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Distribution of patches in tilings, tiling spaces and tiling
dynamical systems
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Abstract

We introduce a basic theory of tilings, continuous hulls and tiling dynamical systems with detailed
proofs. As a way to construct interesting tilings, tiling substitution is investigated. We put emphasis on
two points: first, we introduce two topologies on the space of patches (and so the space of tilings) and
describe the relation between them. Second, we discuss relations between properties of tilings and those
of continuous hulls and tiling dynamical systems.

§1. Introduction

A cover of  \mathbb{R}^{d} by tiles such as polygons that overlap only on their borders is called a tiling.
Decorations of walls in Islamic architecture suggest that the study of tilings is quite an old topic

of mankind. In twentieth century scientific and popular interest arose after Penrose found a

set of tiles (polygons) that can cover the plane  \mathbb{R}^{2} and form a tiling but only non‐periodically.
Here “non‐periodic” means that translates of the tiling by non‐zero vectors never coincide with

the original tiling. Moreover, before Penrose, Berger [3] found a set of squares with colors on
each edges such that, we can tile the plane  \mathbb{R}^{2} by such squares in a grid and in such a way
that adjacent edges have the same color, but the resulting tilings are always non‐periodic. This

research is connected with a problem of logic raised by Wang [25].
A main feature of tilings such as tilings by Penrose (Penrose tilings) is their non‐periodicity

and almost‐periodicity. 1 Here the term “non‐periodic” has a clear meaning as described above
but the word “almost periodic” is not clearly captured. However there are several signs that

suggest certain non‐periodic tilings are “close to” periodic ones and in such tilings tiles are
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1There is a similarity between such almost periodic tilings and almost periodic functions, which was first
defined by Bohr and studied by many authors including Besicovitch, Bochner and von Neumann. (Consult
textbooks such as [5], [4], [9], [8].) For example, we can find a similarity between the proof for compactness
of the orbit closures of certain (FLC) tilings and the proof for compactness of the orbit closures of uniformly
almost periodic functions. (Sometimes the compactness of the orbit closure is the definition of almost periodic
function, but a proof for characterization of almost periodicity is similar.)
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not distributed in a completely random way. For example, tilings such as Penrose tilings are

repetitive, which means every finite pattern that appears in that tilings repeats in that tilings

(see Definition 2.37). Moreover, for a certain tiling  T of  \mathbb{R}^{d} its translates  T+x,  x  \in \mathbb{R}^{d} , come
back arbitrary close to the original tiling  T again and again ([7]).

This almost periodicity suggests that tilings can be used to study quasicrystals, which were

first found by Shechtman [21]. Quasicrystals have long‐range order but their diffraction patterns
imply that they are not periodic. Such phenomena require a mathematical explanation and

tilings can be used for such explanation. For example, for certain tilings, although they are not
periodic, their diffraction measures are pure point. Here diffraction measure is a mathematical

model of diffraction pattern and the above fact means that certain non‐periodic tilings have

long‐range order. These days tilings are researched actively in connection to quasicrystals.

For the study of a tiling  T , its continuous hull (orbit closure, that is, the closure of the orbit
 \{T+x |x\in \mathbb{R}^{d}\}) and its tiling dynamical system (an  \mathbb{R}^{d} action by translation on the continuous
hull) are important. These objects are geometric analogues of subshifts and  \mathbb{N}‐actions on them
in symbolic dynamics. On topology of continuous hulls, a book [19] is an excellent introduction.
On tiling dynamical systems, see for example [23], [24], [11], [10], [18], [17] and a book [16]. On
relations between tiling dynamical systems and diffraction measures, see for example [2], [20].

In this article we develop a basic theory of tilings, continuous hulls and tiling dynamical

systems with detailed proofs. The argument is based on works by several authors such as

Solomyak([23], [22], [24]), Lee‐Solomyak ([11 , [10]) and Robinson ([18]).
In the theory we develop the following two points are stressed. First, we introduce two

topologies on the space of all patches on  \mathbb{R}^{d} : the cylinder topology (Definition 2.4) and the
local matching topology (Definition 2.12). Tilings are Patches (Definition 2.2). Thus these two
topologies define two topologies on a space of tilings. We investigate properties of these two

topologies and relations between them. Often on the continuous hull of a tiling the relative

topologies of these two coincide.

Second, relations between properties of tilings and those of continuous hulls and tiling dy‐

namical systems are stressed. For example, relations between FLC of tilings and compactness  0

continuous hulls (Corollary 2.35), and repetitivity of tilings and minimality of tiling dynamical
systems (Proposition 2.43) are fundamental. We can prove that for tilings from certain substi‐
tutions the corresponding tiling dynamical systems are not mixing (Theorem 3.32), and this is
derived from a property of distribution of patches in tilings (Remark 3). Conversely, a property
on distribution on patches is derived from a property of tiling dynamical systems (Theorem 2.44).

This article is organized as follows. In the second section we start from the definition of tilings

and introduce their continuous hulls and tiling dynamical systems, followed by an explanation  0

important concepts such as FLC and repetitivity. In the third section we introduce substitution

rules. Properties such as non‐periodicity and repetitivity of tilings such as Penrose tilings are

proved by their self‐similar structure. Such structure is induced by (tiling) substitution rules,
which are geometric versions of word substitutions in symbolic dynamics (for word substitution,
see a book [14]). We explain important properties of tilings from substitutions. We finish the
article with an appendix which covers basic terminology of dynamical systems.
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Notation 1.1. In this article  \mathbb{Z}_{>0}  =  \{1 , 2, . . .  \} is the set of integers larger than  0 . In

metric space  B(x, r) denotes the open ball of radius  r with its center  x . In a topological space,

if  S is a subset of the space,  \overline{S} denotes the closure and
 \circ

denotes the open kernel. For  \mathbb{R}^{d} , its

Euclidean norm is represented by  \Vert .  \Vert . We regard  \mathbb{R}^{d} as a metric space with the metric defined

by this norm. For  S\subset \mathbb{R}^{d} , its diameter is defined by diam   S= \sup_{x,y\in S}\Vert x-y\Vert . For  S\subset \mathbb{R}^{d} , set

 -S=\{-x |x\in S\} . For  S_{1},  S_{2}  \subset \mathbb{R}^{d} , set  S_{1}+S_{2}=\{x+y|x\in S_{1} and  y\in S_{2}\} and  S_{1}-S_{2}=

 S_{1}+(-S_{2}) . If  \mathcal{A} is a set of subsets of  \mathbb{R}^{d} and  S\subset \mathbb{R}^{d} , set  \mathcal{A}+S=\{T+x  |T\in \mathcal{A} and  x\in S\}.
If  X is a set, then the symbol  2^{X} denotes the set of all subsets of  X and card  X denotes its

cardinality.

§2. General theory of tilings, continuous hulls and tiling dynamical systems

§2.1. Definition of tilings and their properties

Here we introduce patches, tilings and topological spaces consisting of patches. Such topo‐

logical spaces often admit an  \mathbb{R}^{d} action.

Definition 2.1. For any  \mathcal{P}\subset 2^{\mathbb{R}^{d}} , the set  s∪pp  \mathcal{P} defined by

supp  \mathcal{P}=\overline{\bigcup_{T\in}T}
is called the support of the set  \mathcal{P}.

The support is the closure of the area that elements  T\in \mathcal{P} cover.

Definition 2.2. We fix  d\in \mathbb{Z}_{>0}.

 \bullet An open, bounded and nonempty subset of  \mathbb{R}^{d} is called a tile.

 \bullet A set  \mathcal{P} of tiles such that  S,  T\in \mathcal{P} and  S\neq T imply   S\cap T=\emptyset is called a patch. A patch
 \mathcal{P} is said to be bounded if supp P is bounded.

 \bullet A patch  T such that supp T  =\mathbb{R}^{d} is called a tiling.

 \bullet For a tiling  T and a vector  x\in \mathbb{R}^{d} , suppose there exists  T\in T such that  T+x\in T . Then
we call  x a return vector for  T.

Remark. In the literature, tile is defined in various ways. Often tiles are defined as

compact sets which are “simple”. What the word simple means depends on the authors. For

example, in [1] a subset of  \mathbb{R}^{d} which is homeomorphic to the closed unit ball of  \mathbb{R}^{d} is called a
tile.

Here we put the simplicity assumption by defining tiles as open sets. This change is not

essential and the theory we develop becomes almost the same.

Often we consider labels on tiles in order to distinguish two tiles that are as sets the same. For

example, one can prove unique ergodicity of certain tiling dynamical systems from substitutions



36 Yasushi Nagai

by considering labels. On the other hand, considering labels gives an additional complexity in

notation. Here we avoid considering labels, and when they are necessary we find a way round

by giving a “puncture” to each tile (i.e. remove one point from each tile). Two tiles that are
originally the same are after this procedure different if they have different punctures (see Example
3.5).

Remark. If  \mathcal{P} is a patch, then the set  \mathcal{P} is at most countable.

Definition 2.3. Patch  (\mathbb{R}^{d}) denotes the set of all patches in  \mathbb{R}^{d} . Tiling  (\mathbb{R}^{d}) denotes the

set of all tilings in  \mathbb{R}^{d}.

Next we introduce two topologies on Patch(Rd).

Definition 2.4. For  \mathcal{P}\in Patch(\mathbb{R}^{d}) and a neighborhood  U of  0 in  \mathbb{R}^{d} , set

 C(U, \mathcal{P})  = {  \mathcal{Q}\in Patch(\mathbb{R}^{d})  | there exists  x\in U such that  \mathcal{P}+x\subset  \mathcal{Q} }.

Such sets are called cylinder sets. The topology generated by

(2.1) {  C(U, \mathcal{P})  |  U : open neighborhood of  0 in  \mathbb{R}^{d},  \mathcal{P}\in Patch(\mathbb{R}^{d}) :bounded}

is called the cylinder topology.

Remark. The subbasis (2.1) is in fact a basis. For if  n  \in  \mathbb{Z}_{>0},  U_{1},  U_{2} , . . .  U_{n} are open
neighborhoods of  0,  \mathcal{P}_{1},  \mathcal{P}_{2} , . . .  \mathcal{P}_{n}  \in Patch(\mathbb{R}^{d}) are bounded and

  \mathcal{Q} \bigcap_{i}C(U_{i}, \mathcal{P}_{i}) ,

then for each  i there is  x_{i}  \in  U_{i} such that  \mathcal{P}_{i}+x_{i}  \subset  \mathcal{Q} . Set   \mathcal{P}=\bigcup_{i}(P_{i}+x_{i}) . Then  \mathcal{P} is a bounded

patch and if we take an open neighborhood  U of  0 in  \mathbb{R}^{d} small enough, then

  \mathcal{Q}\in C(U, \mathcal{P}) \subset\bigcap_{i}C(U_{i}, \mathcal{P}_{i}) .

Lemma 2.5. If  \mathcal{P}\in Patch(\mathbb{R}^{d}) , the set

{  C(U, \mathcal{Q})  |  U : neighborhood of  0 in  \mathbb{R}^{d} and  \mathcal{Q}\subset \mathcal{P} : bounded}

forms a neighborhood basis for  \mathcal{P} with respect to the cylinder topology.

Proof. Suppose  \mathcal{P}  \in  C(U, \mathcal{P}') for some open neighborhood  U of  0 and a bounded  \mathcal{P}'  \in

Patch(Rd). Then there is  x  \in  U such that  \mathcal{P}'+x  \subset  \mathcal{P} . If a neighborhood  V of  0 is small
enough,

 \mathcal{P}\in C(V^{o}, \mathcal{P}'+x) \subset C(V, \mathcal{P}'+x)\subset 
C(U, \mathcal{P}') .
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Lemma 2.6. The group  \mathbb{R}^{d} acts on Patch  (\mathbb{R}^{d}) by translation:

(2.2) Patch  (\mathbb{R}^{d})  \cross \mathbb{R}^{d}\ni  (\mathcal{P}, x)\mapsto \mathcal{P}+x\in Patch(Rd).

Furthermore this map is ointly continuous with respect to the cylinder topology.

