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Abstract 

The conversion-based BiF3 is a promising cathode material for lithium-ion 

batteries due to its high theoretical capacity (302 mAh g1). Nanocomposites of BiF3 

and carbon (BiF3/C) are known to improve the electrochemical performance by 

increasing the electronic conductivity of the electrode. Here we investigate the 

electrochemical performance of BiF3/C at high C-rates. In particular, we newly 

investigate the difference of high C-rate performance between discharge and charge 

reactions. The discharge and charge capacities in the first cycle were almost the same at 

0.1C. In contrast, the discharge capacity was higher than charge capacity at 10C. Further, 

during cycling at 10C, the charge capacity drastically decreased, but the discharge 

capacity remained high. The rate performance of the discharge reaction was higher than 

that of the charge reaction, especially after cycling. 
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1. Introduction  

Lithium-ion batteries are utilized in many electronic devices. Recent 

improvements in device performance have necessitated the development of 

high-capacity batteries. The main cathode materials in current lithium-ion batteries are 

intercalation-based materials such as LiCoO2 and LiMn2O4. However, batteries 

constructed from such materials have limited capacities [13]. Conversion-based 

cathode materials, which have high theoretical capacities, offer an attractive solution to 

this problem [432]. The conversion reaction progresses according to a following 

formula (i) [2325]: 

MXm + nLi+ + ne ↔ M + mLin/mX (M: metal and X: anion)   (i) 

Because the M–F bonds in metal fluorides are more ionic than the M–O bonds in metal 

oxides, the reaction potential of metal fluorides is higher than that of metal oxides [4, 24, 

31]. Therefore, metal fluorides are promising candidates for use as cathode materials. 

For instance, bismuth fluoride (BiF3) is a particularly attractive owing to its high 

theoretical specific capacity (302 mAh g1); however, the high reactivity of Bi 

(discharged state) with electrolytes [26, 27] and the low electronic conductivity of BiF3 

(charged state) [2325] inhibit the charge-discharge reactions in lithium-ion batteries. It 

has been reported that the surface coating is an effective method to reduce the reaction 
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between an electrode and electrolyte [28]. The formation of nanocomposites with 

carbon (BiF3/C) can effectively generate an electronic conductive path and improve the 

electrochemical properties of BiF3 [2325]. Additionally, BiF3/C exhibits a high 

discharge capacity at high C-rates (~200 mAh g1 at ~4C and 24°C) [23]. However, the 

effectiveness of BiF3 as a cathode material for lithium-ion batteries depends on its 

electrochemical properties during the charging and cycling of the batteries at high 

C-rates, which has not been previously clarified. 

In the present study, the electrochemical properties of BiF3/C at a high C-rate 

(10C) during charging and cycling were investigated. Based on the experimental results, 

we discuss the difference of high C-rate performance between discharge and charge 

reactions. 

 

2. Experimental and theoretical calculation methods 

2.1. Preparation of active materials 

The BiF3 powder (Fluorochem Ltd.) was pulverized for 1 h in a planetary ball 

mill at 1100 rpm. The resulting material was labeled as BiF3. Next, 80 wt% of BiF3 and 

20 wt% of acetylene black (AB) were mixed for 1 h in a planetary ball mill at 1100 rpm 

to form a nanocomposite composed of BiF3 and AB. The resulting material was labeled 
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as BiF3/C. All samples were placed into a container under an argon atmosphere. 

 

2.2. Electrochemical performance of the prepared samples 

The prepared active materials were mixed with AB and polyvinylidene 

difluoride (PVDF) (BiF3: AB: PVDF = 60: 25: 15 wt%; BiF3/C: AB: PVDF = 75: 10: 15 

wt%). Then N-methyl-2-pyrrolidone (NMP) solvent was added. The resulting slurry 

was coated on an Al current collector, and the NMP was removed by heating at 110°C. 

