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Abstract. We study the homological properties of random simplicial 
complexes. In particular, we obtain the asymptotic behavior of lifetime sums 
for a class of increasing random simplicial complexes; this result is a higher­
dimensional counterpart of Frieze's ((3)-limit theorem for the Erdos-Renyi 
graph process. The main results include solutions to questions posed in an 
earlier study by Hiraoka and Shirai about the Linial-Meshulam complex pro­
cess and the random clique complex process. One of the key elements of the 
arguments is a new upper bound on the Betti numbers of general simplicial 
complexes in terms of the number of small eigenvalues of Laplacians on links. 
This bound can be regarded as a quantitative version of the cohomology van­
ishing theorem. 

1. Introduction. 

The Erdos-Renyi G(n,p) model has been extensively studied since the 1960s ([9], 
[4], [5]). This model, defined as the distribution of random graphs with n vertices where 
the edge between each pair of vertices is included with probability p independently of 
any other edge, is one of the most typical models of random graphs. One of the main 
themes in G(n,p) theory is searching for threshold probabilities. For example, Erdos and 
Renyi [5] showed that the threshold for graph connectivity of G(n,p) is p = (log n) / n. 
When we vary p and consider a family of the Erdos- Renyi graphs with parameter p , the 
following construction is often useful. Let Kn = Vn LJ En be the complete graph with n 
given vertices, where Vn and En denote the sets of vertices and edges, respectively. We 
assign an independent random variable Ue to each edge e E En and let Ue be uniformly 
random on [O, 1]. For each p E [O, 1], a random subgraph Kn(P) of Kn is then defined by 

Kn(P) := Vn LJ {e E En I Ue ~ p}. 

This construction, the so-called Erdos-Renyi graph process over n vertices, yields an 
increasing family Kn := {Kn(t)}tE[O,l] of random graphs. This process is closely related 
to the concept of the minimum weight on Kn, which can be seen as follows. For each 
spanning tree T in Kn, define its weight as I:eET U e . Let Wn be the minimum weight 
among all the spanning trees in Kn. Then 
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n-1 l 

Wn = L ti= 1 f3o(Kn(t)) dt, 
i=l O 

(1.1) 

where ti E [O, 1] is the i-th random time at which the number of connected components of 
Kn(t) decreases, and (30 (Kn(t)) denotes the zeroth (reduced) Betti number of Kn(t), that 
is, the number of connected components of Kn(t) minus one. This type of relation holds 
for a general increasing family of graphs. Applying this formula and analyzing f3o(Kn(t)) 
in detail, Frieze [7] obtained the following significant result about the behavior of Wn. 

THEOREM 1.1 (((3)-limit theorem [7]). It holds that 

}~~ lE[Wn] = ((3) ( = f k- 3 = 1.202 · · ·) 
k=l 

and for any E > 0, 

lim IP'(IWn - ((3)1 > c) = 0. 
n--+oo 

Recently, there has been a growing interest in studying random simplicial complexes 
as a higher-dimensional generalization of random graphs. Since an Erdos-Renyi graph 
can be regarded as a one-dimensional random simplicial complex, and graph connectivity 
can be equivalently described as the vanishing of the zeroth (reduced) homology, it is 
natural to seek a higher-dimensional analogue to the theory of Erdos-Renyi's G(n,p) 
model. The d-Linial-Meshulam model [14] and the random clique complex model [12] 
are typical models of this type. The d-Linial-Meshulam model Yd(n,p) is defined as 
the distribution of d-dimensional random simplicial complexes with n vertices and the 
complete ( d-1 )-dimensional skeleton such that each d-simplex is placed with independent 
probability p. The random clique complex model C(n,p) is defined as the distribution of 
the clique complex of the Erdos-Renyi graph that follows G(n,p). Here, given a graph 
G, its clique complex Cl( G) is defined as the maximal simplicial complex among those for 
which the one-dimensional skeletons are equal to G. Linial, Meshulam, and Wallach [14], 
[16] exhibited the threshold for the vanishing of the (d-1)-th homology for the d-Linial­
Meshulam model, which is analogous to the connectivity threshold of the Erdos-Renyi 
graph. Later, Kahle [13] obtained similar results for the random clique complex model. 

Along another line, Hiraoka and Shirai [10] obtained a higher-dimensional analogue 
of ( 1.1) in the context of the theory of persistent homology. Persistent homologies can 
describe the topological features of a filtration (i.e., an increasing family of simplicial 
complexes; see, e.g., [3], [17]). In particular, these provide rigorous definitions for the 
concepts of birth and death times of higher-dimensional holes, sometimes called cycles 
and cavities. The lifetimes, which are defined as the difference between the birth time 
and death time, measure the persistence of each hole in the filtration. In [10], Hiraoka 
and Shirai proved that the lifetime sum L k ( X) of the k-th persistent homology associated 

with a filtration X = {X(t)}o~t9 is equal to f0
1 f3k(X(t)) dt, where f3k(X(t)) represents 

the k-th (reduced) Betti number of the simplicial complex X(t) (see Theorem 4.2). When 
k = 0 and X is the Erdos-Renyi graph process over n vertices, the result is consistent 
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with the second identity of (1.1). They also obtained a relation analogous to the first 
identity (see Theorem 1.1 in [10]). Thus, it is natural to seek the asymptotic behavior of 
the lifetime sum Lk(Xn) for a random filtration Xn = {Xn(t)}o:::;t9 or Xn = {Xn(t)}t:2:0 
over n vertices as a higher-dimensional generalization of Theorem 1.1. Typical random 
filtrations include the d-Linial-Meshulam complex process K~d) = {KAd)(t)}o<t<l, where 

KAd\t) follows Yd(n, t), and the random clique complex process Cn = {Cn~)}o<t<1' 
where Cn(t) follows C(n, t) (see Section 4.2 for further details). For these models~ the 
following estimates were proved by Hiraoka and Shirai. 

THEOREM 1.2 ([10, Theorem 1.2]). Let d 2: 1. There exist positive constants c 

and C such that for sufficiently large n, 

THEOREM 1.3 ([10, Theorem 6.10]). Let k 2: 0. There exist positive constants c 

and C such that for sufficiently large n, 

cnk/2+1-1/(k+l) < JE[L (C )] < { Cnk log n 
- k n - Cnk 

(k = 0, 1), 

(k 2: 2). 
(1.2) 

In [10], the asymptotic behavior of JE[Ld_1(K~))]/nd-l as n-+ oo is also discussed, 
and a possible limiting constant Id-l is found by a heuristic argument. For the exact 
value of Id-l, see (4.10) and (4.11) and Section 4.4. The exact growth exponent of 
JE[Lk(Cn)l, mentioned as a problem in that paper, is considered here. 

In this paper, we obtain sharp quantitative estimates of lifetime sums Lk(Xn) for 
a large class of random filtrations over n vertices. The main results include a rigorous 
proof of the convergence of Lk(K~d))/nd-l to Id-l and a determination of the growth 
exponent of JE[Lk(Cn)]. These results solve problems posed in [10] and are summarized 
in the following theorems. 

THEOREM 1.4. Let d 2: 1. For any r E [1, oo), 

[ 
(d) rl . Ld-1(Kn ) 

hm lE d-l - Id-1 = 0. 
n---+= n 

In particular, JE[Ld-i(K~d))]/nd-l converges to Id-l as n-+ oo. 

THEOREM 1.5. Let k 2: 0. There exist positive constants c and C such that, for 
sufficiently large n, 

As seen from Theorem 1.5, the exponent of the lower estimate in (1.2) is exact. To 
prove these theorems, we introduce a new upper estimate of the Betti numbers of general 
simplicial complexes (Theorem 2.5). This estimate is a quantitative version of the coho­
mology vanishing theorem ([8], [1], see also Theorem 2.3). By applying this theorem and 
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modified versions of known estimates to a family of multi-parameter random simplicial 
complexes, including the d-Linial-Meshulam complex and the random clique complex, 
we obtain several inequalities involving the expectations of Betti numbers. Theorem 3.6, 
in particular, provides an essentially new upper estimate. By integrating these inequali­
ties with respect to the filtration parameter, we obtain good estimates of IE[Lk(Xn)] for 
a class of random filtrations over n vertices (Theorems 4.3 and 4.4). Theorem 1.5 is a 
special case of these theorems, and Theorem 1.2 also follows from them. The proof of 
Theorem 1.2 in [10] is based on the monotonicity of /3d-i(Kid)(t)) with respect tot. 
Our approach is different and is applicable to more general random filtrations. For the 
proof of Theorem 1.4 and an extension (Theorem 4.11), we additionally make use of the 

result by Linial and Peled [15] on the convergence of J3d(Kid\c/n))/nd as n -+ oo for 
each c ~ 0. 

This paper is organized as follows. In Section 2, we provide fundamental concepts 
for graphs and simplicial complexes and derive upper estimates of Betti numbers as 
a quantitative generalization of the cohomology vanishing theorem. In Section 3, we 
provide several estimates for the expectations of Betti numbers for a class of random 
simplicial complexes. In Section 4, we introduce the concept of persistent homologies and 
prove the main theorems about lifetime sums for random simplicial complex processes. 

NOTATION. We use the Bachmann-Landau big-0, little-a, and some related no­
tation associated with n (the number of vertices) tending to oo. Furthermore, for non­
negative functions f(n) and g(n), 

• f(n) = O(g(n)) means that g(n) = O(f(n)); and 

• f(n) ~ g(n) means that f(n) = O(g(n)) and g(n) = O(f(n)). 

The notation X rv v indicates that a random variable X has probability distribution v. 

For a, b E JR., a Vb and a I\ b denote max{ a, b} and min{ a, b }, respectively. 

2. Upper bounds of Betti numbers of simplicial complexes. 

2.1. Preliminaries and statement of results. 
Let V be a finite set. For k ~ 0, (r) denotes the set of all subsets A of V whose 

cardinalities #A are k. Note that ('~') contains a single element 0. Assume V # 0 and 

let E C (~). We regard V and E as a vertex set and an edge set, respectively, and 
call G = V LJ E an undirected graph on V. Throughout this article, graphs are simple 
undirected finite graphs, with no multiple edges and no self-loops. 

