). The formation of zinc oxide 

is consistent with previous reports.[4,20] 

It was well-documented that Zn experiences high dissolution and corrosion in alkaline 

aqueous electrolytes.[13,14] The former leads to the growth of dendrites and electrode shape 

change, whereas the latter is associated to the hydrogen evolution reaction on the Zn surface.[13] 

All these phenomena deteriorate the effective utilization and reversibility of the Zn anode; 

however, they have not been seriously considered since the amount of Zn anode is usually 

excessive as compared to the cathode of interest, both in Zn-ion or Zn–air batteries.[21] To shed 

light on the stability of Zn anode in the molten hydrate and the influence of ambient exposure 

to the electrolyte, immersion test was conducted using Zn/Zn coin cells with air access holes. 

Electrochemical impedance spectroscopy (EIS) was undertaken for the cells before and after 

immersion in order to monitor the change in electrode surface state. For the cell adopting 

ZnCl2·2.33H2O, the interfacial resistance was kept almost constant for 30 days (Figure S10a 

and b), which is reflected to the absence of crystalline corrosion product on Zn electrode (Figure 

S10c). Most importantly, the cell exhibits nearly the identical deposition/dissolution behavior 

after the immersion test, which ascertaining the integrity of both Zn electrodes and the 

electrolyte (Figure S10d). In sharp contrast, surface state of Zn in the alkaline electrolyte 

continuously varied during immersion as shown by the noisy voltage-time profile and amplified 

interfacial resistance (Figure S11a and b), which was confirmed by the precipitated ZnO (Figure 

S11c). As show in Figure S12, SEM images of Zn electrodes recovered from two electrolytes 

clearly reveal that self-corrosion is suppressed in ZnCl2·2.33H2O, which is attributed to the 

strong hydration effect in the molten hydrate that significantly decreased the water activity.[28] 

It is important to underline that most of the previous studies on alkaline Zn–air batteries using 

flooded cells with an enormous electrolyte volume (see Ref. 47 for clarity). However, it is 

increasingly recognized now that electrochemical properties obtained in this manner cannot 

represent the true performance in practical batteries in which a reasonable electrolyte content is 
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required for better volumetric and gravimetric energy densities.[17,48] Bearing this in mind, a 

Zn–air cell using ZnCl2·2.33H2O electrolyte was constructed with Zn as the anode and Pt/C 

catalyst as the cathode. The set-up is schematically illustrated in Figure 4a. The cell exhibits 

an open-circuit potential of ca. 1.4 V, which is close to the values reported in the alkaline 

solution.[8–11] A flat discharge curve at ca. 1.2 V and a high specific capacity exceeding 10000 

mAh g–1 are achieved at 100 mA g–1, on the basis of the weight of Pt in the cathode (Figure 

S13a). The end of discharge observed here is believed to be related to either kinetic restriction 

of the catalyst[12] and/or limited oxygen diffusion into the air electrode owing to the increase in 

electrolyte viscosity as a result of continuous Zn dissolution. As shown in Figure S13b, the 

potential gap between discharge and charge increases with increasing current density. 

Especially, the charge polarization degree is more sensitive to applied current, highlighting the 

importance of catalysts for OER. Nevertheless, the cell could persistently deliver a stable 

capacity for 100 cycles under a constant-capacity mode of 1000 mAh g–1 at 500 mA g–1 (Figure 

4b). The cycle performance measured at 200 and 1000 mA g–1 is shown in Figure S13c and d. 

Since the Zn anode remains intact after the cycling in Zn–air batteries (Figure S14), the 

increasing potential gap upon cycling is caused by the degradation of the cathode. Catalyst 

aggregation and loss of porosity were observed for the cycled air electrode (Figure S15). 