The loading of electrode was ~2.0 mg cm2. The discharge/charge capacities of the 

prepared samples were evaluated using a two-electrode electrochemical cell containing 

a BiF3 electrode and lithium metal as the working and counter electrodes, respectively. 

The electrolyte was a 1.0 M LiPF6 solution in a 3: 7 mixture of ethylene carbonate and 

diethyl carbonate. The electrochemical cell was assembled in an argon-filled glovebox. 

The discharge and charge measurements were performed using a potentiostat (Biologic 

Science Instruments, VMP-300) over the voltage range 2.0–4.5 V at 0.1, 1, and 10C (1C 

= 302 mA g–1). The measurement temperature was varied as 25 and 55°C. 

 

2.3. Crystal structure of BiF3/C electrode during the first and the tenth cycles 

The crystal structures of the BiF3/C electrode during the discharge and charge 
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processes in the first and the tenth cycles were evaluated by X-ray diffraction (XRD). 

After the electrochemical cell was discharged and charged, it was decomposed, and the 

BiF3/C electrode was washed with dimethyl carbonate. The electrode sealed with a 

laminate was used for the XRD measurements. The decomposition of the cell and 

sealing of the electrode were carried out in an argon-filled glovebox. The XRD patterns 

were recorded with a Rigaku SmartLab diffractometer in the 2θ range 20–50° with Cu 

Kα radiation (λ = 1.54 Å). 

 

2.4. Density functional theory calculation to investigate the interaction between Bi and 

BiF3 

The initial crystal structures of Bi and BiF3 layers were set to trigonal and 

hexagonal. The (111) surfaces for Bi and BiF3 were created since these are the stable 

surface among Bi and BiF3 surface [33, 34]. The Bi layer was placed above the BiF3 

layer. The size of the unit cell is 1.2 nm × 1.2 nm × 6.2 nm. The position of 12 and 36 

atoms of Bi and F in the bottom of the BiF3 layer were fixed. The interaction between 

Bi and BiF3 was theoretically calculated by density functional theory (DFT) calculations. 

The calculations were performed using code CASTEP of Dassault Systemes BIOVIA 

[35, 36] with GGA-PBE functional [37] in a condition of spin-polarization considering 
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the initial spin as the spin state. The interaction was evaluated from the total energy of a 

unit cell containing Bi and BiF3 layers consisted of Bi22 and Bi24F72 atoms, respectively. 

The total energies of the unit cell were calculated varying the position of the Bi layer. 

Self-consistent field (SCF) procedures were performed to obtain well-converged 

geometrical and electronic structures at a convergence criterion of 5.0 × 107 eV atom1. 

The energy, maximum force, and maximum displacement convergence were set to 5.0 × 

106 eV atom1, 1.0 × 101 eV nm1, and 5.0 × 105 nm, respectively. Monkhorst-Pack 

scheme was used. The calculation was performed with gamma points. The kinetic cutoff 

energy used was 440 eV. 

 

3. Results and Discussion 

3.1. Electrochemical performance of the prepared samples 

Fig. 1 shows the initial discharge-charge curves of BiF3 and BiF3/C at 0.1C and 

at 25 and 55°C. The discharge/charge capacities of BiF3 and BiF3/C at 25°C were 

103/21 and 260/267 mAh g–1, respectively. This indicates that the electrochemical 

performance of BiF3 was drastically improved by mixing with AB in the ball mill. 

Similar improvements in the discharge/charge capacities of BiF3 mixed with AB were 

reported by Bervas et al [23]. Such enhancement might be conferred by the high 
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adhesion between BiF3 and the AB particles, which is effective in forming an electronic 

conductive path. The discharge/charge capacities were further improved by the increase 

in the discharge-charge measurement temperature. The discharge/charge capacities of 

BiF3/C at 55°C (314/319 mAh g–1) were slightly above the theoretical capacity (302 

mAh g–1). This excess capacity might be attributed to electrolyte decomposition. 

