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Abstract

Past experiences in Japan have suggested a high correlation between the

presence of voids behind the tunnel lining and seismic damage of tunnels.

To confirm this correlation from a theoretical perspective, this study derives

three-dimensional elastic solutions for a deep cylindrical tunnel with a void

subjected to obliquely incident seismic waves. The three-dimensional seismic

response of the tunnel and the effect of voids on the response are investigated.

Herein, a void is treated as a partial non-contact boundary between the lining

and the ground, with negligible volume. The substructure method and the

point-matching method are used to derive the solutions. Numerical results

show that the presence of a void does not lead to a large stress concentration

on the lining under an oblique-incidence of seismic waves. However, high

correlation between large stress concentration on the lining caused by voids

before an earthquake and seismic damage of tunnels is suggested. Based on

this finding, reinforcement of the lining where large stress concentration has
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already occurred is crucial for preventing seismic damage of tunnels.

Keywords: Tunnel, Void behind the lining, Elastodynamics, Seismic

response, Three-dimensional analysis

1. Introduction

Compared to surface structures, tunnels are relatively less vulnerable to

earthquakes. Some mountain tunnels, however, have experienced significant

damage in recent earthquakes including the 1995 Kobe (Asakura and Sato,

1996), the 1999 Chi-Chi (Wang et al., 2001; Chen et al., 2002), the 2004 Ni-

igata (Yashiro et al., 2007), the 2008 Wenchua (Tianbin, 2008; Li, 2012), and

the Kumamoto (Zhang et al., 2018). Therefore, understanding the earth-

quake damage mechanisms of tunnels is crucial.

Mountain tunnels are generally vulnerable to damage when they are sub-

jected a massive earthquake, they are located near an earthquake fault, and

they are under certain special conditions (Yashiro et al., 2007). The special

conditions include a shallow tunnel, poor geological conditions, sliding of an

earthquake fault along which the tunnel is located, and structural defects

in the lining. Severely damaged tunnels have been found to meet at least

one of these conditions. In old tunnels that were constructed using conven-

tional method (tunnelling method before New Austrian tunnelling method)

in Japan, partial discontinuities, or voids, between the lining and the ground

are often presented, which adversely affect the lining (Meguid and Dang,

2009; Wang et al., 2014; Meguid and Kamel, 2014). The presence of such

voids is one of the most significant factors that cause seismic damage to

tunnels, as evidenced by past experiences in Japan.
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The Uonuma tunnel, which was the most severely damaged tunnel in the

2004 Niigata earthquake, has voids behind the lining. The concrete lining of

the most severely damaged section had broken off and fallen onto the track

with the largest concrete block being approximately 2m3 and weighing five

tons (Yashiro et al., 2007). This damage was considered to be caused by high

longitudinal thrust because cracks in the transverse direction of the tunnel

and ring cracks were predominant. This damage can not be explained by con-

ventional two-dimensional analysis using the tunnel cross-section (Amorosi

and Boldini, 2009; Park et al., 2009). A three-dimensional analysis is neces-

sary to understand the earthquake damage mechanisms.

This paper presents three-dimensional elastic solutions for a deep cylin-

drical tunnel that consists of a void behind the lining and is subjected

to obliquely incident seismic waves. The solutions are derived using the

substructure method (Wolf, 1985) and the point-matching method (Yasuda

et al., 2017). The three-dimensional seismic response of the tunnel and the

effects of a void on the response are investigated.

2. Theory

2.1. Problem definition

Consider an infinite cylindrical tunnel consisting of a void behind the

lining and subjected to a plane harmonic seismic wave propagating at an

angle φ with respect to the axis of the cylindrical tunnel, as shown in Fig. C.1.

The surrounding ground is considered to be an infinite elastic, homogeneous,

isotropic medium. The lining is treated as an elastic, homogeneous, isotropic

medium with an outer radius R and a thickness h.
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Because of the azimuthal symmetry of the circular cylinder, an incident

pressure wave (P-wave) or an incident shear wave (S-wave) can be assumed

to be propagated in the direction of the wavenumber vector kinc
(1) on the x-z

plane; here, superscript ”inc” denotes an incident wave. The displacement

vector of the P-wave uinc
p(1) is parallel to kinc

(1) and that of the S-wave uinc
s(1)

is on the plane perpendicular to kinc
(1). uinc

s(1) can be decomposed into two

independent vectors: an S1-wave vector u
inc
s1(1)

, which is parallel to the y axis,

and an S2-wave vector uinc
s2(1)

, which is on x-z plane. Subscripts (1) and (2)

denote the ground and the lining, respectively.

The void is treated as a partially non-contact boundary between the lining

and the ground, with a negligible volume. Its circumferential angle is θv and

the longitudinal length is Lvz. To derive the theoretical solutions, a periodic

structure is assumed in the longitudinal direction, with length Lz, which is

long enough compared to the longitudinal void length Lvz. Lz equals the

longitudinal wavelength and is expressed by the wavelength of an incident

wave in the ground L(1) and incident angle φ, as follows:

Lz =
L(1)

cosφ
. (1)

L(1) equals the P-wave wavelength Lp(1) under P-wave incidence and the

S-wave wavelength Ls(1) under S-wave incidence.

2.2. Solution scheme

To evaluate the displacement and stress under the ground-lining inter-

action, two substructures, namely, the ground and the lining systems, are

considered, as shown in Fig. C.2. In this paper, a positive compression is

assumed.
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When the ground–lining system is subjected to an incident seismic wave,

the resultant displacement of the ground u(1) can be decomposed into two

parts:

u(1) = ui
(1) + ur

(1), (2)

where ui
(1) is the primary displacement of the ground with no lining caused

by the incident seismic wave and ur
(1) is the secondary displacement of the

ground with a lining caused by the reflected wave at the interface r = R. The

secondary displacement can also be interpreted as the displacement caused

by the surface loading f r
(1) from the ground-lining interface. Superscripts i

and r denote initial and reflection, respectively. The resultant surface loading

at the ground-lining interface f (1) is equivalent to f r
(1) because the surface

loading of the ground with no lining f i
(1) is zero. For the lining, displacement

u(2) is caused by surface loading f (2) from the ground-lining interface. The

displacements ui
(1) can be determined when incident wave conditions are

given. ur
(1) and u(2) can be determined by f r

(1) and f (2), respectively.

