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Static damage identification in beams by minimum constitutive relation 

error with both full-field and finite-point displacement measurements 

A novel static identification approach to beam damage is presented. It is based on the 

minimum constitutive relation error (CRE) principle where the exact stiffness, the exact 

displacement and the exact bending moment are shown to make the CRE functional 

minimal. For practical implementation, two cases regarding full-field displacement 

measurements and finite-point displacement data, respectively, are considered. For 

full-field displacement measurements, the CRE functional is directly treated as the 

objective functional while in case of finite-point measurement data, the CRE functional 

along with additional penalty terms for treatment of the finite-point displacement 

measurements is defined as the objective functional. Multiple loads and associated sets 

of measurements are also considered to improve the identifiability and robustness of 

the procedure. Convergence is finally verified through numerical examples. 

Keywords: damage identification, static measurements, constitutive relation error 

(CRE), full-field displacement measurement, finite-point displacement measurement 

1. Introduction 

Damage can arise in structures due to operational incidents, extreme events and/or aggressive 

environmental conditions. It mainly causes a loss of structural stiffness which may affect the 

safety, integrity, serviceability and operation of structures. Thus, establishment of the 

structural health monitoring (SHM) system that provides damage and safety information for 

preventive maintenance, inspection and repair of structures becomes essential. Indeed, a 

reliable and effective non-destructive damage identification approach is always the core 

ingredient of the SHM [1]. 

There are several conventional, experimental and local approaches that are able to 

directly identify the damage. The simplest one is visual inspection; however, it is often 

difficult and even impossible to work well since there may be damage scenarios that are not 
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visible [2]. Other approaches, such as ultrasonic testing, radiography and thermal analysis, 

require the damaged region to be known a priori and accessible for testing, which cannot be 

guaranteed in most cases [1]. Hence, global approaches accounting for global behaviour of 

the damaged region are developed to overcome the difficulties. 

Generally, global damage detection approaches are devoted to the identification of 

damage location and level based on the procedure in which the responses caused by external 

excitations are measured from dynamic or static tests [3] and thereafter, damage is often 

identified indirectly through numerical manipulations. A direct consequence of damage is the 

decrease in local stiffness, and therefore damage, regarded as changes in stiffness, can be 

detected using changes in dynamic or static characteristics since response characteristics are 

functions of structural stiffness. This has been the key idea of many extant global approaches 

[1-5].  

In fact, considering the nature of the measured data, global approaches can be 

classified into two categories: dynamic and static procedures. Due to the convenience in 

dynamic data measurements, a much larger number of damage identification approaches have 

been developed based on dynamic tests [6-12]. On the other hand, for certain types of 

structures, like beam structures, static tests can be performed as easily as dynamic tests. 

Under this circumstance, the static equilibrium equation is only related to the structural 

stiffness, and static displacement and strain measurements can be obtained accurately, rapidly 

and cheaply; while approaches based on dynamic tests often require additional knowledge of 

mass and damping information, that is to say, the dynamic identification procedure is often 

complicated due to the uncertainties coming from mass and damping measurements. In spite 

of the fact, relatively less attention has been paid to static damage identification. Banan and 

Hjelmstad [13, 14], Viola and Bocchini [15] conducted static parameter identification 
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through minimizing certain error functions, like least squares fitting errors in displacements 

or equilibrium equations, based on finite element models. Di Paola and Bilello [2] identified 

damage in beams through an integral equation. Ghrib [16] investigated the efficiency of two 

computational procedures—equilibrium gap formulation and minimization of a 

data-discrepancy functional—for damage detection using static responses. Avril and Pierron 

[17] proposed a virtual field method for identification of constitutive parameters. Yang and 

Sun [18], Rezaiee-Pajand et al. [19] localized and quantified structural damage through 

sensitivity analysis of the stiffness to finite element equilibrium equations. Caddemi and 

Greco [20], Abdo [3], Bakhtiari-Nejad et al. [21] analysed the influence of measurement 

noises, number and spatial distribution of measured data and character of load cases. 

In the present paper, damage identification is performed based on static test data 

through a minimum constitutive relation error (CRE) procedure which is quite different from 

the error function approaches in [13-15, 22]. The idea is enlightened by a recent variational 

theory of Geymonat and Pagano [23] for inverse parameter identification that the CRE 

function is convex and its minimization can lead to a well-posed problem. As they pointed 

out, constitutive parameters and stresses can be identified through minimization of the CRE 

as long as displacement measurements are readily acquired under given loads. The 

conclusion reached by the theory is very attractive and as a first attempt to implement the 

theory, a constitutive equation gap method has been proposed very recently by Florentin and 

Lubineau [24-27] for parameter identification in plane elasticity problems. However, as 

indicated in the theory, the complete and comprehensive application requires the 

full-field/global displacement measurements along with a complementary-energy-based 

solver for stresses which is not yet applicable to general two- and three- dimensional 
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problems [28, 29]. Notwithstanding, the method is quite tailored for beam structures in the 

following two aspects: 

(1) global displacement measurements are easily available, and 

(2) the standard force method [30] based on the minimum complementary energy 

principle is easily conducted and it often requires substantially less degrees of 

freedom than conventional displacement-based finite element models. 

That is to say, the minimum CRE theory is completely applicable to damage identification in 

beam structures, to which this paper is just devoted. Considering that getting the 

measurement data is of vital importance for practical identification and different 

measurement techniques often correspond to different identification procedures, a number of 

commonly-used and developing measurement techniques and their recent development are 

additionally reviewed in what follows. 

Traditionally, for static measurements, displacements including deflections and slopes 

of beams are measured at finite points using linear variable-differential transformers (LVDT) 

[16] reliable up to 10
-6
mm [31] accuracy and global positioning systems (GPS) [32, 33], with 

absolute errors down to a few millimetres in practice. For damage identification  

corresponding to these finite-point measurement techniques, the accuracy of identification 

results depends mainly on the amount and locations of the sensors. 

