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Abstract

The anatomical structure of wood is complex and contains considerable information about

its specific species, physical properties, growth environment, and other factors. While con-

ventional wood anatomy has been established by systematizing the xylem anatomical fea-

tures, which enables wood identification generally up to genus level, it is difficult to describe

all the information comprehensively. This study apply two computer vision approaches to

optical micrographs: the scale-invariant feature transform algorithm and connected-compo-

nent labelling. They extract the shape and pore size information, respectively, statistically

from the whole micrographs. Both approaches enable the efficient detection of specific fea-

tures of 18 species from the family Fagaceae. Although the methods ignore the positional

information, which is important for the conventional wood anatomy, the simple information

on the shape or size of the elements is enough to describe the species-specificity of wood.

In addition, according to the dendrograms calculated from the numerical distances of the

features, the closeness of some taxonomic groups is inconsistent with the types of porosity,

which is one of the typical classification systems for wood anatomy, but consistent with the

evolution based on molecular phylogeny; for example, ring-porous group Cerris and radial-

porous group Ilex are nested in the same cluster. We analyse which part of the wood struc-

ture gave the taxon-specific information, indicating that the latewood zone of group Cerris is

similar to the whole zone of group Ilex. Computer vision approaches provide statistical infor-

mation that uncovers new aspects of wood anatomy that have been overlooked by conven-

tional visual inspection.

Introduction

Trees grow over a long period, during which they record a large amount of information in

their xylem cells; their anatomical features depend mainly on genetic factors but are also
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affected by growth conditions. Wood anatomy was established by systematizing the xylem ana-

tomical features [1,2], which enables wood identification generally up to genus level. However,

it is hard to fully understand all the information in the xylem structure just by visual inspection

and the accumulation of knowledge and experience.

Computer vision approaches have been developing rapidly, allowing us to analyse a vast

amount of data and information. In addition, image recognition techniques have been recently

applied to wood images for automated identification [3–15]. Moreover, specialized tools for the

image analysis of wood anatomy have also been developed by several research groups [16,17]

and a company (WinCell, Regent Instruments Inc.). Their main aim is to quantitatively measure

some anatomical features, such as cell wall thickness and the number of cells [18], as opposed to

the conventional method based on visual inspection, which is more or less subjective.

In contrast, our research group investigates the use of image recognition for wood identifi-

cation using a detailed analysis of the relationships between the computed features and wood

anatomy [19,20]. Although the computed features do not correspond directly to specific ana-

tomical features, they should somehow be related to each other. In fact, our previous studies

have indicated such relationships. In particular, the scale-invariant feature transform (SIFT)

algorithm detected features that are usually ignored in conventional wood anatomy, such as

cell corners, and treated them as important features for wood identification [19].

The family Fagaceae, which includes beech trees and oak trees, is distributed widely in the

Northern Hemisphere and has a wide variety of species. Their anatomical features are also

diverse. One of the prominent classification systems for wood anatomy is porosity, and species

may be ring-porous, diffuse-porous, or radial-porous (which is diffuse-porous in a broad

sense; [1]). The family Fagaceae covers all types of porosity, even within the native species in

Japan. These anatomical features are not necessarily related to evolution based on molecular

phylogeny. Among the species of Fagaceae in Japan, for example, there are at least two major

discrepancies between molecular phylogeny and anatomy. A molecular phylogeny study indi-

cated that the groups Cerris and Ilex of Quercus are closely related [21–23], whereas group Ilex

is more similar to group Cyclobalanopsis of Quercus according to porosity. Another example

is Lithocarpus, which is also similar to group Cyclobalanopsis of Quercus based on the anatom-

ical features, although they are different at genus level.

In the present study, we used two different methods for feature extraction: the SIFT algo-

rithm and connected-component labelling. As described above, we have already shown that

SIFT features are a useful tool for extracting the wood anatomy. SIFT features are calculated

based on the gradients around the keypoints, which means that this method extracts the

information about shapes in an image. Because SIFT detects scale-invariant features, we

extract information about size using another method called connected-component label-

ling. This method simply detects the connected regions in binarized images. We calculate

the size distribution of the connected regions, i.e. the lumen of cells in the wood anatomy

by connected-component labelling. The present study focuses on the relationships between

these computed anatomical features and evolution and discusses the potential of computa-

tional wood anatomy.