The boundary conditions at the ground–lining interface are as follows.

At the discontinuous interface within the extent of the void, f (1) = f (2) = 0

must be satisfied. At the intact interface away from the void, f (1) +f (2) = 0

and u(1)|r=R = u(2)|r=R must be satisfied (under a no-slip condition). In an

analytical or ideal scenario, these boundary conditions cannot be met eas-

ily. Therefore, the point-matching method, where the boundary conditions

are satisfied only at a finite set of points along the interface, is adopted.

General solutions of the displacements ur
(1)|r=R and u(2)|r=R and the surface

loadings f r
(1) and f (2) can be expressed as a Fourier series expansion in the

circumferential and longitudinal directions. The boundary conditions can be
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approximately satisfied by determining the coefficients of the Fourier series

properly.

Herein, we show the solutions under incident P-wave or S2-wave (sym-

metric deformation along the x-z plane) only, as derivation of the solutions

under incident S1-wave (antisymmetric deformation along the x-z plane) is

achieved in the same way.

2.3. General solutions for the ground and lining

2.3.1. Solution for the primary field of the ground

When a plane harmonic P-wave or S2-wave impinges on a surface of a

ground cavity with no lining, part of the incident wave is reflected at the

cavity. The primary displacement of the ground ui
(1), which is the super-

position of an incident wave and the reflected wave, can be calculated by

elastodynamics (White, 1958; Mow and Pao, 1971). At the ground-lining

interface with r = R, ui
(1) can be expressed as follows:

uir(1)|r=R =
∞∑
n=0

(
U i
r,n(1) cos γz + U ′i

r,n(1) sin γz
)
cosnθe−iωt

uiθ(1)|r=R =
∞∑
n=0

(
U i
θ,n(1) cos γz + U ′i

θ,n(1) sin γz
)
sinnθe−iωt

uiz(1)|r=R =
∞∑
n=0

(
U i
z,n(1) sin γz + U ′i

z,n(1) cos γz
)
cosnθe−iωt


, (3)

γ =
2π

Lz

, (4)

in which U i
r,n(1), U

i
θ,n(1) and U

i
z,n(1) are complex constants related to symmetric

deformation along the x-y plane and U ′i
r,n(1), U

′i
θ,n(1) and U ′i

z,n(1) are those

related to antisymmetric deformation along the x-y plane. ω is the angular
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velocity of the incident wave and γ is the wavenumber in the longitudinal

direction. Subscript n denotes the nth mode in the circumferential direction.

When the ground property and incident wave conditions are provided, U i
r,n(1),

U i
θ,n(1), U

i
z,n(1), U

′i
r,n(1), U

′i
θ,n(1) and U

′i
z,n(1) are determined.

2.3.2. Solution for the secondary field of the ground

Displacement and traction of the ground caused by the reflected wave at

the ground-lining interface with r = R can also be expressed as follows (e−iωt

omitted):

urr(1)|r=R =
∞∑

m=0

∞∑
n=0

(
U r
r,nm(1) cos γmz + U

′r
r,nm(1) sin γmz

)
cosnθ

urθ(1)|r=R =
∞∑

m=0

∞∑
n=0

(
U r
θ,nm(1) cos γmz + U

′r
θ,nm(1) sin γmz

)
sinnθ

urz(1)|r=R =
∞∑

m=0

∞∑
n=0

(
U r
z,nm(1) sin γmz + U

′r
z,nm(1) cos γmz

)
cosnθ


, (5)

f r
r(1) = −σr

rr(1)|r=R =
∞∑

m=0

∞∑
n=0

(
F r
r,nm(1) cos γmz + F

′r
r,nm(1) sin γmz

)
cosnθ

f r
θ(1) = −σr

rθ(1)|r=R =
∞∑

m=0

∞∑
n=0

(
F r
θ,nm(1) cos γmz + F

′r
θ,nm(1) sin γmz

)
sinnθ

f r
z(1) = −σr

rz(1)|r=R =
∞∑

m=0

∞∑
n=0

(
F r
z,nm(1) sin γmz + F

′r
z,nm(1) cos γmz

)
cosnθ


,

(6)

γm =
2πm

Lz

, (7)

in which U r
r,nm(1), U

r
θ,nm(1), and so on are complex constants.
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Stiffness of the ground, which is defined as the relationship between dis-

placement and traction at the ground–lining interface, can be defined for

each mode. In the following, we only mention the stiffness matrix related to

symmetric deformation along the x-y plane, as that related to antisymmetric

deformation can be derived in a similar way.

According to the theory of elastodynamics (Mow and Pao, 1971), the

general solutions of displacement and traction related to symmetric defor-

mation along the x-y plane and the x-z plane can be expressed as follows

(e−iωt omitted):

urr(1) =
1

r

∞∑
m=0

∞∑
n=0

(Anmε11 +Bnmε12 + Cnmε13) cosnθ cos γmz

urθ(1) =
1

r

∞∑
m=0

∞∑
n=0

(Anmε21 +Bnmε22 + Cnmε23) sinnθ cos γmz

urz(1) =
1

r

∞∑
m=0

∞∑
n=0

(Anmε31 +Bnmε32 + Cnmε33) cosnθ sin γmz


, (8)

σr
rr(1) =

2µ(1)

r2

∞∑
m=0

∞∑
n=0

(Anmε41 +Bnmε42 + Cnmε43) cosnθ cos γmz

σr
rθ(1) =

2µ(1)

r2

∞∑
m=0

∞∑
n=0

(Anmε51 +Bnmε52 + Cnmε53) sinnθ cos γmz

σr
rz(1) =

2µ(1)

r2

∞∑
m=0

∞∑
n=0

(Anmε61 +Bnmε62 + Cnmε63) cosnθ sin γmz


, (9)

where µ(1) is the shear modulus of the ground; Anm, Bnm, and Cnm are

complex constants; and ε11, ε12, and so on are given in Appendix A.

