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Abstract

Recently Dadush, Végh, and Zambelli (2017) has devised a polynomial submodular function minimization (SFM) algorithm
based on their LP algorithm. In the present note we also show a weakly polynomial algorithm for SFM based on the recently
developed linear programming feasibility algorithm of Chubanov (2017) to stimulate further research on SFM.
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1. Introduction

Since the advent of polynomial combinatorial algorithms
for submodular function minimization (SFM) in 1999 [9, 12]
substantial improvements over the algorithms have been achieved
as an active area of research. From the point of view of the
computational complexity the currently best SFM algorithm is
obtained by Lee, Sidford, and Wong [10]. On the other hand,
important developments in linear programming algorithms have
recently been made by Chubanov [2, 3, 4], and Dadush, Végh,
Zambelli [5] among others. Recently Dadush, Végh, and Zam-
belli [6] has also devised a polynomial SFM algorithm based on
their LP algorithms.

The aim of this note is to give yet another approach to SFM
by using Chubanov’s LP algorithm [4], which should stimulate
further research on SFM and hopefully lead us to some efficient
algorithms both practically and theoretically.

2. Definitions and Preliminaries

Let R be the set of reals, Z that of integers, Z≥0 that of
nonnegative integers, and Z>0 that of positive integers.

Let V be a finite nonempty set of cardinality |V | = n. For
any x, y ∈ RV define ⟨x, y⟩ = ∑v∈V x(v)y(v). Consider an arbi-
trary bounded polyhedron Q ⊂ RV . Denote by Ext(Q) the set
of all extreme points of Q and define

C∗(Q) = {x ∈ RV | ⟨z, x⟩ ≥ 0 for all z ∈ Ext(Q)}. (1)

Then we have the following.
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Proposition 1. For any bounded polyhedron Q ⊂ RV , the cone
C∗(Q) defined by (1) is full-dimensional, i.e., of dimension n =
|V | if and only if 0 < Q or 0 ∈ Ext(Q).

Moreover, there exists a non-zero x ∈ C∗(Q) if and only if 0
is not in the interior of Q.

It should be noted that if Q is not full-dimensional, then the
interior of Q is empty, so that there always exists a non-zero
x ∈ C∗(Q).

Let f : 2V → R be a submodular function, i.e.,

f (X) + f (Y) ≥ f (X ∪ Y) + f (X ∩ Y) (∀X,Y ⊆ V), (2)

where we assume f (∅) = 0. (See [7] for more information about
relevant definitions and basic results on submodular functions.)

The submodular polyhedron P( f ) ⊂ RV associated with the
submodular function f : 2V → R is given by

P( f ) = {x ∈ RV | ∀X ⊆ V : x(X) ≤ f (X)} (3)

and the base polyhedron B( f ) by

B( f ) = {x ∈ RV | x ∈ P( f ), x(V) = f (V)}, (4)

where for any X ⊆ V we define x(X) =
∑

v∈X x(v) and x(∅) = 0.
We consider the membership problem of discerning whether

0 ∈ B( f ) or not and to find a set X ⊆ V with f (X) < 0 if
0 < B( f ), where 0 is the zero vector in RV . Since f (V) , 0
implies 0 < B( f ), we assume f (V) = 0 when we consider the
membership problem, unless otherwise stated. Moreover, we
assume without loss of generality

(A∗) B( f ) is full-dimensional, i.e., the dimension of B( f ) is
equal to |V | − 1(= n − 1),

where note that B( f ) lies within the hyperplane x(V) = 0.2 This
assumption is to guarantee that the maximum dimension of W

2Note that we can find connected components of the submodular system
(2V , f ) in O(n2EO) time by using the algorithm of Bixby, Cunningham, and
Topkis [1] and each connected component has a full-dimensional base polyhe-
dron. See [7, Section 3.3]. Here EO denotes the time required for the function
evaluation of f .
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appearing in (13) is n−1. We thus consider the relative topology
within the hyperplane x(V) = 0.

For any α ≥ 0 define f (α) : 2V → R by

f (α)(X) =
{

f (X) + α if X ∈ 2V \ {∅,V}
f (X)(= 0) if X ∈ {∅,V}. (5)

We can easily see that f (α) is a submodular function, which is
called the α-enlargement3 of f . It should be noted that B( f (α)) is
full-dimensional, i.e., of dimension n − 1, since B( f (α)) ⊇ B( f )
and B( f ) is full-dimensional under Assumption (A∗). It should
be noted that the operation of enlargement is also employed by
Dadush, Végh, and Zambelli [6] and plays an important rôle in
their algorithm as well.