Because ORR mainly occurs at three-phase sites among oxygen (gas), electrolyte (liquid), and 

catalyst (solid), porous structure of cathode acting as oxygen channels is very crucial. [12] On 

the other hand, OER occurs at the interface between electrolyte and catalyst; namely, a porous 

structure is not essential. This is why the discharge overpotential increased upon cycling while 

the charging curves remain almost unchanged. Despite the limited amount of electrolyte applied, 

the cyclability and sustained operation time (> 400 h) of the present cell is better than other Zn–

air batteries in the literature. It is postulated that the favorable anodic reaction and chemical 

stability of Zn within Zn molten hydrate synergistically contribute to the good durability. To 

clarify the cathodic reaction, ex-situ analysis was conducted. SEM, EDX and XRD results 
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clearly depict that ZnO was formed after the first discharge process (Figure 4c and S16a). These 

discharge products are pillar shaped with a hexagonal cross-section and their size are ranging 

from few tens to several hundred of nanometers (Figure S16b). ZnO could be effectively 

decomposed and virtually disappeared after the charge, assuring the rechargeable Zn–air cell 

utilizing a molten hydrate electrolyte involves the reversible formation of ZnO (Figure 4d and 

S16a). It is worth noting that this reaction mechanism is distinct to the one using alkaline 

electrolytes, in which the formation of zincate ions (Zn(OH)4
2–) predominants.[12] Besides, gas 

analysis after discharge-charge test was carried out to trace possible formation of chlorine gas 

from ZnCl2·2.33H2O. The result revealed that the electricity qauntity consumed for chlorine 

gas evolution was less than 0.8% (see Supporting Information for details of the calculation). It 

is well-known that the chlorine gas evolution potential will shift to more positive as forming 

chlorozincate complexes ([ZnCl4]2– or large cluster).[49] Nevertheless, further improvement in 

terms of cycling stability and energy efficiency is expectable with the utilization of advanced 

bifunctional catalyst[50,51], especially those possessing selective oxygen evolution catalytic 

activity.[52] Additional positive feature of the ZnCl2·2.33H2O electrolyte is verified from the 

discharge-charge experiment conducted in a dry air environment, using the same cell setup. The 

results demonstrate an enhanced cyclability compared with that using a conventional alkaline 

electrolyte (6 M KOH-0.2 M ZnCl2), which shows severe capacity loss after only 4 cycles 

(Figure S17). The enhancement presumably originates from two aspects, the better carbon 

dioxide tolerance than alkaline solution, as well as the greater water-retention capability 

endowed by the strong hydration effect between Zn2+ and water. 

In conclusion, we investigated the ZnCl2–H2O system as the electrolytes for Zn–air battery 

and unveiled the crucial role of the water content. The concentrated state, ZnCl2·2.33H2O, 

referring to a Zn molten hydrate, offers a suite of unique properties that were unachievable with 

its diluted counterparts. The resultant Zn–air cell is demonstrated to show a potential high 

energy density and a good cyclability, which are enabled by the highly reversible Zn 



     

11 
 

deposition/dissolution, as well as the chemically stable Zn interface, both of which are 

consequence of the peculiar solution structure and strong hydration effect exclusive for Zn 

molten hydrate. Revisiting other low-melting inorganic molten hydrates and leveraging our new 

insights will facilitate the development of new electrolyte materials of unique properties and 

cost effectiveness. 

 

Supporting Information 
Supporting Information is available from the Wiley Online Library or from the author. 
 
Acknowledgements 
We express our gratitude to the reviewers for valuable suggestions and the National Institute 
of Advanced Industrial Science and Technology (AIST) for financial support.   
 

Received: ((will be filled in by the editorial staff)) 
Revised: ((will be filled in by the editorial staff)) 

Published online: ((will be filled in by the editorial staff)) 
 

References 

[1] R. Schmuch, R. Wagner, G. Horpel, T. Placke, M. Winter, Nat. Energy 2018, 3, 267. 

[2] J. H. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, A. 

Yamada, Nat. Energy 2018, 3, 22. 

[3] D. Kundu, B. D. Adams, V. D. Ort, S. H. Vajargah, L. F. Nazar, Nat. Energy 2016, 1, 

16119. 