Constants Anm, Bnm, and Cnm can be removed from Eq. (5) to Eq. (9).

The relationship between U r
r,nm(1), U

r
θ,nm(1), and U

r
z,nm(1) and F

r
r,nm(1), F

r
θ,nm(1),
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and F r
z,nm(1) can be derived as follows:
F r
r,nm(1)

F r
θ,nm(1)

F r
z,nm(1)

 = −2µ

R


ε41 ε42 ε43

ε51 ε52 ε53

ε61 ε62 ε63



ε11 ε12 ε13

ε21 ε22 ε23

ε31 ε32 ε33


−1

U r
r,nm(1)

U r
θ,nm(1)

U r
z,nm(1)

 ,

=


Krr,nm(1) Krθ,nm(1) Krz,nm(1)

Krθ,nm(1) Kθθ,nm(1) Kθz,nm(1)

Krz,nm(1) Kθz,nm(1) Kzz,nm(1)



U r
r,nm(1)

U r
θ,nm(1)

U r
z,nm(1)

 , (10)

where the coefficient matrix of the right hand side in Eq. (10) is the stiffness

matrix of the ground related to symmetric deformation along the x-y plane.

2.3.3. Solutions for the lining

In this paper, for simplicity, the lining is treated as an elastic cylindrical

shell, with thickness h being considerably smaller than the outer radius of

the lining R. Therefore, the mean radius of the shell is considered to be equal

to R.

The general solutions of the lining at the ground–lining interface with

r = R can be expressed as follows:

ur(2) =
∞∑

m=0

∞∑
n=0

{
Ur,nm(2) cos γmz + U ′

r,nm(2) sin γmz
}
cosnθe−iωt

uθ(2) =
∞∑

m=0

∞∑
n=0

{
Uθ,nm(2) cos γmz + U ′

θ,nm(2) sin γmz
}
sinnθe−iωt

uz(2) =
∞∑

m=0

∞∑
n=0

{
Uz,nm(2) sin γmz + U ′

z,nm(2) cos γmz
}
cosnθe−iωt


, (11)
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fr(2) =
∞∑

m=0

∞∑
n=0

{
Fr,nm(2) cos γmz + F ′

r,nm(2) sin γmz
}
cosnθe−iωt

fθ(2) =
∞∑

m=0

∞∑
n=0

{
Fθ,nm(2) cos γmz + F ′

θ,nm(2) sin γmz
}
sinnθe−iωt

fz(2) =
∞∑

m=0

∞∑
n=0

{
Fz,nm(2) sin γmz + F ′

z,nm(2) cos γmz
}
cosnθe−iωt


, (12)

where Ur,nm(2), Uθ,nm(2), and so on are complex constants.

The relationship between Ur,nm(2), Uθ,nm(2), and Uz,nm(2) and Fr,nm(2),

Fθ,nm(2), and Fz,nm(2) can be derived from Eq. (11), Eq. (12), and traction–

displacement relations for the lining (Flügge, 1973). They can be expressed

as follows:
Fr,nm(2)

Fθ,nm(2)

Fz,nm(2)

 =


Krr,nm(2) Krθ,nm(2) Krz,nm(2)

Krθ,nm(2) Kθθ,nm(2) Kθz,nm(2)

Krz,nm(2) Kθz,nm(2) Kzz,nm(2)



Ur,nm(2)

Uθ,nm(2)

Uz,nm(2)

 , r = R, (13)

where the coefficient matrix of the right-hand side in Eq. (13) is the stiffness

matrix of the lining related to symmetric deformation along the x-y plane.

Coefficients of the matrix are shown in Appendix B.

2.4. Boundary conditions

The boundary conditions at the ground–lining interface with r = R are

imposed as follows. For traction-free condition:

f r
r(1) = f r

θ(1) = f r
z(1) = fr(2) = fθ(2) = fz(2) = 0. (14)
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For no-slip condition:

uir(1)|r=R + urr(1)|r=R = ur(2), f r
r(1) + fr(2) = 0

uiθ(1)|r=R + urθ(1)|r=R = uθ(2), f r
θ(1) + fθ(2) = 0

uiz(1)|r=R + urz(1)|r=R = uz(2), f r
z(1) + fz(2) = 0

 . (15)

The traction-free condition is imposed on the ground-lining interface within

a void, and the no-slip condition is imposed on the ground–lining interface

outside a void.

2.5. Calculation procedure for the solutions

Solutions can be derived on the basis of the theory described in the pre-

vious section. However, the boundary conditions cannot be easily satisfied

in practice. Therefore, Fourier series are limited by a finite number of terms,

and the boundary conditions are satisfied in a finite set of points (point-

matching method).

The first N + 1 and M + 1 terms of the infinite series (from n = 0 − N

and m = 0 −M) are used to express the approximate solutions. N points

in the circumferential direction (−180◦ ≤ θ < 180◦) and M points in the

longitudinal direction (−L/2 ≤ z < L/2) are selected such that they are

equidistant from each other. The resulting system of inhomogeneous linear

equations can be solved by matrix inversion. However, because of the large

number of unknown constants, considerable time and memory are required

for achieving the result. To address this drawback, the solutions are derived

using an alternative strategy.