Materials and methods

Dataset

The species from Fagaceae used to create the dataset are listed in Table 1. Eighteen species

from five genera are included and further divided into eight taxa. The images were obtained

from at least three individuals of each species. All the specimens were supplied from the Xylar-

ium in Kyoto University (S1 Table).
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Image acquisition. Transverse sections were cut by a sliding microtome (TU-213,

Yamato Kohki Industrial, Saitama, Japan) from wood blocks roughly 1 cm × 1 cm × 1 cm in

size. The sections were then observed using an optical microscope (BX51, Olympus, Tokyo,

Japan) equipped with a CCD camera (DP72, Olympus, Japan). The images were captured at

low magnification using a 2 × (0.08NA) objective lens (PlanApo, Olympus, Japan), so that the

images covered large areas. The original images were 4,800 × 3,600 pixels in size with a resolu-

tion of 0.74 μm/pixel. Several images were obtained from one section without overlapping

neighbours.

Image pretreatment. The original images were cropped to a square (3,600 × 3,600 pixels)

and converted to 8-bit grey scale. Typical images for each species are shown in S1 Fig. Note

that we expected all the images to include more than one annual ring, but the observed area

(2.7 × 2.7 mm2) was not large enough for some specimens. The image size was reduced step-

wise from the original to 112 × 112 pixels using bilinear interpolation.

Computation procedure

The computation procedure is summarized in Fig 1. The feature vectors were calculated using

the two analysis methods, SIFT algorithm and connected-component labelling, followed by

dimensional reduction by linear discriminant analysis (LDA). Two sets of 17-dimensional fea-

ture vectors, referred to as SIFT-LDA and CC-LDA, respectively, were used for classification

and hierarchical clustering. All the programs were written in Python 3.5.2 (Python Software

Foundation, https://www.python.org/) using the OpenCV [24], NumPy [25], SciPy [26], and

Scikit-learn [27] libraries, except for connected-component labelling, which was written in R

3.4.2 [28] using the tiff [29] and wvtool [30] libraries.

Table 1. Wood species used in the present study.

Taxon deciduous / evergreen wood anatomya Individualsb Imagesc

Fagus crenata Fagus deciduous diffuse-porous 13 225

Fagus japonica 10 180

Castanea crenata Castanea ring-porous 14 177

Castanopsis cuspidata Castanopsis 11 148

Castanopsis sieboldii 11 150

Quercus crispula Quercus 15 266

Quercus dentata group Quercus 4 39

Quercus serrata 11 116

Quercus acutissima group Cerris 9 109

Quercus variabilis 7 51

Quercus phillyraeoides group Ilex evergreen (semi-ring-porous)d 11 87

Quercus acuta group Cyclobalanopsis radial-porous 13 143

Quercus gilva 9 109

Quercus glauca 12 132

Quercus myrsinifolia 10 168

Quercus salicina 13 188

Lithocarpus edulis Lithocarpus 9 99

Lithocarpus glaber 3 59

a Type of porosity
b The number of specimen from which the images were collected
c The number of images used for analyses
d Q. phillyraeoides has semi-ring-porous wood (Noshiro & Sasaki, 2011), but the vessels are arranged in radial pattern as radial-porous wood.

https://doi.org/10.1371/journal.pone.0220762.t001
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Calculation of image features

SIFT algorithm. The SIFT algorithm was implemented using the OpenCV library. The

default parameters proposed by Lowe [31], namely, the number of layers in each octave (nOc-

taveLayers = 3), size of the Gaussian filter applied to the image of each layer (σ = 1.6), contrast

threshold (ct = 0.06), and edge threshold (et = 10) were used in the calculation. The SIFT

descriptors were summed for all the keypoints in an image and normalized by dividing by the

total number of keypoints.

Connected component labelling. The images were binarized with a threshold of 180,

which was determined empirically. The connected component labelling was implemented by

the wvtool R library with a 4-connected neighbourhood. The square root of the area was calcu-

lated for each component and the logarithm was then taken. A histogram of the labelled pore

sizes was created based on the obtained values with a bin width of 0.1. The logarithm of the fre-

quency for each bin was used as the feature vector.

