
Variational proof of the existence of brake orbits in

the planar 2-center problem

Yuika Kajihara and Misturu Shibayama

Department of Applied Mathematics and Physics
Graduate School of Informatics, Kyoto University

Yoshida-Honmachi, Sakyo-ku Kyoto 606-8501, Japan

Abstract

The restricted three-body problem is an important subject that deals with
significant issues referring to scientific fields of celestial mechanics, such as
analyzing asteroid movement behavior and orbit designing for space probes.
The 2-center problem is its simplified model. The goal of this paper is to
show the existence of brake orbits, which means orbits whose velocities are
zero at some times, under some particular conditions in the 2-center problem
by using variational methods.

1 Introduction & main theorem

The n-center problem is given by the following ODEs:

q̈ = −
n∑

k=1

mk

|q − ak|3
(q − ak) (q ∈ Rd), (1)

where ak ∈ Rd is a constant vector. A solution q(t) of (1) is called a brake orbit if
there are real numbers T1 and T2 (T2 > T1) such that

q̇(T1) = q̇(T2) = 0 (2)

and q(t) is not a stationary solution. A brake orbit is a periodic orbit with period
2(T2 − T1). The fact is shown in Section 2.

The 2-center problem is a simplified model of the restricted three-body problem
[7]. The 2-center problem is integrable, but its first integrals are complicated(for
further details, see [1]). We can not immediately know what types of periodic
solutions exist.

For various Lagrange systems, it has been researched for a long time to find
periodic solutions with variational methods. In the n-center problem, it is shown
that there exist periodic orbits that move around one or several primaries ([8],[10]).
The brake orbits we prove to exist in this paper do not wind around particles.

Brake orbits are a special type of periodic orbits. Chen[3] proved that brake
orbits exist in the planar isosceles three-body problem using collision manifold.
In [5], Moeckel, Montgomery and Venturelli show the existence of brake orbits
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using variational methods with respect to the Jacobi-Maupertuis functional. The
Lagrangian actional functional have not been used to find brake orbits.

In this paper, we will show that brake orbits exist in the planar 2-center problem
by minimizing the Lagrangian action functional. We can set m1 = 1 and a1 =
−a2 = (1, 0) without loss of generality for the planar 2-center problem as stated in
Section 3. More precisely, we shall prove the following theorem:

Theorem 1.1. If (m,T ) ∈ D, then a 4T -periodic brake orbit q(t)(= (q1(t), q2(t)))
exists in the planar 2-center problem. The orbit is orthogonal to the x-axis at
t = 0 and has zero velocity at t = T . The orbit q(t) satisfies (q1(t), q2(t)) =
(q1(−t),−q2(−t)). Here, the set D is defined by

D := {(m,T ) | T > α(m) , f(m,T, c) ≥ 0 (∃c ≥ 0)}

where

α(m) =

√
2πm1/4

(1 +
√
m)2

and

f(m,T, c) =
3

2
π2/3T 1/3 +

π2/3(1 +m)−1/3m

2(1 + π2/3(1 +m)−1/3T−2/3)
T 1/3

−

(
2

3
c2T 1/3 +

∫ T

0

1√
(1− b)2 + c2t4/3

+
m√

(1 + b)2 + c2t4/3
dt

)
.

Figure 1 shows the domain D drawn with MATLAB.

Figure 1: the domain D

Remark 1. We can expand the theorem to a larger domain than D. See appendix.

This paper is organized as follows. Section 2 contains some of well-known facts
about brake orbits and variational methods. In Section 3, we introduce the varia-
tional settings in the planar 2-center problem and set the boundary condition. In
Section 4, we complete the proof of Theorem 1.1 by eliminating the possibility that
minimizer is a equilibrium solution or a collision path. In Appendix, we extend the
theorem to a domain larger than D.

2



2 Preliminaries

2.1 Brake orbits

Consider ordinary differential equations:

ẋ = F (x) (x ∈ Rn). (3)

Definition 2.1 (Reversible). Let R be an involuntary liniear map from Rn to Rn,
i.e. R2 = En. If (3) satisfies

FR+RF = 0,

then (3) is said to be reversible with respect to R.