Fig. C.3 illustrates the calculation procedure. Traction and displacement

vectors are represented by the vectors whose end point and starting point

11



lie on the ground-lining interface, respectively. Fig. C.4 shows a flowchart

of the calculation procedure to determine the solutions. The effect of a

void (traction-free condition) is taken into account gradually in the loop

calculation. The initial value is the solutions in case of no void. Conversion

between displacement distribution and traction distribution is performed by

using the stiffness matrix. The fast Fourier transform is used to reduce

the calculation time when the amplitude of each mode is calculated from

displacement or traction distribution. The change from the ground system

D to E represents the reduction of the traction on the ground-lining interface

within a void. The traction is gradually reduced, 50% at each loop iteration

in this study, to avoid numerical instability. Traction in lining system A

is calculated from traction in ground system E, and it is updated by the

following equation: f (2) = (1 − α)f (2) − αf (1). In this study, α is assumed

to be 0.005.

The accuracy of the solution can be evaluated by checking whether the

rigid body displacement in the ground system, urigid
(1) , is finally zero. Under P-

wave or S2-wave incidence (symmetric deformation along the x-z plane), the

rigid body displacement in the x-direction is evaluated by Ur,10(1) + Uθ,10(1).

In this paper, the calculation is stopped when the normalized displacement

|urigid
(1) |/|uinc

(1)| becomes less than 10−20.

2.6. Stress of the lining

Axial thrust nθθ, nθz, and nzz and bending moment mθθ, mθz, and mzz in

the lining can be calculated from the displacement of the lining, as expressed

12



(Flügge, 1973) below:

nθθ =
∞∑

m=0

∞∑
n=0

Nθθ,nm cosnθ cos γmze
−iωt

nzz =
∞∑

m=0

∞∑
n=0

Nzz,nm cosnθ cos γmze
−iωt

nθz =
∞∑

m=0

∞∑
n=0

Nθz,nm sinnθ sin γmze
−iωt


, (16)

mθθ =
∞∑

m=0

∞∑
n=0

Mθθ,nm cosnθ cos γmze
−iωt

mzz =
∞∑

m=0

∞∑
n=0

Mzz,nm cosnθ cos γmze
−iωt

mθz =
∞∑

m=0

∞∑
n=0

Mθz,nm sinnθ sin γmze
−iωt


, (17)

where Nθθ,nm,Mθθ,nm, and so on are shown in Appendix C. The sign conven-

tion for thrust and moment in the lining is shown in Fig. C.5.

Stress at the surface of the lining can be approximated as follows:

σθθ(2) ≈
1

h
nθθ ±

h

2I
mθθ

σzz(2) ≈
1

h− I
R2

{(
1± h

2R

)
nzz +

(
±h

2

2I
+

1

R

)
mzz

}
σθz(2) ≈

1

h
nθz ±

h

2I
mθz

I =
h3

12


, (18)

where I is the moment of inertia of the lining. As for ± in Eq. (18), the

positive and negative signs are chosen for the inner and outer surfaces of the

lining, respectively.
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3. Results and discussion

Table. C.1 lists the material properties required for the numerical calcu-

lations. We assume that the Shinkansen tunnel is in soft ground because

tunnels are severely damaged by earthquakes are usually constructed in soft

ground. The ratio of Young’s modulus of the ground and the lining is 0.01:1.

The pressure wave velocity and shear wave velocity in the ground are ap-

proximately 450 m/s and 240 m/s, respectively. Incident wave frequency f

is assumed to be 1.0 Hz as referenced from the velocity response spectrum

observed on the base rock during the 1995 Kobe earthquake.

In the following, to satisfy the boundary conditions, N = 128 points in

0◦ ≤ θ < 360◦ are selected in the circumferential direction keeping approx-

imately 0.25 m distance between two points. In the longitudinal direction,

M points are selected such that M is the minimum number in power of two

with the distance between two points being less than 0.25 m. For example,

M is 4096 under S-wave incidence with f = 1.0 Hz and φ = 75◦.

3.1. Solutions with no void behind the lining

To understand the basic seismic response of a tunnel, the case of no void

behind the lining is investigated before the case with a void. When there is no

void, the boundary condition in Eq. (15) can be satisfied strictly. Solutions

are calculated using the first eleven terms for the circumferential direction

(n = 0− 10) and only one term for the longitudinal direction (m = 1).

3.1.1. Characteristic deformation modes

The wavelength of the incident wave is sufficiently longer than the tunnel

radius; therefore, the lining deformation is predominant in the three lowest
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modes that correspond to the circumferential mode, i.e., n = 0, 1, and 2.

Fig. C.6 shows the characteristic deformation modes of the lining under

S2-wave incidence at an incident angle φ of 75◦. The amplitude of the inci-

dent shear wave displacement uinc
s2(1)

is 1.0 m in the ground. The calculated

displacement is multiplied by the number given in the upper right corner of

the legend. Note that x-direction displacement is emphasized in these figures

because the ranges of the x-axis and z-axis are ±10 m and ±1000 m, respec-

tively. The zeroth, first, and second modes represent compression-extension

deformation, longitudinal bending deformation on the x-z plane, and the

ovaling deformation of the tunnel cross-section, respectively. In this case,

the displacements in the z-direction for the zeroth mode, the x-direction for

the first mode, and the x-direction for the second mode are approximately

0.85, 0.26, and 0.03 m, respectively. Therefore, the z-direction displacement

for the zeroth mode is predominant in this case.