On the other hand, with fast development of computer-based technologies and digital 

imaging devices, laser and other light sources, optical-based measurement techniques [34] 

open up a new possibility in quasi-continuous measurement of structures at an affordable cost; 

these include (but are not limited to) the digital image processing techniques [35], the laser 

scanning [36, 37] and the interferometry [38]. Particularly, the digital image processing 
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techniques, such as digital image correlation [39], close-range digital photogrammetry [40], 

image edge detection [41], optical flow method/principle [42, 43], have exhibited their 

powerful measurement abilities in various experiments. Results even showed that the relative 

error between the displacements measured by these techniques and the exact values can be 

less than 0.5% [44]. In addition, prior researches have shown that the full-field displacements 

could be appropriately rebuilt through a sufficient number of displacement data along with 

some suitable data pre-processing algorithms [45]. For more optical-based measurement 

techniques in both static and dynamic engineering applications, refer to [38, 41, 42, 46-53]. 

In this paper, damage identification in beams is performed using either the finite-point 

measurements by the traditional LVDT or the quasi-continuous measurements by the 

optical-based techniques. The primary objective is to identify the damaged stiffness k∈C  as 

well as bending moment M ∈ℑ, under the full-field displacement measurements w∈U , e.g., 

obtained by optical-based techniques and the respective static loading conditions ℑ  where 

C , U , ℑ  represent the admissible material, displacement and bending moment spaces, 

respectively. The basic inverse identification problem reads: find ( , )k M ∈ ×ℑC=  with 

given w∈U , which is a reverse of the forward problem: find ( , )w M ∈ ×ℑU=  with known 

k∈C . Evidently, by solving the inverse problem, one can not only identify the damage, but 

also reconstruct the stiffness and bending moment distribution. Moreover, the objective is 

also enriched to tackle damage identification using finite-point displacement measurements. 

By this way, the static damage identification procedure becomes more adjustable to 

traditional measurement techniques, e.g., the LVDT for which finite-point displacement 

measurements are often obtained.  

The remainder of the paper is organized as follows. The inverse identification 

problem for a Bernoulli-Euler beam model is simply introduced in Section 2. In Section 3, 
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the minimum CRE principle for inverse identification is presented for full-field displacement 

measurements and then, modification is invoked to cope with finite point measurements. 

Practical implementation and convergence of the proposed approach are discussed 

elaborately in Section 4. Numerical tests are performed in Section 5 and final conclusions are 

drawn in Section 6. 

2. Problem statement 

Consider a one-dimensional Bernoulli-Euler beam defined in interval [ , ]
s e

X x x=  as shown 

in Fig. 1. The flexural stiffness of the beam is assumed to be ( ) ( )k x EI x= . Loading 

conditions are distributed loads ( )q x  and concentrated loads ,ex exF M  along with boundary 

displacements pw  on the prescribed displacement boundary Σ . In this beam model, the 

bending moment M  is directly related to the curvature through the constitutive relation 

M k kwθ ′ ′′= =  and the shear force V  is given by V M ′= . For general equilibrium, 

( )V M q x′ ′′= =  and ,V M  should be in equilibrium with concentrated loads. The beam model 

can be described as a combination of the following three parts: 

� Kinematic constraints 

 2{ ( ) :   on }pw H X w w= ∈ = ΣU  (1) 

� Equilibrium equations 

Find bending moment M ∈ℑ with 

 { : , ( ),  and  are in equilibrium with  and }ex exM V M M q x V M F M′ ′′ℑ = = = , (2) 

or 
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2 0{ ( ) : ( ) ( ( ) ( )), }

ex ex ex ex

X X
M L X Mv dx q x vdx F v x M v x v′′ ′ℑ = ∈ = + + ∀ ∈∑∫ ∫ U  (3) 

with exx  denoting the position where concentrated loads ,ex exF M  are enforced and 
0U  the 

homogeneous part of U ; 

� Constitutive relation 

 M kw′′=  (4) 

 with 
2 0 0 0 0

{ ( ) : 0 ,  such that ( ) }k k L X c C c k x C∈ = ∈ ∃ < < ≤ ≤C=  representing a positive and 

bounded stiffness field. 

Generally, U ,ℑ ,C= that will be used frequently in what follows are called the spaces of 

(kinematically) admissible displacement field, (statically) admissible bending moment field 

and (constitutively) admissible elastic stiffness field, respectively. 

3. The minimum CRE principle for inverse identification 

3.1 CRE functional 

Consider an admissible solution trio ( , , )w M k%%%  which satisfies 

 , ,w M k∈ ∈ℑ ∈%%% U C=. (5) 

It is easily known that if the constitutive relation (4) is additionally satisfied, the solution trio 

would be the exact solution of the Bernoulli-Euler beam model. Thus, to measure the distance 

of the admissible solution trio to the exact solution trio in energy product, an error in 

constitutive relation is introduced 

 
21 ( )

( , , )
2

CRE
X

M kw
e w M k dx

k

′′−
= ∫

%% %%%%
%

 (6) 
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which is termed the constitutive relation error (CRE) [54, 55] (or constitutive equation gap 

(CEG) [24]. 

3.2 Identification through minimum CRE 

In practice, damage identification approaches appear to be limited with respect to certain 

displacement measurement techniques.  Herein, two cases regarding full-field displacement 

measurements and finite-point displacement data, respectively, are considered within the 

framework of the minimum CRE theory. For the first case using full-field displacement 

measurements, the CRE functional (6) is directly treated as the objective functional and the 

parameter identification approach is referred to as the min-CRE approach; while in case of 

finite-point measurement data, the CRE functional along with additional penalty terms for 

treatment of the finite-point displacement measurements are defined as the objective 

functional. The second identification case is more applicable and can be viewed as extension 

of the first identification case. Therefore, the identification approach involved in the second 

case is referred to as the modified min-CRE approach.  

3.2.1 Min-CRE approach 

Assume that the spaces C , U and ℑ  for search of the stiffness k , displacement w  and 

the bending moment M , respectively, are already known. Then, identification of the 

stiffness k  as well the bending moment M  from the full-field displacement data ŵ  

pertains to the following minimization of the CRE functional (6), i.e., 

 
,

ˆ( , ) arg min ( , );  ( , ) : ( , , )CRE
M k

M k F M k F M k e M k w
∈ℑ ∈

= =
%%

% % %% % %
C

, (7) 

which is known as the minimum CRE principle [23] for inverse identification. To proceed 
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further, it is necessary to clarify some important properties of the CRE function ( , , )F ⋅ ⋅ ⋅ . 

� Theorem 1 

The following properties for ( , )F ⋅ ⋅  on compact spaces ℑ×C  hold: 

(a) ( , ) 0F M k ≥%% , ( , )M k∀ ∈ℑ× ×%% C U . 