Saying that v E V is adjacent to w E V means { v, w} E E. For v E V, the degree 
of vis defined as #{w EV I {v,w} EE} and is denoted by deg(v). A vertex v EV is 
called isolated if deg(v) = 0. The averaging matrix A[G] = {avw}v,wEV associated with 
G is defined by 

if w is adjacent to v, 

if v is isolated and v = w, 

otherwise. 
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The Laplacian £[G] of a simple random walk on G is defined by £[G] := Iv - A[G], 
where Iv is the matrix that acts as the identity operator on V. All the eigenvalues of 
£[G] are real and belong to the interval [O, 2] (see Section 2.2 for details). Note that 
the nonzero vectors that are constant on each connected component are eigenvectors 
with associated eigenvalue zero, and the number of connected components of G coincides 
with the multiplicity of the zero eigenvalues. When # V 2: 2, .X.2 [G] denotes the second 
smallest eigenvalue of £[G], counting multiplicities. In particular, .X.2[G] > 0 if and only 
if G is connected. We call .X.2[G] the spectral gap of G. By convention, .X.2[0] = 0, and we 
set .X.2[G] = 0 for #V = 1. 

We next introduce the concept of simplicial complexes, which are higher-dimensional 
counterparts of graphs. 

DEFINITION 2.1. Let V be a nonempty finite set and X a collection of nonempty 
subsets of V. X is called an abstract simplicial complex on V if X satisfies the following 
two conditions. 

( 1) { v} E X for all v E V; 

(2) If a EX and 0 #-TC a, then TEX. 

In what follows, we omit the word "abstract" and simply call X a simplicial complex. 
For a E X, its dimension dim a is defined to be #a - 1. We call a E X with dim a = k 
a k-dimensional simplex or, equivalently, a k-simplex. The dimension of X is defined as 
the maximum among the dimensions of the simplices in X. Graphs are regarded as zero­
or one-dimensional simplicial complexes in a natural manner. We say that T E X is a 
face of a E X whenever T C a. For k 2: 0, Xk denotes the set of all k-simplices of X. 
By convention, we regard 0 as a ( -1 )-simplex and set X _ 1 = { 0}. The k-dimensional 
skeleton x(k) of X is defined by x(k) := Ll=o X 1. The simplicial complex X is said to 

include the complete k-dimensional skeleton if Xk = C~1). 

Given a simplicial complex X on V and k 2: 0, an ordered sequence ( v0, v1 , ... , vk) 
consisting of k + l distinct elements of V is called an ordered (k-)simplex of X if 
{ v0, v1 , ... , vk} E X k. The collection of all ordered k-simplices of X is denoted by 
~(Xk), with ~(X) := LJ1 ~(X1). By convention, we set ~(X_1 ) = ~({0}) := {0}. Two 
ordered simplices are called equivalent if they can be transformed into each other by 
an even permutation. The equivalence class of an ordered simplex a = ( v0 , v1 , ... , vk) 
is denoted by (a) or (v0 , v1 , ... , vk) and is called the oriented simplex generated by a. 
Let Ck(X) be the ffi.-vector space of all linear combinations of oriented k-simplices in X 
with coefficients in IR. under the relation that ( v0 , v1 , ... , vk) = - ( v1 , v0, ... , vk) for any 
oriented k-simplices. We set C_1 (X) =IR.per convention. For k 2: 1, the k-th boundary 
map ak : Ck ( X) ----+ Ck-l ( X) is well-defined as a linear extension of 

k 

8k(Vo, Vt,,,,, Vk) := 2::)-l)i(vo,,,,, Vi-1, Vi+t,,,,, Vk) 
i=O 

for (vo, vi, ... , vk) E Ck(X). We also define a linear map 80: Co(X) ----+ IR. such that 
8o(v) = 1 for v EV. For all k 2: 0, it holds that ak oak+l = 0, that is, kerak ~ Imak+l· 
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The k- th homology vector space of X over IR is defined by H k( X) : = ker Ok/ Im ok+ 1 . 

The dimension of this space is called the k- th Betti number of X and is denoted by 
f3k(X). 

REMARK 2.2. In the usual definitions for homologies, o0 is defined as a zero op­
erator. This difference makes the Betti number (30 (X) as defined above smaller by 1 
than the conventional Betti number. In this sense, f3k(X) in our definition is often called 
the reduced Betti number. For simplicity, we omit the word "reduced" throughout this 
paper. 

Let k 2: 0. A real-valued function f on :E(Xk) is called a k-cochain if f is alternat­
ing, that is, if f(vt:,(O),Vt:,(l),···,vf:,(k)) = (sgne)J(vo,V1, ... ,vk) for all (vo,v1, ... ,vk) E 

:E(Xk) and all permutations e on {O, 1, ... , k }. The real vector space Ck(X) formed by 
all k-cochains is called the k-cochain vector space. We set c-1 (X) = IR per convention. 
The k-th coboundary map dk: Ck(X)---+ Ck+1 (X) is defined by the linear extension of 

k+l 
dkr.p(a) := I)-l)ir.p(ai) 

i=O 

for r.p E Ck(X) and a= (vo, ... , Vk+i) E :E(Xk+i), where 

(2.1) 

By definition, d_ 1 r.p for r.p E c-1 ( X) = IR is identically r.p on :E ( X 0 ). Elements oflm dk-l 
(resp., ker dk) are called k-coboundaries (k-cocycles). That dkodk-1 = 0, that is, ker dk :::) 
Im dk-l, can be verified. The k-th cohomology vector space of X is then defined by 
Hk(X) := kerdk/Imdk-l· Note that Hk(X) is isomorphic to Hk(X). 

To state the cohomology vanishing theorem and its quantitative generalization, we 
further introduce the concept of links of simplicial complexes. Given a D-dimensional 
simplicial complex X and a j-simplex T in X with -1 :'.S: j :'.S: D, we define the link lkx ( T) 
of Tin X by 

Note that lkx ( T) is either the empty set or a simplicial complex with dimension at most 
D - j -1. If the codimension of Tin Xis no more than 2 (i.e., D- j :'.S: 2), then lkx(T) 
is either the empty set or a graph. By definition, lkx (0) is always equal to X. 

A simplicial complex X is said to be pure D-dimensional if, for every simplex a in 
X, there exists some D-simplex containing a. Note that a pure D-dimensional simplicial 
complex is D-dimensional. The following is a special case of Theorem 2.1 of [1]. 

THEOREM 2.3 (Cohomology vanishing theorem [8], [l]). Let D 2: 1, and let X 
be a pure D-dimensional simplicial complex such that .X-2[lkx(T)] > 1 - n-1 for every 
(D - 2)-simplex TEX. Then, HD- 1(X) = {O}. 

The main purpose of this section is to generalize Theorem 2.3 to an upper estimate 
of the Betti number. This estimate is one of the key elements of the arguments in the 
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later sections. 

DEFINITION 2.4. Let G be a graph on V and let {>.i}!i be all the not necessarily 
distinct eigenvalues of .C[G]. We define 

1 (G;a) := #{i I Ai :'S a}-1 

for a 2': 0. We also set 1 (0; a) := 0 per convention. 

THEOREM 2.5. Let X be a simplicial complex and D 2': 1. Then, 

f3v-1(X) :'S L 1 (lkx(T)(1); 1- n-1). (2.2) 
TEXD-2 

Recall that the graph lkx(T)(l) is the one-dimensional skeleton of the simplicial 
complex lkx(T). This theorem is an extension of Theorem 2.3. In fact, under the 
assumptions of Theorem 2.3, 1 (lkx(T)(l); 1 - n-1 ) = 1 (lkx(T); 1 - n-1 ) = 0 for every 
TE Xv-2, so that f3v-1(X) = 0. 

We devote the rest of this section to proving Theorem 2.5. The proof is based on 
careful modifications to the proof of Theorem 2.3 and a nice transformation of X to 
remove the assumption of pure dimensionality. 

2.2. Auxiliary operators. 
Here, we give an overview of some preliminary concepts and facts about simplicial 

complexes as described in [1] and state them in a way that is useful for this research. 
Let X be a pure D-dimensional simplicial complex. For simplices CY in X, m( CY) denotes 
the number of D-simplices containing CY. Note that m(·) 2': 1 from the assumption of 
pure D-dimensionality. For ordered simplices CY= (v0, ... ,vk) E ~(X), m(CY) is defined 
as m({vo, ... ,vk}). Simple calculations show that, for all -1 :'S k '.'SD and TE ~(Xk), 

L m(CY) = (k + 2)! (D - k)m(T), 
aE~(Xk+1); a~T 

where CY ::J T implies that all vertices of T are vertices of CY. We equip Ck(X) with an 
inner product (-, ·) defined by 

1 
(c.p, 'l/J) = (k + l)! L m(CY)c.p(CY)'ljJ(CY) for <p, 'ljJ E Ck(X), k 2': 0 (2.3) 

aE~(Xk) 

and 

(c.p, 'l/J) = #Xvc.p'l/J for <p, 'ljJ E c-1 (X) = R (2.4) 

The induced norm is denoted by II · II- For k 2': -1, denote by 8k+l: Ck+ 1(X) ----+ 
Ck(X) the adjoint operator of dk, that is, the unique operator satisfying (dkc.p, 'l/J) = 
(c.p, 8k+11P) for all <p E Ck(X) and 'ljJ E Ck+1 (X). For ordered simplices CY= (v0, ... , vk) E 
~(Xk) and T = ( wo, ... , wz) E ~(Xz), the notation CYT indicates an ordered sequence 
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( v0 , ..• , vk, w0 , .•. , wl). A straightforward calculation gives the following expressions. 
For r,p E Ck(X), 1/J E Ck+l(X), and <IE :E(Xk) with k 2: 0, 

and 

5k+11/J(<I) = L 
vE~(Xo); 

vaE~(Xk+1) 

See (2.1) for the definition of <Ii. 

m( V<I) nl,( ) 
m( <I) 'I--' V<I 

(2.5) 

For k 2: 0, the down Laplacian and the up Laplacian on Ck(X) are defined by 
L%own := dk-15k and L~P := 5k+ldk, respectively. The Laplacian Lk on Ck(X) is defined 
by 

L ·- Ldown + Lup k .- k k . 