Dimensional reduction

Dimensional reduction was carried out with LDA using the Scikit-learn library. Because LDA

reduces the number of dimensions to one less than the number of classes, the feature vectors

obtained from SIFT and pore size distributions were each reduced to 17 dimensions.

Classification

Classification of Fagaceae species was performed with the three classifiers: a k-nearest neigh-

bour (k-NN) algorithm with k = 9, logistic regression, and a support vector machine (SVM)

SIFT (Scale-Invariant Feature Transform) algorithm
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Fig 1. Schematic diagram of the computational procedure.

https://doi.org/10.1371/journal.pone.0220762.g001
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with a linear kernel. All the classifiers were implemented by the Scikit-learn library with the

default parameters. All the data were randomly divided into test and training sets with a ratio

of 1:4. The classifiers were trained with the training set and then followed with a prediction on

the test set to calculate the accuracy. The classification was repeated 10 times with different

sets of test and training data.

Hierarchical clustering

Hierarchical clustering was carried out using Ward’s method, implemented by Scikit-learn.

The hierarchy of the clusters is shown as a dendrogram to represent the numerical distances

between the images.

k-Means clustering of keypoints

The k-Means clustering algorithm was applied to the keypoints detected in the images of seven

selected species. The number of clusters (k) was determined as 18 empirically. At this number

of clusters, the compositions of the clusters reflect clear species-specificity. The clusters were

further divided into five subgroups by hierarchical clustering.

Results

Classification accuracies

The feature vectors were calculated using the two computer vision methods, SIFT algorithm

and connected-component labelling, followed by dimensional reduction by linear discrimi-

nant analysis (LDA). Two sets of 17-dimensional feature vectors, referred to as SIFT-LDA and

CC-LDA, respectively, were used for classification. The prediction accuracies for different

image sizes are shown in Fig 2A. When the images are the original image size, i.e. they have a

resolution of 0.74 μm/pixel, the species-level identification of Fagaceae using SIFT-LDA fea-

tures was quite accurate; the predicted accuracies were 95.3%, 92.0%, and 93.1% for the k-NN,

logistic regression, and SVM classifiers, respectively. Although the accuracies slightly

decreased as image size decreased, they remained basically unchanged down to an image size

of 600 × 600 pixels. Below this size, however, the accuracies decreased steeply. The enlarged

images at original size, 600 × 600 pixels, and 450 × 450 pixels are shown in Fig 2B. The cell
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https://doi.org/10.1371/journal.pone.0220762.g002
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walls and lumens are barely distinguishable in the image 600 × 600 pixels in size, whereas the

small cell lumens disappear in the image 450 × 450 pixels in size.

The classification accuracies were also calculated using CC-LDA. Because of the long com-

putation time and the difficulty of proper binarization of large and small images, only the

image sizes of 900 × 900, 720 × 720, and 600 × 600 pixels were tested. Although the accuracies

were not as high as those calculated with SIFT-LDA, the accuracies were more than 80% when

using SVM or k-NN as a classifier. There were no differences among three image sizes. An

image size of 600 × 600 pixels was sufficient to detect the cell lumens. Hence, we use this size

of images for further analyses.

Hierarchical clustering

We carried out a hierarchical clustering of all the images to understand the relationships

between species based on the calculated numerical distances (Fig 3). When the features of

SIFT-LDA were used, most of the images formed clusters at taxon-group level (Fig 3A). The

main clusters were separated according to the three porous types: diffuse-porous, ring-porous,

and radial-porous. However, the group Cerris, which is ring-porous, was nested in the cluster

of radial-porous wood. Moreover, the cluster of group Cerris was placed in the same cluster as

group Ilex. Surprisingly, this is consistent with molecular phylogenic studies [21–23]. The den-

drogram also showed the close relationship of Lithocarpus to group Ilex and group Cerris,

which does not reflect the phylogeny. However, Lithocarpus is clearly separated from group

Cyclobalanopsis, indicating that there are clear differences in the anatomical features of Litho-
carpus and group Cyclobalanopsis based on the features extracted by SIFT.