Define vectors ᾱ, α ∈ RV by

ᾱ(v) = f ({v}), α(v) = f (V) − f (V \ {v}) (∀v ∈ V). (6)

(See [7, (3.89) and (3.95)]). Then we have

α(X) ≤ x(X) ≤ f (X) ≤ ᾱ(X) (∀x ∈ B( f ), ∀X ⊆ V). (7)

Note that for any base b ∈ B( f ) we must have α ≤ b ≤ ᾱ, i.e.,
B( f ) ⊆ [α, ᾱ] (a standard box between α and ᾱ).

Lemma 2. We have

0 ≥ min{ f (X) | X ⊆ V} ≥
∑
v∈V

min{0, f (V) − f (V \ {v})}. (8)

Moreover, for any base b ∈ B( f ) we have

|b(v)| ≤ max{ f ({v}),− f (V) + f (V \ {v})} (∀v ∈ V). (9)

Proof: The present lemma follows from (6) and (7). □
The base polyhedron B( f ) lies in the subspace H0 = {x ∈

RV | x(V) = 0}. Hence, considering the relative topology in the
subspace H0, we define

C∗(B( f )) = {x ∈ RV | x(V) = 0, ⟨b, x⟩ ≥ 0 for all b ∈ Ext(B( f ))}.
(10)

We say C∗(B( f )) is full-dimensional if it is of dimension n − 1.

3. Membership in Base Polyhedra and Chubanov’s LP Al-
gorithm

In the sequel we assume that f is an integer-valued sub-
modular function. Let us consider the membership problem of
0 ∈ B( f ). Applying Chubanov’s LP Algorithm [4], we have the
following two:

1. When C∗(B( f )) is full-dimensional, we can obtain a non-
zero vector in C∗(B( f )) in polynomial time.

2. If in prescribed polynomial time we cannot obtain such
a non-zero vector in C∗(B( f )), then we can conclude that
C∗(B( f )) is not full-dimensional, which under Assump-
tion (A∗) implies 0 ∈ B( f )\Ext(B( f )) (see Proposition 1).

3See [7, Section 3.1(d)].

When we conclude 0 ∈ B( f )\Ext(B( f )), we see that f (X) ≥
0 for all X ⊆ V .

On the other hand, when we find a non-zero vector w ∈
C∗(B( f ), we can get a nonempty proper subset Z ⊂ V with
f (Z) ≤ 0 as follows. This is a standard technique but we show it
for completeness (cf. [6, Lemma 3.2]). Letting b∗ be the greedy
solution that minimizes ⟨w, x⟩ over B( f ), we have ⟨w, b∗⟩ ≥ 0
since w ∈ C∗(B( f ). Let (v1, · · · , vn) be a linear ordering of V
that gives the greedy solution b∗, so that

w(v1) ≤ · · · ≤ w(vn). (11)

Putting S i = {v1, · · · , vi} for i = 1, · · · , n and S 0 = ∅, we have

⟨w, b∗⟩ = w(v1)( f (S 1) − f (S 0)) + · · ·
+w(vn)( f (S n) − f (S n−1))

= (w(v1) − w(v2)) f (S 1) + · · ·
+(w(vn−1) − w(vn)) f (S n−1)

≥ 0. (12)

Since at least one inequality in (11) holds with strict inequality,
it follows from (11) and (12) that for some i∗ ∈ {1, · · · , n − 1}
we have f (S i∗) ≤ 0 (with w(vi∗) −w(vi∗+1) < 0). We thus obtain
a required Z = S i∗ .

Summing up the above arguments, we get the following the-
orem.

Theorem 3. Under Assumption (A∗) we have a polynomial al-
gorithm that gives us

(a) a nonempty proper subset Z ⊂ V such that f (Z) ≤ 0 or

(b) a conclusion that f (X) ≥ 0 for all X ⊆ V, i.e., 0 ∈ B( f ).

We denote the algorithm in Theorem 3 by Chubanov( f ).
Let us consider the complexity of Chubanov( f ). Define an

index ν by

ν = max{vol(W) | W : a parallelopiped formed by
n − 1 vectors w ∈ C∗(B( f )) and ||w|| ≤ 1}, (13)

where vol(W) is the volume of W in the Euclidean subspace
H0 = {x ∈ RV | x(V) = 0} and || · || denotes the Euclidean
norm. We can show that log(ν−1) = O(n2 log nM),4 where M =
max{| f (X)| | X ⊆ V}. Put ν∗ = n2 log nM.

Due to Proposition 1, adapting Chubanov’s theorem [4, The-
orem 2.1] to our problem becomes as follows.

Theorem 4. Under Assumption (A∗) Algorithm Chubanov( f )
runs in O((n5 + n3T + n4EO)ν∗) time, where EO denotes the
time required for the function evaluation of f and T denotes the
time required for computing a scalar γ(x) such that γ(x)2||x||2 ∈
[1, 3

2 ], for extreme base x ∈ B( f ).