With a simple calculation, we get the following proposition:

Proposition 1. In reversible systems, if x(t) is a solution of (3), then so is Rx(−t).

We define
Fix(R) = {x(s) ∈ R | Rx(s) = x(s)}

For a solution x(t) and a real value s ∈ R, x(s) ∈ Fix(R) is satisfied if and only if
x(s+ t) = Rx(s− t). See [6] for more detailed explanation for reversible systems.

Consider the following Lagrangian:

L(q, q̇) =
1

2
|q̇|2 + V (q) (q, q̇ ∈ Rn). (4)

The differential equations of the Lagrangian system(
q̇
ṗ

)
=

(
p

DV (q)

)
(5)

are reversible with respect to

R =

(
En 0
0 −En

)
.

In this case, the fixed space is Fix(R) = {(q,0) | q ∈ Rn}.

Proposition 2. Brake orbits of Lagrangian system (4) with q̇(T1) = q̇(T2) = 0 are
2(T2 − T1)-periodic orbits.

The n-center problem is a Lagrangian system with form (4),

Corollary 1. In the n-center problem, if a solution q satisfies (2), then it is a
2(T2 − T1)-periodic orbit.

2.2 Existence of the minimizer

Let CA,B,T be the set of C2 curves in an open set D ⊂ Rn connecting from A to B :

{q ∈ C2([0, T ],D) | q(0) ∈ A, q(T ) ∈ B}

where A,B ⊂ D are affine spaces. The action functional for (4) is defined by:

A(q) =

∫ T

0

L(q, q̇)dt.

The following is well-known.
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Proposition 3. Let L be a Lagrangian of the form (4) and A be the action func-
tional. If q ∈ CA,B,T is a critical value of A, then q(t) satisfies the Euler-Lagrange
equation in (0, T ). Moreover, in the case (4), q̇(0) is orthogonal to A and q̇(T ) to
B. If A = D (B = D resp.) , q̇(0) = 0 (q̇(T ) = 0 resp.)

We take

H1(I,D) =

{
q : I → D | q ∈ L2(I,D),

dq

dt
∈ L2(I,D)

}
where I = [0, T ]. The norm is defined by

∥q∥H1 :=

√∫ T

0

|q(t)|2 + |q̇(t)|2dt.

Definition 2.2 (coercive). Let Ω ⊂ H1(I,D). We call the functional A|Ω coercive
if A(q) → ∞ as ∥q∥H1 → ∞ (q ∈ Ω).

In general, action functionals for potential systems are weakly lower semi-continuous
([4]).

Lemma 2.3 ([9]). Assume that A is weakly lower semi–continuous. If A|Ω is
coercive, then there exists a minimizer q∗ of A in the weak closure Ω̄ of Ω.

Lemma 2.4. Define Ω by

Ω = {q ∈ H1(I,D) | q(0) ∈ A, q(T ) ∈ B}.

If A is a bounded set, then A|Ω is coercive.

Proof. Here we prove this lemma, but similar proofs have appeared in some other
settings (see for example [2]).

For any q ∈ Ω, we take

δ(q) = max
s1,s2∈[0,T ]

|q(s1)− q(s2)|.

By the Cauchy-Schwarz inequality,

δ(q)2 ≤

(∫ T

0

|q̇|dt

)2

≤ T

∫ T

0

|q̇|2dt.

By letting ξ = sup
q∈A

|q|,

|q(t)| ≤ |q(0)|+ |q(t)− q(0)| ≤ ξ + δ(q)

holds. Since

∥q∥2L2 =

∫ T

0

|q(t)|2dt ≤ (ξ + δ(q))2T ≤ (ξ +
√
T∥q̇∥L2)2T,

we obtain
∥q∥2H1 = ∥q∥2L2 + ∥q̇∥2L2 ≤ (ξ +

√
T∥q̇∥L2)2T + ∥q̇∥2L2 .