(b) ( , ) 0F M k =%%  if and only if the constitutive relation ˆM kw′′= %%  is verified. 

(c) The functional ( , )F ⋅ ⋅  is convex on ℑ×C . 

(d) The convexity of ( , )F ⋅ ⋅  on ℑ×C  guarantees the existence of the minimizer to problem 

(7). Then, if ˆ( : ( ) 0) 0x X w xµ ′′∈ = =  with ( )µ ⋅  denoting the Lebesgue measure, the 

minimizer must lie in *ℑ ×C  with * { : ( : ( ) 0) 0}M x X M xµℑ = ∈ℑ ∈ = =  and moreover, 

( , )F ⋅ ⋅  possesses separately strict convexity on *ℑ ×C . 

Detailed proof of the Theorem 1 is given in Appendix. According to Theorem 1, it is seen 

that the damaged stiffness is identifiable through the minimum CRE principle in beams. 

Theoretically, the complete and unique identification of the damage requires some extra 

conditions on the static measurements—which are inherent in the context of inverse problems 

(see Remark 1 in Appendix)—including the deforming condition ˆ( ( ) 0, ) 0w x x Xµ ′′ = ∈ =  such 

that ( , )F ⋅ ⋅  becomes strictly convex in the vicinity of the minimizer.  

In practice, using more than one set of static measurements could improve the 

identifiability and robustness of the identification procedure and provide remedy for possible 

unidentifiability of the proposed approach [31, 56]. To this end, the objective functional as 

well as the identification procedure becomes, 
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( ) ( )

(1) (2) (1) (2)

,

(1) (2) ( ) ( )

( , ,..., ) arg min ( , ,..., );  

ˆ         ( , ,..., ) : ( , , )

j jM k

j j

j CRE

j

M M k F M M k

F M M k r e M k w

∈ℑ ∈
=

=∑
C%%

%% %

% %% % %
  (8) 

where ( )ˆ jw  denotes the jth set of full-field displacement data resulting from the loading 

condition ( ) ( )j j
M ∈ℑ%   and 0jr ≥  is the corresponding weighting coefficient and 1j

j

r =∑ . 

The selection of weighting coefficient jr  is determined by the reliability of practical 

measurements: if m m m( , , )w ℑ U  is more reliable than ( , , )n n nw ℑ U , mr  would be selected to 

be greater than nr ; else it would be otherwise. Generally, mr  and nr  are taken equally. It is 

evidently seen that as long as 
2( ) 0j j

j

r w′′ ≠∑  on , 1, 2,...,iX i n∀ = , the constitutive-relation 

step for ik  can proceed. 

3.2.2 Modified min-CRE approach 

In most cases, finite-point displacement measurements rather than full-field displacement 

measurements are available. Let ˆ{ , }iw i∈℘ be the measured finite-point displacement data on 

the set of points { }i∈℘  and then, a new objective functional as well as a new parameter 

identification formulation is given as follows. 

 

2

mod

mod
, ,

ˆ( , , ) : ( , , )
2

( , , ) arg min ( , , );  

i

CRE i i

i

M w k

A
F M k w e M k w w w

M w k F M k w

∈℘

∈ℑ ∈ ∈

= + −

=

∑

U C%% %

% %% %% % %

%% %

  (9) 

where 
i

w  is the displacement of w  at point i  and { 0, }
i

A i> ∈℘  represent the penalty 

factors. Practically, values of { 0, }
i

A i> ∈℘  could be tuned according to the confidence of the 

corresponding displacement data: 
i

A →+∞  means completely trust of this data, while 
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0
i

A →  means completely untrust. Again, in case of multiple sets of static data, the parameter 

identification can read, 

 
( ) ( ) ( ) ( )

(1) (1) (2) (2) (1) (1) (2) (2)

mod
, ,

2
(1) (1) (2) (2) ( ) ( ) ( ) ( )

mod

( , , , ,..., ) arg min ( , , , ,..., );

ˆ          ( , , , ,..., ) : [ ( , , ) ] 
2

j j j j
M w k

j j j ji

j CRE i i

j i

M w M w k F M w M w k

A
F M w M w k r e M k w w w

∈ℑ ∈ ∈

∈℘

=

= + −∑ ∑

U C%% %

%% %% %

% %% % %% % % %
 (10) 

where ( ) ( ),j jℑ U  represents the loading and prescribed displacement boundary conditions for 

the jth set of static measurement, ( )ˆ j

iw  is the corresponding measurement displacement at 

point i and jr  is the weight. 

In what follows, specific algorithms will be elaborately designed to solve the 

minimization problems (7)-(10).  

4. Practical implementation  

Section 3 gave the theoretical view that the damaged stiffness can be identified through the 

minimum CRE principle. In this section, numerical algorithms for the min-CRE approach and 

the modified min-CRE approach are to be developed.  

4.1 Min-CRE approach 

In Theorem 1, the CRE function is shown to be convex and hence, separately convex on M%  

and k% . Thus, for practical implementation, a two-step substitution algorithm is developed as 

follows: 

Firstly, minimization of the CRE function over M%  yields a minimum 

complementary energy problem that should be solved by the force method. Therefore, the 

procedure is simply designated as 
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 2

_ ( , , )

1
    : argmin ( | ( ) | )

2
p p p ppXM

M Force Method k

M
dx M w M

k
θ

∈ℑ

= ℑ

 
′= − − 

 
∑∫%

%%

%
% %

%

U

 (11) 

and this step is called the force-method step. 

Secondly, minimization of the CRE over k%  gives  

 
2

2

2
( ) 0.

X

M
w kdx

k
δ

 
′′− = 

 
∫

%
%

%
 (12) 

Practically, it is sufficient to assume that the stiffness k%  is piecewise constant, that is to say,  

 
1
, 1 ,  and  are non-overlapping,

( ) { , }

N

i i i j

i i

X X i j N X X

k x k x X

== ∀ ≤ ≠ ≤

= ∈

U

% %
 (13) 

where N  is the number of non-overlapping pieces, or elements. Eq. (12) means that the 

equation in the parenthesis must be zero at every point due to any variation of stiffness. 