Fig. C.7 shows characteristic deformation modes of the lining under the

S1-wave incidence at an incident angle φ of 75◦. The amplitude of the incident

shear wave displacement uinc
s1(1)

is 1.0 m. Each figure shows the displacement

of the lining at maximum displacement of each mode. The zeroth, first,

and second modes represent the torsional deformation, longitudinal bending

deformation and ovaling deformations, respectively. Except for the zeroth

mode, all deformation modes under S1-wave and S2-wave incidence are similar

with the difference being the deformation direction.
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3.1.2. Relationships between incident angle and stress distribution of the lin-

ing

When the seismic wave is incident on the tunnel, the lining stress in the

inner surface maximizes. Therefore, we investigate the stress of the lining

inner surface to evaluate the seismic response of the tunnel. The stress is

normalized by the incident P-wave- or S-wave-induced maximum principal

stress of the ground without excavation (infinite ground).

Fig. C.8 shows the maximum stress distribution of the inner surface of

the lining under P-wave incidence. At an incident angle φ of 15◦, σ∗
zz is pre-

dominant and is almost uniformly distributed in the lining. At φ = 75◦, σ∗
θθ

is predominant and is maximum at θ = ±90◦. Fig. C.9 shows the maximum

stress of the inner surface of the lining at θ = 90◦ and the contribution of

each mode. In the legend, n denotes the terms of the modes used for the cal-

culation. When φ is small, σ∗
zz by the zeroth mode is predominant, whereas

when φ is large, σ∗
θθ by the superposition of the zeroth mode and the second

mode is predominant. The maximum lining stress under P-wave incidence

occurs when φ is small.

Fig. C.10 shows the maximum stress distribution of the inner surface of

the lining under S1-wave incidence. When φ is 15◦, σ∗
zz and σ∗

θz are predom-

inant and become maximum at θ = ±90◦ and 0◦ and ±180◦, respectively.

When φ is 75◦, σ∗
θθ is predominant and becomes maximum at θ = ±45◦ and

±135◦. Fig. C.11 shows the maximum stress of the inner surface of the lin-

ing at θ = 45◦ and the contribution of each mode. When φ is small, σ∗
zz by

the first mode is predominant, whereas when φ is large, σ∗
θθ by the second

mode is predominant. σ∗
θθ for a large incident angle is larger than σ∗

zz for a
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small incident angle. The maximum lining stress occurs φ is 90◦. σ∗
θθ can be

approximately related to sinφ.

Fig. C.12 shows the maximum stress distribution of the inner surface of

the lining under S2-wave incidence. σ∗
zz is predominant for both incident

angles. When φ is 15◦, σ∗
zz becomes maximum at θ = 0◦ and ±180◦. When

φ is 75◦, σ∗
zz is almost uniformly distributed. Fig. C.13 shows the maximum

stress of the inner surface of the lining at θ = 0◦ and the contribution of each

mode. When φ is small, σ∗
zz by the first mode is predominant, whereas when

φ is large, σ∗
zz by the zeroth mode is predominant. Maximum lining stress

occurs when φ is large. When the tunnel is sufficiently flexible relative to the

surrounding ground and completely follows the ground deformation (free-

field deformation), σ∗
zz by the zeroth mode becomes maximum at φ = 45◦

(Yeh, 1974; Hashash et al., 2001). When the tunnel is not sufficiently flexible,

σ∗
zz becomes maximum at 45◦ ≤ φ < 90◦ by the ground-lining interaction.

This is because the stiffness of the lining decreases more rapidly than that

of the ground as the wavelength along the tunnel axis increases. The first

mode does not tend to cause large stress concentration in the lining because

of the long wavelength of the incident shear wave and the relatively small

curvature of the lining caused by the deformation.

3.1.3. Comparison between maximum circumferential strain and longitudinal

strain

The discussion in 3.1.2 considers only the specific conditions given in

Table. C.1. This section discusses the solutions for various Young’s ratios

of the ground and frequency. In general, a seismic wave is incident on the

tunnel at a large angle, and the amplitude of the S-wave is larger than that
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of the P-wave. Therefore, solutions for S-wave incidence at large incident

angles are considered.

Fig. C.14 shows the maximum ε∗θθ and maximum ε∗zz for various Young’s

ratios of the ground and frequency. The solutions are evaluated in terms

of strain, rather than stress, in order to better evaluate the effect of varying

Young’s modulus of the ground over a wide range. The strain is normalized by

the S-wave-induced maximum shear strain of the ground without excavation.

ε∗θθ is the maximum circumferential strain on the inner surface of the lining

when the S1-wave is incident on the tunnel at φ = 90◦. ε∗zz is the maximum

longitudinal strain on the inner surface of the lining when the S2-wave is

incident on the tunnel at 45◦ ≤ φ < 90◦.

All three curves of ε∗θθ tend downward to the left of the figure. ε∗θθ is

influenced by the relative stiffness of the ground and the lining, but not by

the frequency of the shear wave. This is because the shear wavelength is

much larger than the tunnel radius. For example, the shear wavelength is

about 18 times larger than the tunnel radius at a frequency of 5.0 Hz and

Young’s ratio of the ground of 1.0 GPa.

In contrast, ε∗zz is influenced by both relative stiffness and frequency. ε∗zz

in the weak ground is strongly affected by the frequency. It decreases as

Young’s modulus of the ground decreases and frequency increases because,

as mentioned earlier, the stiffness of the lining decreases more rapidly than

that of the ground with increasing wavelength along the tunnel axis. When

the tunnel is sufficiently flexible relative to the surrounding ground and com-

pletely follows ground deformation, ε∗zz is 0.5.

The maximum ε∗zz tends to be larger than ε∗θθ when Young’s ratio of the
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ground is less than 3.0 GPa (approximately one-tenth of that of the lining).

Therefore, seismic damage of the tunnel in the weak ground is probablyi

caused by both the S1-wave and S2-wave.