Proof. Take  \mathcal{P}\in Patch(\mathbb{R}^{d}) and  x\in \mathbb{R}^{d} . Take also a neighborhood  O with respect to the

cylinder topology of  P+x . To prove the continuity of the map at  (\mathcal{P}, x) , we may assume  O

is of the form  O  =  C(U, \mathcal{P}_{0}) where  U is an open neighborhood of  0 in  \mathbb{R}^{d},  \mathcal{P}_{0} is bounded and
 \mathcal{P}_{0}  \subset  \mathcal{P}+x (cf. Lemma 2.5). Take a neighborhood  V of  x and a neighborhood  V' of  0 such
that if  y  \in  V and  z  \in  V' , then  y-x+z  \in  U . If  y  \in  V and  \mathcal{Q}  \in  C(V', \mathcal{P}_{0}-x) (cf. Lemma
2.5), then there is  z  \in  V' such that  \mathcal{P}_{0}-x+z  \subset  \mathcal{Q} . We obtain  \mathcal{P}_{0}+y-x+z  \subset  \mathcal{Q}+y and
 \mathcal{Q}+y\in C(U, \mathcal{P}_{0}) .  \square 

Remark. If  T\in Tiling(\mathbb{R}^{d}) and  x\in \mathbb{R}^{d} , then   T+x\in Tiling (  R^{d}) .

Next we define a uniform structure on Patch  (\mathbb{R}^{d}) and the second topology on it. For gener‐

ality of uniform space, see [6].

Definition 2.7. For any subset  \mathcal{P}\subset 2^{\mathbb{R}^{d}} and any subset  S\subset \mathbb{R}^{d} set

 \mathcal{P}\cap S=\{T\in \mathcal{P}|T\subset S\}.

The next lemma is easy to prove.

Lemma 2.8. If  \mathcal{P}\in Patch(\mathbb{R}^{d}) ,  x\in \mathbb{R}^{d} and  S\subset \mathbb{R}^{d} , then  (\mathcal{P}\cap S)+x=(\mathcal{P}+x)\cap(S+x) .

If moreover  S_{1}  \subset S_{2}  \subset \mathbb{R}^{d} , then  (\mathcal{P}\cap S_{2})\cap S_{1}  =\mathcal{P}\cap S_{1}.

Definition 2.9. For a compact  K\subset \mathbb{R}^{d} and a compact neighborhood  V of  0 in  \mathbb{R}^{d} , set

 \mathcal{U}_{K,V}=\{(\mathcal{P}_{1}, \mathcal{P}_{2})  \in Patch  (\mathbb{R}^{d})  \cross Patch  (\mathbb{R}^{d})  |

there exists  x\in V such that  \mathcal{P}_{1}\cap K=(\mathcal{P}_{2}+x)\cap K }.

Remark. If  K_{1}  \subset K_{2} and  V_{1}  \supset V_{2} , then by Lemma 2.8,  \mathcal{U}_{K_{1},V_{1}}  \supset \mathcal{U}_{K_{2},V_{2}}.

The definition of notations such as  K-V and −V is given in Notation 1.1.

Lemma 2.10. The set

(2.3) {  \mathcal{U}_{K,V}  |  K\subset \mathbb{R}^{d} : compact and  V : a compact neighborhood of  0 in  \mathbb{R}^{d} }

forms a fundamental system of entourages for Patch(Rd).

Proof. (1) For any  K,  V and  \mathcal{P}\in Patch(\mathbb{R}^{d}) ,  (\mathcal{P}, \mathcal{P})  \in \mathcal{U}_{K,V},  i.e.  \{(\mathcal{P}, \mathcal{P}) |\mathcal{P}\in Patch(\mathbb{R}^{d})\}\subset
 \mathcal{U}_{K,V}.

(2)  For any  K and  V , if  (\mathcal{P}_{1}, \mathcal{P}_{2})  \in \mathcal{U}_{K-V,-V} , there is an  x\in V such that

 \mathcal{P}_{1}\cap(K-V)=(\mathcal{P}_{2}-x)\cap(K-V) .
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By Lemma 2.8,

 (\mathcal{P}_{1}+x)\cap(x+K-V)=\mathcal{P}_{2}\cap(x+K-V)

and

 (\mathcal{P}_{1}+x)\cap K=\mathcal{P}_{2}\cap K.

Thus  (\mathcal{P}_{2}, \mathcal{P}_{1})  \in \mathcal{U}_{K,V} and  \mathcal{U}_{K-V,-V}  \subset \mathcal{U}_{K,V}^{-1}.
(3) Take two compact  K_{1},  K_{2}  \subset \mathbb{R}^{d} and compact neighborhoods  V_{1},  V_{2} of  0 . Then

 \mathcal{U}_{K_{1}} ∪  K_{2},V_{1}\cap V_{2}  \subset \mathcal{U}_{K_{1},V_{1}}\cap \mathcal{U}_{K_{2},V_{2}}.

(4) Take  K and  V arbitrarily. Set  K'  =  (K-V) ∪  K . Take a compact neighborhood  V'

of  0 such that  V'+V'  \subset  V . Note that  V'  \subset  V . If  (\mathcal{P}_{1}, \mathcal{P}_{2}) ,  (\mathcal{P}_{2}, \mathcal{P}_{3})  \in \mathcal{U}_{K',V'} , then there are

 x,  y\in V' such that

 \mathcal{P}_{1}\cap K'=(\mathcal{P}_{2}+x)\cap K' , and  \mathcal{P}_{2}\cap K'=(\mathcal{P}_{3}+y)\cap K'

Since  K'+x\supset K-V+x\supset K , by Lemma 2.8,

 (\mathcal{P}_{3}+x+y)\cap K=((\mathcal{P}_{3}+x+y)\cap(K'+x))\cap K

 =(((\mathcal{P}_{3}+y)\cap K')+x)\cap K

 =((\mathcal{P}_{2}\cap K')+x)\cap K

 =(\mathcal{P}_{2}+x)\cap K

 =((\mathcal{P}_{2}+x)\cap K')\cap K

 =(\mathcal{P}_{1}\cap K')\cap K

 =\mathcal{P}_{1}\cap K.

Thus  (\mathcal{P}_{1}, \mathcal{P}_{3})  \in \mathcal{U}_{K,V} and we obtain  \mathcal{U}_{K,V}^{2},  \subset \mathcal{U}_{K,V}.  \square 

Definition 2.11. Let  U denote the set of all entourages generated by (2.3) and the uni‐
form space constructed in this way is represented by (Patch(Rd), U).

Recall that a uniform structure on a set defines a topology on that set. In this context

{  \mathcal{U}_{K,V}(\mathcal{P})  |  K : a compact subset of  \mathbb{R}^{d},  V : a compact neighborhood of  0 } form a neighborhood
basis for  \mathcal{P} . Here  \mathcal{U}(\mathcal{P})=\{\mathcal{Q}\in Patch(\mathbb{R}^{d}) | (\mathcal{P},
\mathcal{Q}) \in \mathcal{U}\} for each  \mathcal{U}\in U and  \mathcal{P}\in Patch(\mathbb{R}^{d}) .

Definition 2.12. The topology on Patch  (\mathbb{R}^{d}) defined by the uniform structure  U is called

the local matching topology.

Lemma 2.13. Take  \mathcal{P}_{1},  \mathcal{P}_{2}  \in Patch(Rd). If  T  \in  \mathcal{P}_{1} and for any compact neighborhood
 V of  0\in \mathbb{R}^{d} there is  x_{V}  \in V such that  T+x_{V}  \in \mathcal{P}_{2} , then  T\in \mathcal{P}_{2}.

Proof. Take  x\in T . There is a neighborhood  U of  0\in \mathbb{R}^{d} such that if  y\in U , then  x+y\in T.

This implies that  (T+y)\cap T\neq\emptyset . Take a neighborhood  U_{0} of  0 such that  U_{0}-U_{0}  \subset  U . If  V_{1},  V_{2}
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are compact neighborhoods of  0 such that  V_{1},  V_{2}  \subset  U_{0} , then  (T+x_{V_{1}})\cap(T+x_{V_{2}})  \neq  \emptyset and so

 T+x_{V_{1}}  =T+x_{V_{2}} since  \mathcal{P}_{2} is a patch. Take any  V\subset U_{0} , then  (T-x_{V})\backslash T=\emptyset . For otherwise

we can take   x\in  (T-x_{V})\backslash T and if  V'\subset U_{0} is small enough we have  x-x_{V'}  \in T-x_{V}=T-x_{V'},

which is a contradiction. Similarly   T\backslash (T-x_{V})=\emptyset and  T=T+x_{V}  \in \mathcal{P}_{2}.  \square 

Lemma 2.14. The local matching topology is Hausdorff.

Proof. Take  \mathcal{P}_{1},  \mathcal{P}_{2}  \in Patch  (\mathbb{R}^{d}) and suppose for any compact  K  \subset  \mathbb{R}^{d} and any compact

neighborhood  V of  0\in \mathbb{R}^{d} , we have  (\mathcal{P}_{1}, \mathcal{P}_{2})  \in \mathcal{U}_{K,V} . Take  T\in \mathcal{P}_{1} arbitrarily. For any compact
 K\subset \mathbb{R}^{d} such that  T\subset K and any compact neighborhood  V of  0 , there is  x_{V}  \in V such that

 \mathcal{P}_{1}\cap K=(\mathcal{P}_{2}+x_{V})\cap K.

Then  T-x_{V}  \in  \mathcal{P}_{2} and by Lemma 2.13 we have  T  \in  \mathcal{P}_{2} . This argument shows that  \mathcal{P}_{1}  \subset  \mathcal{P}_{2}.

By the same way  \mathcal{P}_{2}  \subset \mathcal{P}_{1} and  \mathcal{P}_{1}  =\mathcal{P}_{2}.  \square 

Lemma 2.15. With respect to the local matching topology, the action (2.2) is jointly
continuous.

Proof. Take  P_{0}  \in Patch(\mathbb{R}^{d}) and  x_{0}  \in \mathbb{R}^{d} arbitrarily. Consider a neighborhood of  P_{0}+x_{0}.

To prove continuity of the action at  (P_{0}, x_{0}) , we may assume this neighborhood is of the form

 \mathcal{U}_{K,V}(P_{0}+x_{0}) , where  K\subset \mathbb{R}^{d} is compact and  V is a compact neighborhood of  0 . Take a compact

neighborhood  V' of  0 such that  V'+V'\subset V . If  P\in \mathcal{U}_{K-x_{0},V'}(P_{0}) and  x\in x_{0}-V' , then there
is  y\in V' such that

 P_{0}\cap(K-x_{0})=(P+y)\cap(K - x0) .

It follows that

 (P_{0}+x_{0})\cap K=(P+x+x_{0}-x+y)\cap K.

Here  x_{0}-x+y\in V and so  P+x\in \mathcal{U}_{K,V}(P_{0}+x_{0}) .  \square 

Lemma 2.16. For countably many  \mathcal{P}_{1},  \mathcal{P}_{2} , . . .  \in Patch(\mathbb{R}^{d}) and a subset  S\subset \mathbb{R}^{d},

 ( \bigcup_{n}\mathcal{P}_{n})\cap S=\bigcup_{n}(\mathcal{P}_{n}\cap S) .

Proposition 2.17. The uniform space (Patch(Rd), U) is complete.

Proof. Since the uniform space is Hausdorff and has a countable fundamental system  0

entourages, it is metrizable ([6], chapter IX, §2.4). It suffices to show that all Cauchy sequences
converge.

Take a Cauchy sequence (Pn). Set  V_{n}  =B(0,  \frac{1}{2^{n}}) (the closure of an open ball). Take also
 R_{n}  >  0 for  n  =  1 , 2,  \cdots such that  R_{n-1}+ \frac{1}{2^{n}}  <  R_{n} and   \lim R_{n}  =  \infty . Set  K_{n}  =  B(0, R_{n}) for
each  n.
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Since it suffices to show that a subsequence of  (\mathcal{P}_{n}) converges, we may assume that  (\mathcal{P}_{k}, \mathcal{P}_{l})  \in

 \mathcal{U}_{K_{n},V_{n}} for any  k,  l\geq n . For each  n there is  x_{n}  \in V_{n} such that

 (\mathcal{P}_{n}+x_{n})\cap K_{n}=\mathcal{P}_{n+1}\cap K_{n}.

For each  n the sequence  ( \sum_{k=n}^{m}x_{k})_{m} is a Cauchy sequence and so converges to a  y_{n}  \in \mathbb{R}^{d} . We

have an estimate  \Vert y_{n}\Vert  \leqq   \frac{1}{2^{n-1}} and an equation  y_{n+1}+x_{n}=y_{n} for each  n.