 

  

Fig. 1. Initial discharge-charge curves of BiF3 and BiF3/C at 0.1C and at 25 and 55°C 

[BiF3 at 25°C (black curve), BiF3/C at 25°C (red curve), and BiF3/C at 55°C (blue 

curve)]. 

 

3.2. Crystal structure change during the discharge-charge processes 

To confirm the progress of discharge-charge reactions of BiF3/C at 55°C, the 

crystal structure during the discharge-charge processes was evaluated. Fig. 2 shows the 
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XRD patterns of BiF3/C during the initial discharging and charging. All peaks in the 

diffraction patterns were assigned to the orthorhombic phase with space group Pnma in 

the pristine state, except for the peak at 2θ = 28°, which was indexed to the hexagonal 

phase with space group P–3c1. Increasing the capacity to 100 mAh g–1 introduced three 

new peaks assignable to the trigonal phase with space group R–3m (Bi metal), and the 

fully discharged state (314 mAh g–1) yielded only Bi. In contrast, the new peaks that 

appeared at a capacity of 206 mAh g–1 were attributed to the BiF3 (hexagonal phase), 

and the fully charged state (319 mAh g–1) yielded only BiF3 (hexagonal phase). As 

previously reported by Bervas et al. [23], the crystal structures of BiF3 differed between 

the pristine and fully charged states. The XRD findings indicate that the discharge and 

charge reactions progressed almost to completion with the discharge-charge 

measurements (blue line in Fig. 1). Collectively, these results demonstrate that BiF3/C 

yielded high discharge/charge levels. Therefore, in subsequent experiments, we 

investigated the high C-rate performance of BiF3/C at 55°C. 
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Fig. 2. XRD patterns of BiF3/C during the initial discharge-charge processes [0.1C at 

55°C]. 

 

3.3. High C-rate performance of BiF3/C at 55°C 

Fig. 3 shows the discharge-charge curves of BiF3/C at 55°C over 10 cycles. 

Here the C-rate was varied as 0.1, 1, and 10C, and the discharge/charge capacities of 

BiF3/C during the first cycle were measured as 314/319, 261/266, and 197/137 mAh g–1, 

respectively. Thus, with increasing C-rate, the discharge/charge capacities decreased and 

the irreversible capacity increased. During the tenth cycle, the discharge/charge 

capacities of BiF3/C at 0.1, 1, and 10C were 183/194, 187/188, and 31/32 mAh g–1, 

respectively, revealing a drastic decline in the cycling performance. 
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Fig. 3. Discharge-charge curves of BiF3/C at 55°C and various C-rates over ten cycles: 

(a) 0.1C, (b) 1C, and (c) 10C. Black, red, blue, green, and aqua curves represent the 

discharge-charge curves during the first, second, third, fifth, and tenth cycles, 

respectively. 
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To investigate the reaction mechanism in the discharge/charge processes at 

high C-rates, we analyzed the crystal structures of the active materials by XRD. Fig. 4 

shows the XRD patterns recorded during the tenth cycle of BiF3/C at 10C in the fully 

discharged (lower pattern) and charged (upper pattern) states. All of the peaks in both 

states were assigned to Bi metal, except for the peak at 2 = 28°, which was indexed to 

BiF3. Therefore, BiF3/C at 10C mainly comprised Bi metal. The XRD analyses indicate 

that the charge reaction negligibly proceeded at 10C. The difference in the high C-rate 

performance between the discharge and charge processes was discussed in Subsections 

3.5 and 3.6. 

 

  

Fig. 4. XRD patterns of BiF3/C in the fully discharged (lower) and charged (upper) 

states, recorded during the tenth cycle [discharge and charge: 10C at 55°C]. 
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To clarify the effects of the C-rate on the discharge-charge processes, we 

studied the electrochemical performances of discharging and charging at 0.1C and 10C, 

respectively, and discharging and charging at 10C and 0.1C, respectively. The obtained 

discharge-charge curves of BiF3/C at 55°C during the ten cycles are presented in Fig. 5. 