4Replace the condition ||w|| ≤ 1 in (13) by ||w||1 ≡
∑

v∈V |w(v)| ≤ 1 to get
a lower bound of ν. Then use a fundamental fact [11, Theorem 3.2] on basic
solutions of the associated LP. (A better bound O(n log nM) is given by one
of the anonymous reviewers with a proof, which improves the value of ν∗ in
Theorem 4.)
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It follows from Lemma 2 that T = O(log nM).
Now consider the α-enlargement f (α) for α = 1

2 and per-
form Chubanov( f (α)), or equivalently Chubanov(2 · f (α)) for
integer-valued submodular function 2 · f (α). Then it follows
from Theorem 3 that we obtain

(a′) a nonempty proper subset Z ⊂ V such that f (Z) ≤ −1 or

(b′) a conclusion that f (X) ≥ 0 for all X ⊆ V , i.e., 0 ∈ B( f ),

where note that since f is integer-valued, we have f (Z) ≤ − 1
2 if

and only if f (Z) ≤ −1 (and f (X) ≥ − 1
2 if and only if f (X) ≥ 0).

This gives us a polynomial algorithm for testing member-
ship 0 ∈ B( f ), which we denote by Membership( f ), and we
obtain a set X with f (X) < 0 when 0 < B( f ).

4. Submodular Function Minimization

We have shown how the recent result of Chubanov [4] for
linear programming yields a weakly polynomial algorithm
Membership( f ) for testing membership 0 ∈ B( f ). However,
this does not give any minimizer of f in a direct way. Fuji-
shige and Iwata [8] showed that by invoking Membership(·) as
a subroutine O(n2) times, we can find a minimizer of f .

In this section we show another way of finding a minimizer
of f by O(log M∗) calls for the membership testing algorithm
Membership(·), where M∗ is defined by (14).

First we make the following preprocessing.
• If f (V) > 0, then put f (V) ← 0 for set V alone. Then,

function f remains submodular and the set of minimizers
(except for V) remains the same.

• If f (V) < 0, then for all nonempty X ⊆ V put f (X) ←
f (X) − f (V). Then, function f remains submodular and
the set of minimizers (except for ∅) remains the same.

Put
M∗ = −

∑
v∈V

min
{
0, f (V) − f (V \ {v})}. (14)

Note that 0 ≥ min{ f (X) | X ⊆ V} ≥ −M∗ due to Lemma 2. Now
we employ Procedure Membership(·) as follows.

Algorithm SFM( f )

Input: a submodular function f : 2V → Z.
Output: a minimizer Z of f .

(0) Let f̃ be the submodular function after preprocessing f .
(1) Perform Membership( f̃ ).

If we decide 0 ∈ B( f̃ ), then
if originally f (V) ≥ 0, then return Z = ∅

(since ∅ is a minimizer of the original f ),
if originally f (V) < 0, then return Z = V

(since V is a minimizer of the original f ).
If 0 < B( f̃ ) and we get X with f̃ (X) < 0, then

put Z ← X, β− ← 0, and β+ ← M∗ (defined for f̃ ).
(2) While β+ − β− ≥ 2, do the following (i) and (ii):

(i) Put α← ⌈(β− + β+)/2⌉.

(ii) Perform Membership( f̃ (α)).
If we decide 0 ∈ B( f̃ (α)), then put β+ ← α.
If 0 < B( f̃ (α)) and we get X with f̃ (α)(X) < 0,

then put Z ← X and β− ← α.
(3) Return Z.

Theorem 5. Algorithm SFM( f ) returns a minimizer Z of f af-
ter repeating Step (2) O(log M∗) times.

Proof: The validity of Step (1) follows from the definition of
preprocessing. While carrying out Step (2), we keep the prop-
erty that 0 ∈ B( f̃ (β+)) and 0 < B( f̃ (β−)). Hence, when we reach
Step (3), we have f̃ (β−)(Z) < 0 ≤ f̃ (β+)(X) (∀X ⊆ V) and
β+ − β− = 1. This implies −β+ ≤ f̃ (Z) < −β− = −β+ + 1
and −β+ ≤ f̃ (X) for all X ⊆ V . It follows that Z attains the
minimum of f̃ (and hence of f ), which is equal to −β+. □

Combining Fujishige and Iwata’s method [8] with SFM( f ),
we can compute a minimizer of an integer-valued submodular
function in O((n5 + n3T + n4EO)ν∗min{n2, log M∗}) time.

5. Concluding Remarks

It should be noted that when we perform Membership( f )
and decide 0 ∈ B( f ), we do not have a certificate of 0 ∈ B( f ) by
an expression of 0 as a convex combination of (extreme) bases
in B( f ). Because of this it seems that applying Chubanov’s
algorithm does not directly give us a dual certificate for a mini-
mizer of f .
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