Under the piecewise constant assumption of the stiffness and due to any variation of 

piecewise constant stiffness, Eq. (12) is reduced to 

 
2 2

2 2

2 2
( ) 0 ( ) 0, 1,2,...,

i i
i

X X
i i i

M M
w k dx w dx i N

k k
δ

      ′′ ′′− = ⇔ − = =   
      

∑∫ ∫
% %

%
% %

 (14) 

and then, one has 

 

2

2
, 1,2,...,

( )

i

i

X

i

X

M dx
k i N

w dx
= =

′′

∫
∫

%
% . (15) 

It turns out that Eq. (15) looks like the direct use of the constitutive relation in Eq. (4). Thus, 

this step is named the constitutive-relation step. 

After integration of both Eqs. (11) and (15), a two-step iterative algorithm for the 

min-CRE approach is established for its convenience to solve sets of equations. Actually, the 
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two-step substitution algorithm is designed for solution of the discrete version of the problem 

(8); that is 

 
,

( , ) arg min ( , )
h h h

h h h h
M k

M k F M k
∈ℑ ∈

=
%%

%%
C

 (16) 

where { :  is constant in , 1,2,..., }
h i

k k X i N= ∈ =C C  is a compact subspace of C . Finally, as 

closure of this subsection, the two-step substitution algorithm will be shown to converge for 

problem (16). 

� Theorem 2 

Assume that the problem (16) has a unique minimizer ( , )
h h

M k  and ( , )F ⋅ ⋅  is strictly convex 

in the vicinity of ( , )
h h

M k , then, the two-step substitution algorithm will converge to the exact 

solution.  

The specific proof is exhibited in Appendix. The convergence theorem above is for the 

min-CRE approach using only one set of static measurement data, nevertheless, it can be 

easily extended to the min-CRE approach with more than one set of static measurements and 

the modified-CRE approach; these will not be specified any more. As regards the case of 

more than one set of static measurements, a similar algorithm can be established as shown in 

Table 1. 

Table 1 A two-step substitution algorithm for min-CRE approach under multiple sets of 

static measurements w 

� Given the initial stiffness 
0k  and the initial bending moment (1)0 (2)0, ,...M M , 

i.e. 
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(1)0 0 (1) (1)

(2)0 0 (2) (2)

_ ( , , ),

_ ( , , ),

...

M Force Method k

M Force Method k

= ℑ

= ℑ

U

U  

� Successively determine ( )1 (1) 1 (2) 1, , ,...n n nk M M+ + +  from ( )(1) (2), , ,...n n nk M M  by 

the following two steps, 

step 1: 

( ) 2

1

( ) 2

( )

{ , , 1, 2,..., }
( )

i

i

j n

j
X

jn

i
j

j
X

j

r M dx

k x X i N
r w dx

+ = ∈ =
′′

∑∫

∑∫
, 

step 2: 

(1) 1 1 1 1

(2) 1 1 2 2

_ ( , , ),

_ ( , , ),

...

n n

n n

M Force Method k

M Force Method k

+ +

+ +

= ℑ

= ℑ

U

U  

� Test of convergence with given error toleranceTOL ,  

1 2 (1) 1 (1) 2 (2) 1 (2) 2

0 2 (1)0 2 (2)0 2

( ) ( ) ( )
... TOL

( ) ( ) ( )

n n n n n n

X X X

X X X

k k dx M M dx M M dx

k dx M dx M dx

+ + +− − −
+ + + ≤∫ ∫ ∫

∫ ∫ ∫
 

 

4.2 Modified min-CRE approach 

Turning to the modified CRE functional (9), it is found that minimization over k%  would 

result in the same constitutive-relation step (15) with those in the min-CRE approach. The 

difference lies in the introduction of a new unknown quantity w . Minimization of the CRE 

functional (9) over M% and w%  yields 

 ( ) ˆ- ( ) 0i i i i
X X

i

M
M w dx w kw M dx A w w w

k
δ δ δ

∈℘

 
′′ ′′ ′′− + + − = 

 
∑∫ ∫

%
%% %% % % % %

%
  (17) 

where ˆ
r P

M M M= +% %  with 
r

M =
r

N %%
rF  being the bending moment produced by the unknown 

redundant forces %
rrrrF  and the corresponding shape functions rN , and 

ˆˆ
p p pM = N F  the bending 
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moment caused by the given external loads ˆpF  and the corresponding shape functions pN . 

Base on this, Eq. (17) could be rearranged into 

1 1
0 0 - ˆ

ˆ

T TT T

r rr r r

i i p
X X

i ii ii i

I M MM M M
dx A A M dxk k

w ww ww w w
II k

δ δδ δ
δ δδ δ∈℘ ∈℘

   −               + = +              ′′ ′′ ′′              −   

∑ ∑∫ ∫
% %% % %

% %
%% %% % %%

  (18) 

where I is the identify operator.  

Furthermore, the displacement field w%  is often represented by the cubic Hermite 

interpolation of nodal deflections { }jw  and slopes { }jθ  and the curvature field ''w% , 

accordingly, is approximated by the second derivative of cubic Hermite interpolation of nodal 

deflections { }jw  and slopes { }jθ .  In other words, for an arbitrary element e with two nodes 

,i j  whose coordinates are i jx x＜ , the following approximation is adopted, 

 
( )
( )
1 2 3 4

1 2 3 4'' '' '' '' '' , , , ,

e

e e

i i j j

w H H H H

w H H H H w wθ θ

=

 = =  

V

V V

%%

% %%
  (19) 

where the functions 1 2 3 4, , ,H H H H  are of the following forms 

 

( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( )

2 2

1 2

2 2

3 4

1 1
2 1 , 1 1

2 4 2

1 1
2 1 , 1 1

2 4 2

2
, 1.

e

e

ie

j i e

h
H H

h
H H

x x
h x x

h

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ

= + − = + −

= − + = − +

−
= − = −

  (20) 

For brevity, the total finite element approximation to the displacement and curvature 

field is designated as 

 ''w w= =HV H''V% %% %，   (21) 

where H forms the finite element space and %V collects all the displacement DOFs.  