Just as the accuracies predicted using CC-LDA were lower than those predicted using

SIFT-LDA, the dendrogram of CC-LDA was less organized; for example, group Cyclobalanop-

sis was divided into two groups, one of which is closer to Lithocarpus. However, there was still

an interesting relationship in common with the dendrogram of SIFT-LDA: the similarity

between groups Ilex and Cerris. Group Cerris was again nested in the radial-porous cluster

with group Ilex.

Clustering analysis of keypoints

A clustering analysis of keypoints was performed to understand the differences between taxon

groups detected by the SIFT algorithm. Due to the limitations of computer memory, seven spe-

cies were selected for the analysis.

The results of the clustering analysis are shown in Fig 4. The 18 clusters were divided into

five subgroups based on the centroids of each cluster (Fig 4A), which seemed to correspond to

simple local features such as corners, lines, and the centres of circles (Fig 4C). In contrast,

minor differences among the clusters within a subgroup are hard to explain in simple words.

However, some of the clusters show clear differences in composition, indicating species-spe-

cific features. The dendrograms exhibit two interesting results; hence, we focused on the fol-

lowing features: common features of Q. accutissima and Q. phillyraeoides, and features specific

to L. edulis.
Fig 5A shows the specific features common to both Q. accutissima and Q. phillyraeoides.

Cluster 18, which is included in the subgroup of curved lines, was mainly located on the

periphery of small vessels. Although the other species also have small vessels, the additional

keypoints of cluster 18 can be explained using two factors: frequency and the type of adjacent

cells. The frequency of small vessels is lower in Q. acuta, which is consistent with a previous

report [32]. The frequency of small vessels in Q. crispula seems to be the same or larger than

that of Q. accutissima and Q. phillyraeoides, but many of them were not detected as the
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keypoints of cluster 18. Most of the small vessels in Q. crispula are surrounded by parenchyma

with thin cell walls, which results in a local gradient that is different from the vessels with thick

cell walls. In contrast, the keypoints in cluster 12 and 13 were mainly detected on the paren-

chyma. The difference with respect to other species can explained by the same reason as that

for the small vessels; there are many parenchyma with strong borders in Q. accutissima and Q.

phillyraeoides.
L. edulis showed a major feature in cluster 16 that is different from the others (Fig 4B); thus,

the keypoints in cluster 16 can be visualized as shown in Fig 5B. Most of the keypoints are

located on the uniseriate rays. However, there is no significant difference in the frequency of

the uniseriate rays of Q. acuta and L. edulis. The cell walls of fibres in Q. acuta are thick with

few cell lumens, resulting in a low contrast between the fibre area and ray parenchyma, which

are filled with cell contents. Therefore, a specific feature of L. edulis can be described as fibre

cell walls that are thinner than those of other species.
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Fig 3. Hierarchical clustering of all the images using the features of (a) SIFT-LDA and (b) CC-LDA. The labels show

the dominant taxon groups in the clusters. The numbers in parentheses indicate the number of dominant taxon groups

per total number of groups in a cluster.

https://doi.org/10.1371/journal.pone.0220762.g003
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Pore size distribution

The pore size distributions obtained by connected-component analysis are summarized in Fig

6. The species with the same taxon groups show similar distribution patterns. However, the

distribution of Q. dentata was different from those of the other two species in group Quercus.

Although there were fewer images for Q. dentata than for the others, the result suggests a clear

difference in the anatomical features. In fact, Q. dentata was classified into a different section

by Camus [33] based on the foliar and fruit characteristics. The slight differences among the

same taxon groups also provide accurate information of the anatomical features. For example,

the peaks around 100–200 μm in the species with radial-porous wood indicate the vessels, and

the pore-distribution peaks of Q. gilva are slightly shifted to the right, indicating larger pores.

This result is consistent with a previous report [32] that stated that Q. gilva has large vessels

over 200 μm in diameter.

The closeness of groups Cerris and Ilex is supported by the pore size distribution. Except

for the peaks of group Cerris at around 200–400 μm, which correspond to the large vessels in

the pore zone, the distribution patterns of the groups Cerris and Ilex are almost the same.