3.2. Solutions with a void behind the lining

Figs. C.9, C.11 and C.13 show that the stress of the lining is mainly

caused by the first three modes (zeroth, first, and second). Especially, the

second mode is predominant for circumferential stress, while the zeroth mode

is predominant for longitudinal stress. In the following, the effect of a void

for these modes is considered. We consider a relatively large void, ranging

60◦ (−30◦ ≤ θ ≤ 30◦) in the circumferential direction and 3R (-7.5m ≤ z <

7.5m) in the longitudinal direction. The stress is normalized by the incident

wave-induced maximum principal stress of the ground without excavation.

Fig. C.15 shows the circumferential stress distributions of the inner, mid-

dle, and outer surfaces of the lining at a cross-section of z = 0 when the

maximum principal stress at the cross-section is maximum under S1-wave

incidence at an incident angle φ of 75◦. The frequency f is 1.0 Hz and 5.0

Hz. The effect of a void is the largest at a cross-section z = 0, which is the

center of the void in the longitudinal direction. Only axial thrust occurs on

the middle surface of the lining, and the stress difference between the middle

surface and the inner or outer surface of the lining is caused by the bending

moment. The circumferential stress is mainly caused by the second mode

deformation when there is no void, and the circumferential stress caused by

the bending moment is higher than by the axial thrust. A void causes lit-

tle additional circumferential stress concentration on the lining because the

presence of a void causes a negative effect on the lining owing to the change
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in the stress state of the lining from axial thrust to bending moment (Yasuda

et al., 2017). The frequency, f = 1.0 Hz or 5.0 Hz, barely has any effect on

the circumferential stress distribution, regardless of the presence of a void,

because wavelength of the S-wave is considerably longer than the void size.

Fig. C.16 shows the circumferential stress distributions of the inner, mid-

dle, and outer surfaces of the lining at the cross-section z = 0 when the prin-

cipal stress at the cross-section is maximum under P-wave incidence. The

circumferential stress is caused by the zeroth mode and the second mode de-

formation when there is no void. The void causes additional stress concentra-

tion on the lining. However, stress concentration around the void decreases.

The presence of a void does not affect the maximum principal stress as this

stress occurs outside the void.

Fig. C.17 shows the longitudinal stress distributions of the inner, middle,

and outer surfaces of the lining at the cross-section z = 0 under S2-wave

incidence. The longitudinal stress is mainly caused by the zeroth mode de-

formation when there is no void. The longitudinal stress caused by the

axial thrust is higher than that caused by the bending moment. However,

unlike the circumferential stress, the void causes little additional stress con-

centration on the lining because large longitudinal stress is caused by the

accumulation of fz(2)(= σrz(2)), and the range of applied fz(2) is considerably

larger than the void size. For example, in this case, the wavelength of the

applied fz(2) is approximately 900m.

Past experiences in Japan suggest a high correlation between the presence

of voids and seismic damage of tunnels. However, as shown in Figs. C.15,

C.16, and C.17, the presence of the void does not lead to a large stress
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concentration on the lining. Incidentally, a void does not cause high cir-

cumferential stress concentration on the lining under shear loading, but does

under isotropic compression such as loading in construction and elevating

earth pressure after construction (Yasuda et al., 2017); and old tunnels that

were constructed using conventional method (tunnelling method before New

Austrian tunnelling method) often have large stress concentration in the lin-

ing before an earthquake. Taking this fact into consideration, large stress

concentration caused by the voids before an earthquake is considered to be

highly correlated with the seismic damage of tunnels. Therefore, to pre-

vent the seismic damage of tunnels, the lining of the parts where large stress

concentration has already occurred should be reinforced.

4. Conclusions and remarks

This study presented three-dimensional elastic solutions for a deep cylin-

drical tunnel with a void behind the lining and subjected to obliquely incident

seismic waves. The three-dimensional seismic response of the tunnel and the

effects of a void on the response were investigated. The following conclusions

can be drawn from this study:

(1) Because the incident wavelength is sufficiently longer than the tun-

nel radius, the lowest three, namely, zeroth, first, and second, modes

are predominant on the lining deformation. These modes represent

the compression-extension deformation or torsional deformation, the

longitudinal bending deformation, and the ovaling deformation modes,

respectively.
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(2) The circumferential stress and strain of the lining are influenced by the

relative stiffness of the ground and the lining and are not influenced

by the wavelength of the incident wave because the wavelength is con-

sidarably larger than the tunnel radius. In contrast, the longitudinal

stress and strain of the lining are influenced by both the relative stiffness

and the wavelength along the tunnel axis. Therefore, seismic damage

of the tunnel in a weak ground is probably caused by shear waves with

their displacement components not only parallel to the tunnel cross-

section but also located on the plane that includes tunnel axis.

(3) A void causes little additional circumferential stress concentration be-

cause the presence of a void negatively affects the lining owing to the

change in the stress state of the lining from axial thrust to bending

moment.

(4) A void causes little additional longitudinal stress concentration because

a longitudinal stress is caused by the accumulation of longitudinal shear

stress and the applied stress range is considerably large compared to

the void size.

(5) Large stress concentration caused by voids before an earthquake is con-

sidered to be highly correlated with seismic damage of tunnels. There-

fore, the lining where large stress concentration has already occurred

should be reinforced to prevent seismic damage of the tunnel.
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Appendix A. General solutions of the ground system

In the absence of a body force, the displacement equation of the motion

is

(λ(1) + µ(1))∇∇ · u+ µ(1)∇2u = ρ(1)ü, (A.1)

where λ(1) and µ(1) are Lamé constants of the ground and ρ(1) is the density

of the ground.