For each  n

 (\mathcal{P}_{n}+y_{n})\cap(K_{n}+y_{n+1})=((\mathcal{P}_{n}+x_{n})\cap K_{n})+
y_{n+1}

 =(\mathcal{P}_{n+1}\cap K_{n})+y_{n+1}

 =(\mathcal{P}_{n+1}+y_{n+1})\cap(K_{n}+y_{n+1}) .

Since  K_{n-1}-y_{n+1}  \subset K_{n},

(2.4)  (\mathcal{P}_{n}+y_{n})\cap K_{n-1} =(\mathcal{P}_{n+1}+y_{n+1})\cap K_{n-1}.

Set   \mathcal{P}=\bigcup_{n>1}(\mathcal{P}_{n}+y_{n})\cap K_{n-1} . By (2.4),  \mathcal{P} is a patch.
If  m\geq n+1,

 (\mathcal{P}_{m}+y_{m})\cap K_{n}=((\mathcal{P}_{m}+y_{m})\cap K_{m-1})\cap 
K_{n}

 =((\mathcal{P}_{m+1}+y_{m+1})\cap K_{m-1})\cap K_{n}

 =(\mathcal{P}_{m+1}+y_{m+1})\cap K_{n}.

By induction we have

 (\mathcal{P}_{m}+y_{m})\cap K_{n}=(\mathcal{P}_{n+1}+y_{n+1})\cap K_{n}

for each  m\geq n+1 . For each  n>  1 , by ∪emma 2.16,

  \mathcal{P}\cap K_{n}=(\bigcup_{m\geq n+1}(\mathcal{P}_{m}+y_{m})\cap K_{m-1})
\cap K_{n}
 =(\mathcal{P}_{n+1}+y_{n+1})\cap K_{n}.

In other words  \mathcal{P}_{n+1}  \in \mathcal{U}_{K_{n},V_{n}}(\mathcal{P}) for each  n and  \mathcal{P}_{n}arrow \mathcal{P}.  \square 

Proposition 2.18. The local matching topology is stronger than the cylinder topology.

Proof. Take  \mathcal{P}  \in Patch(Rd). For any bounded patch  \mathcal{P}_{0}  \subset  \mathcal{P} and an open neighborhood
 U_{0} of  0 in  \mathbb{R}^{d} (cf. Lemma 2.5), take a compact neighborhood  U of  0 such that   U\subset  U_{0} and set
 K=U+ supp  \mathcal{P}_{0} . If  \mathcal{Q}\in \mathcal{U}_{K,U}^{-1}(\mathcal{P}) , then there is  x\in U such that

 \mathcal{Q}\cap K=(\mathcal{P}+x)\cap K.

Since  supp(\mathcal{P}_{0}+x)  \subset  K,  \mathcal{P}_{0}+x  \subset  (\mathcal{P}+x)\cap K  \subset  \mathcal{Q} . Then  \mathcal{Q}  \in  C(U, \mathcal{P}_{0})  \subset  C(U_{0}, \mathcal{P}_{0}) . This

argument shows that  \mathcal{U}_{K,U}^{-1}(\mathcal{P})  \subset C(U_{0}, \mathcal{P}_{0}) .  \square 



Distribution of patches in tilings, tiling spaces and tiling dynamical systems 41

Lemma 2.19. Suppose  \mathcal{P}_{1},  \mathcal{P}_{2}  \in Patch  (\mathbb{R}^{d}) and  \mathcal{P}_{1}  \subset  \mathcal{P}_{2} . Take  S  \subset  \mathbb{R}^{d} such that

supp  \mathcal{P}_{1}  \supset S . Then  \mathcal{P}_{1}\cap S=\mathcal{P}_{2}\cap S.

Definition 2.20. For each  R>0 , set

TilingR  (\mathbb{R}^{d})  := {   T\in Tiling  (\mathbb{R}^{d})  | \sup_{T\in T} diam  T<R}.

Proposition 2.21. For any  R>0 , on  Tiling_{R}(\mathbb{R}^{d}) , the relative topologies of local match‐

ing topology and cylinder topology coincide.

Proof. Take  T\in Tiling_{R}(\mathbb{R}^{d}) . Take also a compact  K\subset \mathbb{R}^{d} and a compact neighborhood
 V of  0  \in  \mathbb{R}^{d} . Set  K'  =  K+B(0, R) and  \mathcal{P}_{0}  =  T\cap K' . Note that supp  \mathcal{P}_{0}  \supset  K . If  S  \in

 C(-V, \mathcal{P}_{0})\cap Tiling_{R}(\mathbb{R}^{d}) , there is  x\in V such that  \mathcal{P}_{0}-x\subset S . By Lemma 2.8 and Lemma 2.19,

 (S+x)\cap K=\mathcal{P}_{0}\cap K=(T\cap K')\cap K=T\cap K,

and  S\in \mathcal{U}_{K,V}(T) . Hence

  T\in C(-V, \mathcal{P}_{0})\cap TilingR  (\mathbb{R}^{d})  \subset \mathcal{U}_{K,V}(T) .

We see on  Tiling_{R}(\mathbb{R}^{d}) the cylinder topology is stronger than the local matching topology and

together with Proposition 2.18 we see they are equal on  Tiling_{R}(\mathbb{R}^{d}) .  \square 

Remark. With respect to the local matching topology,  Tiling_{R}(\mathbb{R}^{d}) is a closed subset  0

Patch(Rd). However Tiling  (\mathbb{R}^{d}) is not closed in Patch  (\mathbb{R}^{d}) as the following example shows.

Example 2.22. Consider a tiling  T_{s} of  \mathbb{R}^{d} defined by  T_{s}  =  \{(0,1)^{d}+x | x \in \mathbb{Z}^{d}\} . We

start from this tiling  T_{s} and replace tiles with larger ones. For any  n  \in  \mathbb{Z}_{>0} , choose  x_{n}  \in  \mathbb{Z}^{d}

such that for any two distinct  n and  m,  ((0, n)^{d}+x_{n})\cap((0, m)^{d}+x_{m})=\emptyset . To  T_{s} , we add tiles

 (0, n)^{d}+x_{n},  n=2 , 3, . . . and remove tiles with side‐length 1 that intersect these tiles with side‐

length 2, 3, . . .. The resulting tiling is represented by  T_{s}' and this consists of translates of  (0, n)^{d},
 n=1 , 2, 3, . . .. This tiling is not in  Tiling_{R}(\mathbb{R}^{d}) for any  R>0 and a sequence  (T_{s}'-x_{n}-y_{n})_{n},
where  y_{n}  =  ( \frac{1}{2}n, \frac{1}{2}n, \ldots, \frac{1}{2}n) for each  n , converges to  \emptyset with respect to the local matching

topology.

§2.2. Finite local complexity and finite tile type

Definition 2.23. On  2^{\mathbb{R}^{d}} (the set of all subsets of  \mathbb{R}^{d} ), define an equivalence relation  \approx

by

 A\approx B  \Leftrightarrow there exists  x\in \mathbb{R}^{d} such that  A=B+x.

On the set  2^{2^{R^{d}}} of all subsets of  2^{\mathbb{R}^{d}} , we define an equivalence relation ∼  by

 \mathcal{P}_{1}  \sim \mathcal{P}_{2}  \Leftrightarrow there exists  x\in \mathbb{R}^{d} such that  \mathcal{P}_{1}  =\mathcal{P}_{2}+x.
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Definition 2.24. An element  \mathcal{P}  \in Patch  (\mathbb{R}^{d}) has finite local complexity (FLC) if the
quotient set

 \{(\mathcal{P}+x)\cap K|x\in \mathbb{R}^{d}\}/\sim

is finite for any compact  K\subset \mathbb{R}^{d}.

Definition 2.25. An element  \mathcal{P}\in Patch(\mathbb{R}^{d}) has finite tile type (FTT) if  \mathcal{P}/\approx is finite.
In this case there exists a finite set  \mathcal{A} of tiles such that

 \bullet For any  P\in \mathcal{A} , we have  0\in P , and

 \bullet For any  T  \in  \mathcal{P} , there is a unique  P  \in  \mathcal{A} and  a (necessarily unique)  x  \in  \mathbb{R}^{d} such that
 T=P+x.

Such a set  \mathcal{A} is called an alphabet for the FTT patch  \mathcal{P}.

Given a finite non‐empty set  \mathcal{A} of tiles that are not pairwise translationally equivalent, for

any  P\in \mathcal{A} and  x\in \mathbb{R}^{d} set  c\mathcal{A}(P+x)=x . For  \mathcal{P}\subset \mathcal{A}+\mathbb{R}^{d} , set  c\mathcal{A}(\mathcal{P})=\{c\mathcal{A}(T) |T\in \mathcal{P}\}.

In Proposition 2.28 we give a characterization of FLC and FTT.

Definition 2.26. For a patch  \mathcal{P}\in Patch(\mathbb{R}^{d}) and  S\subset \mathbb{R}^{d} , set

 \mathcal{P}\sqcap S=\{T\in \mathcal{P}|\overline{T}\cap S\neq\emptyset\}.

Lemma 2.27. For any subsets  \Pi_{1},  \Pi_{2}  \subset 2^{2^{R^{d}}} , suppose the following conditions;

 \bullet for any  \mathcal{P}_{1}  \in\Pi_{1} there are  \mathcal{P}_{2}  \in\Pi_{2} and  x\in \mathbb{R}^{d} such that  \mathcal{P}_{1}+x\subset \mathcal{P}_{2},

 \bullet each  \mathcal{P}_{2}  \in\Pi_{2} is finite, and

 \bullet  \Pi_{2}/\sim is finite.

Then  \Pi_{1}/\sim is finite.

Proposition 2.28. For  \mathcal{P}\in Patch(\mathbb{R}^{d}) , the following conditions are equivalent;

1.  \mathcal{P} has FTT and FL  C^{\cdot}.

2.  \mathcal{P} has FTT and {  \mathcal{P}'\subset \mathcal{P}  | diamsuppP
 /
 <R}  /\sim is finite for all  R>0.

3.  \{\mathcal{P}\cap B(x, R) |x\in \mathbb{R}^{d}\}/\sim is finite for any  R>0 and  \mathcal{P} has FT  T^{\cdot}.

4.  \{\mathcal{P}\sqcap(K+x) |x\in \mathbb{R}^{d}\}/\sim is finite for any compact  K\subset \mathbb{R}^{d}.

5.  \mathcal{P} has FTT and  c_{\mathcal{A}}(\mathcal{P})-c_{\mathcal{A}}(\mathcal{P}) is discrete and closed in  \mathbb{R}^{d} , for any alphabet  \mathcal{A}.

Proof.  1\Rightarrow 2 . For any  R  >  0 , if  \mathcal{P}'  \subset  \mathcal{P} and diamsuppP
 /

 <  R , either  \mathcal{P}'  =  \emptyset or we can

take   x\in supp  \mathcal{P}' . In the latter case  \mathcal{P}'\subset \mathcal{P}\cap(x+B(0, R)) and Lemma 2.27 applies.
 2\Rightarrow 3 . For any  x\in \mathbb{R}^{d} , we have diamsupp  (\mathcal{P}\cap B(x, R))  <2R . Lemma 2.27 applies.
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 3\Rightarrow 4 . Set  r  =   \max_{T\in \mathcal{P}} diam  T . For any compact  K  \subset  \mathbb{R}^{d} , take  R  >  0 such that  K  \subset

 B(0, R-r) . For any  x\in \mathbb{R}^{d} we have  \mathcal{P}\sqcap(K+x)  \subset \mathcal{P}\cap B(x, R) and Lemma 2.27 implies (4).
 4\Rightarrow 5 .First by taking  K=\{0\} we see  \mathcal{P}/\approx is finite and so  \mathcal{P} has FTT. Take  R>0 arbitrarily.

We shall show that  (c_{\mathcal{A}}(\mathcal{P})-c_{\mathcal{A}}(\mathcal{P}))\cap B(0, R) is finite. Set  K=B(0, R) . There is a finite  F\subset \mathbb{R}^{d}

such that if  x\in \mathbb{R}^{d} there are  y\in F and  z\in \mathbb{R}^{d} for which

 \mathcal{P}\sqcap(K+x)=(\mathcal{P}\sqcap(K+y))+z.