Note that L%own, L~P, and Lk are self-adjoint and non-negative definite operators with 
respect to the inner product (2.3) and, further, that the relations 

ker L%own = ker 5k, 

ker L~P = ker dk, 

Hk(X) ~ ker L~own n ker L~P = ker Lk 

(2.6) 

(2.7) 

(2.8) 

hold, which can be shown by simple calculations. We also note that if G is a pure 
one-dimensional simplicial complex on V (i.e., a graph without isolated vertices), then 
L~P = .C[G] from (2.5). By combining the fact that the transpose of A[G] is a stochastic 
matrix, the eigenvalues of .C[G] are all real and lie between O and 2. 

2.3. Localization. 
Let X be a pure D-dimensional simplicial complex, and let T = ( v0 , ... , Vj) E 

:E(Xj) be a fixed ordered j-simplex in X with -1 :::; j :::; D. We write lkx(T) for 
lkx({v0 , ... ,vj}) and define m 7 (TJ) = m(TTJ) for rJ E lkx(T). In other words, m 7 (TJ) is 
the number of (D - j - 1)-simplices in lkx(T) containing T/· For O :::; l :::; D - j - 1, 
:E(lkx(T)1) denotes the set of all ordered l-simplices of lkx(T). Since lkx(T) is a pure 
(D - j - 1)-dimensional simplicial complex, we can define various concepts for lkx(T), 
as we did in the previous subsection for X, by replacing X with lkx(T). We distinguish 
the concepts from those for X by adding the superscript ( or subscript) T in the notation. 
For example, the co boundary operator on C1 (lkx ( T)) is denoted d[. Other symbols are 
indicated by(·, ·)n II· lln5[, and so on. 

DEFINITION 2.6. Let -1:::; j < k:::; D and take TE :E(Xj) and r,p E Ck(X). The 
localization r,p7 E ck-j-1 (lkx(T)) of r,p with respect to Tis defined by 
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A straightforward calculation gives the following identities. 

LEMMA 2.7 ([1, Lemmas 1.10 and 1.12, and Corollary 1.13]). For D > l and 
rp E cD-1 (X), the following identities hold. 

2 1 ~ 
Dllrpll = (D _ l)! ~ 

TE~(Xv-2) 

2 2 1 ~ lldD-1rpll - llrpll = (D _ l)! ~ 
TE~(Xv-2) 

In particular, we have 

(2.9) 

2.4. Upper bounds of Betti numbers. 
Let D 2'. 1 and let X be a pure D-dimensional simplicial complex. Take TE XD-2 

or T E I:(XD-2 ). Let Nx(T) denote the number of vertices in lkx(T). The eigenval­
ues of .C[lkx(T)], including repeated values, are denoted by X[ and the corresponding 
eigenvectors by 'lj;[ (i = 1, ... , Nx(T)). Without loss of generality, we may assume that 

>.r = 0, 'l/JI is a constant vector, and {'l/J[}!~(T) is an orthonormal basis of c0 (lkx(T)). 
We consider the orthogonal decomposition of c0 (lkx ( T)): 

where 

AI:= spanll{'lj.;[}, 

A;:= spanll{'lj.;[ Ii-/= 1 and>.[~ l - n-1 }, 

A~:= spanll{'l/J[ I>.[> l - n-1 }. 

For j = 1,2,3, 1rJ denotes the orthogonal projection of C0 (lkx(T)) onto AJ. We obtain 
the following formula by direct calculation. 

LEMMA 2.8 ([1, Lemma 1.11]). For cp E cD- 1 (X) and TE I:(XD-2 ), 

The following lemma is important for proving the cohomology vanishing theorem 
and its quantitative generalization. 

LEMMA 2.9. Let X be a pure D-dimensional simplicial complex with D 2'. 1. Then, 
for each T E X D-2 , there exists some i E { 1, ... , N x ( T)} such that >.[ 2'. 1. Moreover, 
for cp E cD-l(X), 
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(2.10) 

where A := min{ X[ - (l - D- 1 ) I T E Xv-2 and X[ > l - D-1 } > 0. In particular, if 
rp E ker Lv-1, then 

(2.11) 

PROOF. Note that the zeroth up Laplacian on lkx(T) is equal to £[lkx(T)]. For 
simplicity, we use £ to denote £[lkx ( T)] in the following. Since X is pure, by the 
definition of £, 

Nx(r) 

L A[= tr(£)= Nx(T) 
i=l 

for each TE Xv-2- This implies that A[~ l for some i E {1, ... , Nx(T)}. 
For an arbitrary TE "E(Xv_2 ) and rp E cv-1(X), 

3 

lldo'Pr II; = (Cr.pr, ({Jr )r = L(£1r[ 'Pn 1r[ 'Pr )r 
i=l 

where K, := (1 - D- 1 ) + A. :S 2. In the above equation, the first inequality follows from 
the non-negative definiteness of £. The second equality follows by expressing 1r3 'Pr as a 
linear combination of the eigenvectors { 'ljJ[}i generating A3. From (2.9), we have 

lldv-1'Pll 2 = (D ~ 1)! L (lldo'Prll; - (1-D-1)ll(()rll;) 
rE~(XD-2) 

Therefore, 

Then, 

~ (D ~ 1)! L (K,ll1rirprll; - (1- D-1)ll'Prll;) 
rE~(XD-2) 

( from Lemma 2. 7) 

(ll1r1(()rll; + ll1r2'Prll;). 

(2.12) 
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(from (2.12)) 

Thus, (2.10) holds. If <p E ker Lv_1 , then the second and third terms in the right-hand 
side of (2.10) vanish because 

<p E ker Lv-1 = ker V]r:~f n ker L1fJ_1 = ker8v-1 n kerdv-1 

from (2.6), (2.7), and (2.8). Thus, (2.11) holds. D 

Theorem 2.3 can now be proved by combining Lemma 2.9 with (2.8), but we proceed 
further. First, we prove a variant of Theorem 2.5 with the extra assumption that X is 
pure D-dimensional. 

THEOREM 2.10. Let X be a pure D-dimensional simplicial complex with D 2: 1. 
Then, 

,6v-1(X) :S L ,(lkx(T); 1- n-1). 
TEXv-2 

PROOF. For each T E Xv-2, select an arbitrary f E :E(Xv-2) from the ordered 
sequences of elements of T. Define a linear map 

F: ker Lv-1 ----+ E9 A; 
TEXv-2 

by F(cp) = (1r2<p7 ) 7 EXv_2 . From Lemma 2.9, Fis injective. Comparing the dimension­
alities, we have 

,6v-1(X) = dim(ker Lv-1) :S L dim A;= L 1 (lkx(T); 1- n-1). D 
TEXv-2 TEXv-2 

We now remove the assumption of pure D-dimensionality in Theorem 2.10. Let 
D 2: 1 and let X be a simplicial complex. We assume dim X 2: D - l and consider the 
(D - 1)-th Betti number. Let Mv_1 (X) be the set of all maximal (D - 1)-simplices in 
X, namely, the set of all ( D - l )-simplices that are not contained in any D-simplex. We 

define a new simplicial complex XD by adding vertices and simplices to Xv as follows. 
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For each a E Mn-i (X), we construct a D-simplex s(J' := a LJ { v(J'} with a new vertex v(J'. 

We let XD be the simplicial complex generated by Xn U {s(J'}(J'EMD-i(X), that is, the 
-D 

smallest simplicial complex that includes Xn U {s(J'}(J'EMD_i(X)· Clearly, X is a pure 
D-dimensional simplicial complex. In addition, the identity 

(2.13) 

holds. Indeed, let x[D] denote the simplicial complex X n XD. In other words, x[D] 
is generated by Xn U Xn_1. Since ker dn-i and Im dn_2 do not change from replacing 

X with x[Dl, we have f3n-i(X) = f3n-i(X[Dl). By construction, XD and x[D] are 

homotopy equivalent, which implies that f3D-l (XD) = f3D-l (X[Dl). Thus, (2.13) holds. 
For the proof of the following lemma, we note a few simple facts about some graphs 

G. Let a E [O, 2). If G consists of only one vertex or one edge and its two vertices, then 
1(G; a) = 0. Also, adding an isolated vertex or an isolated edge to a non-empty graph 
G increases 1(G; a) by exactly one. 

LEMMA 2.11. Let D and X be as stated above. For a E [O, 2), 

rEXD-2 

PROOF. If T E Xn-2 \ (XD)D-2, then lkx(T) = 0, which implies that 

1(lkx(T)(l); a) = 0. Suppose T E (XD)n-2 \ Xn-2. Then there exists some a E 

Mn-i(X) such that T C s(J' and T </:. a. Since s(J' is the only D-simplex of XD that 
contains T, lkxD(T) consists of only the isolated edge s(J' \ T. Thus, 1(lkxD(T); a)= 0. If 

T E Xn-2 n (XD)n-2, then 1(lkx( T)(l); a) = 1(lkxD ( T); a) because lkxD ( T) is obtained 
from lk xCDJ ( T) by replacing its isolated vertices with isolated edges. Therefore, 

1(lkx[DJ(T);a) 
rEXD-2 TE(X[Dl)D-2 

D 

We can now prove Theorem 2.5. 

PROOF OF THEOREM 2.5. We may assume that dimX ~ D - 1, since otherwise 

both sides of (2.2) vanish. Noting that XD is a pure D-dimensional simplicial complex, 
we have 

/3n-1(X) = f3n-1(XD) (from (2.13)) 

< L 1(lkxD(T);l-D-1) (from Theorem 2.10) 

rE(XD)D-2 

L 1(lkx(T)(1); 1- D-1) (from Lemma 2.11). D 
rEXD-2 
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As a corollary, the assumption of pure D-dimensionality in Theorem 2.3 can be 
removed. 

COROLLARY 2.12. Let D ~ l, and let X be a simplicial complex such that 
,\2 [lkx(T)] > 1 - D-1 for every (D - 2)-simplex TEX. Then, HD-1 (X) = {O}. 