Above all, Eq. (18) can yield, 
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1
= d

,
= d ,  a diagonal mtrix with ( , ) ;

0,

d

ˆ ,1 ˆ ˆd , d , ( )
0,

X

iT

X

T

p

X

i iT

p p

X X

x
k

A i
k x i i

i

x

Aw i
M x M x i

ik

    
=         

∈℘
′′ ′′ + = 

∉℘

′′=

∈℘
′′= − = + = 

∉℘

∫

∫

∫

∫ ∫

a

b

A A A

a b p p

%

%

T

r r

T

r

N N

H H

N H

N H

rF

V
T

S -C

-C K

S

K

C

  (22) 

This step is called the displacement/force-recovery step which is designated to recover 

full-field displacement and bending moment data from incomplete finite-point displacement 

data. For simplicity, this step is designated as ˆ( , ) ( , , ,{ , })iM w recovery k w i= ℑ ∈℘U% . 

As a consequence, a similar two-step iterative algorithm (to that in Table 1) for the 

modified min-CRE approach with multiple sets of measurement data can be established in 

Table 2.  

 

Table 2 A two-step substitution algorithm for modified min-CRE approach under multiple 

sets of static measurements w 

� Given the initial stiffness 0k , the initial displacements (1)0 (2)0, ,...w w  and the 

initial bending moments (1)0 (2)0, ,...M M , i.e. 

(1)0 (1)0 0 (1) (1) (1)

(2)0 (2)0 0 (2) (2) (2)

ˆ( , ) ( , , ,{ , }),
ˆ( , ) ( , , ,{ , }),

......

i

i

M w recovery k w i

M w recovery k w i

= ℑ ∈℘
= ℑ ∈℘

U

U  

� Successively determine ( )1 ( ) 1 ( ) 1, ,n j n j nk M w+ + +  from ( )( ) ( ), ,n j n j nk M w  by the 

following two steps, 
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step 1: 

( ) 2

1

( ) 2

( )

, , 1, 2,...,
( )

i

i

j n

j
X

jn

i
j n

j
X

j

r M dx

k x X i N
r w dx

+

 
  
= ∈ = 

′′ 
  

∑∫

∑∫
, 

step 2: 

(1) 1 (1) 1 1 (1) (1) (1)

(2) 1 (2) 1 1 (2) (2) (2)

ˆ( , ) ( , , ,{ , }),
ˆ( , ) ( , , ,{ , }),

......

n n n

i
n n n

i

M w recovery k w i

M w recovery k w i

+ + +

+ + +
= ℑ ∈℘
= ℑ ∈℘

U

U  

� Test of convergence with given error toleranceTOL ,  

1 2 (1) 1 (1) 2 (2) 1 (2) 2

0 2 (1)0 2 (2)0 2

(1) 1 (1) 2 (2) 1 (2) 2

(1)0 2 (2)0 2

( ) ( ) ( )
...

( ) ( ) ( )

( ) ( )
+ ... TOL

( ) ( )

n n n n n n

X X X

X X X

n n n n

X X

X X

k k dx M M dx M M dx

k dx M dx M dx

w w dx w w dx

w dx w dx

+ + +

+ +

− − −
+ + +

− −
+ + ≤

∫ ∫ ∫
∫ ∫ ∫

∫ ∫
∫ ∫

 

5. Numerical tests 

To show the effectiveness of the proposed damage identification approach, three beams are 

studied. They are a propped cantilever beam, a simply supported beam and a three-span 

continuous beam, respectively. For application of the two-step substitution algorithm (in 

Tables 1 and 2), the convergence tolerance is practically set to 
6TOL 1 10−= × . 

5.1 Example 1—a propped cantilever beam 

A propped cantilever beam of continuously varying stiffness 2

0( ) (1 / )k x k x L= +  with 

0 1k =  (see Fig. 2) is studied in this example to examine the capacity and identifiability of 

the proposed min-CRE approach for damage identification in general beams. The geometric 

parameter is 1L = . The deflection was measured at 24 equally spaced positions along the 

beam, each of which was 0.04 between two adjacent locations. 
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To show the effectiveness of multiple sets of load patterns/static measurements and its 

influence on the number of elements adopted, different loading cases are considered for this 

propped cantilever beam: the beam is uniformly partitioned into 25 elements under single 

load pattern and two load patterns, 50 elements under two load patterns, 100 elements under 

two load patterns and three load patterns and 200 elements under three load patterns. Three 

sets of load patterns are used herein: a concentrated moment 0 1M =  at the right end, a unit 

concentrated force at 0.3x =  and a concentrated moment 0 1M =  at 0.3x = , as shown in 

Fig. 2. The load pattern is selected randomly for the case with single load pattern or two load 

patterns. Displacements under each load pattern are obtained directly from analytical solution 

without noise. 

The algorithm in Table 1 is adopted with an initial stiffness being 
0( ) 1k x = . 

Eventually, the piecewise stiffness can be identified as exhibited in Fig. 3. As we can see, as 

the number of elements increases, the introduction of additional sets of load patterns can help 

to improve and enhance the identifiability of the algorithm. Limited sets of load patterns and 

large number of elements to be identified, such as the case of 25 elements under single load 

pattern and 100 elements under two load patterns, might lead to the perturbation and 

deviation in the identification results. In fact, this conclusion not only provides remedy for 

possible unidentifiability of the proposed approach, but also is inherent in all inverse 

identification problems. 

In addition, to show the convergence of the proposed min-CRE approach, the bending 

moment at the left end of the beam ( 0)M x =  is observed at each iteration step. Detailed 

results are displayed in Fig. 4. It is seen that the bending moment converges only after 20 

iterations, verifying the convergence of the two-step substitution algorithm.  
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5.2 Example 2—a simply supported experimental beam 

In this example, experimental finite-point measurements are used for stiffness identification 

to testify the applicability of the modified min-CRE approach. The beam model is taken from 

the experimental bending test in [57]. Parameters of the experimental uniform beam are: 

length 4L = m, Young’s modulus 206E = GPa and the H-100×100×6/8 section with 

depth of 100mm, flange width of 100mm, web thickness of 6mm and flange thickness of 

8mm. Only one load case is enforced in the experiment with a concentrated force P=9.66kN 

at the middle point of the beam as shown in Fig. 5. Experimental displacements attained by 

the LVDT and the Terrestrial Laser Scanning (TLS) [57] are shown in Fig. 5. Using these 

displacement data, the distributive stiffness of the beam can be identified by the modified 

min-CRE approach and detailed results are presented in Fig. 6. The value of the initial 

uniform second moment of area is set to 400cm
4
. Obviously, the distributive stiffness is well 

identified with respect to the beam’s theoretical second moment of area 383cm
4
 (Fig. 6); the 

relative errors are less than 3% for both the LVDT data and the TLS data. 