[4] H. L. Pan, Y. Y. Shao, P. F. Yan, Y. W. Cheng, K. S. Han, Z. M. Nie, C. M. Wang, J. H. 

Yang, X. L. Li, P. Bhattacharya, K. T. Mueller, J. Liu, Nat. Energy 2016, 1, 16039. 

[5] N. Zhang, F. Y. Cheng, J. X. Liu, L. B. Wang, X. H. Long, X. S. Liu, F. J. Li, J. Chen, 

Nat. Commun. 2017, 8, 405. 

[6] F. Wang, E. Y. Hu, W. Sun, T. Gao, X. Ji, X. L. Fan, F. D. Han, X. Q. Yang, K. Xu, C. S. 

Wang, Energy Environ. Sci. 2018, 11, 3168. 

[7] J. W. Ding, Z. G. Du, L. Q. Gu, B. Li, L. Z. Wang, S. W. Wang, Y. J. Gong, S. B. Yang, 

Adv. Mater. 2018, 30, 1800762. 



     

12 
 

[8] J. Yin, Y. X. Li, F. Lv, Q. H. Fan, Y. Q. Zhao, Q. L. Zhang, W. Wang, F. Y. Cheng, P. X. 

Xi, S. J. Guo, ACS Nano 2017, 11, 2275. 

[9] Y. J. Li, L. Cui, P. F. Da, K. W. Qiu, W. J. Qin, W. B. Hu, X. W. Du, K. Davey, T. Ling, 

S. Z. Qiao, Adv. Mater. 2018, 30, 1804653. 

[10] C. Tang, B. Wang, H. F. Wang, Q. Zhang, Adv. Mater. 2017, 29, 1703185. 

[11] L. L. Zhou, C. C. Hou, Z. Liu, H. Pang, Q. Xu, J. Am. Chem. Soc. 2018, 140, 15393. 

[12] J. Fu, Z. P. Cano, M. G. Park, A. P. Yu, M. Fowler, Z. W. Chen, Adv. Mater. 2017, 29, 

1604685. 

[13] A. R. Mainar, E. Iruin, L. C. Colmenares, A. Kvasha, I. D. Meatza, M. Bengoechea, O. 

Leonet, I. Boyano, Z. Zhang, J. A. Blazquez, J. Energy Storage, 2018, 15, 304. 

[14] A. L. Zhu, D. P. Wilkinson, X. E. Zhang, Y. L. Xing, A. G. Rozhin, S. A. Kulinich, J. 

Energy Storage 2016, 8, 35. 

[15] N. Zhang, F. Y. Cheng, Y. C. Liu, Q. Zhao, K. X. Lei, C. C. Chen, X. S. Liu, J. Chen, J. 

Am. Chem. Soc. 2016, 138, 12894. 

[16] C. Zhang, J. Holoubek, X. Y. Wu, A. Daniyar, L. D. Zhu, C. Chen, D. P. Leonard, I. A. 

Rodriguez-Perez, J. X. Jiang, C. Fang, X. Ji, Chem. Commun. 2018, 54, 14097. 

[17] Y. T. Wu, Y. M. Zhang, Y. Ma, J. D. Howe, H. C. Yang, P. Chen, S. Aluri, N. Liu, Adv. 

Energy Mater. 2018, 8, 1802470. 

[18] W. Li, K. L. Wang, M. Zhou, H. C. Zhan, S. J. Cheng, K. Jiang, ACS Appl. Mater. 

Interfaces 2018, 10, 22059. 

[19] K. N. Zhao, C. X. Wang, Y. H. Yu, M. Y. Yan, Q. L. Wei, P. He, Y. F. Dong, Z. Y. 

Zhang, X. D. Wang, L. Q. Mai, Adv. Mater. Interfaces 2018, 5, 1800848. 

[20] F. Wang, O. Borodin, T. Gao, X. L. Fan, W. Sun, F. D. Han, A. Faraone, J. A. Dura, K. 