3. Estimates of Betti numbers of random simplicial complexes. 

3.1. Statement of results. 
In this section, we consider multi-parameter random simplicial complexes, which 

were introduced in [2], [6], and give some estimates of their Betti numbers. Linial­
Meshulam complexes [14] and random clique complexes [12] are shown as typical exam­
ples in this framework. 

Let n E N and p = (Po,P1, ... ,Pn-1) be a multi-parameter with O :S: Pi :S: 1 for 
all i = 0, 1, ... , n - l. We start with the set V of n vertices and retain each vertex 
with independent probability Po- Next, each edge with both ends retained is added with 
independent probability Pt. Iteratively, for i = 2, 3, ... , n - l, each i-simplex for which 
all faces were added by this procedure is added to our complex with independent proba­
bility Pi· The distribution of the resulting random simplicial complexes X is denoted by 
X(n,p). We call this model the multi-parameter random complex model with n vertices 
and multi-parameter p. 

EXAMPLE 3.1. Let n > d > l and let O < p < l be fixed. Define p 

(Po,Pt, · · · ,Pn-1) by 

(0 :S: i :S: d - l), 

(i = d), 

(d + 1 :::; i:::; n - l). 

The corresponding random simplicial complex follows the d-Linial-Meshulam complex 
model Yd(n,p). The Erdos-Renyi graph model G(n,p) is identified with Y1 (n,p). 

EXAMPLE 3.2. Let n > d ~ l and let O :::; p ::; 1 be fixed. Define p 

(Po,Pt, · · · ,Pn-1) by 

(0 :S: i :S: d - l), 

(i = d), 

(d + 1 :S: i :S: n - l). 

We call the corresponding random simplicial complex CAd) (p) the random d-flag complex. 

The random clique complex Cn (p) is identical to the random 1-flag complex CA1) (p). 

We state several estimates for the Betti numbers of the multi-parameter random 
complexes X ( n, p) according to the dependence of p on n. Their proofs are left to 
subsequent subsections. To state the propositions, we introduce some notation: 
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q_l := 1, 
i=O (3.1) 

(-1 :S: k :S: n- 2). 

Here, we set 0/0 = 0 and (g) = 1 per convention. Note that O :S: qk :S: 1, 0 :S: rk :S: 1, 

and TID( o- E X) = qk for any o- E (k~ 1). Moreover, both qk and rk are nonincreasing with 
respect to k. 

In what follows, k 2 0 is always fixed. The following proposition follows from an 
easy application of the Morse inequality (see also Section 6 of [6]). 

PROPOSITION 3.3. Let C1 > 0 and C2 2 0 satisfy (k+l)/c1 +c2/(k+2) < 1. Then, 
there exist some no E N and Eo > 0, depending only on k, c1, and c2, such that if n 2 no, 
then 

(3.2) 

The next result is an upper estimate for rk sufficiently large. This is a generalization 
of the cohomology vanishing theorem to multi-parameter random complexes (see, e.g., 
[13, Theorem 1.1 (1)] and [6, Theorem 2]). 

PROPOSITION 3.4. Let p 2 1 and 8 > 0. Then, there exists a Ko > 0, depending 
only on k, p, and 8, such that if 

Ko 
rk-1 2 -

n 
d (p + 8) log(nrk-1) 

an rk 2 , 
n 

(3.3) 

COROLLARY 3.5. Let O E (0, l], v 2 0, 8 > 0, and M > 0. Then, for sufficiently 
large n, 

imply 

(v + 8) logn 
rk2-----

n 
(3.4) 

The last result is a general upper estimate, which is the main result of this section. 

THEOREM 3.6. Let l EN. There exists a constant C 2 0 depending only on k and 
l such that for all n E N, 
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Here, if rk = 0, then the right-hand side is interpreted as nk+lqk. 

We apply these results to typical examples. 

EXAMPLE 3.7 (Linial-Meshulam complex). Consider the d-Linial-Meshulam com­
plex X rv Yd(n,p), as in Example 3.1. Letting k = d - 1, we obtain qk = 1, rk-1 = 1, 
and rk = p. Theorem 3.6, Proposition 3.3, and Corollary 3.5 with e = M = 1 together 
imply that for given O < c < k + 2, l E N, and v' > v ?: 1, there exist Eo > 0 and C ?: 0 
such that the following hold. 

(1) For every n EN, 

(2) For sufficiently large n, if p :s; c/n, then 

(3) For sufficiently large n, if p ?: (v' log n) /n, then 

lP'(/3d-1 (X) -/= 0) :S nd-v and IE[/3d-1 (X)] :S nd+l-v. 

EXAMPLE 3.8 (Random clique complex). Consider the random clique complex 
( k+l) k 

X rv C(n,p), as in Example 3.2. For O :S k :Sn - 1, we obtain qk = p 2 , rk-1 = p , 
and rk = pk+l. Here, G) = 0 per convention. Theorem 3.6, Proposition 3.3, and 
Corollary 3.5 withe= 1/(k + 1) and M = 1 together imply that, for given c1 > 0 and 
c2 > 0 with (k + l)/c1 + c2/(k + 2) < 1, l EN, and v' > v?: 1/(k + 1), there exist Eo > 0 
and C ?: 0 such that the following hold. 

(1) For every n EN, 

(2) For sufficiently large n, if (ci/n)1/k :s; p :s; (c2/n)1/(k+l), then 

IE[/3k(X)] ?: Eonk+1p(k!1). 

(3) For sufficiently large n, if p?: {(v' logn)/n}1/(k+1), then 

lP'(/3k(X)-/= 0) :S nk+lp(k!1)(npk)-(k+l)v 

= nk/2+1-v ( npk+l )k/2-kv 

and 
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Note that when v' > k/2 + 1 + T/ for some TJ 2: 0 in (3), the first conclusion implies 
IfD(,Bk(X) =f. 0) = o(n-rJ). When TJ = 0, this claim is consistent with Theorem 1.1 (1) in 
[13]. 

3.2. Proofs of Propositions 3.3 and 3.4. 
We follow [12, Section 7] for the proof of Proposition 3.3. For k 2: 0, let fk(X) 

denote the cardinality of X k, the set of all k-simplices of X. We set f -1 ( X) = 1 per 
convention. The following inequality holds for arbitrary simplicial complexes. 

LEMMA 3.9 (A version of the Morse inequality). Let X be a simplicial complex. 

For every k 2: 0, 

and 

PROOF. Since fk(X) = dimkerdk + rankdk, we have 

,Bk(X) = dimkerdk - rankdk-1 

= (fk(X) - rankdk) - rankdk-1 

2: fk(X) - fk+i(X) - fk-1(X) 

PROOF OF PROPOSITION 3.3. Choose no > k such that 

no(k+l) c2 1 ---'----- + -- < 
(no-k)c1 k+2 · 

Then, (3.2) implies that, for n 2: no, 

and 

(n) k + l no k + l 
IE[fk-1(X)] = k qk-1 = ( k) IE[fk(X)] :S: k-IE[fk(X)]. 

n - rk-1 no - c1 

(3.5) 

D 

Combining these estimates with the first inequality of (3.5) yields the desired inequality. 
D 

We now turn to proving Proposition 3.4. The following theorem states that the spec­
tral gap of the Erdos-Renyi graph G"' G(n,p) concentrates around 1 if the parameter 
p is sufficiently large. 

THEOREM 3.10 (Theorem 1.1 in [11], spectral gap theorem in [13]). Let G rv 

G(n,p) be the Erdos-Renyi graph. Let TJ 2: 0, <5 > 0, and c: > 0. Then, for sufficiently 
large n, if 
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( 1 + 77 + 8) log n 
p?:_------

n 

781 

The following lemma concerns the structure of links in multi-parameter random 
complexes. Let X rv X(n,p) be a multi-parameter random complex with an n-point 
vertex set V that is defined on a probability space (D, F, JP'). For a simplex T with 
JP'( T E X) > 0, we define a probability space (Dn Fn IP\) by 

Let Vx(T) denote the vertex set of lkx(T) and Nx(T) denote its cardinality; these are 
random variables on nT. The expectation with respect to IP T is denoted by JET. Let 
Bin(n,p) indicate the binomial distribution with parameters n and p. 

LEMMA 3.11. Let O ::; k ::; n - 2 and consider T E (~). Provided that IP( T E 

X) > 0, the distribution of (lkx(T))(l) under IPT is X(n - k, (rk-t,rk/rk-t,O, ... ,0)). 
In particular, the distribution of Nx(T) under IPT is Bin(n - k, rk-1). 

PROOF. A vertex v E V\ T belongs to V x ( T) if and only if X contains every possible 
simplex that can be described as the union of { v} and a subset of T. For O :::; i :::; k, there 
are (~) such i-simplices. This implies 

Moreover, events { v E V x ( T)} vEV\ T are independent under IP T since distinct events are 

described in terms of distinct simplices. Let V C V \ T with IPT(Vx(T) = V) > 0. An 
edge between vertices v and w in V belongs to lkx ( T) if and only if X contains every 
possible simplex described as the union of { v, w} and a subset of T. For 1 :::; i :::; k + l, 
there are C~1) such possible i-simplices. This implies 

Moreover, events { e E lkx ( T)} (v) are independent under IP T ( • I V x ( T) = V) by the 
eE 2 

same reasoning as used above. Thus, the claim holds. D 

PROOF OF PROPOSITION 3.4. From Theorem 2.5, 

IE[,Bk(X)]:::; L IE[Nx(T); TE Xk-1, .X2[lkx(T)C1)] :::; 1 - (k + 1)-1] 

TE(r) 
= L IP(T E Xk-1)1ET[Nx(T); .X2[lkx(T)Cl)] :::; 1 - (k + 1)-1] 

TE(r) 

= (:)qk-1 IE[N; .X2[Z]:::; 1- (k + 1)-1], 
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where Z rv X(n - k, (rk-l, rk/rk-l, 0, ... , 0)) and N is the number of vertices of Z, 
which follows Bin(n - k, rk_1). The last identity follows from Lemma 3.11. Define 
µ := JE[N] = (n - k)rk-l and recall the Chernoff bound 

( µ1/5) 
IP[IN - µI > µ3/5] S exp --5- . (3.6) 

If Ko 2': 2k and (3.3) holds, then µ 2": nrk-l - k 2": nrk-i/2 2': Ko/2. Thus, 

rk (p + 5) log(nrk-1) --> > sup 
(p + 5/2) logm 

rk-1 nrk-1 m:;,: Lµ-µ3/5 J m 

for K 0 sufficiently large. By combining these estimates with Theorem 3.10, for c = 
(k + 1)-1 /\ 2-P, we have 

["µ+µ3/51 

< L mIP(.X2[Z] S 1 - (k + 1)-1 I N = m)IP(N = m) + JE[N; IN - µI > µ 315 ] 

m=Lµ-µ3/5J 

["µ+µ3/51 

< L msml-P]ID(N = m) + JE[N2]1/2]1D(IN - µI > µ3/5)1/2 
m=Lµ-µ3/5J 

S sµ( lµ - µ3/5 J )1-p + (µ + µ2)1/2 exp (-µ:~5) 

S 2sµ2-p 

when K 0 is sufficiently large. Here, note that the distribution of .X2 [Z] under IP(· I N = m) 
is that of .X2[G] with G rv G(m,rk/rk-1). Therefore, 

lE[,Bk(X)] S 21::(~)qk-1µ2-P 

k (nrk-1) 1-p S 2sn qk-1nrk-l - 2-

S nk+lqk(nrk-1) 1-P. 