5.3 Example 3—a three-span continuous beam 

Damage in an equi-spaced three-span continuous and statically indeterminate beam (see Fig. 

7) is to be identified in this example. The length of each span is 2L = m and the stiffness of 

the intact beam over the whole beam is 0 4 28.33 10 N mk = × ⋅ . In this numerical test, 

measurement points are so distributed that each span is uniformly partitioned into four 

elements and the specific enumeration of points and elements are also shown in Fig. 7. 

Two damage cases are taken into account, including: 

• Small damage case D1: stiffness reduced to 95%, 90% and 85% in elements 1, 4 and 

10, respectively; and 
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• Large damage case D2: stiffness reduced to 60%, 40% and 80% in elements 1, 4 and 

10, respectively. 

To enhance the identifiability of the algorithm, nine sets of load cases are considered 

and for each case, a concentrated force is enforced on one of the nodes 2-4, 6-8 and 10-12. 

Accordingly, nine sets of static displacements at the same nine points are measured. This kind 

of measurement can often be seen in damage detection of bridges for which a moving truck 

(or load) is used to generate the multiple load cases.  

The simulated displacement data are acquired through finite element computation. A 

uniform distribution noise is added to the simulated response as 

 noise( ) unifox arm= ⋅  (23) 

where uniform  is a number pertains to the uniform distribution and a  is the applied noise 

level. Noise of level 0.1mm is considered in this example. 

For the sake of convenience, the damage index DAI  is introduced to represent the 

scaled damage in the beam, i.e.  

 
0DAI /damage

i i ik k=  (24) 

for the i th element where damage

ik  is the damaged stiffness in element i. 

By performing the iterative algorithm in Table 2 with the initial stiffness setting to the 

stiffness of the intact beam, the min-CRE approach and modified min-CRE approach for 

damage identification could proceed. To get a better picture for the cases with noise, 

statistical analysis was performed. Mean values and standard deviations of DAI over 50 

Monte Carlo trials are presented in Fig. 8. It is clear that the modified min-CRE approach 

greatly improves the identifiability and robustness of the min-CRE approach in terms of the 
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mean values and standard deviation of DAI. To visualize the convergence of the algorithm 

for large damage case D2, detailed results on the DAI (see Eq.(24)) at each iteration step are 

given in Fig. 9. Obviously, all the quantities converge within 200 iterations and this verifies 

the convergence of the proposed two-step substitution algorithm. The displacement fields for 

the large damage case D2 are also rebuilt based on this approach. As can be seen from Fig. 

10, the ‘uncertainties’ due to the noise in the discrete displacement boundary are much more 

overcome in these superior rebuilt fields, which results in good identification for the damage. 

6. Conclusions 

Two new approaches based on the minimum constitutive relation error (CRE) principle have 

been proposed for static damage identification in Bernoulli-Euler beams, i.e. the min-CRE 

approach for full-field measurements and the modified min-CRE approach for finite-point 

measurements, respectively. The difference between the two approaches is whether to use 

additional penalty terms for enforcement of the experimental displacement data or not. A 

two-step iterative strategy has been established to fulfil the practical implementation and its 

convergence has been proved. The robustness of these approaches could be guaranteed by 

applying multiple sets of static measurements. Numerical tests have been carried out to verify 

these approaches. The sound performance of these proposed approaches in the following 

aspects have been observed: 

(1) The approaches are well applicable to both statically determinate and indeterminate 

beam structures for stiffness/damage identification and bending moment 

reconstruction; 

(2) The objective function of these approaches is (separately) convex and large 

damages could be well identified; 
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(3) The approaches perform well under measurement noise; 

(4) The approaches converge well in practice.   

Therefore, it is believed that the proposed approach can serve as an effective tool for practical 

structural damage identification. 
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Appendix 

This appendix gives detailed proofs of Theorems 1 and 2 and clarifies some important 

theoretical aspects of the proposed approach. 

Proof of Theorem 1. 

(a), (b) and (c) are obvious from reference [23].  

(d) Denote the minimizer by ( , )M k , which satisfies the following two conditions, 

 
2

2

02
( ) , ,

X X

M
kdx w kdx k

k
δ δ δ′′= ∀ ∈∫ ∫ C% % %  (25) 

and 

 0,
X X

M
Mdx w Mdx M

k
δ δ δ′′= ∀ ∈ℑ∫ ∫% % % . (26) 

Then, contradiction is utilized to verify 

 ( : ( ) 0) 0 ( : ( ) 0) 0x X w x x X M xµ µ′′∈ = = ⇒ ∈ = = . (27) 

Assume that there exists a subset ppX X⊆  with ( ) 0ppXµ >  such that ( ) 0M x =  on 

ppX . Trivially, substitution of 
0 0

, 1
, ( ) 0

0, \ 2

pp

pp

c x X
k c C c

x X X
δ

∈
= = − >

∈

%  into Eq. (25) yields 

 
2

( ) 0
ppX
c w dx′′ =∫  (28) 

which contradicts with the condition ( ( ) 0, ) 0w x x Xµ ′′ = ∈ = . 

Next, let 
2

M
Fδ %  and 

2

k
Fδ %  denote the second order variations on ( , )F ⋅ ⋅ for M%  and 

k% , respectively. Simple manipulations lead to 

 

2
2 2

0

2
2 2 2 2

33

0

( ) 1
( ) 0,

1
( ) ( ) 0

M X X

k X X

M
F dx M dx

Ck

M
F k dx M k dx

Ck

δ
δ δ

δ δ δ

= ≥ >

= ≥ >

∫ ∫

∫ ∫

%

%

%
%

%

%
% %%

%

 (29) 
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for 2( ) 0
X

M dxδ >∫ % , 2( ) 0
X

k dxδ >∫ %  and *M ∈ℑ% , indicating the separately strict convexity 

on *ℑ ×C.                                                     

Remark 1. 