In the former process (Fig. 5(a)), the charge capacity drastically decreased between the 

first (253 mAh g–1) and the tenth (58 mAh g–1) cycles. The charge capacities recorded 

during the ten cycles were similar to those found at 10C (Fig. 3(c)). Therefore, charging 

at 10C drastically decreased the capacity during cycling, regardless of the C-rate during 

discharge. The electrochemical performance of the latter process (discharging at 10C 

and charging at 0.1C) clarifies the effects of the C-rate on the cycling performance (Fig. 

5(b)). Even during the tenth cycle, this process yielded a much higher discharge 

capacity (210 mAh g–1) than discharging and charging at 10C (31 mAh g–1; see Fig. 

3(c)). Thus, as long as the charge reaction progressed, the discharge reaction progressed 

even at 10C. Clearly, the C-rate performance was much higher in the discharge process 

than in the charge process. 
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Fig. 5. Discharge-charge curves of BiF3/C at 55°C and various C-rates over ten cycles: 

(a) discharge: 0.1C, charge: 10C; and (b) discharge: 10C, charge: 0.1C. Black, red, blue, 

green, and aqua curves are the discharge-charge curves obtained in the first, second, 

third, fifth, and tenth cycles, respectively. 
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high C-rates, we analyzed the crystal structures of the active materials by XRD. Fig. 6 

shows the XRD patterns during the tenth cycle of the BiF3/C electrode during the 

discharging and charging cycles at 0.1 and 10C, respectively (Fig. 6(a)), and during 

discharging and charging cycles at 10 and 0.1C, respectively (Fig. 6(b)). All of the 

peaks in the fully discharged state of Fig. 6(a), (except for the BiF3 peak at 2 = 28°) 

were assigned to Bi metal, indicating good progression of the discharge reaction. In 

contrast, the diffraction pattern in the fully charged state did not significantly differ 

from that of the fully discharged state (c.f. upper and lower patterns in Fig. 6(a)). This 

indicates negligible progression of the charge reaction at the higher C-rate. However, 

discharging at 10C and charging at 0.1C altered the reaction behavior (Fig. 6(b)). In the 

fully discharged state, the pattern was indistinguishable from that of Fig. 6(a). However, 

changing the C-rate from 10 to 0.1C enabled the charge reaction in the tenth cycle, as 

evidenced by the peaks in the charged state (upper pattern in Fig. 6(b)). All of these 

peaks were attributed to BiF3. Therefore, whereas the discharge reaction progressed 

even at a high C-rate (10C), the charge reaction hardly progressed at 10C, as also 

observed in the discharge-charge measurements (Figs. 5(a) and (b)). 
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Fig. 6. XRD patterns of BiF3/C in the fully discharged (lower) and charged (upper) 

states, recorded during the tenth cycle at 55°C: (a) discharge: 0.1C, charge: 10C; and (b) 

discharge: 10C, charge: 0.1C. 

 

3.5. Possibility of crack formation in the active material during the discharge-charge 

reaction 

The results of the electrochemical and XRD measurements, which are shown in 

In
te

n
s
it
y
 (

a
.u

.)

50454035302520

2

(b)

Fully discharged state

Fully charged state

(0
0
2
) 

B
iF

3
 

(1
0
0
) 

B
iF

3
 

(1
0
1
) 

B
iF

3
(1

0
1
) 

B
iF

3

(1
0
2
) 

B
iF

3

(1
1
0
) 

B
iF

3

(1
0
3
) 

B
iF

3

(0
1
2
) 

B
i

(1
0
4
) 

B
i

(1
1
0
) 

B
i

(2
0
2
) 

B
i

(0
1
5
) 

B
i

(0
0
6
)/

(1
1
3
) 

B
i

In
te

n
s
it
y
 (

a
.u

.)