The estimate of IP(,Bk(X) =f. 0) is obtained in the same way. In this case, from Corol­
lary 2.12, we have 

IP(,Bk(X) =f. 0) S IP(There exists TE Xk-l such that .X2[lkx(T)C1)]::; 1- (k + 1)-1) 

S L IP(T E Xk-1, .X2[lkx(T)C1)] s 1 - (k + 1)-1) 

TE(r) 

= (~) qk-1 IP(.X2[Z] S 1 - (k + 1)-1 ). 

Then, for c = (k + 1)-1 /\ 2-p, 
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IP(>'2[Z] :'S 1 - (k + 1)-1 ) 

r µ+µ3/51 

:'S L IP(.X2[Z] :'S 1- (k + 1)-1 IN= m)IP(N = m) + exp (-µ~ 5
) 

m=Lµ-µ3/5J 

( µl/5) :'S c(lµ - µ3/5J)l-p + exp --5- :'S 2c:µ1-p 

for K 0 sufficiently large. Therefore, 

IP(,Bk(X) # 0) :'S 2c:(;)qk-1µ 1-p 

k (nrk-1) l-p :'S 2c:n qk-1 ~2~ 

:'S nk+lqk(nrk-1)-P. D 

PROOF OF COROLLARY 3.5. Take Ko in Proposition 3.4 in which we let p and c5 
be v/e and c5/(2e), respectively. From (3.4), for sufficiently large n, we have rk-l 2 rk 2 
Ko/n and 

(v/e + 8/(W)) log(nrk-1) 
rk 2 . 

n 

Indeed, if we set r = (v + c5)(logn)/n, then, for sufficiently large n, 

nrk - ( i + :e) log (nrk_i) 2 nrk - ( i + :e) log (nMrt0) 

=nrk-(i+:e) (l-e)log(nrk)-(v+~) (1ogn-logeM) 

2nr-(i+:e)(1-e)log(nr)-(v+~) (1ogn-lo~M) 

= ~ logn - ( i + :e) {(1 - e)(loglogn + log(v + c5)) + logM} 

2 0. 

The conclusion follows from Proposition 3.4. 

3.3. Proof of Theorem 3.6. 

D 

Theorem 2.5 plays a key role in proving Theorem 3.6. We first discuss the eigenvalues 
of the averaging operator on the Erdos-Renyi graph. 

Let G = V LJ E be a graph and let h E N. We call w = (v0 , v1 , ... , vh) E vh+l 
a walk on G with length h if vi is adjacent to vi+l for all i = 0, 1, ... , h - l. A walk 
w = (vo,v1, ... ,vh) E Vh+l where Vo = Vh is called a closed walk. We denote by 
Wh(G) the set of all length-h closed walks on G. Given a graph G and a closed walk 
w = (vo, v1, ... , vh) E Wh(G), let G(w) = V(w)LJE(w) denote the subgraph of G induced 
by w, where 
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are the vertex set and the edge set, respectively. The multiplicity ms ( w) of s E V ( w) is 
defined by 

m 8 (w) := #{j E {O, 1, ... ,h-1} I Vj = s}. 

For 1::; v, e::; h, the set wi,e(G) is the set of all w E Wh(G) such that #V(w) = v and 
#E( w) = e, and wX'e is the number of length-h closed walks on v unlabeled vertices that 
traverse exactly e edges (perhaps multiple times). That is, 

v,e #Wv,e(K )/ I Wh := h V V., 

where Kv is the complete graph with v vertices. 

LEMMA 3.12. The following properties hold for l EN and 1 :S v, e :S 2l. 

(1) If w~{ > 0, then e ~ v -1. 

(2) If w;tl,e > 0, then e :S l. 

PROOF. Take w E w;((Kv). By applying the Euler-Poincare formula to the 
graph G(w), we have v - e = 1 - ;31 (G(w)) :S 1. This implies (1). For the proof of (2), 
take w E w;1+1,e(Ke+1). Since /31(G(w)) = 0 (and G(w) is connected), G(w) is a tree. 
Then, since w is a closed walk, w passes through each edge of G ( w) at least twice. This 
implies e :S l. D 

LEMMA 3.13. Let G rv G(n,p) be the Erdos-Renyi graph and let a > 0. Let 
{µi} i=l be all the ( not necessarily distinct) eigenvalues of the averaging matrix A [ G]. 
Then, for l EN and n ~ 2l, 

. (2Z)! '°' 
lE[#{i I µi ~ a}] :S a2l(n _ 2z + 1)2lp2l ~ 

1:S:v,e:S:2!; 
e~v-1 

Ve V e n(l - pr-l 
W2z n p + 2l 

0: 

PROOF. To proceed, we identify the vertex set of G with {1, 2, ... , n }. Let 
{ Xij h:S:i<j:S:n be independent and identically distributed random variables that follow 
the Bernoulli distribution with parameter p. The Erdos-Renyi graph G can be gener­
ated by {Xijh:S:i<j:S:n: edge {i,j} is supposed to belong to G if and only if Xij = 1. In 
addition, we define Xii = 0 for 1 ::; i ::; n and Xji = Xij for 1 ::; i < j ::; n. Then, aij, 

the (i,j)-component of A[G], is given by 

x,, I (t. x,,) n 

if LXis-/= 0, 
s=l 

n 
aij = 

1 if LXis = 0 and i = j, 
s=l 

0 otherwise. 
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The obvious bound gives 

Let J(G) denote the number of isolated vertices of G. With this, 

tr(A[G] 21 ) = L aioi1 ai1i2 · · · ai21-1io 

lSio ,i1 , ... ,i21-1 sn 

L aioi1 ai1i2 · · · ai21-1io + I(G) 
1sio,i1 , ... ,i21-1 sn; 

io#i1 ,i1 #i2, ... ,i21-1 #io 

L aioi1 ai1i2 · · · ai21-1i21 + I(G) 
w=(io,i1 , ... ,i21)EW21 (G) 

w=(io ,ii , ... ,i21)EW21 (G) 

< L 
w=(io,i1 , ... ,i21)EW21 (G) 

785 

(3.7) 

Here, in the second line, we used the fact that, for each i = 1, ... , n, aii cf. 0 if and only 
if ais = 0 for every s cf. i. In the third line, recall that if vertex i is not adjacent to vertex 
j cf. i, then aij = 0. The last inequality follows from the fact that each ij has at least 
one adjacent vertex in V(w). 

By using the independence of { Xij hsi<jsn, the expectation of the first term of the 
last line of (3. 7) is equal to 

(3.8) 

where Zv ,...., Bin(n - v,p). Here, Lemma 3.12(1) was used for the last identity. We also 
have, denoting mi ( w) by mi, 
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m ., 
i. 

( n - v + mi) ( n - v + mi - l) · · · ( n - v + l) pmi 

n-v ( )I 
X ~ n - V + mi . pr+mi(l - pr-v-r 
~ ( r + mi)! ( n - v - r) ! 

m·' < i· 

- (n _ v + l)mipmi 

Since I:iEV(w) mi(w) = 2l, we have rriEV(w){mi(w)!} < (2l)!. By combining these 
estimates, (3.8) is dominated by 

Since IE [ I ( G)] = n( 1 - p r-1 , we reach the desired conclusion. D 

We remark that 'Y(G; 1- a) is #{i I µi ~ a} - 1 since .C[G] = Iv - A[G]. Now, we 
prove Theorem 3.6. 

PROOF OF THEOREM 3.6. Since IE[fk(X)] = (k~l)qk, the second inequality of 
(3.5) implies that 

(3.9) 

Thus, it suffices to prove 

for some constant C that depends on only k and l. Take Ko in Proposition 3.4 with 
p = l +land 5 = l. Take K 1 ~ Ko V 1 such that x 111 ~ (l + 2)logx for all x ~ K 1 . 