From Eq. (26), it is found that 

 ( | ( ) | )
p p p ppX X

M
Mdx w Mdx M w M

k
δ δ θ δ δ′′ ′= = +∑∫ ∫

%
% % % %

%
 (30) 

where the subscript p indicates the prescribed displacement boundary condition. Obviously, 

Eq. (30) embodies the minimum complementary energy principle 

 
21

( ) argmin{ ( | ( ) | )}
2

p p p ppXM

M
M k dx M w M

k
θ

∈ℑ
′= − +∑∫%

%
% % %

%
 (31) 

and corresponds to a unique mapping :d →C U  such that 

 ( ) 0( ) ( ) ( ( ) ( )),ex ex ex ex

X X
k d k v dx q x vdx F v x M v x v

′′ ′′ ′= + + ∀ ∈∑∫ ∫ U% %  (32) 

and ( )( ) ( )M k k d k
′′=% % % . With these notations, the minimization problem (7) can become 

 
2 2

,

1 ( ( ) ) 1
min ( , ) min min ( ( ) )

2 2X XM k k k

M k kw
F M k dx k d k w dx

k∈ℑ ∈ ∈ ∈

′′− ′′= = −∫ ∫C C C% % %%

% %
% % %%

%
, (33) 

which is a common variational form for inverse identification and its well-posedness has 

been investigated in a variety of work (see [58-60]for instance). As indicated in the work, 

problem (33) as well as problem (7) will have a unique minimizer if inf 0x X w∈ ′′ >  and k%  

is prescribed along the inflow portion of the boundary [61]. It is noted that inf 0x X w∈ ′′ >  is 

a stronger version of the deforming condition ( : ( ) 0) 0x X w xµ ′′∈ = = .  

 

For proof of Theorem 2, a lemma is introduced first. 

Lemma 1 
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Let :f H →R  be a continuous and strictly convex function and u H∈  be its unique 

minimizer, where H  is a compact Banach space with norm ⋅ . Then, for an arbitrary 

sequence 0{ }n nu H∞
= ∈  satisfying lim ( ) ( )n

n
f u f u

→∞
= , one has 

 lim 0n
n

u u
→∞

− = . (34) 

Proof  

This is obvious by contradiction. Assume that nu u−  does not converge to zero; that is, 

there exists a positive constant ε  such that for an arbitrary positive integer 0N > , there is 

m N≥  with mu u ε− > .  

Note that { : }H v H v uε ε= ∈ − ≥  is a compact subspace of H  and therefore, f  

is also continuous and strictly convex on Hε , implying that there is u Hε ε∈  such that 

 argmin ( )
v H

u f v
ε

ε ∈
= . (35) 

By the strict convexity, one has ( ) ( )f u f uε >  and hence ( ) ( ) ( )mf u f u f uε≥ > , 

contradicting with lim ( ) ( )n
n

f u f u
→∞

= .                                

Proof of Theorem 2. 

From the two-step substitution algorithm in Table 1, one has for 
0 0 *( , ) hM k ∈ℑ ×C  and the 

integer 0n ≥  

 

*

1

1 1

argmin ( , ),

argmin ( , ).

h

n n

k

n n

M

k F M k

M F M k

+

∈

+ +

∈ℑ

=

=

C%

%

%

%
 (36) 

Then, define a sequence 0{ }n nF ∞
=  as 

 
1

2 2 1( , ), ( , ),
m m m m

m mF F M k F F M k m
+

+= = ∈�  (37) 
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and by considering Eq. (36), one has 

 
2 2 1 2 2m m mF F F+ +≥ ≥ . (38) 

Along with Theorem 1(a), it is seen that 0, 0,1,...nF n≥ =  and thus, it is deduced that 

0{ }n nF
∞
=  is a decreasing and bounded (from below) sequence, meaning that 0{ }n nF

∞
=  is a 

Cauchy sequence. Furthermore, uniqueness of the minimizer must require 
*

( , )h h hM k ∈ℑ ×C  

and by Theorem 1(d), ( , )F ⋅ ⋅ is separately strictly-convex on *

hℑ ×C . Thus, on considering 

Lemma 1, one has 

 
2

2

1

2 1 2

1

2 2 2 1

0 0,

0 0.

m m

m m L

m m

m m L

F F k k

F F M M

+
+

+
+ +

− → ⇒ − →

− → ⇒ − →
 (39) 

By further exploiting the information in Eq. (36), one has 

 
1 2 2

1
( , ) : [ ( ) ( ) ] 0

n
n n

nk X

M
F M k k w kdx

k
δ δ+

+
′′∇ ⋅ = − + =∫%

% %  (40) 

and 

 
1

1 1

1
( , ) : ( ) 0

n
n n

M nX

M
F M k M w Mdx

k
δ δ

+
+ +

+
′′∇ ⋅ = − =∫%

% % . (41) 

By continuity, it is inferred from Eqs. (40) and (39) that  

 
1 1 1( , ) ( , ) 0,  as n n n n

k k
F M k k F M k k nδ δ+ + +∇ ⋅ →∇ ⋅ = →∞% %

% % . (42) 

Next, it is concluded from Eqs. (41) and (42) that  

 
( , ) 0

lim
0( , )

n n

M

n nn

k

F M k M

F M k k

δ

δ→∞

 ∇ ⋅  
=    ∇ ⋅   

%

%

%

%
 (43) 

By Taylor expansion [62] at the minimizer ( , )h hM k , one can have 
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( , ) ( , )
( , )

( , ) ( , )

                                  ( , )

Tn n n
h hM M h

nn n

hh hk k

T
n

h

n

h

F M k M F M k M M M M
J M k

k kF M k k F M k k k

M M M
J M k

k k k

ξ ς

ξ ς

δ δ δ

δ δ δ

δ

δ

   ∇ ⋅ ∇ ⋅    −
= + ⋅ ⋅             −∇ ⋅ ∇ ⋅      

   −
= ⋅ ⋅     −   

% %

% %

% % %

% % %

%

%

(44) 

where ( , )M kξ ς  is the linear interpolation of between ( , )n nM k  and ( , )h hM k , ( , )J M kξ ς  

is the second order Hessian matrix of ( , )F ⋅ ⋅  at ( , )M kξ ς . Trivially, inserting 

n

hM M Mδ = −%  and 
n

hk k kδ = −%  into Eq. (44) and noticing the fact that ( , )J M kξ ς  is 

positive definite due to the strict convexity of ( , )F ⋅ ⋅  in the vicinity of ( , )h hM k , it 

eventually follows from Eqs. (43) and (44) that 

 
2 2

lim 0, lim 0n n

h hL Ln n
M M k k

→∞ →∞
− = − = . (45) 
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Figure list 