Hence we get
A(q) → ∞ (∥q∥H1 → ∞).
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3 Variational setting for the 2-center problem

We consider the planar 2-center problem i.e. take n = 2 and d = 2 in (1). We fix
masses and positions of the primaries as follows:

• m1 = 1, m2 = m ≥ 1.

• Fix the position of the primaries at a1 and a2.

• a1 = a = (1, 0),a2 = −a.

We can assume the above setting without loss of generality for the 2-center problem,
because for any a1, a2 ∈ R2, m1 > 0 and m2 > 0, it can be reduced the above case
with appropriate transformation and scaling.

We define its action functional by

A(q) =

∫ T

0

L(q, q̇)dt (6)

where L(q, q̇) =
1

2
|q̇|2 + 1

|q − a|
+

m

|q + a|
and q ∈ H1(I,R2). The planar 2-center

problem is equivalent to the variational problem:

A′(q) = 0. (7)

We fix a positive number T and search for a brake orbit q(t) = (q1(t), q2(t))
satisfying

• q1(0) ∈ (−1, 1) and q2(0) = 0.

• q̇(T ) = 0.

• q1(t) = q1(−t), q2(t) = −q2(−t).

In order to obtain such brake orbits, we take a class of curves as follows:

Ω = {q(t) = (q1(t), q2(t)) ∈ H1([0, T ],R2) | −1 < q1(0) < 1, q2(0) = 0}.

From Lemma 2.3 and 2.4, (6) has a minimizer in the weak closure Ω̄ of Ω. Let
q∗(t) = (q∗1(t), q

∗
2(t)) be a minimizer. If q∗ is neither a trivial solution nor a collision

solution, it is a quarter (fundamental) part of a brake orbit from Proposition 2 and
3 (See figure 2).

In fact, the system has a reversibility with respect to:

R


x
y
px
py

 =


x
−y
−px
py


R =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1


 .

By collorary 1 if q(t) = (q1(t), q2(t)) is a solution, then so is q(t) = (q1(−t),−q2(−t)).
Thus, we get the entire trajectory of a 4T -periodic brake orbit like figure 3.
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m2 m1

Figure 2: q∗(t) (t ∈ [0, T ])

4 Proof of main theorem

4.1 Estimate of equilibrium point

Let qeq denote an equilibrium point of (6), i.e.

1

|qeq − a|3
(qeq − a) +

m

|qeq + a|3
(qeq + a) = 0.

From a simple calculation, qeq is determined by:

qeq = (b, 0)

(
b =

√
m− 1√
m+ 1

)
.

and the value of the action functional at qeq is

A(qeq) =

∫ T

0

1

|qeq − a|
+

m

|qeq + a|
dt =

1

2
(1 +

√
m)2T.

We will obtain a condition under which the equilibrium point is not the minimizer
by estimating the second variation. The second variation A′′(q)(δ) is given by

A′′(q)(δ) =

∫ T

0

(δ(t), δ̇(t))∇2L(q)(δ(t), δ̇(t))Tdt,

where q ∈ H1([0, T ],R2) and δ ∈ H1([0, T ],R2). (For details, see [11].) If there
exists δ such that A′′(q)(δ) is negative, then q is not the minimizer of (6). Since

∇2L(qeq) =


2γ 0 0 0
0 −γ 0 0
0 0 1 0
0 0 0 1

 (
γ =

(1 +
√
m)4

8
√
m

)
,

we obtain

A′′(qeq)(δ) =

∫
δ̇21 + δ̇22 + γ(2δ21 − δ22)dt. (8)
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m2 m1

Figure 3: a whole brake orbit

We substitute

δ = (δ1(t), δ2(t)) = (0, sinωt)
(
ω =

π

2T

)
(9)

into (8). Since ∫ T

0

δ̇21 + δ̇22 + γ(2δ21 − δ22)dt

= ω2

(
T

2
+

1

4ω
sin(2ωT )

)
− γ

(
T

2
− 1

4ω
sin(2ωT )

)
=

T

2
(ω2 − γ),

the second variation of qeq for (9) is negative if

π

2
√
γ
=

√
2πm1/4

(1 +
√
m)2

< T.