Xu, C. S. Wang, Nat. Mater. 2018, 17, 543. 

[21] M. Song, H. Tan, D. L. Chao, H. J. Fan, Adv. Funct. Mater. 2018, 28, 1802564. 

[22] F. Mylius, R. Dietz, Z. Anorg. Chem. 1905, 44, 209. 



     

13 
 

[23] J. Braunstein, Inorg. Chim. Acta Rev. 1968, 2, 19. 

[24] C. A. Angell, Y. Ansari, Z. F. Zhao, Faraday Discuss. 2012, 154, 9. 

[25] R. J. Wilcox, B. P. Losey, J. C. W. Folmer, J. D. Martin, M. Zeller, R. Sommer, Inorg. 

Chem. 2015, 54, 1109. 

[26] L. M. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. L. Fan, C. Luo, C. S. Wang, K. Xu, 

Science 2015, 350, 938. 

[27] V. A. Azov, K. S. Egorova, M. M. Seitkalieva, A. S. Kashina, V. P. Ananikov, Chem. 

Soc. Rev. 2018, 47, 1250. 

[28] Y. Yamada, K. Usui, K. Sodeyama, S. Ko, Y. Tateyama, A. Yamada, Nat. Energy 2016, 

1, 16129. 

[29] Y. Marcus, Ionic liquid properties. From molten salts to RTILs, Springer, Switzerland, 

2016, pp.109–122.  

[30] S. D. Han, N. N. Rajput, X. H. Qu, B. F. Pan, M. N. He, M. S. Ferrandon, C. Liao, K. A. 

Persson, A. K. Burrell, ACS Appl. Mater. Interfaces 2016, 8, 3021. 

[31] Z. Liu, G. Pulletikurthi, A. Lahiri, T. Cui, F. Endres, Dalton Trans. 2016, 45, 8089. 

[32] M. Chamoun, B. J. Hertzberg, T. Gupta, D. Davies, S. Bhadra, B. Van Tassell, C. 

Erdonmez, D. A. Steingart, NPG Asia Mater. 2015, 7, e178. 

[33] M. Mizuhata, Y. Sumihiro, S. Deki, Phys. Chem. Chem. Phys. 2004, 6, 1944. 

[34] M. Watanabe, M. L. Thomas, S. G. Zhang, K. Ueno, T. Yasuda, K. Dokko, Chem. Rev. 

2017, 117, 7190. 

[35] K. Xu, Chem. Rev. 2018, 114, 11503.  

[36] D. E. Irish, T. F. Young, B. McCarroll, J. Chem. Phys. 1963, 39, 3436. 

[37] T. Yamaguchi, S. Hayashi, H. Ohtaki, J. Phys. Chem. 1989, 93, 2620. 

[38] H. Kanno, J. Hiraishi, J. Raman Spectrosc. 1980, 9, 85. 

[39] M. Ahmed, V. Namboodiri, A. K. Singh, J. A. Mondal, J. Chem. Phys. 2014, 141, 

164708. 



     

14 
 

[40] G. Maisano, P. Migliardo, M. P. Fontana, M. C. Bellissent-Funel, A. J. Dianoux, J. Phys. 

C: Solid State Phys. 1985, 18, 1115. 

[41] L. M. Uriarte, J. Dubessy, P. Boulet, V. G. Baonza, I. Bihannic, P. Robert, J. Raman 

Spectrosc. 2015, 46, 822. 

[42] D. E. Irish, T. F. Young, J. Chem. Phys. 1965, 43, 1765. 

[43] A. C. Harris, H. N. Parton, Trans. Faraday Soc. 1940, 36, 1139. 

[44] J. Jorne, W. T. Ho, J. Electrochem. Soc. 1982, 129, 907. 

[45] G. Y. Zheng, S. W. Lee, Z. Liang, H. W. Lee, K. Yan, H. B. Yao, H. T. Wang, W. Y. Li, 

S. Chu, Y. Cui, Nat. Nanotechnol. 2014, 9, 618. 

[46] S. R. Chen, J. M. Zheng, D. H. Mei, K. S. Han, M. H. Engelhard, W. G. Zhao, W. Xu, J. 