Take  a  \in  (c_{\mathcal{A}}(\mathcal{P}) -c_{\mathcal{A}}(\mathcal{P}))\cap B(0, R) . Then there are  P_{1},  P_{2}  \in  \mathcal{A} and  a_{1},  a_{2}  \in  \mathbb{R}^{d} such that

 P_{i}  +a_{i}  \in  \mathcal{P}  (i = 1,2) and  a  =  a_{1}
 -

 a_{2} . By  a_{2}  \in  P_{2}  +a_{2} and  \Vert a_{1}  -   a_{2}\Vert  <  R , we have
 P_{2}+a_{2}  \in \mathcal{P}\sqcap(K+a_{1}) , and

 a\in(c\mathcal{A}(\mathcal{P}\sqcap(K+a_{1}))-c\mathcal{A}(\mathcal{P}\sqcap(K+
a_{1}))

 =(c_{\mathcal{A}}(\mathcal{P}\sqcap(K+b))-c_{\mathcal{A}}(\mathcal{P}\sqcap(K+
b)))

for some  b\in F . Hence

(2.5)  (c_{\mathcal{A}}( \mathcal{P})-c_{\mathcal{A}}(\mathcal{P}))\cap B(0, R) 
\subset\bigcup_{b\in}(c_{\mathcal{A}}(\mathcal{P}\sqcap(K+b))-c_{\mathcal{A}}
(\mathcal{P}\sqcap(K+b))) .

Since  F is finite and  \mathcal{P}\sqcap(K+b) is finite by FTT, the right‐hand side of (2.5) is finite.
 5\Rightarrow 1 . Take a compact  K  \subset  \mathbb{R}^{d} arbitrarily. Set  C  =  (c_{\mathcal{A}}(\mathcal{P}) -c_{\mathcal{A}}(\mathcal{P}))  \cap  (K-K) and

 \mathcal{P}'  =  \mathcal{A}+C . If  x  \in  \mathbb{R}^{d} and  \mathcal{P}\cap  (K+x)  \neq  \emptyset , then take  P_{0}  \in  \mathcal{A} and  x_{0}  \in  \mathbb{R}^{d} such that

 P_{0}+x_{0}  \in \mathcal{P}\cap(K+x) . If we arbitrarily take  P_{1}  \in \mathcal{A} and  x_{1}  \in \mathbb{R}^{d} such that  P_{1}+x_{1}  \in \mathcal{P}\cap(K+x) ,

then  x_{1}-x_{0}  \in  C . This implies that  \mathcal{P}\cap(K+x)-x_{0}  \subset \mathcal{P}' . Since  \mathcal{P}' is finite, by Lemma 2.27

 \{\mathcal{P}\cap(K+x) |x\in \mathbb{R}^{d}\}/\sim is finite.  \square 

Remark. Example 2.22 is an example of tiling which has FLC but does not have FTT.

Definition 2.29. For  \mathcal{P}\in Patch(\mathbb{R}^{d}) , set

 X_{\mathcal{P}}=\{\mathcal{P}+x|x\in \mathbb{R}^{d}\}

with respect to the local matching topology.

Lemma 2.30. If  \mathcal{P}\in Patch(\mathbb{R}^{d}) ,  \mathcal{Q}\in X_{\mathcal{P}} and  x\in \mathbb{R}^{d} , then  \mathcal{Q}+x\in X_{\mathcal{P}}.

Proof. There is a sequence  (x_{n}) of  \mathbb{R}^{d} such that  \mathcal{Q}  =   \lim_{n}P+x_{n} . By Lemma 2.15
  \mathcal{Q}+x=\lim \mathcal{P}+x_{n}+x\in X_{\mathcal{P}}.  \square 

Definition 2.31. A subset  X\subset Patch(\mathbb{R}^{d}) has FLC  i

 \{\mathcal{P}\cap(K+x) |x\in \mathbb{R}^{d}, \mathcal{P}\in X\}/\sim

is finite for any compact  K\subset \mathbb{R}^{d}.
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Remark. If  X is invariant under translation,  X has FLC if and only  i

 \{\mathcal{P}\cap K|\mathcal{P}\in X\}/\sim

 i ∪finite for any compact  K  \subset  \mathbb{R}^{d} . If there are only finitely many tile types in  X , that is,

 ( \bigcup_{\mathcal{P}\in X}\mathcal{P})/\approx is finite, then by Lemma 2.27  X has FLC if and only  i

 \{\mathcal{P}\cap B(x, R) |x\in \mathbb{R}^{d}, \mathcal{P}\in X\}/\sim

is finite for any  R>0.

Lemma 2.32. Take  \mathcal{P}\in Patch(\mathbb{R}^{d}) . Then the following two conditions are equivalent;

1.  \mathcal{P} has FL  C^{\cdot}.

2.  X_{\mathcal{P}} has FL  C^{\cdot}.

Proof.  1\Rightarrow 2 . Take any compact  K  \subset  \mathbb{R}^{d} and a compact neighborhood  V of  0  \in  \mathbb{R}^{d} . I
 \mathcal{Q}\in X_{\mathcal{P}} , then there is  x\in \mathbb{R}^{d} such that  \mathcal{P}+x\in \mathcal{U}_{K,V}(\mathcal{Q}) . This implies that there is  y\in V such
that  (\mathcal{P}+x+y)\cap K=  \mathcal{Q}\cap K and so

 \{\mathcal{Q}\cap K| \mathcal{Q}\in X_{\mathcal{P}}\}=\{(\mathcal{P}+x)\cap K|x
\in \mathbb{R}^{d}\}.

Since  X_{\mathcal{P}} is translation invariant (Lemma 2.30), we see  X_{\mathcal{P}} has FLC.
 2\Rightarrow 1 . This direction is clear because  \{\mathcal{P}+x |x\in \mathbb{R}^{d}\}\subset X_{\mathcal{P}}.  \square 

Lemma 2.33. Let  X be an FLC subspace of Patch(Rd). For any sequence  \mathcal{P}_{1},  \mathcal{P}_{2} , . . . of
 X , any compact  K\subset \mathbb{R}^{d} and any compact neighborhood  V of  0\in \mathbb{R}^{d} , we can take a subsequence
 \mathcal{P}_{n_{1}},  \mathcal{P}_{n_{2}} , . . . of  (\mathcal{P}_{n})_{n} such that  (\mathcal{P}_{n_{j}}, \mathcal{P}_{n_{k}})  \in \mathcal{U}_{K,V} for any  j,  k>0.

Proof. Set  K'=K-V . By FLC there is a subsequence  \mathcal{P}_{n_{1}},  \mathcal{P}_{n_{2}} , . . . and  x_{1},  x_{2} , . . .  \in \mathbb{R}^{d}

such that for any  j  >0 we have

 \mathcal{P}_{n_{1}}\cap K'= (\mathcal{P}_{n_{j}} \cap K')+x_{j}.

If  \mathcal{P}_{n_{1}}  \cap K'=\emptyset , we have nothing to prove and we may assume that we can take  T\in \mathcal{P}_{n_{1}}  \cap K'

Take  x  \in  T , then  x-x_{j}  \in  K' for each  j and we see  (x_{j})_{j} is a bounded sequence. By taking

subsequence again we may assume that  x\cdot-x_{k}  \in V for any  j,  k . For any  j,  k>0,

 \mathcal{P}_{n_{k}}\cap K'= (\mathcal{P}_{n} \cap K')+x_{j}-x_{k}=(\mathcal{P}_
{n} +x_{j}-x_{k})\cap(K'+x\cdot-x_{k})

and by Lemma 2.8,

 \mathcal{P}_{n_{k}}\cap K= (\mathcal{P}_{n_{j}} +x_{j}-x_{k})\cap K,

which implies  (\mathcal{P}_{n_{k}}, \mathcal{P}_{n_{j}})  \in \mathcal{U}_{K,V}.  \square 

Note that since the uniform space (Patch(Rd), U) is metrizable, for any  X\subset Patch(\mathbb{R}^{d}) the
following two conditions are equivalent:
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 \bullet X is totally bounded, that is, for any  \mathcal{U}  \in  U there is a finite  F  \subset  X such that  X  \subset

  \bigcup_{\mathcal{P}\in}  \mathcal{U}(\mathcal{P}) .

 \bullet For any sequence in  X , there is a Cauchy subsequence of it.

Note also that any  X\subset Patch(\mathbb{R}^{d}) is compact if and only if it is closed and totally bounded.

Lemma 2.34. For any  X\subset Patch(\mathbb{R}^{d}) , consider the following conditions;

1.  X has FL  C^{\cdot}.

2.  X is totally bounded with respect to U.

Then condition 1 always implies condition 2 and the converse holds if  X is invariant unde

translation and the set  ( \bigcup_{\mathcal{P}\in X}\mathcal{P})/\approx is finite (that is, there are only finitely many tile types up
to translation).

Proof.  1\Rightarrow 2 . Take countably many open sets  O_{1},  O_{2} , . . . and a countable neighborhood

basis  \{V_{n} |n>0\} of  0 consisting of compact sets such that

 \bullet ∪ n  :=\overline{O_{n}} is compact for each  n , and

 \bullet   \bigcup_{n}O_{n}=\mathbb{R}^{d}.

Take a sequence  \mathcal{P}_{1},  \mathcal{P}_{2} , . . . of  X . By Lemma 2.33, we can take a subsequence  (\mathcal{P}_{n}^{(1)}) of  (\mathcal{P}_{n}) such

that  (\mathcal{P}_{n}^{(1)}, \mathcal{P}_{m}^{(1)})  \in \mathcal{U}_{K_{1},V_{1}} for any  n,  m>0 . We further take a subsequence  (\mathcal{P}_{n}^{(2)}) of  (\mathcal{P}_{n}^{(1)}) such

that  (\mathcal{P}_{n}^{(2)}, \mathcal{P}_{m}^{(2)})  \in \mathcal{U}_{K_{2},V_{2}} for any  n,  m  >  0 . Proceeding  i∪ this way we can take subsequences

 (\mathcal{P}_{n}^{(k)})_{n} for  k=1 , 2, . . .. Set  Q_{n}=\mathcal{P}_{n}^{(n)} for each  n , then  (\mathcal{Q}_{n})_{n} is a Cauchy subsequence of  (\mathcal{P}_{n})_{n}.
 2\Rightarrow 1 . Assume  X is invariant under translation and   \bigcup_{\mathcal{P}\in X}\mathcal{P}/\approx is finite. Take a compact

 K  \subset  \mathbb{R}^{d} and a compact neighborhood  V o∪.By condition 2 there is a finite set  F  \subset  X such
that

 X \subset\bigcup_{\mathcal{P}\in} \mathcal{U}_{V+K,V}(\mathcal{P}) .

For any  \mathcal{Q}\in X there are  \mathcal{P}\in F and  x\in V such that  (\mathcal{Q}+x)\cap(K+V)  =\mathcal{P}\cap(K+V) , and

 (\mathcal{Q}\cap K)+x=(\mathcal{Q}+x)\cap(K+x) \subset (\mathcal{Q}+x)\cap(K+V)
=\mathcal{P}\cap(K+V) .

Since  \mathcal{P}\cap(K+V) is finite for each  \mathcal{P}\in F , by Lemma 2.27  \{\mathcal{Q}\cap K| \mathcal{Q}\in X\}/\sim is finite.  \square 

Corollary 2.35. Take  \mathcal{P}\in Patch(\mathbb{R}^{d}) . Consider the following two conditions;

1.  \mathcal{P} has FL  C^{\cdot}.

2.  X_{\mathcal{P}} is compact with respect to the local matching topology.

Then 1 always implies 2 and if  \mathcal{P} has FTT 2 implies 1.

Proof. Clear by Lemma 2.32, Lemma 2.34 and the fact that if  \mathcal{P} has FTT then  ( \bigcup_{\mathcal{Q}\in X_{\mathcal{P}}}\mathcal{Q})/\approx
is finite.  \square 
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Remark. If a tiling  T has FTT, then on  X_{T} the cylinder topology and the local matching

topology coincide (Proposition 2.21). Thus if a tiling  T has FLC and FTT the space  X_{T} is
compact with respect to both topologies.

§2.3. Repetitivity

Definition 2.36. A subset  S  \subset  \mathbb{R}^{d} is said to be relatively dense if there is a compact
 K\subset \mathbb{R}^{d} such that  S+K=\mathbb{R}^{d}.