From this, the following lemma is proved.

Lemma 4.1. If T >

√
2πm1/4

(1 +
√
m)2

, qeq is not a minimizer of A(q).

4.2 Estimate of collision

Lemma 4.2. The set Ωcol is given by

Ωcol = {q ∈ Ω | q has collisions.},
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Figure 4: minimizer with collosions

then A|Ωcol
is minimized by an orbit that moves along x-axis (see Figure 4).

Proof. Assume that qcol collides with m1 and

qcol(t) = r(t)(cos θ(t), sin θ(t)) + (1, 0).

The value of action functional at qcol is

A(qcol) =

∫ T

0

1

2
|q̇col|2 +

1

|qcol − a|
+

m

|qcol + a|
dt

=

∫ T

0

1

2
(ṙ2 + (rθ̇)2) +

1

|r|
+

m√
r2 + 4 + 2r cos θ

dt

≥
∫ T

0

1

2
ṙ2 +

1

|r|
+

m√
r2 + 4 + 2r

dt.

This inequality becomes an equality if and only if θ(t) is identically zero. We can
obtain the similar estimate in the case that qcol collides with m2, and it is no less
than the former one since m ≥ 1. It follows that the collision path moves on the
x-axis like Figure 4.

We will call the solution of Lemma 4.2 a collision-ejection solution of the 2-center
problem and represent it by

qcol(t) = (qcol(t), 0).

By Lemma 4.2, we consider only a collision-ejection solution to get a lower bound
estimate for the value of the action functional for any collision path.

Lemma 4.3 ([4]). Let µ > 0, ρ > 0 be constants. For r ∈ H1([0, T ],R), define

B(r) =
∫ T

0

µ

2
ṙ2 +

ρ

|r|
dt. (10)

If there exists t0 ∈ [0, T ] satisfying r(t0) = 0, then the inequality,

B(r) ≥ B(µ, ρ, T ) :=
3

2
π2/3ρ2/3µ1/3T 1/3,

holds and B(r) = B(µ, ρ, T ) if and only if r(t) is a collision-ejection solution of the
Kepler problem. Moreover, if r(t) is a collision-ejection solution with r(0) = 0,

r(T ) = 2π−2/3µ−1/3ρ1/3T 2/3.

In (10), we take µ = 1 and ρ = m + 1. Let q̃(t) = (q̃(t), 0) where q̃(t) − 1 is a
minimizer of (10). From Lemma 4.3, we indicate

q̃(T ) = 2π−2/3T 2/3(m+ 1)1/3 + 1. (11)
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Lemma 4.4.
qcol(T ) < q̃(T ).

Proof. Suppose

qcol(T )≥q̃(T ) (12)

and

Fcol(q) = − 1

q − 1
− m

q + 1
, F̃ (q) = −m+ 1

q − 1
.

Now

qcol(0) = q̃(0) = 1 (13)

q̇col(T ) = ˙̃q(T ) = 0 (14)

0 > Fcol(q) > F̃ (q) (15)

holds. We take
t0 := sup{t ∈ [0, T ) | qcol(t) = q̃(t)}.

If the inequality (12) is strict, i.e. qcol(T ) > q̃(T ), t0 < T and qcol(t) > q̃(t) holds for
t ∈ (t0, T ). In the case of the equality, i.e. qcol(T ) = q̃(T ), qcol(t) > q̃(t) is satisfied
for t close to T since q̃(T ) = qcol(t), ˙̃q(T ) = q̇col(T ), ¨̃q(T ) < q̈col(T ). In both the
cases, t0 is less than T and qcol(t) > q̃(t) is satisfied for t ∈ (t0, T ).

By (12), (15), 0 > Fcol(qcol(t)) > F̃ (q̃(t)) holds for t ∈ (t0, T ). By q̈col = Fcol, ¨̃q =
F̃ and (14), for any t ∈ [t0, T ), it holds the following inequality:

q̇col(t) =

∫ t

T

q̈coldt =

∫ t

T

Fcol(qcol(t))dt <

∫ t

T

F̃ (q̃(t))dt =

∫ t

T

¨̃qdt = ˙̃q(t).