Suppose that 

K1 (nrk-1) 1!1 
Tk~ -V----

n n 
(3.10) 

Then, rk-l ~ rk ~ Ki/n and rk ~ (l + 2){log(nrk_1)}/n hold. Thus, from Proposi­
tion 3.4 with p = l + l and 5 = 1, 

Next, consider the constraint 

K2 (nrk-1) 1!1 
- '5:.Tk :S ----
n n 

(3.11) 
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for some constant K 2 2: K 1 that will be specified later. By applying Theorem 2.5 to X 

with D = k + 1, we have 

IE[/lk(X)] <: IE [ rEf _, 7(lkx( T)lll; 1 - (k + W1)] 
= L JP(r E Xk-1)lE7" ['y(lkx(r)(l); 1 - (k + 1)-1)] 

TE(r) 

= (;)qk-1lE['y(Z;l-(k+l)-1)], 

where Z rv X(n-k, (rk-l, rk/rk-l, 0, ... , 0)). The last identity follows from Lemma 3.11. 
Denote by N the number of vertices of Z, which follows Bin(n - k, rk-1). Define µ := 

JE[N] = (n - k)rk-l· Take K 2 2: K 1 V 2k so that lx - x 315J 2: 2l for all x 2: K 2 /2 and 
suppose that (3.11) holds. Consequently, we haveµ 2: nrk-i/2 2: K2/2 and lµ- µ 315 J 2: 
2l. Then, Lemma 3.13 implies that 

lE['y(Z; 1- (k + 1)-1)] 

where 

r µ+µ3/51 

< L lE['y(Z; 1- (k + 1)-1) + 1 IN= m] JP(N = m) 
m=Lµ-µ3/5J 

+lE['y(Z; 1- (k + 1)-1) + l; IN - µI> µ 315] -1 

,µ+µ
3151 

{ (2l)!(k + 1)21 v e v ( rk ) e 

< m=L~µ3/5J (m - 2l + 1)2Z(rk/rk_i)2Z 1::;E2z; W2i m rk-1 
e2v-l 

+ (k + 1)21 m (1- ~)m-l}JP(N = m) + lE[N; IN - µI> µ 315 ] -1 
rk-1 

v,eA 
I 21 ~ W2z V 

:S: (2l). (k + 1) nrk-1 L,; ( )21 _ +1( / )2Z-nrk-l v rk rk-1 e 
1::C:v,e::C:2l; 

e2v-l 

1 µ+µ
3

1
51 ( ) 2Z ( ) v 

Av= L nrk-1 ___!!!_ JP(N = m). 
m-2l+l nrk-1 

m=Lµ-µ3/5J 

If K 2 (which depends on only k and l) is chosen to be larger in advance, each Av becomes 
less than 2. In what follows, C is a positive constant depending on only k and l; it may 
vary from line to line. Concerning the first term of the last line of (3.12), we have 
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(from Lemma 3.12(2)) 

l 2l 

< ( )-l ~ e+l,e + ( )-1 ~ _ nrk ~ w21 nrk-1 ~ 

e=l m=l l:S:v,e:S:2l; 
v-e=l-m 

Here, the first inequality follows from the relations nrk-1 2': nrk 2': K2 2': 1, and the last 
one follows from the inequality (nrk-1)- 1 :S (nrk)-l in (3.11). 

Considering the second term of (3.12), 

L P( v is an isolated vertex in Z) 
vE{l,2, ... ,n-k} 

= (n - k)rk-1(1 - rkr-k-l 

'.S Cnrk-1(nrk)-1• 

The last inequality follows from the inequalities (1 - x)m :::; e-mx :::; C(mx)-l for O :::; 
x '.S 1 and m 2': 0, and exp(rk(k + 1)) :::; ek+1. 

The third term of (3.12) is dominated by (µ 2 + µ) 112 exp(-µ 115 /10) from the Cher­
noff bound (3.6), which is less than 1 for K 2 greater than some absolute constant. 

Combining these estimates, we obtain 

Lastly, if 

(3.13) 

then, from (3.9), 

Since (3.10), (3.11), and (3.13) cover all cases, the proof is completed. D 
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4. Estimates of lifetime sums of random simplicial complex processes. 

4.1. Persistent homology. 
Let X be a simplicial complex. A family X = {X(t)}t>o of subcomplexes of Xis 

a right-continuous filtration of X if X ( s) c X ( t) for O ::; s ::; t and X ( t) = nt' >t X ( t') 
for t 2 0. Since X is a finite simplicial complex, X(t) differs from Ut'<t X(t') only 
finitely many times. Here, X(t) can be the empty set, which is considered to be a 
( -1 )-dimensional simplicial complex. 

Let IR[IR~o] be an IR-vector space of formal linear combinations of finite elements 
in IR~o- Each element of IR[IR~o] is expressed as a linear combination of monomials zt 
(t E IR>o), where z is an indeterminate. The product of two elements is given by the 
linear extension of az 8 • bzt := abzs+t (a, b E IR, s, t E IR>o). This operation equips 
IR[IR>o] with a graded ring structure. For k 2 0, the k-th persistent homology PHk(X) 
of X = {X(t)}t>o is defined as the result of taking a direct sum in the k-th homology 
vector space: 

PHk(X) := EB Hk(X(t)). 
t~O 

It follows that PHk(X) has a graded module structure over the graded ring IR[IR~0 ] with 
isomorphisms from Hk(X(s)) to Hk(X(t)) (0 ::; s ::; t) induced by the inclusion from 
X ( s) to X ( t). The following theorem is called the structure theorem of the persistent 
homology. 

THEOREM 4.1 ([17], [10]). For each k 2 0, there exist unique indices p, q E Z>o 
and {bi}f~i, { di}f=1 C IR~o such that bi < di for all i = 1, ... , p. Furthermore, the 
following graded module isomorphism holds. 

p p+q 

PHk(X) ~ EB ((zbi)/(zdi)) EB EB (zbi), ( 4.1) 
i=l i=p+l 

where (za) expresses an ideal in IR[IR>o] generated by the monomial za. 

Here, bi and di are called the k-th birth and death times, respectively, and they indi­
cate the times of the appearance and disappearance ( again, respectively) of k-dimensional 
holes in the filtration X = {X(t)}t>O· The lifetime li is defined by li := di - bi. We set 
di = oo for p + 1 ::; i ::; p + q. We define the lifetime sum Lk(X) by 

p+q 

Lk(X) = I)di - bi)-
i=l 

The following formula is a generalization of (1.1) to filtrations. 

THEOREM 4.2 (Lifetime formula [10, Proposition 2.2]). Let X = {X(t)}t>o be a 
right-continuous filtration of a simplicial complex X. Then, for each k 2 0, 
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Let k 2 0 and T 2 0. We also define the k-th lifetime sum until time T by 

p+q 

(Lk(X))r = 2)(di I\ T) - (bi I\ T)). 
i=l 

As an analogue of Theorem 4.2, the equality 

holds. 

4.2. Lifetime sums of random simplicial complex processes. 
We consider a class of random simplicial complex processes associated with an n­

point vertex set V and moving multi-parameters p = (Po, Pl, ... , Pn-1). Let n E N and 
denote the complete (n - 1)-dimensional simplicial complex by K(n), that is, the family 
of all nonempty subsets of V. To each simplex fJ E K(n) we assign an independent 
non-negative random variable Ua with distribution function Fa. We assume that these 
distribution functions Fa are identical for equal-dimensional simplices and, for each fJ E 

K ( n) with dim fJ = i, we denote Fa by Pi ( ·). We define a random simplicial complex 
process Xn = {Xn(t)}t>o by 

Xn(t) := {rJ E K(n) I U 7 '.St for every simplex 0 f= TC rJ}. 

We call this process the multi-parameter random complex process with n vertices and 
multi-parameter function p(·) = (po(·),P1(·), ... ,Pn-1(·)). Note that Xn(t),....., X(n,p(t)) 
for fixed t and that Xn is a right-continuous filtration of K(n). Note also that Xn(t) can 
be expressed as 

Xn(t) = { fJ E K(n) I Wa '.St}, 

where Wa := max{ Ua I 0 f= T C fJ }. 

In what follows, each Pi(t) is assumed to be independent of n. We write qk(t) and 
rk(t), respectively, for the qk and rk defined in (3.1) that are associated with Xn(t). The 
generalized inverse function i\ of rk is defined by 

fk(u) = inf{t 2 0 I rk(t) > u} for u < l, 

and fk(l) = oo. We additionally define 

Qk(t) = lat qk(s) ds fort 2 0, 

<h(u) = Qk(rk(u)) and 'llk(u) = Qk(fk-1(u)) for u E [O, 1). 

We note that <I>k 2 '¥k since fk is nondecreasing with respect to k. Moreover, fk, 
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<I>k, and Wk are nondecreasing right-continuous functions. The following relations are 
fundamental. Fort 2 0, u E [O, 1), and E > 0, 

• rk(rk(t) - s) :St :S rk(rk(t)); and 

• rk(fk(u) - E) :SU :S rk(fk(u)) if fk(u) 2 E. 

We provide results for the asymptotic behavior of the lifetime sum of Xn in the following 
theorems. 

THEOREM 4.3. (1) If there exist A E (0, 1] and u0 E (0, 1) such that 

<I>k(uo) > 0 and <I>k (~) 2 A<I>k(u) for O :Su :S uo, (4.2) 

then, for any m E N, there exists a constant C 2 0 such that for sufficiently large 
n, 

Moreover, if fa°° t 1H dqk+i(t) < oo for some 6 > 0, then 

(2) If <I>k(u) = O(um) as u --+ 0 for all m 2 0, then, for all m E N, there exists a 
constant C 2 0 such that for sufficiently large n, 

lE[(Lk(Xn))r] :S C(l + T)n-m for T > 0. 

Moreover, if fa°° t 1H dqk+i(t) < oo for some 6 > 0, then lE[Lk(Xn)] = O(n-m) for 
all m 2 0. 

THEOREM 4.4. Suppose that there exist u0 E (0, 1), B > 1, and D E [O, (k + 
2)/(4(k + 1))) such that 

Then, there exists some c > 0 such that for T > rk(O), 

JE[(Lk(Xn))r] 2 cnk+l<I>k ( ~) for sufficiently large n. 

In particular, JE[Lk(Xn)] = !1(nk+1<I>k(l/n)). 

Before proceeding to the proof, we consider typical situations in which 

(4.3) 
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for some constant O :S a :S oo. Here, we write f(u) = 8(g(u)) as u ---+ 0 to indicate 
that there exist c1 > 0, c2 > 0, and uo E (0, 1) such that c1g(u) :S f(u) :S c2g(u) for 
all u E (0, u0]. Note also that u00 = 0 and o0 = 1 by convention. Then, we have the 
following. 

• Theorem 4.3(1) holds when a < oo; 

• Theorem 4.3(2) holds when a = oo; 

• Theorem 4.4 holds when '1!k(u) = o(<Pk(u)) as u---+ 0. 

In particular, we have the following result. 

COROLLARY 4.5. Suppose that <Pk satisfies (4.3) with O ::; a < oo and '1!k(u) = 
o(<Pk(u)) as u---+ 0. Then, for each T > 0, 

Moreover, if ft t 1+8 dqk+l (t) < oo for some 8 > 0, then IE[Lk(Xn)] ::::::: nk+l-a. 