Definition 2.37. Take  \mathcal{P}  \in Patch(Rd).  \mathcal{P} is said to be repetitive if for any bounded
patch  \mathcal{Q}\subset \mathcal{P} , the set

 \{x\in \mathbb{R}^{d} | \mathcal{Q}+x\subset \mathcal{P}\}

is relatively dense.

Lemma 2.38. For any  \mathcal{P}\in Patch(\mathbb{R}^{d}) , the following two conditions are equivalent;

1.  \mathcal{P} is repetitive.

2. For any bounded  \mathcal{Q}\subset \mathcal{P} , there is an  R>0 such that the following condition holds:

For any  a\in \mathbb{R}^{d} there is  x\in \mathbb{R}^{d} such that  \mathcal{P}\cap B(a, R)  \supset  \mathcal{Q}+x.

Proof.  1\Rightarrow 2 . Take a bounded  \mathcal{Q}  \subset  \mathcal{P} . We may assume  \mathcal{Q}  \neq  \emptyset . Take a translate  \mathcal{Q}'

of  \mathcal{Q} such that  0  \in supp  \mathcal{Q}' . Since  S  =  \{x \in \mathbb{R}^{d} \mathcal{Q}' +x \subset \mathcal{P}\} is relatively dense, there

is  R_{0}  >  0 such that  S+B(0, R_{0})  =  \mathbb{R}^{d} . For any  a  \in  \mathbb{R}^{d} there is  x  \in  S\cap B(a, R_{0}) . Then
 \mathcal{Q}'+x\subset \mathcal{P}\cap B (  a,  R_{0}+ diam supp  \mathcal{Q} ). Thus 2 is satisfied for  R=R_{0}+ diam supp  \mathcal{Q}.

 2\Rightarrow 1 . For any bounded  \mathcal{Q}  \subset  \mathcal{P} , either  \mathcal{Q}  =  \emptyset or there is a translate  \mathcal{Q}' of  \mathcal{Q} such that
 0  \in supp  \mathcal{Q}' . Consider the latter case. Let  R  >  0 be a constant for  \mathcal{Q} in condition 2. For

any  a  \in  \mathbb{R}^{d} , there is  x  \in  \mathbb{R}^{d} such that  \mathcal{P}\cap B(a, R)  \supset  \mathcal{Q}'+x . Then  x  \in  B(a, R) and we see
 S  ,  =\{x\in \mathbb{R}^{d} | \mathcal{Q}'+x\subset \mathcal{P}\} is relatively dense. Since  S  =\{x\in \mathbb{R}^{d} | \mathcal{Q}+x\subset \mathcal{P}\} is a translate

of  S  \prime , the set  S is relatively dense.  \square 

Definition 2.39. Let  \mathcal{P} be a patch. A patch  \mathcal{Q} is  \mathcal{P}‐legal if there is  x  \in  \mathbb{R}^{d} such that
 \mathcal{Q}+x\subset \mathcal{P}.

Definition 2.40. Define an equivalence relation  \sim Li on Patch  (\mathbb{R}^{d}) as follows. For any

two patches  \mathcal{P}_{1},  \mathcal{P}_{2} , we have  \mathcal{P}_{1}  \sim Li\mathcal{P}_{2} if and only if  \mathcal{P}_{1} ‐legality and  \mathcal{P}_{2} ‐legality are equivalent

for bounded patches, that is,

 \bullet for any bounded  \mathcal{Q}\subset \mathcal{P}_{1} there is  x\in \mathbb{R}^{d} such that  \mathcal{Q}+x\subset \mathcal{P}_{2} , and

 \bullet for any bounded  \mathcal{Q}\subset \mathcal{P}_{2} there is  x\in \mathbb{R}^{d} such that  \mathcal{Q}+x\subset \mathcal{P}_{1}.

Two patches  \mathcal{P}_{1},  \mathcal{P}_{2} such that  \mathcal{P}_{1}  \sim Li\mathcal{P}_{2} are said to be locally indistinguishable. The equivalence

class including  \mathcal{P} is represented by  [\mathcal{P}]_{LI}.
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Lemma 2.41. Take  R>0 and  T\in Tiling_{R}(\mathbb{R}^{d}) arbitrarily. Then  [T]_{LI}\cap Tiling_{R}(\mathbb{R}^{d})  \subset

 X_{T}.

Proof. Take   T'\in  [T]_{LI}\cap Tiling_{R}(\mathbb{R}^{d}) . For any compact  K\subset \mathbb{R}^{d} and a compact neighbor‐

hood  V of  0\in \mathbb{R}^{d} , there is  x\in \mathbb{R}^{d} such that  T'\sqcap K+x\subset T . Since  T'\sqcap K covers  K , by Lemma

2.19 we have  T'\cap K=  (T-x)\cap K . This implies that  T-x\in \mathcal{U}_{K,V}(T') . Since  K and  V were

arbitrary,  T'\in X_{T}.  \square 

Lemma 2.42. For any tiling  T of  \mathbb{R}^{d},  S\in X_{T} and bounded  \mathcal{P}\subset S , there is  x\in \mathbb{R}^{d} such
that  \mathcal{P}+x\subset T.

Proof. Set  K= supp  \mathcal{P} and take an arbitrary compact neighborhood  V of  0\in \mathbb{R}^{d} . There is
 x\in \mathbb{R}^{d} such that  T+x\in \mathcal{U}_{K,V}(S) . Then there is  y\in V such that  \mathcal{P}=S\cap K=(T+x+y)\cap K,
and  \mathcal{P}-x-y\subset T.  \square 

Proposition 2.43. Take  R>0 and  T\in Tiling_{R}(\mathbb{R}^{d}) arbitrarily. Consider the followin

three conditions;

1.  T is repetitive.

2.  [T]_{LI}\cap Tiling_{R}(\mathbb{R}^{d})=X_{T}.

3. The action  \mathbb{R}^{d}c\sim X_{T} is minimal.

Then always condition 1 implies condition 2 and condition 2 and condition 3 are equivalent. If
 T has FLC, then condition 2 implies condition 1.

Proof.  1\Rightarrow 2 . Take  T'  \in X_{T} . If  \mathcal{P}  \subset  T is a bounded patch, there is  R_{0}  >  0 such that for

any  a\in \mathbb{R}^{d} there is  x\in \mathbb{R}^{d} with  T\cap B(a, R_{0})  \supset \mathcal{P}+x . Set  K=B(0, R_{0}) and take an arbitrary

compact neighborhood  V of  0  \in  \mathbb{R}^{d} . There exists  x  \in  \mathbb{R}^{d} such that  T+x  \in  \mathcal{U}_{K,V}(T') . This

means that there is  y\in V such that  (T+x+y)\cap K=T'\cap K . By the property of  R_{0} there is
 z\in \mathbb{R}^{d} such that  T\cap B(-x-y, R_{0})  \supset \mathcal{P}+z . Then

 \mathcal{P}+x+y+z\subset (T+x+y)\cap K=T'\cap K,

and so  \mathcal{P}  +x  +y+  z  \subset  T' . By Lemma 2.42 we have  T'  \in  [T]_{LI} . Hence  X_{T}  \subset  [T]_{LI}.
Since  Tiling_{R}(\mathbb{R}^{d}) is closed with respect to the local matching topology in Patch(Rd),  X_{T}  \subset

 Tiling_{R}(\mathbb{R}^{d}) and together with Lemma 2.41 we obtain condition 2.
 2.\Rightarrow 3 . Take  T',  T"  \in  X_{T} . Take a compact  K  \subset  \mathbb{R}^{d} and a compact neighborhood  V

of  0  \in  \mathbb{R}^{d} . By condition 2 there is  x  \in  \mathbb{R}^{d} such that  T'  \cap  (K+B(0, R))  +x  \subset  T" , and

 T'\cap K=(T"-x)\cap K by Lemma 2.19. This means that  T"-x\in \mathcal{U}_{K,V}(T') .
 3\Rightarrow 2 . Take  T'\in X_{T} . Take an arbitrary bounded non‐empty patch  \mathcal{P}\subset T . Set  K= supp  \mathcal{P}

and take a compact neighborhood  V of  0  \in  \mathbb{R}^{d} . By minimality there is  x  \in  \mathbb{R}^{d} such that

 T'+x\in \mathcal{U}_{K,V}(T) . There is  y\in V such that  (T'+x+y)\cap K=T\cap K\supset \mathcal{P} and  \mathcal{P}-x-y\subset T'.
By Lemma 2.41 and Lemma 2.42 we obtain condition 2.

Finally we assume that  T has FLC and satisfies condition 2 and we will prove condition 1.

Suppose conversely that  T is not repetitive. Then there are bounded  \mathcal{P}  \subset  T,  a_{1},  a_{2} , . . .  \in  \mathbb{R}^{d}

and  R_{1},  R_{2} , . . .  >0 such that
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 \bullet The sequence  (R_{n}) is monotone increasing and   \lim R_{n}=\infty , and

 \bullet For each  n the patch  T\cap B(a_{n}, R_{n}) does not contain any translates of  \mathcal{P}.

By Corollary 2.35 we can take a subsequence  (T-a_{n_{j}})_{j} of the sequence  (T-a_{n})_{n} that converges

to a tiling  T_{0}  \in X_{T} . For any  R>0 and any compact neighborhood  V of  0\in \mathbb{R}^{d} there is  j_{0}  \in \mathbb{Z}_{>0}
such that

 \geq j_{0}\Rightarrow T-a_{n_{j}} \mathcal{U}_{\overline{B(0,R)},V}(T_{0}) .

For large  j , there is  x_{j}  \in V such that

 T_{0}\cap B(0, R)=(T-a_{n_{j}} +x_{j})\cap B(0, R)

 \subset ((T-a_{n_{j}})\cap B(0, R_{n_{j}}))+x_{j}.

This means there are no translates of  \mathcal{P} inside  T_{0}\cap B(0, R) . Since  R was arbitrary, there are no
translates of  \mathcal{P} inside  T_{0} and so  T_{0}  \not\in  [T]_{LI} . This contradicts condition 2.  \square 

§2.4. A result on relation between properties of tilings and properties of the

corresponding dynamical systems

Proposition 2.43 describes a relation between distribution of patches in a tiling and a prop‐

erty of the corresponding dynamical system. Here we mention another relation.

The definitions for eigenvalues and eigenfunctions are given in the appendix. For  \xi  \in  \mathbb{R}^{d},
the character of  \mathbb{R}^{d},  \mathbb{R}^{d}\ni x\mapsto e^{2\pi i\langle x,\xi\rangle} , is denoted by  \chi_{\xi}.  (\langle(x_{i}),  (y_{i})\rangle  = \sum_{i}x_{i}y_{i} is the standard

inner product.)

Theorem 2.44 ([13]). Let  T be a repetitive tiling in  \mathbb{R}^{d} of FLC and FT  T^{\cdot}. Let  A be
subgroup of the group of all topological eigenvalues for the topological dynamical system  (X_{T}, \mathbb{R}^{d}) .

Assume  0  \in  A\backslash \{0\} . Then for any  R_{0}  >  0 and  \epsilon  >  0 , there exist  R>  0 and  \xi  \in  A\backslash \{0\} that

satisfy the following two conditions:

 \bullet for any  T‐legal finite patches  \mathcal{P}_{1},  \mathcal{P}_{2} such that each of supp  \mathcal{P}_{1} and supp  \mathcal{P}_{2} contains a bal

of radius  R , the set

{  x\in \mathbb{R}^{d}  |\mathcal{P}_{1} ∪  (\mathcal{P}_{2}+x) is not  T‐legal}

contains a translate of  B(0, R_{0})+Ker\chi_{\xi}.

 \bullet

(2.6)  8R_{0}  <   \frac{1}{\Vert\xi\Vert}  <  (8+\epsilon)R_{0}.

Remark. This theorem says that, given the property of the group of topological eigen‐

values, there is a “forbidden area” of appearance of translates of  \mathcal{P}_{2} in  T relative to any trans‐

late of  \mathcal{P}_{1} in  T . The forbidden area is belt‐like and is obtained by juxtaposing translates  0
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 B(0, R_{0})+\{\xi\}^{\perp}  (^{\perp} means orthogonal complement) with interval   \frac{1}{\Vert\xi\Vert} , which is approximately
 8R_{0}.