Fig. 1 A Bernoulli-Euler beam with damage 

Fig. 2 Geometry and loads for a propped cantilever beam 

Fig. 3 Damage identifications in propped cantilever beam: (a) 25 elements under single load 

pattern and two load patterns, (b) 50 elements under two load patterns, (c) 100 elements 

under two loads pattern and three load patterns and (d) 200 elements under three load patterns 

Fig. 4 Convergence of bending moment at left end of propped cantilever beam 

Fig. 5 Geometry and experimental displacements of simply supported beam 

Fig. 6 Second moment of area identified by modified min-CRE approach comparing to the 

theoretical second moment of area of simply supported beam 

Fig. 7 Geometry, damage location and load cases of three-span continuous beam (D1-damage 

case 1, D2-damage case 2) 

Fig. 8 Mean values and standard deviations of DAI with 0.1mm noise for: (a) small damage 

case D1 by min-CRE approach, (b) small damage case D1 by modified min-CRE approach, 

(c) large damage case D2 by min-CRE approach, (d) large damage case D2 by modified 

min-CRE approach. 

Fig. 9 Convergence of the damage indices of three-span continuous beam under D1 

Fig. 10 Displacement fields rebuilt by modified min-CRE approach comparing to the 

displacement boundary. 
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Table 1 A two-step substitution algorithm for min-CRE approach under multiple sets 

of static measurements w 

� Given the initial stiffness 0k  and the initial bending moment (1)0 (2)0, ,...M M , 

i.e. 

(1)0 0 (1) (1)

(2)0 0 (2) (2)

_ ( , , ),

_ ( , , ),

...

M Force Method k

M Force Method k

= ℑ

= ℑ

U

U  

� Successively determine ( )1 (1) 1 (2) 1, , ,...n n nk M M+ + +  from ( )(1) (2), , ,...n n nk M M  by 

the following two steps, 

step 1: 

( ) 2

1

( ) 2

( )

{ , , 1, 2,..., }
( )

i

i

j n

j
X

jn

i
j

j
X

j

r M dx

k x X i N
r w dx

+ = ∈ =
′′

∑∫

∑∫
, 

step 2: 

(1) 1 1 1 1

(2) 1 1 2 2

_ ( , , ),

_ ( , , ),

...

n n

n n

M Force Method k

M Force Method k

+ +

+ +

= ℑ

= ℑ

U

U  

� Test of convergence with given error toleranceTOL ,  

1 2 (1) 1 (1) 2 (2) 1 (2) 2

0 2 (1)0 2 (2)0 2

( ) ( ) ( )
... TOL

( ) ( ) ( )

n n n n n n

X X X

X X X

k k dx M M dx M M dx

k dx M dx M dx

+ + +− − −
+ + + ≤∫ ∫ ∫

∫ ∫ ∫
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Table 2 A two-step substitution algorithm for modified min-CRE approach under 

multiple sets of static measurements w 

� Given the initial stiffness 0k , the initial displacements (1)0 (2)0, ,...w w  and the 

initial bending moments (1)0 (2)0, ,...M M , i.e. 

(1)0 (1)0 0 (1) (1) (1)

(2)0 (2)0 0 (2) (2) (2)

ˆ( , ) ( , , ,{ , }),
ˆ( , ) ( , , ,{ , }),

......

i

i

M w recovery k w i

M w recovery k w i

= ℑ ∈℘
= ℑ ∈℘

U

U  

� Successively determine ( )1 ( ) 1 ( ) 1, ,n j n j nk M w+ + +  from ( )( ) ( ), ,n j n j nk M w  by the 

following two steps, 

step 1: 

( ) 2

1

( ) 2

( )

, , 1, 2,...,
( )

i

i

j n

j
X

jn

i
j n

j
X

j

r M dx

k x X i N
r w dx

+

 
  

= ∈ = 
′′ 

  

∑∫

∑∫
, 

step 2: 

(1) 1 (1) 1 1 (1) (1) (1)

(2) 1 (2) 1 1 (2) (2) (2)

ˆ( , ) ( , , ,{ , }),
ˆ( , ) ( , , ,{ , }),

......

n n n

i
n n n

i

M w recovery k w i

M w recovery k w i

+ + +

+ + +
= ℑ ∈℘
= ℑ ∈℘

U

U  

� Test of convergence with given error toleranceTOL ,  

1 2 (1) 1 (1) 2 (2) 1 (2) 2

0 2 (1)0 2 (2)0 2

(1) 1 (1) 2 (2) 1 (2) 2

(1)0 2 (2)0 2

( ) ( ) ( )
...

( ) ( ) ( )

( ) ( )
+ ... TOL

( ) ( )

n n n n n n

X X X

X X X

n n n n

X X

X X

k k dx M M dx M M dx

k dx M dx M dx

w w dx w w dx

w dx w dx

+ + +

+ +

− − −
+ + +

− −
+ + ≤

∫ ∫ ∫
∫ ∫ ∫

∫ ∫
∫ ∫
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Fig. 1 A Bernoulli-Euler beam with damage  
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Fig. 2 Geometry and loads for a propped cantilever beam  
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Fig. 3 Damage identifications in propped cantilever beam: (a) 25 elements under single load pattern and two 
load patterns, (b) 50 elements under two load patterns, (c) 100 elements under two loads pattern and three 

load patterns and (d) 200 elements under three load patterns  
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Fig. 4 Convergence of bending moment at left end of propped cantilever beam  
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Fig. 5 Geometry and experimental displacements of simply supported beam  
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Fig. 6 Second moment of area identified by modified min-CRE approach comparing to the theoretical second 
moment of area of simply supported beam  
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Fig. 7 Geometry, damage location and load cases of three-span continuous beam (D1-damage case 1, D2-
damage case 2)  
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Fig. 8 Mean values and standard deviations of DAI with 0.1mm noise for: (a) small damage case D1 by min-
CRE approach, (b) small damage case D1 by modified min-CRE approach, (c) large damage case D2 by min-

CRE approach, (d) large damage case D2 by modified min-CRE approach.  

 
414x192mm (96 x 96 DPI)  

 

 

Page 53 of 55

URL: http:/mc.manuscriptcentral.com/gipe

Inverse Problems in Science & Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

  

 

 

Fig. 9 Convergence of the damage indices of three-span continuous beam under D1  
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Fig. 10 Displacement fields rebuilt by modified min-CRE approach comparing to the displacement boundary. 
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