Displacement solutions of Eq. (A.1) are given by (Mow and Pao, 1971)

ur(1) =
∂ϕ

∂r
+

1

r

∂ψ

∂θ
+

1

ks(1)

∂2χ

∂r∂z

uθ(1) =
1

r

∂ϕ

∂θ
− ∂ψ

∂r
+

1

ks(1)r

∂2χ

∂θ∂z

uz(1) =
∂ϕ

∂z
− 1

ks(1)

{
1

r

∂

∂r

(
r
∂χ

∂r

)
+

1

r2
∂2χ

∂θ2

}


, (A.2)

where ks(1) is the shear wavenumber in the ground; ϕ is the pressure wave

potential; and ψ and χ are the shear wave potentials. These satisfy the wave

equation as follows:

c2p(1)∇2ϕ = ϕ̈

c2s(1)∇2ψ = ψ̈

c2s(1)∇2χ = χ̈

 , (A.3)

c2p(1) =
λ(1) + 2µ(1)

ρ(1)

c2s(1) =
µ(1)

ρ(1)

 , (A.4)

where cp(1) and cs(1) are the pressure wave velocity and the shear wave velocity

in the ground, respectively.
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Solutions of the scalar potentials ϕ, ψ, and χ can be expressed as follows:

ϕ = AnmH
(1)
n (αm(1)r)

cosnθ

sinnθ


cos γm
sin γm

 e−iωt

ψ = BnmH
(1)
n (βm(1)r)

sinnθ

cosnθ


cos γm
sin γm

 e−iωt

χ = CnmH
(1)
n (βm(1)r)

cosnθ

sinnθ


sin γm
cos γm

 e−iωt


, (A.5)

α2
m(1) = k2p(1) − γ2m

β2
m(1) = k2s(1) − γ2m

 , (A.6)

where Anm, Bnm, and Cnm are complex constants. H
(1)
n denotes the Hankel

functions of the first order n, and kp(1) is the pressure wavenumber in the

ground.

From the Eqs. (A.2) - (A.6), the ground displacement can be expressed

as follows:

ur(1) =
Anmε11 +Bnmε12 + Cnmε13

r

cosnθ

sinnθ


cos γm
sin γm

 e−iωt

uθ(1) =
Anmε21 +Bnmε22 + Cnmε23

r

sinnθ

cosnθ


cos γm
sin γm

 e−iωt

uz(1) =
Anmε31 +Bnmε32 + Cnmε33

r

cosnθ

sinnθ


sin γm
cos γm

 e−iωt


, (A.7)
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ε11 = αm(1)rH
(1)
n−1(αm(1)r)− nH(1)

n (αm(1)r)

ε12 = {±n}H(1)
n (βm(1)r)
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[±γm]
ks(1)
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ε21 = {∓n}H(1)
n (αm(1)r)

ε22 = −
{
βm(1)rH

(1)
n−1(βm(1)r)− nH(1)
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}

ε23 =
{∓n}[±γm]

ks(1)
H(1)

n (βm(1)r)

ε31 = [∓γm]rH(1)
n (αm(1)r)

ε32 = 0

ε33 =
β2
m(1)r

ks(1)
H(1)

n (βm(1)r)



. (A.8)

Using the displacement given by Eq. (A.7), the displacement–strain re-

lationship, and the strain–stress relationship, the ground stress can be ex-

pressed as follows:

σrr(1) =
2µ(1) (Anmε41 +Bnmε42 + Cnmε43)

r2

cosnθ

sinnθ


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 e−iωt

σrθ(1) =
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σrz(1) =
2µ(1) (Anmε61 +Bnmε62 + Cnmε63)
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 e−iωt


,

(A.9)
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ε41 = −αm(1)rH
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(A.10)
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Appendix B. General solutions of the lining system

Displacement and traction in the cylindrical shell can be expressed as

follows:

ur(2) = Ur,nm(2)

cosnθ

sinnθ


cos γm
sin γm

 e−iωt

uθ(2) = Uθ,nm(2)
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sin γm
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uz(2) = Uz,nm(2)
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
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cos γm

 e−iωt


, (B.1)

fr(2) = σrr(2) = Fr,nm(2)

cosnθ

sinnθ


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sin γm
cos γm
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
, (B.2)

where Ur,nm(2),Uθ,nm(2), and so on are constants.

The relationship between Ur,nm(2), Uθ,nm(2), and Uz,nm(2) and Fr,nm(2),

Fθ,m(2), and Fz,nm(2) can be derived from Eq. (B.1), Eq. (B.2), and the

traction–displacement relation in the shell (Flügge, 1973). It can be ex-

pressed as follows:
Fr,nm(2)

Fθ,nm(2)

Fz,nm(2)

 =


Krr,nm(2) Krθ,nm(2) Krz,nm(2)

Krθ,nm(2) Kθθ,nm(2) Kθz,nm(2)

Krz,nm(2) Kθz,nm(2) Kzz,nm(2)



Ur,nm(2)

Uθ,nm(2)

Uz,nm(2)

 , (B.3)
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)
2

(γmR)
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}
+ ρ(2)hω

2

Kθz,nm(2) = [±γm]R
(
D

R2

1 + ν(2)
2

{±n}
)

Kzz,nm(2) =
D

R2

{
1− ν(2)

2
n2 + (γmR)

2

}
+
K

R4

(
1− ν(2)

2
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)
+ ρ(2)hω

2



,

(B.4)

D =
E(2)h

1− ν2(2)

K =
E(2)h

3

12
(
1− ν2(2)

)
 , (B.5)

where the coefficient matrix of the right hand side in Eq. (B.3) is the stiffness

matrix of the lining. E(2), ν(2), and ρ(2) are the Young’s modulus, Poisson’s

ratio, and density of the lining, respectively. D is the extensional rigidity

and K is the flexural rigidity.