By Theorem 3.37, for tilings from a substitution rule  \sigma that satisfies the conditions  0

Theorem 3.37, if the spectrum of the expansive map forms a Pisot family, the group of eigenvalues

is relatively dense. If moreover the map  \omega_{\sigma} :  X_{\sigma}arrow X_{\sigma} is injective, then the group of eigenvalues

is dense because if  \xi is an eigenvalue, so is  (\varphi^{*})^{-1}(\xi) by Theorem 3.35 and non‐periodicity  0

tilings in  X_{\sigma} (Theorem 3.33). Thus under such conditions, we can apply Theorem 2.44 to the
tilings  T\in X_{\sigma}.

§3. Substitution rules

As was mentioned there are several ways to construct tilings of  \mathbb{R}^{d} . In this section we

introduce one of the ways, namely the way from substitution rules. After definitions we introduce
some of important results.

Definition 3.1. Let  \mathcal{A} be a finite set of tiles in  \mathbb{R}^{d} . Set

Patch  \mathcal{A}(\mathbb{R}^{d})  = {  \mathcal{P}\in Patch(\mathbb{R}^{d})  | any tile  T\in \mathcal{P} is a translate of a tile in  \mathcal{A}}.

Lemma 3.2. The set Patch  \mathcal{A}(\mathbb{R}^{d}) is a closed subset of Patch  (\mathbb{R}^{d}) with respect to the loca

matching topology.

Proof. Take  \mathcal{P}  \in Patch  \mathcal{A}(\mathbb{R}^{d}) and  T  \in P.  \mathcal{P} and an element  \mathcal{Q}  \in Patch  \mathcal{A}(\mathbb{R}^{d}) coincide,

after a small translation, inside a large ball around the origin. Thus for some  \mathcal{Q}\in Patch  \mathcal{A}(\mathbb{R}^{d})
a translate of  T appears in  \mathcal{Q} and  T is a translate of an element of A.  \square 

Definition 3.3. A linear map  \varphi:\mathbb{R}^{d}arrow \mathbb{R}^{d} is said to be expansive  i

 \bullet it is bijective, and

 \bullet if  \lambda is any eigenvalue for  \varphi , then  |\lambda|  >  1.

Definition 3.4. A substitution rule (of  \mathbb{R}^{d} ) is a triple  (\mathcal{A}, \varphi, \omega) where

 \bullet  \mathcal{A} is a finite nonempty set of tiles in  \mathbb{R}^{d},

 \bullet  \varphi is an expansive linear map of  \mathbb{R}^{d} , and

 \bullet  \omega is a map  \omega :  \mathcal{A}arrow Patch_{\mathcal{A}}(\mathbb{R}^{d}) such that

supp  \omega(P)=\overline{\varphi(P)}.

Tiles in  \mathcal{A} are called proto‐tiles for the substitution rule.

Remark. Roughly speaking, a substitution rule is a way to expand each proto‐tile, sub‐

divide it and obtain a patch consisting of translates of proto‐tiles. The following example will

illuminate this point.

We can also consider substitution rules with rotation or flip. Radin’s pinwheel tiling [15] is
an example. We do not deal with such substitution rules in this article.
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Example 3.5 (Figure1 . Set  \tau=   \frac{1+5}{2} . Take the interior of the triangle which has side‐
length 1,1, and  \tau , and remove one point anywhere from the left side or the right side. Moreover

take the interior of the triangle of the side‐length  \tau,  \tau and 1, and remove one point from the left

side or the right side. The proto‐tiles of this substitution are the copies of these two punctured

triangles by  2n\pi/10‐rotations and flip, where  n=0 , 1, . . . , 9. There are 40 proto‐tiles.

The expansion map is  \tau I , where  I is the identity map. The map  \omega is depicted in Figure 1.

The image of the other proto‐tiles by  \omega is defined accordingly, so that  \omega and rotation,  \omega and flip
will commute.

Tilings for this substitution are called Robinson triangle tilings. Such tilings are known to

be related (MLD) to Penrose tilings by kite and dart.

Figure 1. Example of substitution

Definition 3.6. For a substitution rule  (\mathcal{A}, \varphi, \omega) ,  P  \in  \mathcal{A} and  x  \in  \mathbb{R}^{d} , we set a patch

 \omega(P+x)  \in Patch_{\mathcal{A}}(\mathbb{R}^{d}) by

 \omega(P+x)=\omega(P)+\varphi(x) .

An easy computation shows the next lemma:

Lemma 3.7. Let  (\mathcal{A}, \varphi, \omega) be a substitution rule. Then supp  \omega(P+x)  =\varphi(\overline{P})+\varphi(x)  =

 \varphi(\overline{P+x}) .

Definition 3.8. Let  \sigma=(\mathcal{A}, \varphi, \omega) be a substitution rule. Define a map

 \omega_{\sigma} : Patch  \mathcal{A}(\mathbb{R}^{d})arrow Patch_{\mathcal{A}}(\mathbb{R}^{d})

by

  \omega_{\sigma}(\mathcal{P})=\bigcup_{T\in \mathcal{P}}\omega(T) .

Lemma 3.9. For any substitution rule  \sigma , the map  \omega_{\sigma} is well defined, that is, for any

 \mathcal{P}\in Patch_{\mathcal{A}}(\mathbb{R}^{d}) we have  \omega_{\sigma}(\mathcal{P})  \in Patch_{\mathcal{A}}(\mathbb{R}^{d}) . Moreover the following conditions hold:
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 \bullet For any  \mathcal{P}_{1},  \mathcal{P}_{2} , . . .  \in Patch_{\mathcal{A}}(\mathbb{R}^{d}) , if   \bigcup_{n}\mathcal{P}_{n} is a patch, then we have  \omega_{\sigma}(\cup \mathcal{P}_{n})  =\cup\omega_{\sigma}(\mathcal{P}_{n}) .

 \bullet For any  \mathcal{P}\in Patch_{\mathcal{A}}(\mathbb{R}^{d}) , supp  \omega_{\sigma}(\mathcal{P})=\varphi(supp  \mathcal{P}) .

 \bullet For any  \mathcal{P}\in Patch_{\mathcal{A}}(\mathbb{R}^{d}) ,  x\in \mathbb{R}^{d} and  m\in \mathbb{Z}_{>0},  \omega_{\sigma}^{m}(\mathcal{P}+x)=\omega_{\sigma}^{m}(\mathcal{P})+\varphi^{m}
(x) .

The following lemma also holds for the local matching topology, but we omit the proof.

Lemma 3.10. For any substitution rule  \sigma  =  (\mathcal{A}, \varphi, \omega) , the map  \omega_{\sigma} is continuous with

respect to the cylinder topology.

Proof. Take  \mathcal{P}\in Patch_{\mathcal{A}}(\mathbb{R}^{d}) . Take any finite  \mathcal{Q}\subset\omega_{\sigma}(\mathcal{P}) and a neighborhood  U of  0 in  \mathbb{R}^{d}

(cf. Lemma 2.5). For any   T\in  \mathcal{Q} there is  S_{T}  \in \mathcal{P} such that  T\in\omega(S_{T}) . Set  \mathcal{P}'=\{S_{T} | T\in \mathcal{Q}\}
and  U'=\varphi^{-1}(U) . Then  \omega_{\sigma}(C(U', \mathcal{P}')\cap Patch_{\mathcal{A}}(R^{d}))  \subset C(U, \mathcal{Q}) .  \square 

Remark. Often in the literature the letter  \sigma is suppressed and  \omega_{\sigma} is simply written as  \omega.

Of course,  \omega_{\sigma}(\{P+x\})=\omega(P+x) for  P\in \mathcal{A} and  x\in \mathbb{R}^{d}.

Definition 3.11. A substitution rule  (\mathcal{A}, \varphi, \omega) is said to be primitive if the following
condition holds:

There is  K\in \mathbb{Z}_{>0} such that, if  P and  P' are in  \mathcal{A} , then there is  x\in \mathbb{R}^{d}

such that  P+x\in\omega_{\sigma}^{K}(\{P'\}) .

Definition 3.12. Let  \sigma  =  (\mathcal{A}, \varphi, \omega) be a substitution rule. A patch  \mathcal{P}  \in Patch  (\mathbb{R}^{d}) is

said to be  \sigma‐legal if there are  P\in \mathcal{A},  n\in \mathbb{Z}_{>0} and  x\in \mathbb{R}^{d} such that

 \mathcal{P}\subset\omega_{\sigma}^{n}(\{P+x\}) .

Definition 3.13. Let  \sigma=(\mathcal{A}, \varphi, \omega) be a substitution rule of  \mathbb{R}^{d} . Define

 X_{\sigma}= {  T\in Tiling(\mathbb{R}^{d})  | if  \mathcal{P}\subset T is a finite patch, then  \mathcal{P} is  \sigma‐legal}.

In the following arguments we show  X_{\sigma} is not empty.

Lemma 3.14. Let  \sigma  =  (\mathcal{A}, \varphi, \omega) be a substitution rule. There are  P  \in  \mathcal{A},  m  >  0 , and
 x\in \mathbb{R}^{d} such that

 \bullet  P+x\in\omega_{\sigma}^{m}(\{P\}) , and

 \bullet  \overline{P+x}\subset\varphi^{m}(P) .

Proof. Since  \varphi is expansive, for any  P\in \mathcal{A} , there are  m>0,  x\in \mathbb{R}^{d} and  P'\in \mathcal{A} such that

(3.1)  P'+x\in\omega_{\sigma}^{m}(\{P\}) , and

(3.2)  \overline{P'+x}\subset\varphi^{m}(P) .

If for some  m,  x the conditions (3.1) and (3.2) hold, we write  P ∽  P'

We have a sequence  P_{1},  P_{2} , . . . of  \mathcal{A} such that for each  n we have  P_{n} ∽  P_{n+1} . Since  \mathcal{A} is

finite, for some  k,  l with  k<l we obtain  P_{k}  =P_{l} . Thus it suffices to show that if  P,  P',  P" are in
 \mathcal{A} and  P ∽  P' and  P' ∽  P" hold, then  P ∽  P" . But this is clear by a simple computation.  \square 
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Lemma 3.15. Take a finite nonempty set  \mathcal{A} of tiles. Let  \varphi :  \mathbb{R}^{d}  arrow  \mathbb{R}^{d} be an expansive

linear map. Let  \omega : Patch  \mathcal{A}(\mathbb{R}^{d})  arrow Patch_{\mathcal{A}}(\mathbb{R}^{d}) be a map such that supp  \omega (  \mathcal{P} )  =\varphi(supp  \mathcal{P}) fo
each  \mathcal{P}\in Patch_{\mathcal{A}}(\mathbb{R}^{d}) . Suppose there is  \mathcal{P}_{0}  \in Patch_{\mathcal{A}}(\mathbb{R}^{d}) such that

 \bullet  \mathcal{P}_{0}\subset\omega(\mathcal{P}_{0}) , and

 \bullet supp  \mathcal{P}_{0}\subset\varphi( supp  \mathcal{P}_{0})^{o}

Then there is  r>0 such that supp  \omega^{n}(\mathcal{P}_{0})  \supset\varphi^{n}(B(0, r)) for any  n\in \mathbb{Z}_{>0}.

Proof. For each  n we have  (supp  \mathcal{P}_{0})^{o}  \supset  \varphi^{-n}( supp  \mathcal{P}_{0})  \supset  \varphi^{-n-1}(supp  \mathcal{P}_{0}) . Take  x  \in

 \varphi^{-1}( supp  \mathcal{P}_{0}) . Then  0  =   \lim_{n}\varphi^{-n}(x)  \in  \varphi^{-1}( supp  \mathcal{P}_{0})  \subset  ( supp  \mathcal{P}_{0})^{o} . There exists  r  >  0 such

that  B(0, r)  \subset supp  \mathcal{P}_{0} . For each  n

supp  \omega^{n}(\mathcal{P}_{0})=\varphi( supp  \omega^{n-1}\mathcal{P}_{0})

 =\varphi^{2}( supp  \omega^{n-2}\mathcal{P}_{0})

 =\varphi^{n}(supp  \mathcal{P}_{0})

 \supset\varphi^{n}(B(0, r)) .

Proposition 3.16. Let  \sigma  =  (\mathcal{A}, \varphi, \omega) be a substitution rule. Then there are  P  \in  \mathcal{A},
 b\in \mathbb{R}^{d} and  m\in \mathbb{Z}_{>0} such that  P+b\in\omega_{\sigma}^{m}(\{P+b\}) and

  \bigcup_{n>0}\omega_{\sigma}^{nm}(\{P+b\})
is a tiling in  X_{\sigma}.