Liu, J. G. Zhang, Adv. Mater. 2018, 30, 1706102. 

[47] D. Stock, S. Dongmo, K. Miyazaki, T. Abe, J. Janek, D. Schroder, J. Power Sources 

2018, 395, 195. 

[48] P. Chen, Y. T. Wu, Y. M. Zhang, T. H. Wu, Y. Ma, C. Pelkowski, H. C. Yang, Y. Zhang, 

X. W. Wu, N. Liu, J. Mater. Chem. A 2018, 6, 21933.  

[49] S. I. Hsiu, J. F. Huang, I. W. Sun, C. H. Yuan, J. Shiea, Electrochim. Acta 2002, 47, 

4367. 

[50] J. Pan, Y. Y. Xu, H. Yang, Z. H. Dong, H. F. Liu, B. Y. Xia, Adv. Sci. 2018, 5, 1700691. 

[51] H. F. Wang, C. Tang, Q. Zhang, Adv. Funct. Mater. 2018, 28, 1803329. 

[52] J. G. Vos, T. A. Wezendonk, A. W. Jeremiasse, M. T. M. Koper, J. Am. Chem. Soc. 

2018, 140, 10270. 

  



     

15 
 

  

 
Figure 1. (a) Molarity of the ZnCl2–H2O binary system as functions of the weight ratio of ZnCl2 
to H2O and the molar ratio of H2O to ZnCl2 (n). The prospective hydration shells around Zn are 
shown as inset. The term “water-in-salt” denotes electrolyte with salt to water weight ratio > 1. 
(b) Schematic illustration of (top) Zn dendrite growth, shape change, and hydrogen evolution 
in conventional electrolytes and (bottom) Zn deposition in a molten hydrate electrolyte, in 
which uniform ion distribution promotes smooth deposition and less uncoordinated water 
alleviates hydrogen evolution. (c) SEM images of Zn deposits obtained by constant voltage 
deposition on Ni substrates at –0.2 V (vs Zn/Zn2+) for 1 h at 30 °C. 
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Figure 2. (a) Temperature (T) dependence of ionic conductivity of ZnCl2·nH2O. (b) DSC 
thermograms of ZnCl2·nH2O recorded at 2 °C min–1. (c) Raman spectra of ZnCl2·nH2O in 
which ν and δ represent stretching and bending modes, respectively. 
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Figure 3. Galvanostatic Zn deposition-stripping in a Zn/Mo cell in (a) ZnCl2·2.33H2O and (b) 
6 M KOH-0.2 M ZnCl2. (c) Cycling performance of Zn/Zn symmetric cells in ZnCl2·2.33H2O 
at various current densities with a fixed areal capacity of 1 mAh cm–2. Operating temperature: 
30 °C. 
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Figure 4. (a) The schematic drawing of Zn–air cell set up in which the cathode is 50% Pt/C 
loaded on a gas diffusion layer and the anode is Zn plate. (b) Cycling performance of the Zn–
air cell at a current density of 500 mA g–1 under a constant-capacity mode (mass based on Pt, 
1000 mAh g–1 corresponds to a cathodic areal capacity of 0.5 mAh cm–2). Operating condition: 
oxygen-filled, 30 °C. SEM images, EDX analysis and elemental mapping of the Pt/C cathodes 
at (c) the discharge state and (d) the charge state.  The inset inf (c) shows the hexagonal 
microstructure of discharge product ZnO formed in the Zn–air cell. 
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Zinc molten hydrate electrolyte is demonstrated to be an advantageous electrolyte for Zn-based 
battery applications. The high Zn concentration and reduced water activity not only promote 
dendrite-free Zn plating/stripping at a high coulombic efficiency but also effectively suppress 
self-corrosion of Zn, enabling Zn–air batteries a long-term cyclability. 
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