Combined with the results from SIFT analysis, the latewood zone of the ring-porous group

Cerris and the whole zone of semi ring-porous group Ilex are very similar in terms of both the

shape and size of the elements.
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https://doi.org/10.1371/journal.pone.0220762.g004
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The difference in the thickness of the fibre cell walls of group Cyclobalanopsis and Lithocar-
pus indicated by SIFT analysis is also detected by connected-component labelling. The fre-

quency of pores at a diameter of around 10 μm for Lithocarpus is higher than those of group

Cyclobalanopsis, which means that they have more lumens that can be detected in the binar-

ized images. Although the other size ranges were almost the same, this difference in pore size

enabled the analysis to distinguish the two taxon groups.

Discussion

Information available from SIFT and connected-component labelling

The SIFT algorithm and connected-component labelling basically provide shape and size

information, respectively, as mentioned in the introduction. However, the features extracted

by the SIFT algorithm in the present study also include some information about size because

Fig 5. Taxon-specific features based on keypoint clustering. (a) Keypoints included in the clusters that occurred more often in both Q. acutissima
and Q. phillyraeoides than in other species. (b) Keypoints in the cluster that occurred significantly more in L. edulis than in other species.

https://doi.org/10.1371/journal.pone.0220762.g005
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of the resolution that we used. Small elements like fibres are blurred at that resolution, which

enables the discrimination of elements below a certain size by the gradient-based feature. Note

that the connected components did not completely detect the actual cell lumens, because sim-

ple binarization did not separate cell walls and cell lumens perfectly; it often filled in small cell

lumen or missed thin cell walls. Nevertheless, the pore size histogram in log–log scale repre-

sents the specific species efficiently.

Both SIFT and connected-component labelling discard positional information, which

means that information that is important for conventional wood anatomy, such as vessel

arrangement, was ignored. It is interesting that simple information on the shape or size of the

elements in the images is enough to describe the specific species of wood if the information is

obtained statistically from the whole image. The methods that include positional information,

such as convolutional neural networks, which will be investigated as one of our next tasks,

would provide more accurate but more complex results.
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Potential for applying the computer vision approach to wood anatomy

The subjective analysis of humans generally places more weight on prominent elements, such

as large and rare ones, but the features computed from images have different characteristics.

Consequently, the computer vision approaches can uncover hidden or neglected features in

wood anatomy that are related to some information included in the structure; i.e. evolution in

the present study. Many computer vision approaches are currently available; thus, there are

many possibilities for detecting features and their related properties. Because a surplus of

information readily leads to misinterpretation, we should treat them carefully and complement

our analysis with knowledge from conventional wood anatomy. Nevertheless, we expect that

computer vision and information science will deepen our understanding of wood anatomy

and related fields.

Conclusion

We applied computer vision approaches to optical micrographs of Fagaceae wood. Since the

main aim of this work is to understand what computers recognize as taxon-specific features,

we selected two basic methods with simple theories: SIFT and connected component labelling.

The classification models using these image features showed the enough accuracies at species

level, indicating that the methods extracted the specific features efficiently.

The hierarchical clustering based on the image features showed that the clustering structure

was basically consistent with the type of porosity: ring-porous, diffuse-porous, and radial-

porous. However, there were two major contradictions with the porosity: the closeness

between group Cerris and group Ilex, and the separation between group Cyclobalanopsis and

genus Lithocarpus. Interestingly, these relationships were consistent with the evolution based

on the molecular phylogenetics.

To understand why the computer vision methods provided the above-mentioned results,

we carried out further analyses; for SIFT algorithm, the keypoints were clustered into groups

and the keypoints in the taxon-specific groups were visualized; for connected component

labelling, the differences and/or similarities in the size distribution of the cells were examined

based on the log-log histogram. Although the group Cerris is ring-porous wood, the latewood

zone is quite similar with the radial-porous (or semi-ring-porous) group Ilex. On the other

hand, the specific feature of Lithocarpus was the thin cell walls of the fibers.

Bioinformatics has been attracting much attentions, leading to a rapid development in

molecular phylogenetics. In contrast, relatively few studies have applied informatics

approaches in the morphogenetic field. More morphological information should be collected

to understand the relationships with the molecular information. We believe that our findings

will promote the use of computer vision and information science for wood anatomy or other

morphogenetic studies.
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