Proof. By Lemma 3.14, there are  P\in \mathcal{A},  a\in \mathbb{R}^{d} and  m\in \mathbb{Z}_{>0} such that

 P+a\in\omega_{\sigma}^{m}(\{P\}) , and

 \overline{P+a}\subset\varphi^{m}(P) .

Since  \varphi is expansive, a linear map  I-\varphi^{m} is invertible. Set  b=(I-\varphi^{m})^{-1}(a) . Then we have

(3.3)  P+b\in\omega_{\sigma}^{m}(\{P+b\}) , and

(3.4)  \overline{P+b}\subset\varphi^{m}(P+b) .

Set

 T= \bigcup_{n>0}\omega_{\sigma}^{nm}(\{P+b\}) .

By (3.3),  T is a patch. Moreover supp  \omega_{\sigma}^{m}(\mathcal{P})  =  \varphi^{m}( supp  \mathcal{P}) for any  \mathcal{P}  \in Patch  \mathcal{A}(\mathbb{R}^{d}) and
 supp\{P+b\}  \subset  \varphi^{m}((supp\{P+b\})^{o}) . Applying Lemma 3.15 for  \mathcal{P}_{0}  =\{P+b\} and  \omega=\omega_{\sigma}^{m} , we

see supp T  =\mathbb{R}^{d} and so  T is a tiling.

Finally if  \mathcal{P} is a finite subset of  T , then for some  n , the patch  \mathcal{P} is included in  \omega_{\sigma}^{mn}(\{P+b\})
and so  \mathcal{P} is  \sigma‐legal. Thus  T is in  X_{\sigma}.  \square 



Distribution of patches in tilings, tiling spaces and tiling dynamical systems 53

Lemma 3.17. Let  T be a tiling of  \mathbb{R}^{d} such that   \sup_{T\in T} diam  T  <  r for some  r  >  0.

Then for any subset  S\subset \mathbb{R}^{d}, supp T  \cap(S+\overline{B(0,r)})  \supset S.

Lemma 3.18. Let  \sigma=  (\mathcal{A}, \varphi, \omega) be a substitution rule. Then  X_{\sigma} is closed in Patch  (\mathbb{R}^{d})
(and in Patch  \mathcal{A}(\mathbb{R}^{d}) ) with respect to the local matching topology.

Proof. Take  T  \in  \overline{X_{\sigma}} . For any compact  K  \subset  \mathbb{R}^{d} and any compact neighborhood  V  0

 0\in \mathbb{R}^{d} , there is  T'\in \mathcal{U}_{K,V}(T)\cap X_{\sigma} . We can take  x\in V such that  T\cap K=(T'+x)\cap K . Thus

if  \mathcal{P} is a finite subset of  T , by taking  K large enough, we see that there are  T'\in X_{\sigma} and  x\in \mathbb{R}^{d}

such that  \mathcal{P}-x  \subset  T' . Since  \mathcal{P}-x is  \sigma‐legal,  \mathcal{P} is also  \sigma‐legal. Next, for any compact  L set

 K=L+\overline{B(0,r)} where  r> \max_{P\in \mathcal{A}} diam  P . By the above argument and Lemma 3.17

supp T  \supset supp T  \cap K

 =supp(T'+x)\cap K
 \supset L.

for some  T'\in X_{\sigma} and  x\in \mathbb{R}^{d} . It follows that supp T  =\mathbb{R}^{d} and so  T\in X_{\sigma}.  \square 

Remark. By Proposition 2.21,  X_{\sigma} is closed in  Tiling_{R}(\mathbb{R}^{d}) with respect to the cylinder

topology for any  R> \max_{P\in \mathcal{A}} diam  P.

Remark. Since a translate of  \sigma‐legal patch is again  \sigma‐legal, it is clear that  X_{\sigma} is invariant
under translation.

Lemma 3.19. If  T\in X_{\sigma} , then  \omega_{\sigma}(T)  \in X_{\sigma}.

Proof. Take a finite  \mathcal{P}  \subset  \omega_{\sigma}(T) . For any  T  \in  \mathcal{P} there is  S_{T}  \in  T such that  T  \in  \omega(S_{T}) .

Set  \mathcal{P}'  =  \{S_{T} T \in \mathcal{P}\} , then  \mathcal{P}  \subset  \omega_{\sigma}(\mathcal{P}') . Since  \mathcal{P}' is  \sigma‐legal, there are  P,  x,  n such that

 \mathcal{P}'\subset\omega_{\sigma}^{n}(\{P+x\}) , and  \mathcal{P}\subset\omega_{\sigma}^{n+1}(\{P+x\}) . This means that  \mathcal{P} is  \sigma‐legal. Moreover supp  \omega_{\sigma}(T)=
 \varphi( supp T )  =\mathbb{R}^{d} by Lemma 3.9.  \square 

Proposition 3.20 ([1], Proposition 2.2 . Let  (\mathcal{A}, \varphi, \omega) be a substitution rule. Then  \omega_{\sigma} :   X_{\sigma}arrow

 X_{\sigma} is surjective.

The following easy lemmas will be useful later.

Lemma 3.21. Let  \sigma=(\mathcal{A}, \varphi, \omega) be a su∪stitution rule and take  n\in \mathbb{Z}_{>0} . The

  \omega_{\sigma}^{n}(\mathcal{P})=\bigcup_{T\in \mathcal{P}}\omega_{\sigma}^{n}
(\{T\})
for any  \mathcal{P}\in Patch_{\mathcal{A}}(\mathbb{R}^{d}) .

Definition 3.22. For a substitution rule  \sigma=(\mathcal{A}, \varphi, \omega) and  n\in \mathbb{Z}_{>0} , define a substitution

rule  \sigma^{n} by  \sigma^{n}=(\mathcal{A}, \varphi^{n}, \omega^{n}) where  \omega^{n}(P)=\omega_{\sigma}^{n}(\{P\}) for each  P\in \mathcal{A}.

Remark. If  \sigma is primitive, then so is  \sigma^{n} for any  n.
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Lemma 3.23. Let  \sigma=(\mathcal{A}, \varphi, \omega) be a substitution rule and take  n\in \mathbb{Z}_{>0} . Then  (\omega_{\sigma})^{n}=
 (\omega^{n})_{\sigma^{n}} (the iterate of  \omega_{\sigma} coincides with the map associated to  \sigma^{n} in regard to Definition 3.8 .

Lemma 3.24. Let  \sigma be a primitive substitution. Then for any  n  \in  \mathbb{Z}_{>0} we have  X_{\sigma}  =

 X_{\sigma^{n}}.

Proof. Take   T\in  X_{\sigma^{n}} and a finite subset  \mathcal{P}  \subset  T . There are  P  \in  \mathcal{A},  m  >  0 and  x  \in  \mathbb{R}^{d}

such that  \mathcal{P}\subset\omega_{\sigma}^{nm}(\{P+x\}) (cf. Lemma 3.23). This shows that  \mathcal{P} is  \sigma‐legal and  T\in X_{\sigma}.

Next, take  T  \in  X_{\sigma} and finite  \mathcal{P}  \subset  T . There are  P  \in  \mathcal{A},  m  >  0 and  x  \in  \mathbb{R}^{d} such that

 \mathcal{P}\subset\omega_{\sigma}^{m}(\{P+x\}) . There is  K\in \mathbb{Z}_{>0} as in Definition 3.11. Take  l\in \mathbb{Z}_{>0} such that  nl\geq K+m.

We can take  y\in \mathbb{R}^{d} such that  P+y\in\omega_{\sigma}^{nl-m}(\{P\}) . Then

 \mathcal{P}\subset (\omega_{\sigma^{n}}^{n})^{l}(\{P+\varphi^{m-nl}(x-y)\}) ,

and so  \mathcal{P} is  \sigma^{n} ‐legal.  \square 

Definition 3.25. Let  \sigma=(\mathcal{A}, \varphi, \omega) be a substitution rule. If the set

 \{\omega_{\sigma}^{n}(\{P\})\cap B(x, R) |P\in \mathcal{A}, n>0, x\in 
\mathbb{R}^{d}\}/\sim

is finite for each  R>0 , then  \sigma is said to have FLC.

Note that by Proposition 2.21, on  X_{\sigma} the relative topologies of the local matching topology

and the cylinder topology coincide. We endow  X_{\sigma} this relative topology.

Lemma 3.26. Let  \sigma  =  (\mathcal{A}, \varphi, \omega) be a primitive substitution rule. Then the followin

conditions are equivalent:

1.  \sigma has FL  C^{\cdot}.

2.  X_{\sigma} has FL  C^{\cdot}.

3.  X_{\sigma} is compact.

Proof.  1\Rightarrow 2 . Suppose  \sigma has FLC. Take a positive number  R  >  0 . Take  T  \in  X_{\sigma} and
 x\in \mathbb{R}^{d} , and set  \mathcal{P}=T\cap B(x, R) . By definition of  X_{\sigma} there are  P\in \mathcal{A},  n>0 and  y\in \mathbb{R}^{d} such

that  \mathcal{P}  \subset  \omega_{\sigma}^{n}(\{P+y\}) . For some  z  \in  \mathbb{R}^{d} a translate of  \mathcal{P} appears inside  \omega_{\sigma}^{n}(\{P\})\cap B(z, R) .

Thus by Lemma 2.27,

 \{T\cap B(x, R) |x\in \mathbb{R}^{d}, T\in X_{\sigma}\}/\sim

is finite.

 2\Rightarrow 1 . Take  R>0 arbitrarily. If  P\in \mathcal{A} , then by primitivity and Lemma 3.19, there is  T\in X_{\sigma}
such that  P\in T . Take  n\in \mathbb{Z}_{>0} and  x\in \mathbb{R}^{d} . Then  \omega_{\sigma}^{n}(\{P\})\cap B(x, R)  \subset\omega_{\sigma}^{n}(T)\cap B(x, R) . Since

 \omega_{\sigma}^{n}(T)  \in X_{\sigma} (Lemma 3.19), by Lemma 2.27 and condition 2,

 \{\omega_{\sigma}^{n}(\{P\})\cap B(x, R) |P\in \mathcal{A}, n>0, x\in 
\mathbb{R}^{d}\}/\sim

is finite.

The equivalence of 2 and 3 follows from Lemma 3.18 and Lemma 2.34.  \square 
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Remark. It is known that given a substitution rule  \sigma  =  (\mathcal{A}, \varphi, \omega) , it is often possible to

prove FLC of  \sigma by observing “coronas” in iterates  \omega_{\sigma}^{n}(\{P\}) for any  P\in \mathcal{A} and small  n\in \mathbb{Z}_{>0}.

Remark. By Lemma 3.24 and Lemma 3.26, we see that for any primitive  \sigma and  n>0,  \sigma

has FLC if and only if  \sigma^{n} has FLC.

If  \sigma has FLC we obtain a topological dynamical system  (X_{\sigma}, \mathbb{R}^{d}) by action by translation.

Proposition 3.27. If  \sigma=(\mathcal{A}, \varphi, \omega) is primitive, then  (X_{\sigma}, \mathbb{R}^{d}) is minimal and any   T\in

 X_{\sigma} is repetitive.

Proof. Let  K be a positive integer appeared in Definition 3.11. Take a real number  r  >

  \max_{P\in \mathcal{A}} diam  P . Take  T,  S\in X_{\sigma} and a finite  \mathcal{P}\subset T arbitrarily. By definition of  X_{\sigma} , there are
 P  \in  \mathcal{A},  y  \in  \mathbb{R}^{d} and  n  >  0 such that  \mathcal{P}  \subset  \omega_{\sigma}^{n}(\{P+y\}) . Take  R  >  0 such that  \varphi^{K+n}B(0, r)  \subset

 B(0, R) . We claim

(3.5) for any  x\in \mathbb{R}^{d} , there is a translate of  \mathcal{P} in  S\cap B(x, R) .