50454035302520

2

(0
1
2
) 

B
i

(a) Fully charged state

Fully discharged state
(1

0
4
) 

B
i

(1
1
0
) 

B
i

(0
1
5
) 

B
i

(0
0
6
)/

(1
1
3
) 

B
i

(2
0
2
) 

B
i

(2
0
2
) 

B
i

(0
0
6
)/

(1
1
3
) 

B
i

(0
1
5
) 

B
i

(1
1
0
) 

B
i

(1
0
4
) 

B
i

(0
1
2
) 

B
i

(1
0
1
) 

B
iF

3
(1

0
1
) 

B
iF

3



Journal of Electroanalytical Chemistry, 806, 82-87 (2017).

 
 

18 

 

Figs. 5 and 6, indicate that the discharge reaction progressed even at a high C-rate (10C), 

whereas the charge reaction hardly proceeded at 10C. It has been proposed that the 

volume of BiF3 greatly changes during the discharge-charge processes [29]. The large 

volume change of active material is accompanied by crack formation and subsequent 

isolation of the active material [38, 39], separating it from the AB after cycling [39, 40]. 

It is possible that the crack formation is responsible for the decrease in the cycling 

capacity of our electrodes. The cracking was directly observed using the SEM for other 

active material [38, 39]. Therefore, we tried to observe the change in particle 

configuration of the active material after the discharge-charge reactions. However, due 

to small particle size of the active material and nanocomposite formation between the 

active material and AB in our electrode, the change in particle configuration of the 

active material could not be observed. Therefore, we studied the possibility of crack 

formation by calculating the interaction between Bi and BiF3. 

Fig. 7 shows the DFT-optimized structure of a system containing Bi and BiF3 

layers. Fig. 8 shows the change in the total energy upon changing the z position of Bi 

layers. The zero displacement value was determined from the position of the Bi layer in 

the optimized structure shown in Fig. 7. The closest distance between a Bi atom in the 

Bi layer and a F atom at the surface of the BiF3 layer in the optimized structure (Fig. 7) 
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is 0.32 nm. This distance is much greater than the length of the BiF bonds in the BiF3 

hexagonal crystal (0.24 nm). By approaching the Bi layer to the BiF3 layer from the 

optimized structure (displacement = zero), the total energy distinctly increased, as 

shown in Fig. 8. A decrease in the distance between the Bi and BiF3 layers causes 

instability. Moreover, the retraction of the Bi layers from BiF3 in the optimized structure 

causes the increase in the total energy (Fig. 8). These results show that the contact 

between the Bi and BiF3 layers is not energetically stable. During the discharge-charge 

reactions of the BiF3 electrode, an interface between Bi and BiF3 is formed. Our 

calculation results show that as the interface is unstable, separation of the Bi and BiF3 

phases and crack formation should occur during the discharge-charge reactions. 

 

Fig. 7. The optimized structure of a system with Bi and BiF3 layers. The Bi and BiF3 

layers are composed of Bi22 and Bi24F72 atoms, respectively. Purple and aqua balls 

denote Bi and F atoms, respectively. 

: Bi

: F
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Fig. 8. Difference in total energy with the displacement of the Bi layer toward the z 

direction. The energy is normalized by area. The negative and positive displacement 

values refer to the Bi layer approaching and retracting from the BiF3 layers, respectively. 

The zero displacement value and energy change are determined at the position and 

energy of the optimized structure shown in Fig. 7. 

 

3.6. Difference of high C-rate performance between discharge and charge processes 

The discharge and charge reactions of BiF3 are given below [23–25]: 

Discharge reaction: BiF3 + 3Li+ + 3e– → Bi + 3LiF   (ii) 

Charge reaction:    Bi + 3LiF → BiF3 + 3Li+ + 3e–   (iii) 

As shown in Fig. 1, the formation of nanocomposite with AB was effective in 

improving the electrochemical properties, especially the charge process. This indicates 

that the electronic conductive path is essential for the electrochemical reaction. The 
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electrochemical reaction started at the interface between the active material and 

electrolyte, and proceeded from the surface to bulk of active material [25]. During the 

charge process, insulating BiF3 is formed on the surface of Bi metal and LiF particles. 