The case '1! k ( u) = 8 (<Pk ( u)) as u ---+ 0 is sensitive, and we cannot provide a simple 
answer for it because more detailed relations between <Pk and '1! k affect the asymptotic 
behaviors of IE[(Lk(Xn))r] and IE[Lk(Xn)l, and Theorem 4.3 does not always give proper 
upper estimates. Here, we just consider the case where '1!k(u) is identically <Pk(u) for all 
u E [O, 1). 

THEOREM 4.6. If <Pk(u) = '1!k(u) for all u E [O, 1), then Lk(Xn) = 0 almost surely 
for all n EN. 

Theorems 1.2 and 1.5 are special cases of Corollary 4.5, as will be shown below. We 
can modify the range of the parameter t to [O, oo) by setting Pi(t) = 1 fort 2: 1 and all i: 
in other words, Xn(t) = K(n) fort 2: 1. This modification does not affect the lifetimes 
because the one-point set {1} is a Lebesgue null set and all dimensional homologies of 
K ( n) vanish. When we are interested in a filtration with parameters in a finite interval, 
we will make such a modification, if necessary, without explicitly mentioning it. 

EXAMPLE 4.7. Let n > d 2'. 1 be fixed and define p(t) = (Po(t), ... ,Pn-1(t)) by 

P,(t) ,~ E (0 :S i :S d - 1), 

(i = d), 
(d + 1 :Si :Sn - 1) 

for O :S t :S 1. 

The corresponding process K~d) = { Kid) (t)}o<t<l is called the d-Linial-Meshulam com­
plex process. This is a higher-dimensional analogue of the Erdos-Renyi graph process 
Kn = {Kn(t)}o<t<l, which is identified with the 1-Linial-Meshulam complex process. 
We can easily confirm that 
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(0, 0) 

(u,0) = (u1,u00 ) 

(1/2, u 2 /2) = (8( u0 ), 8( u 2 )) 

(0, 0) 

From Corollary 4.5 and Theorem 4.6, we have 

The case k = d - 1 corresponds to Theorem 1.2. 

( k -/= d - 1, d) , 

(k = d - 1), 

(k = d). 

(k < d - 1), 

(k = d - 1), 

(k = d), 

(k > d). 

793 

EXAMPLE 4.8. Let n > d 2: 1 be fixed and define p(t) = (po(t), ... ,Pn-1(t)) by 

{
1 (0:Si:Sd-1), 

Pi(t) := t (i = d), 

1 (d+l:Si:Sn-1) 

for O ::; t ::; 1. 

We call the corresponding process CAd) = { CAd) (t) }o<t<l the d-flag complex process. Note 
that the cased= 1 corresponds to the random clique complex process Cn = {Cn(t)}o<t<l· 

By straightforward computation, we have 

From Corollary 4.5 and Theorem 4.6, we have 

The cased= 1 corresponds to Theorem 1.5. 

(k < d - 1), 

(k 2: d - 1). 

PROOF OF THEOREM 4.3. (1) From (4.2), for any j EN, 

<I>k (;) 2: AJ<I>k(u) for u E [0,ua]. 

Thus, the following estimate holds for O ::; K ::; 1. 

where 1 = -log2 A 2: 0. In particular, we have 

(k < d - 1), 

(k = d - 1), 

(k 2: d). 

(4.4) 

(4.5) 
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by letting u = u0 and K = v/u0 in (4.4). Let m EN. Take l EN such that l 2': 'Y + m. 
Theorem 3.6 implies that there exists some C 2': 0 such that for all n, 

Let T > 0. In what follows, n E N is taken to be sufficiently large and independent of T. 
Define Sn= rk(l/n). Then, 

Next, suppose t > Sn. Then, rk(t) 2': rk(Sn) 2': 1/n. Let B(t) = -(nrk(t))-1, which is a 
right-continuous nondecreasing function. Then, denoting rk ( u0) by t0, 

{T IE[,Bk(Xn(t))] dt 
j Sn/\T 

= ( f + f )IE[,Bk(Xn(t))] dt 
j(Sn/\T,to/\T] l(to/\T,T] 

S -Cnk+l { Q~(t)B(t) dt + TCnk+lqk(T)(nrk(to))-z 
l(sn,to] 

= -Cnk+i ( [Qk(t)B(t)J!:t - { Qk(t) dB(t)) + TCnk+iqk(T)(nrk(to))-z 
l(sn,to] 

S Cnk+i (<I>k(uo)(nuo)-z + lim { Qk(t - s) dB(t) + T(nuo)-1). 
c:-1,.0 l(sn+c:,to] 

By noting that <h(u0 ) > 0, from (4.5), we have 

( ( ) ) ( ) z <h ( UQ) + T m ( 1 ) , ( m) ( 1 ) <I>k uo + T nuo - S A 1 ( ) n- <I>k - SC 1 + Tn- <I>k - , 
u0 <I>k u0 n n 

where C' > 0 is a constant independent of n and T. Writing B( u) = inf{ t 2': 0 I B(t) > u} 
for u E IR. and taking a small c > 0, we have 
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Here, we used (4.4) with K = l/(nrk(t - c)) and u = rk(t - E) in the second line, noting 
that K S 1 and u S uo for t E (Sn+ E, to]. In the fourth line, we used the change of 
variable formula with t = 3(u). Thus, 

and the first result given in Theorem 4.3 (1) follows. 
Now, suppose that M := fa°° t1+8 dqk+l (t) < oo for some 8 > 0. Let Wa = max{ u7 I 

0 =/- T C a} for a E K ( n) and define Un = max { Wa I a E (k~J}. The distribution 

function of Wa for a E (k~2 ) is equal to qk+1 (·). Take m EN such that m 2:: (r+k+2)/8. 
From the first conclusion with this m, there exists a constant C 2:: 0 such that, for 
sufficiently large n, 

by letting T = nm. Then, 

JE[Lk(Xn)] = lE [1Un (3k(Xn(t)) dt] 

= lE [1Un f3k(Xn(t)) dt; Un S nm] + lE [1Un f3k(Xn(t)) dt; Un >nm] 

S lE[(Lk(Xn))n=] + nk+1JE[Un; Un> nm] 

S Cnk+l<J>k ( t) + nk+1n-m8JE[U~H]. 

For the second term, we have 

n-m<>JE[U~H] S n-m8]E [ L w;.+8] 
aE(k~2) 

S n-h'+k+2) (k: 2) loo tlH dqk+i(t) 

S Mn-'Y 

(from (4.5)). 
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The final conclusion in part (1) of the theorem follows by combining these estimates. 
(2) Let l EN and En = n- 1/ 2 . From the assumption, there exist c > 0 and u0 E (0, 1) 

such that <I>k(u) S cul for all u E (O,u0 ]. Moreover, rk(t) 2: Enfort 2: rk(En). Thus, 
from Theorem 3.6, for sufficiently large n, 

1fk(en)IIT 1T 
IE[(Lk(Xn))r] = IE[,Bk(Xn(t))] dt + IE[,Bk(Xn(t))] dt 

0 fk (en)IIT 

S (kn ) <I>k(En) + Cnk+1 1T qk(t)(nrk(t))-l dt 
+ 1 fk(e:n)IIT 

S cnk+l-l/2 + Cnk+l-l/2 lT qk(t) dt 

= (c + CT)nk+l-Z/2 

for T > 0. 
The second conclusion of part (2) of the theorem follows in the same manner as that 

of part (1). D 

PROOF OF THEOREM 4.4. Let T > rk(O) and a= k/2 + 1. Define 

for large enough n such that a/(Dn) S uo and 'I'n ST. 
Suppose Sn 2: 'I'n for some n. Then, i.J!k(a/(Dn)) = Qk(Sn) 2: Qk(Tn) = <I>k(a/n), 

while <I>k(a/n) 2: Bi.J!k(a/(Dn)) by assumption. Therefore, <I>k(a/n) = 0, which implies 
<I>k(u) = 0 for u E [O,a/n]. In this case, the conclusion is trivially true. 

Thus, we may assume that Sn < 'I'n for every n. If t E [Sn, 'I'n), then 

and 

Since 

(k + l)D a 2(k + l)D 1 
a +k+2= k+2 +2<l, 

we can apply Proposition 3.3 to obtain the existence of n 0 E N and co > 0 such that, if 
n 2: no, then 

Thus, for n 2: no, 
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D 

PROOF OF THEOREM 4.6. Note that for any O:::::; k:::; n - l and t 2: 0, 

k k 

qk(t) 2'. Il(Pi(t))(i+l)(~ti) = Il(Pi(t))Ck+l)(~) = (rk-1(t)t+1. 
i=O i=O 

Then, for u E (0, 1) and t 2'. fk_ 1(u), the inequality qk(t) 2'. (rk_ 1(t))k+1 2: uk+1 holds. 
Thus, 

Therefore, fk-1(u) = rk(u) for u E (0, 1), which implies that rk-1(t) = rk(t) fort 2'. 0 
from the (weak) monotonicity and right-continuity of rk. Therefore, for t 2'. 0, 

Here, in the inequality above, we used the relation rk_ 1(t) 2: rk_ 1(t)qk_ 1(t) = qk(t). Let 
t 2'. 0. (4.6) implies that qk(t) = 0 or Pi(t) = 1 for all i = 1, 2, ... , k+ l. If qk(t) = 0, then 
f3k(Xn(t)) = 0 almost surely. Suppose that Pi(t) = 1 for all i = 1, 2, ... , k + l. Then, 
f3k(Xn(t)) = 0 almost surely since Xn(t) includes the complete (k + 1)-dimensional 
skeleton. Thus, in all cases, f3k(Xn(t)) = 0 almost surely. This implies Lk(Xn) = 0 
a.s. D 

4.3. Limiting constants. 
As a refinement of Theorems 4.3 and 4.4, it is natural to consider the behavior of 

the normalized k-th lifetime sum 

of a filtration Xn. It is not yet known what general conditions are needed for Lk(Xn) to 
converge in a certain sense as n ----+ oo. In the case where Xn is the d-Linial-Meshulam 
complex process K~d) = {K~d\t)}o<t<l, Hiraoka and Shirai [10, Section 7.1] made a 

formal argument and conjectured th~t -the expectation of Ld-l ( K~d)) converges to some 
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positive constant Id-l · Their argument was based on recent work by Linial and Peled [15] 
on the convergence of KAd\c/n) for fixed c 2': 0. We justify their argument and prove 
Theorem 1.4 in a more general form by using the upper estimate in Example 3.7. 