Take  x  \in  \mathbb{R}^{d} . By Proposition 3.20, there is  S'  \in  X_{\sigma} such that  \omega_{\sigma}^{n+K}(S')  =  S . We can take
 T  \in  S' such that  \varphi^{-n-K}(x)  \in  \overline{T} . Then there is a translate of  P in  \omega_{\sigma}^{K}(\{T\}) , and there is a

translate of  \mathcal{P} in  \omega_{\sigma}^{n+K}(\{T\}) . Since  S\supset\omega_{\sigma}^{n+K}(\{T\}) and supp  \omega_{\sigma}^{n+K}(\{T\})  \subset B(x, R) , there is a

translate of  \mathcal{P} in  S\cap B(x, R) . Thus the clain (3.5) is proved. This firstly means that a translate
of  S contains  \mathcal{P} . By Lemma 2.5, this implies that for any neighborhood of  T , a translate of  S is

a member of that neighborhood. This means that  (X_{\sigma}, \mathbb{R}^{d}) is minimal. Secondly the claim (3.5)
shows that (by considering the case where  S=T)  T is repetitive.  \square 

Remark. This proposition shows that, if  \sigma is primitive then  X_{\sigma}=X_{\mathcal{S}} for any  S\in X_{\sigma}.

Definition 3.28. Let  \sigma  =  (\mathcal{A}, \varphi, \omega) be a substitution rule. A tiling   T\in Patch  \mathcal{A}(\mathbb{R}^{d}) is

called a fixed point if  \omega_{\sigma}(T)  =  T . A repetitive tiling of FLC which is a fixed point of some

substitution rule is called a self‐affine tiling.

Lemma 3.29. Let  \sigma be a substitution rule and  T be its fixed point. If  T is repetitive,

then  T\in X_{\sigma} . If  \sigma is primitive and  T\in X_{\sigma} , then  T is repetitive.

Proof. Suppose  T is repetitive. Take a finite  \mathcal{P}\subset T . There exists  R>0 such that for any
 x  \in  \mathbb{R}^{d} there is  y  \in  \mathbb{R}^{d} with  T\cap B(x, R)  \supset  \mathcal{P}+y . For arbitrary  T  \in  T , if  n is large enough

the support of the patch  \omega_{\sigma}^{n}(\{T\}) contains a ball of radius  R . Hence a translate of  \mathcal{P} appears in

 \omega_{\sigma}^{n}(\{T\}) , and so  \mathcal{P} is  \sigma‐legal. Hence  T\in X_{\sigma} . The converse under the assumption of primitivity
is proved in Proposition 3.27.  \square 

Lemma 3.30. For any primitive substitution rule  \sigma there is  n>  0 such that  \sigma^{n} admits

a repetitive xed point.

Proof. This is clear by Proposition 3.16, Lemma 3.24 and Lemma 3.29.  \square 
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Remark. Often we assume a primitive substitution admits a repetitive fixed point because

we may replace the original substitution  \sigma with  \sigma^{n} for some  n.

Theorem 3.31 ([23], [10]). If a substitution rule  \sigma is primitive and FLC, then the cor‐
responding topological dynamical system  (X_{\sigma}, \mathbb{R}^{d}) is uniquely ergodic, that is, it admits a unique

invariant probability measure.

We recall mixing property of dynamical systems in Definition 4.7.

Theorem 3.32 ([23], Theorem 4.1 . Let  \sigma be a primitive substitution of FL  C^{\cdot}. Then the
dynamical system  (X_{\sigma}, \mathbb{R}^{d}, \mu) is not mixing, where  \mu is the unique invariant probability measure.

Remark. The proof of the previous theorem is decomposed into two parts. Let  T be a

repetitive fixed point. First, we can prove the following: take any  T\in T and any vector  x such

that  T+x\in T . Then there is  c>0 such that for any finite patch  \mathcal{P} and  n\in \mathbb{Z}_{>0} , we have

(3.6)   \lim\frac{L(\mathcal{P}\cup(\mathcal{P}+\varphi^{n}(x)),T\cap A_{N})}{m(A_{N})
} \geqq c\frac{L(\mathcal{P},\omega^{n}(T))}{m(\varphi^{n}(T))}.
Here,

 \bullet  L(\mathcal{P}, \mathcal{Q})  =card\{x\in \mathbb{R}^{d} |\mathcal{P}+x\subset \mathcal{Q}\} (the number of translates of  \mathcal{P} inside  \mathcal{Q} ) for any patch
 \mathcal{P},  \mathcal{Q}.

 \bullet  A_{N} is the ball of radius  N with its center  0 , or more generally  (A_{N}) is a van Hove sequence.

The left‐hand side of inequality (3.6) is called the frequency of the patch  \mathcal{P} ∪  (\mathcal{P}+\varphi^{n}(x)) . Roughly
speaking, this inequality means that the probability of finding another translate of  \mathcal{P} if we find

a translate of  \mathcal{P} in the tiling  T and move our attention by a vector  \varphi^{n}(x) from that position, is
bounded below.

Next, from this fact about distribution of patches we can prove the property of the dynamical

system, i.e. that the dynamical system is not mixing. This is an example of a relation between

distribution of patches in tilings and corresponding tiling dynamical systems.

Solomyak [22] proved recognizability of certain substitution rules, which is a tiling analogue
of [12].

Theorem 3.33 ([22]). Let  \sigma be a primitive substitution rule of FL  C^{\cdot}. Then the map
 \omega_{\sigma} :  X_{\sigma}  arrow X_{\sigma} is injective if and only if each  T\in X_{\sigma} is non‐periodic.

In this theorem the “if” part is difficult. For the “only if” part see for example [1], Propo‐
sition 2.3.

For examples of substitution rule the following lemma is useful to prove that  \omega_{\sigma} is injective.

Lemma 3.34. Let  \sigma=  (\mathcal{A}, \varphi, \omega) be a substitution rule. Suppose that the following three
conditions

 \bullet  P\in \mathcal{A},
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 \bullet  \mathcal{P} is a  \sigma ‐legal finite patch, and

 \bullet  \omega(P)  \subset\omega_{\sigma}(\mathcal{P}) ,

imply  P\in \mathcal{P} . Then  \omega_{\sigma} :  X_{\sigma}  arrow X_{\sigma} is injective.

Proof. Take  T,  S\in X_{\sigma} and assume  \omega_{\sigma}(T)  =\omega_{\sigma}(S) . Take  T\in T arbitrarily. Set  \mathcal{P}=S\sqcap\overline{T}.

Then supp  \omega (T)  \subset supp  \omega_{\sigma}(\mathcal{P}) . Since  \omega(T)  \subset\omega_{\sigma}(S) , we have  \omega(T)  \subset\omega_{\sigma}(\mathcal{P}) . There are  P\in \mathcal{A}

and  x  \in  \mathbb{R}^{d} such that  T=  P+x . We have  \omega(P)  \subset  \omega_{\sigma}(\mathcal{P}-x) and by the assumption of this

lemma we obtain  P\in \mathcal{P}-x , and so  T\in \mathcal{P}\subset S . Hence  T\subset S and so  T=S.  \square 

By the following theorem we see for certain dynamical systems from substitution, topological

and measurable eigenvalues coincide and any measurable eigenfunction can be taken continuous.

(These notions are explained in Appendix.)

Theorem 3.35 ([24], Theorem 3.13). Let  (\mathcal{A}, \varphi, \omega) be a primitive tiling substitution of
FL  C^{\cdot}. Assume there is a repetitive xed point  T for this substitution. Then for  \xi  \in  \mathbb{R}^{d} , the

followin conditions are equivalent:

1.  \xi is a topological eigenvalue for the topological dynamical system  (X_{\sigma}, \mathbb{R}^{d}) ;

2.  \xi is a measurable eigenvalue for the measure‐preserving system  (X_{\sigma}, \mathbb{R}^{d}, \mu) , where  \mu is the

unique invariant probability measure;

3.  \xi satis es the followin two conditions:

(a) For any return vector  z (cf. Definition 2.2) for  T, we have

(3.7)   \lim_{narrow\infty}e^{2\pi i\langle\varphi^{n}(z),\xi\rangle}  =1,

and

(b) if  z\in \mathbb{R}^{d} and  T+z=T, the

 e^{2\pi i\langle z,\xi\rangle} =1.

Definition 3.36.

 \bullet An algebraic integer  \lambda  >  1 is called a Pisot number if all its Galois conjugates  \mu except  \lambda

itself satisfy  |\mu|  <  1.

 \bullet Let  \Lambda be a finite non‐empty set of algebraic integers. We say  \Lambda is a Pisot family if the

following condition holds:

if  \lambda\in\Lambda,  \mu\not\in\Lambda and  \lambda and  \mu are Galois conjugate, then  |\mu|  <  1.

For example,  \tau=   \frac{1+5}{2} is a Pisot number because  \tau and   \frac{1-5}{2} are all of its Galois conjugates.

A one‐point set  \{\tau\} forms a Pisot family.

For a linear map  \varphi :  \mathbb{R}^{d}arrow \mathbb{R}^{d} , its spectrum  sp(\varphi) is by definition the set of all eigenvalues.
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Theorem 3.37 ([11], Theorem 2.8). Let  (\mathcal{A}, \varphi, \omega) be a primitive substitution rule of FLC
admitting a repetitive fixed point. Assume  \varphi is diagonalizable over  \mathbb{C} and all the eigenvalues are

Galois conjugates of the same multiplicity. Then the following two conditions are equivalent:

1. The set  sp(\varphi) is a Pisot family.

2. The set of (topological and measurable) eigenvalues for  (X_{\sigma}, \mathbb{R}^{d}) is relatively dense.

§4. Appendix: generalities of dynamical systems

Definition 4.1. If X is a compact space,  G a locally compact abelian group and  \alpha :   Gc\sim

X is a continuous action, then the triple  (X, G, \alpha) (or simply the pair (X,  G)) is called a topo‐
logical dynamical system.

We often suppress  \alpha and simply write the image of  x  \in  X by  g  \in  G by  g  x . Recall a

character of  G is a homomorphism  \chi :  Garrow \mathbb{T} where  \mathbb{T}=\{z\in \mathbb{C} | |z| =1\}.

Definition 4.2. Let (X,  G ) be a topological dynamical system. A non‐zero continuous
function  f :  Xarrow \mathbb{C} is called a topological eigenfunction if there is a continuous character  \chi :   Garrow

 \mathbb{T} such that  f ( . x)  =\chi()f(x) for any  \in G and  x\in X . The character  \chi is called the eigenvalue
for the eigenfunction  f.

Remark. A non‐zero constant function is always a topological eigenfunction.

Definition 4.3. A topological dynamical system  (X, G) is said to be weakly mixing if it

admits no topological eigenfunctions other than constants.

Definition 4.4. A measure‐preserving system is a quintuplet  (X, \mathcal{F}, \mu, G, \alpha) where  (X, \mathcal{F}, \mu)
is a probability space,  G a locally compact abelian group and  \alpha :  Gc\sim X is a measure‐preserving

action, that is, for each  g\in G the map  \alpha_{g} :  Xarrow X preserves measurability and measure.

Definition 4.5. Let  (X, \mathcal{F}, \mu, G, \alpha) be a measure‐preserving system. An element  f  \in

 \mathcal{L}^{2}(\mu)\backslash \{0\} is called a measurable eigenfunction if there is a continuous character  \chi such that

two functions  x  \mapsto  f(g\cdot x) and  x  \mapsto\chi(g)f(x) coincide almost everywhere for any  g  \in  G . The

character  \chi is called the eigenvalue for the eigenfunction  f.

Definition 4.6. A measure‐preserving system  (X, \mathcal{F}, \mu, G, \alpha) is said to be weakly mixing

if there are no measurable eigenfunctions other than constants.

Remark. In both topological and measurable cases, if  G=\mathbb{R}^{d} , we identify  \hat{\mathbb{R}}^{d} and  \mathbb{R}^{d} and

say  \xi\in \mathbb{R}^{d} is an eigenvalue if the character  x\mapsto e^{2\pi i\langle\xi,x\rangle} is an eigenvalue for some eigenfunction.

We say a sequence  g_{1},  g_{2} , . . . of  G converges to infinity if for any compact   K\subset  G , we have

 g_{n}  \not\in K eventually.

Definition 4.7. Let  (X, \mathcal{F}, \mu, G, \alpha) be a measure‐preserving system. We say the system

is mixing if whenever we take  E,  F\in \mathcal{F} and a sequence  g_{1},  g_{2} , . . . in  G that converges to infinity,
we have  \mu(E\cap(g_{n}\cdot F))  arrow\mu(E)\mu(F) .
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