Once the surface of the Bi particle is covered with insulating BiF3, the charge reaction 

hardly progressed due to the high IR drop. In contrast, during the discharge process, 

metallic Bi was formed on the surface of BiF3. The metallic Bi was used as an 

electronic conduction path; therefore, high capacity was maintained at high C-rate after 

cycling. 

Also, a crack formation in the active materials would have influence to the 

cyclic performance. During the discharge and charge process, the interface of Bi and 

BiF3 would be formed. As described in section 3.5, this interface is not stable. The 

active material should contain cracks to separate Bi and BiF3 phases. The formation of 

crack would decrease the electronic conductivity of the electrode due to the separation 

from AB. This would have influence to the cyclic performance of BiF3 electrode.  

 

4. Conclusions 

This work has examined the difference of high C-rate performance of BiF3/C, a 

nanocomposite of BiF3 and AB, between discharge and charge processes. During the 
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first cycle, the discharge and charge reactions of BiF3/C progressed even at 10C, but at 

high C-rates, the performance of the charge reaction deteriorated during cycling. Indeed, 

the charge capacity was drastically decreased during cycling at 10C, regardless of the 

C-rate during discharging. In contrast, at a charging C-rate of 0.1, the BiF3/C exhibited 

high discharge capacity even at 10C. The discharge–charge reactions of BiF3 were 

accompanied by a large volume change, and as a result, the contact between BiF3 and 

AB was lost during cycling. However, a new electronic conductive path was formed by 

the Bi metal other than AB; therefore, a high discharge capacity was obtained even at 

high C-rates after cycling. 
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Figure captions 

Fig. 1. Initial discharge-charge curves of BiF3 and BiF3/C at 0.1C and at 25 and 55°C 

[BiF3 at 25°C (black curve), BiF3/C at 25°C (red curve), and BiF3/C at 55°C (blue 

curve)]. 

 

Fig. 2. XRD patterns of BiF3/C during the initial discharge-charge processes [0.1C at 

55°C]. 

 

Fig. 3. Discharge-charge curves of BiF3/C at 55°C and various C-rates over ten cycles: 

(a) 0.1C, (b) 1C, and (c) 10C. Black, red, blue, green, and aqua curves represent the 

discharge-charge curves during the first, second, third, fifth, and tenth cycles, 

respectively. 

 

Fig. 4. XRD patterns of BiF3/C in the fully discharged (lower) and charged (upper) 

states, recorded during the tenth cycle [discharge and charge: 10C at 55°C]. 

 

Fig. 5. Discharge-charge curves of BiF3/C at 55°C and various C-rates over ten cycles: 

(a) discharge: 0.1C, charge: 10C; and (b) discharge: 10C, charge: 0.1C. Black, red, blue, 
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green, and aqua curves are the discharge-charge curves obtained in the first, second, 

third, fifth, and tenth cycles, respectively. 

 

Fig. 6. XRD patterns of BiF3/C in the fully discharged (lower) and charged (upper) 

states, recorded during the tenth cycle at 55°C: (a) discharge: 0.1C, charge: 10C; and (b) 

discharge: 10C, charge: 0.1C. 

 

Fig. 7. The optimized structure of a system with Bi and BiF3 layers. The Bi and BiF3 

layers are composed of Bi22 and Bi24F72 atoms, respectively. Purple and aqua balls 

donate Bi and F atoms, respectively. 

 

Fig. 8. Difference in total energy with the displacement of the Bi layer toward the z 

direction. The energy is normalized by area. The negative and positive displacement 

values refer to the Bi layer approaching and retracting from the BiF3 layers, respectively. 

The zero displacement value and energy change are determined at the position and 

energy of the optimized structure shown in Fig. 7. 