One of the special features of PHd- l ( J(~d)) is that all the birth times bi in ( 4.1) 

are zero because KAd\O) is the complete (d - 1)-dimensional simplicial complex. Given 
this, we can obtain a formula for the generalized sums of lifetimes as follows. Let di 
( i = 1, ... , p + q) be the death times in ( 4.1) for the k-th persistent homology of a general 
filtration X = {X(t)}t>O· 

PROPOSITION 4.9. Let <.p be a right-continuous nondecreasing function on [O, oo) 
with 1..p(O) = 0. Suppose that bi= 0 for i = 1, ... ,P + q. Then, 

p+q 

L 1..p(di-) = 1 f3k(X(t)) d<.p(t), 
i=l [O,oo) 

where <.p( t-) = limc:-io <.p( t - s). 

PROOF. This is proved by simple calculation: 

D 

Let a > 0 and d E N. We consider the d-Linial-Meshulam complex process J(~d) 
and define 

p+q 

L(a) (J((d)) = ~ d·a 
d-1 n L....,; i , 

i=l 

which is the sum of the a-th powers of the (d - 1)-th lifetimes of J(~d). Clearly, 
(1) (/C(d)) (J((d)) .. 

Ld-l n = Ld-1 n . From Propos1t10n 4.9, 

Below, we study the precise asymptotic behavior of L~~1 (J(~d)) as n--+ oo. 
We recall some results in [15]. Ford 2': 2, let ta be the unique root in (0, 1) of the 

equation 

(d + 1)(1- t) + (1 + dt) logt = 0, 

and define the constant ca, = 'l/Jd(ta,) > 0, where 
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-logt 
'l/Jd(t) = (l _ t)d, t E (0, 1). 

For d = l, define ti = ci = 1. For c 2: cd, let tc denote the smallest positive root of the 
equation 'l/Jd(t) = c. Note that tc :Std. 

THEOREM 4.10. For c 2: 0, 

1. lE[,Bd(K~d\c/n))] _ ( ) 
Im (n) - 9d c , 

n--+= d 
(4.7) 

where 

Moreover, for any E > 0, 

(4.8) 

PROOF. The claim for c # cd follows from the results in [15]. When c = cd, 
the assertion follows from the monotonicity of ,Bd(K~d\)) and the continuity of 9d with 
9d(cd) = 0. Indeed, for E > 0, take c' > cd such that 9d(c') :::; s/2. Then, 

Since the last term converges to O as n-+ oo, we obtain (4.8) for c = cd. The proof of 
( 4. 7) with c = cd is similar. D 

Since 

by the Euler-Poincare formula, we have 

Write 
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Then, JE[Zn] = (c/(d + 1))(1 - d/n). Note that fd(Kid) (c/n)) r-.) Bin( (d~l), c/n) for the 
d-Linial-Meshulam complex. Thus, by direct computation, 

Therefore, we obtain limn-+oo JE[(Zn - c/(d + 1)) 2] = 0. 
From these estimates, for each c 2 0, 

[ ( d) J . lE /3d-l (Kn (c/n)) _ ( ) 
hm (n) - hd c n-+oo d 

and, for any c > 0, 

(4.9) 

where 

( 4.10) 

For a> 0, define 

(a) _ a a-1 100 

Id-1 - d! 
0 

hd(s)s ds. (4.11) 

The constant in Theorem 1.4 is then defined by Id-1 := Ii~1. The following theorem 
is the main result of this subsection. Theorem 1.4 is a particular case of Theorem 4.11 
with a= l. 

THEOREM 4.11. Let d 2 1 and a> 0. Then Ii~1 is finite, and for any r E [1, oo), 

lim lE d-l n - I(~ = 0. [ 
L(a) (JC(d)) rl 

n-+oo nd-a d l 

In particular, lE[L~~1 (JC~d))]/nd-a converges to Ii~1 as n---+ oo. 

PROOF. We may assume without loss of generality that all random variables are 
defined in a common probability space (D,F,IP). Denote the Lr-norm on (D,F,IP) by 
II· llu- From the second inequality of (3.5) and (4.9), for s 2 0, we have 

0 < f3d-1(Kid)(s/n)) 1 (s) < 2_ 
- d [O,n] - di n . 

for n EN ( 4.12) 

and 

(d) 
/3d-1(Kn (s/n)) 1 . . . 

nd l[o,n](s)---+ d!hd(s) m probability as n---+ oo. ( 4.13) 
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Take l EN such that l > 1 V ra. From Example 3.7 (1), there exists C 2: 0 such that 

suplE [/3d-i(K~:\s/n)) l[o,n](s)] :::; 1 /\ Cs-1 for s 2: 0. 
nEN n 

(4.14) 

Applying Fatou's lemma to an appropriate subsequence, we obtain (1/d!)hd(s) :::; 1 /\ 

cs-1• From this estimate, 1t)1 must be finite. From Proposition 4.9 and Minkowski's 
inequality, 

where 

Combining (4.12) and (4.13), we obtain limn---+oo Un(s) = 0 for each s 2: 0. Moreover, 
from (4.12) and (4.14), 

[( 
1 )r-l /3d-1(K~d)(s/n))l l/r 1 

supUn(s):::; suplE di d + dlhd(s) 
nEN n?_s , n , 

( 
l ) (r-1)/r l 

:::; d! (1 /\ ct/r s-l/r) + d! hd(s). 

Thus, supnEN Un(s)sa-l is Lebesgue integrable over [O, oo). The dominated convergence 
theorem implies that fa°° Un(s)sa-l ds converges to O as n --+ oo. This completes the 

~~ D 

4.4. The expression of the constant J~c:}1 • 

We now provide more concrete expressions for ld~i. By an argument similar to that 

in [10, Section 7.1], ld~i can be expressed as 

(a) 1 ( t~ (-logs t+l * a 11 ) 
Id-1 = d!(a+l) Jo (l-s)da ds+(cd) t* (-logs)ds . 

d 

For any d EN and a> 0, 
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= loo * ta+l f (da - kl + k) e-(k+l)t dt 
-logtd k=O 

= f (da -kl+ k) loo * t°'+le-(k+l)t dt 
k=O - logtd 

_ f (da - 1 + k) 1 100 a+l -u d 
- k=O k (k + 1)°'+2 -(k+l) logtd u e u. 

Here, we used the change of variable formulae with t = - logs in the first line and with 
u = (k + l)t in the fourth line. Ford EN and x > 0, define 

Then, using integration by parts, 

J (x+l)=x!(t*)k+l~(k+l)i(-logt;nj d,k d ~ ., 
j=O J. 

for x E NU {O}. Then, for any d, a E N, 

td (- log s)°'+l ds = ~ (da - 1 + k) Jd,k(a + 2) 
} 0 (1-s)d°' f='o k (k+l)°'+2 

= ( l)' ~ (da -1 + k) (t;1)k+1 ~ (k + l)i(-logtd)i 
a+ · ~ k (k + 1)°'+2 ~ j! 

k=O J=O 

_ 1 a+l (- log td)j 00 (da - 1 + k) (td)k+l 
- (a+ i). ~ j! L k (k + 1)°'+2-j 

J=O k=O 

= (a+l)! a+l(-logtd)jda-l[da-1] oo (td)k+l 
(da - 1)1 L j! ~ i L (k + 1)°'+2-i-j 

J=O i=O k=O 

_ (a+ 1)! d~l [da - 1] ~ (-logtd)i 1 . . ·( *) 
- (da _ l)! ~ i ~ .1 la+2-i-J td . 

i=O j=O J 

Here, [ ~ J denotes Stirling numbers of the first kind, that is, the coefficients of the identity 

x(x + 1) · · · (x + n - 1) = t, [ 7] xi, 

where [~] = 1 by convention, and Lis(x) is the polylogarithm 
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00 k 

Li8 (x) = L :s (s E Z, 0:::; x :=:; 1). 
k=l 

Thus, for any d, o: E N, 

{ 
dc,-1 [ ] e>+l · (c,) 1 o:! do: - 1 (- logta)J . * 

Id-1 = d! (do:_ 1)! L i L j! Llc,+2-i-j(td) 
i=O J=O 

( ca)°'{ - log ta - (1 - ta)}} 
+ d(o: + 1) ' 

(4.15) 

where we used the identity (d + 1)(1 - ta)+ (1 + dta) log ta = 0 for the last term. In 
particular, noting that ti = 1, for any o: E N, 

In particular, we have the specific values 

Io = 161) = ((3), 

I62) = 2((3), 

I63) = 3(((3) + ((4)), 

I64) = 4(((3) + 3((4) + 2((5)), 

I65) = 5(((3) + 6((4) + 11((5) + 6((6)). 

Also, by letting o: = 1 and d 2:: 2 in (4.15), we obtain 

1 [ 1 ~ [d-1] { . ( *) ( *) . ( *) (-logta)2 . ( *)} Id-1 = d! (d _ l)! ~ i L13_i td + - Iogtd L12-i td + 2 L11-i td 

( - log ta){ - log ta - (1 - ta)}] (4.16) 
+ 2d(1 - ta)d · 

In particular, 

1 _ ! [L· ( *) (l *) 1 (l _ *) t;(logt2)2 (logt2){logt2 + (1 - t 2)}] 
1 - 2 12 t2 + ogt2 og t2 + 2(1 - t2) + 4(1 - t2)2 ' 

I _ ~ [L· ( *) (l * _ ) l ( _ *) t3(logt3)(logt3 - 2) t3(logt3)2 
2 - 12 12 t3 + ogt3 1 og 1 t3 + 2(1 - ti3) + 2(1 - t3)2 

(logt3){logt3 + (1 - t3)}] 
+ 3(1 - t3) 3 • 
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