Appendix C. Axial thrust and bending moment in the cylindrical

shell

When the displacement and traction in the cylindrical shell are expressed

as Eqs. (B.1) and (B.2), axial thrust nθθ, nθz and nzz, and bending moment

mθθ, mθz and mzz can be calculated as follows:
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nθθ = Nθθ,nm

cosnθ

sinnθ


cos γm
sin γm

 e−iωt

nzz = Nzz,nm

cosnθ

sinnθ


cos γm
sin γm

 e−iωt

nθz = Nθz,nm

sinnθ

cosnθ


sin γm
cos γm

 e−iωt


, (C.1)

mθθ =Mθθ,nm

cosnθ

sinnθ


cos γm
sin γm

 e−iωt

mzz =Mzz,nm

cosnθ

sinnθ


cos γm
sin γm

 e−iωt

mθz =Mθz,nm

sinnθ

cosnθ


sin γm
cos γm

 e−iωt


, (C.2)

Nθθ,nm =
D

R

(
Ur,nm{±n}Uθ,nm[±γm]ν(2)RUz,nm

)
+
K

R3
(1− n2)Ur,nm

Nzz,nm =
D

R

(
ν(2)Ur,nm{±n}ν(2)Uθ,nm[±γm]RUz,nm

)
+
K

R3
(γmR)

2Ur,nm

Nθz,nm =
D

R

1− ν(2)
2

([∓γm]RUθ,nm{∓n}Uz,nm)

+
K

R3

1− ν(2)
2

{∓n} ([∓γm]RUr,nm + Uz,nm)


.

(C.3)
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Mθθ,nm =
K

R2

{
1− n2 − ν(2)(γmR)

2
}
Ur,nm

Mzz,nm = −K

R2

[{
(γmR)

2 + ν(2)n
2
}
Ur,nm + ν(2){±n}Uθ,nm + [±γm]RUz,nm

]
Mθz,nm =

K

R2
(1− ν(2))

(
{∓n}[∓γm]RUr,nm − [∓γm]R

2
Uθ,nm +

{∓n}
2

Uz,nm

)
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.

(C.4)
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Table C.1: Material properties.

Parameters Ground Lining

Young’s modulus (GPa) 0.30 30

Poisson’s ratio 0.30 0.20

Density (kg/m3) 2000 2300

Radius (m) 5.0

Lining thickness (m) 0.50

Figure C.1: A cylindrical tunnel with a void behind the lining subjected to an obliquely

incident plane harmonic seismic wave.
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Figure C.2: Substructures to evaluate the displacement and traction under the ground-

lining interaction: (a) the ground system and (b) the lining system.

Figure C.3: Illustration of the calculation procedure to determine the solution.
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Figure C.4: Flowchart of the calculation procedure.
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(a) (b)

Figure C.5: Sign convention of the shell element: (a) thrust and (b) moment.
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Figure C.6: Characteristic deformation modes of the lining under S2-wave incidence (f =

1.0 Hz and φ = 75◦): (a) the zeroth mode deformation in the longitudinal section, (b)

the zeroth deformation in the cross-section AA, (c) the first mode deformation in the

longitudinal section, (d) the first mode deformation in the cross-section BB, (e) the second

mode deformation in the longitudinal section, and (f) the second mode deformation in the

cross-section CC.
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Figure C.7: Characteristic deformation modes of the lining in the cross-section under S1-

wave incidence (f = 1.0 Hz and φ = 75◦): (a) the zeroth mode deformation, (b) the first

mode deformation, and (c) the second mode deformation.

(a) (b)

Figure C.8: Maximum stress distribution of the inner surface of the lining under P-wave

incidence (f = 1.0 Hz): (a) φ = 15◦ and (b) φ = 75◦.
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Figure C.9: Maximum stress of the inner surface of the lining at θ = 90◦ under P-wave

incidence and the contribution of each mode (f = 1.0 Hz): (a) relationship between φ and

σθθ, and (b) relationship between φ and σzz.
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Figure C.10: Maximum stress distribution of the inner surface of the lining under S1-wave

incidence (f = 1.0 Hz): (a) φ = 15◦ and (b) φ = 75◦.
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Figure C.11: Maximum stress of the inner surface of the lining at θ = 45◦ under S1-wave

incidence and the contribution of each mode (f = 1.0 Hz): (a) relationship between φ and

σθθ, and (b) relationship between φ and σzz.
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Figure C.12: Maximum stress distribution of the inner surface of the lining under S2-wave

incidence (f = 1.0 Hz): (a) φ = 15◦ and (b) φ = 75◦.
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Figure C.13: Maximum stress of the inner surface of the lining at θ = 0◦ under S2-wave

incidence and the contribution of each mode (f = 1.0 Hz): (a) relationship between φ and

σθθ, and (b) relationship between φ and σzz.
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Figure C.14: Maximum ε∗θθ and maximum ε∗zz on the inner surface of the lining for various

Young’s ratios of the ground and frequency.
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Figure C.15: Circumferential stress distributions of the inner, middle, and outer surfaces

of the lining at the cross-section z = 0 under S1-wave incidence when the maximum

principal stress at the cross-section becomes maximum (φ = 75◦, θv = 60◦ and Lvz = 3R):

(a) f = 1.0 Hz and (b) f = 5.0 Hz.
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Figure C.16: Circumferential stress distributions of the inner, middle, and outer surfaces of

the lining at the cross-section z = 0 under P-wave incidence when the maximum principal

stress at the cross-section becomes maximum (φ = 75◦, θv = 60◦ and Lvz = 3R): (a)

f = 1.0 Hz and (b) f = 5.0 Hz.
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Figure C.17: Longitudinal stress distributions of the inner, middle, and outer surfaces of

the lining at the cross-section z = 0 under S2-wave incidence when the maximum principal

stress at the cross-section becomes maximum (φ = 75◦, θv = 60◦, and Lvz = 3R): (a)

f = 1.0 Hz and (b) f = 5.0 Hz.
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