Since qcol(t0) = q̃(t0), we obtain

0 >

∫ t0

T

˙̃q(t)− q̇col(t)dt = qcol(T )− q̃(T ).

This contradicts (12).

Lemma 4.5. For any qcol in collision solutions,

A(qcol) > g(m,T ) :=
3

2
π2/3T 1/3 +

π2/3(1 +m)−1/3m

2(1 + π2/3(1 +m)−1/3T−2/3)
T 1/3

Proof. From Lemma 12, we have∫ T

0

1

|qcol + a|
dt =

∫ T

0

1

qcol + 1
dt ≥ m

qcol(T ) + 1

∫ T

0

dt =
m

qcol(T ) + 1
T

>
π2/3(1 +m)−1/3m

2(1 + π2/3(1 +m)−1/3T−2/3)
T 1/3.

By (11), we get

A(qcol) =

∫ T

0

1

2
|q̇col|2 +

1

|qcol − a|
dt+

∫ T

0

m

|qcol + a|
dt

>
3

2
π2/3T 1/3 +

π2/3(1 +m)−1/3m

2(1 + π2/3(1 +m)−1/3T−2/3)
T 1/3.
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4.3 Test path vs. collision path

Lemma 4.6. If f(m,T, c) ≥ 0, the collision path qcol is not a minimizer.

Proof. We take a test path:

qc(t) = (b, ct
2
3 ) (c ≥ 0).

If A(qcol) > A(qc), qcol is not a minimizer. The value of functional with respect to
the test path is

A(qc) =
2

3
c2T 1/3 +

∫ T

0

1√
(1− b)2 + c2t4/3

+
m√

(1 + b)2 + c2t4/3
dt.

By Lemma 4.5, it is sufficient if g(m,T ) ≥ A(qc). This inequality is equivalent to
f(m,T, c) ≥ 0.

4.4 The domain D

Here we show that the domain D is nonempty without numerical calculation. Let

g̃(T ) :=
3

2
π2/3T 1/3.

Clearly g(m,T ) > g̃(T ) holds, so we obtain g̃(T ) ≥ A(qeq), i.e. if

T <
3
√
3π

(1 +
√
m)3

(= β(m)), then qcol is not a minimizer and if T > α(m), then

qeq is not a minimizer. If there exists T such that α(m) < T < β(m), then

∅ ̸= {(m,T ) | α(m) < T < β(m) , f(m,T, 0) ≥ 0} ⊂ D,

so D is nonempty. The inequality α(m) < β(m) is equivalent to

√
m(

√
m+ 1)2 − 27

2
< 0. (16)

For 1 ≤ m < 3.1164778, (16) holds.

A

In this section, we will reconsider estimate of (6) of collisions. For all λ ∈ (0, 1), let

A(q) = A1(λ, q − 1) +A2(λ, q + 1),

where

A1(λ, q) =

∫ T

0

1− λ

2
q̇2 +

1

|q|
dt (17)

and

A2(λ, q) =

∫ T

0

λ

2
q̇2 +

m

|q|
dt. (18)
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By [4], we get the following estimate of (17):

A1(λ, q − 1) >
3

2
π2/3(1− λ)1/3T 1/3.

To estimate (18), we will use a comparison of (18) and a part of the linear Kepler
orbit.

We fix H and assume −m/2 < H < 0. Let Q(t) denote a collision-ejection
solution with respect to (18) satisfying Q(t0) = 2, Q̇(T + t0) = 0 and

H =
λ

2
Q̇2 − m

|Q|
.

Thus we obtain

A2(λ, q + 1) >

∫ T+t0

t0

λ

2
Q̇2 +

m

|Q|
dt

=

∫ T+t0

0

λ

2
Q̇2 +

m

|Q|
dt−Ht0 − 2

∫ t0

0

m

|Q|
dt.

Gordon [4] gives∫ T+t0

0

λ

2
Q̇2 +

m

|Q|
dt =

3

2
π2/3λ1/3m2/3(T + t0)

1/3.

Lemma A.1. If −H < 0, let T (x,H) denote the time from 0 to x with energy H.
Then it holds the following equation:

T (x,H) = m

√
λ

2(−H)3

{
sin−1

(√
−xH

m

)
−

√
−xH

m

(
1 +

xH

m

)}
Proof. By the definition of T (x,H), we get

T (x,H) =

√
λ

2

∫ x

0

1

Q̇
dQ =

√
λ

2

∫ x

0

√
Q

HQ+m
dQ

= m

√
λ

2(−H)3

∫ −H
mx

0

√
q

1− q
dq

= m

√
λ

2(−H)3

∫ θ0

0

(1− cos 2θ)dθ (θ0 = sin−1

(√
−xH

m

)
)

= m

√
λ

2(−H)3

{
sin−1

(√
−xH

m

)
−

√
−xH

m

(
1 +

xH

m

)}
.

The proof is completed.

The relation of T and t0 is indicated by the above lemma:

T = (T + t0)− t0 = T (xmax,H)− T (2,H)

= m

√
λ

2(−H)3

{
cos−1

(√
−2H

m

)
+

√
−2H

m

(
1 +

2H

m

)}
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Substituting H = −m

2
y for any y ∈ (0, 1),

T := T̄ (m.λ, y) = 2

√
λ

m
· 1
y

{
cos−1

(√
y
)

√
y

+
√
1− y

}

and

t0 = 2

√
λ

m
· 1
y

{
sin−1

(√
y
)

√
y

−
√

1− y

}
.

It follows that

T + t0 =
πm

2

√
λ

2(−H)3
=

π

y

√
λ

my
(19)

and

−Ht0 =
√
mλ

{
sin−1

(√
y
)

√
y

−
√
1− y

}
.

Moreover, we have

2

∫ t0

0

m

|Q|
dt = 2m

√
λ

2(−H)

∫ t0

0

1

Q

√
Q

−Q− (m/H)
dQ

= 2m

√
λ

2(−H)

∫ 2

0

√
1

q(1− q)
dq

= 2m

√
λ

2(−H)

∫ θ0

0

2dθ (θ0 = sin−1

(√
−2H

m

)
)

= 2m

√
2λ

−H
sin−1

(√
−2H

m

)
= 4

√
mλ

y
sin−1 (

√
y) .

Hence, since for all λ ∈ (0, 1) and y ∈ (0, 1),

A2(λ, q) >
√
mλ

{
3
√
y
cos−1 (

√
y)−

√
1− y

}
,

we get

A(qcol) > ḡ(m,λ, y), (20)

where

ḡ(m,λ, y) =
3

2
π2/3(1− λ)1/3T̄ (m,λ, y)1/3 +

√
mλ

{
3
√
y
cos−1 (

√
y)−

√
1− y

}
.

In the same way as the proof of Lemma 4.6, if ḡ(m,λ, y) − A(qc) ≥ 0, then qcol is
not a minimizer.

From the above discussion, we show:
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Theorem A.2. If (m,T ) ∈ D′, then 4T -periodic brake orbits q(t)(= (q1(t), q2(t)))
satisfying the same condition of Theorem 1.1 exists in the planar 2-center problem.
Here, the set D′ is defined by

D′ :=

{
(m,T ) ∈ R2

∣∣∣∣ T > α(m) and ∃λ, y ∈ (0, 1) such that
f̄(m,λ, y, c) ≥ 0 and T = T̄ (m,λ, y).

}
where

f̄(m,λ, y, c) = ḡ(m,λ, y)−A(qc)

and

T̄ (m,λ, y) = 2

√
λ

m
· 1
y

{
cos−1

(√
y
)

√
y

+
√
1− y

}
.

Now, similarly as the domain D, we describe the domain D′ with MATLAB.

Figure 5: the domain D′
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