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S‐adic expansions related to continued fractions

By

Valérie BERTHÉ  *

Abstract

We consider  S‐adic expansions associated with continued fraction algorithms, where an  S‐adic ex‐
pansion corresponds to an infinite composition of substitutions. Recall that a substitution is a morphism
of the free monoid. We focus in particular on the substitutions associated with regular continued fractions
(Sturmian substitutions), and with Arnoux‐Rauzy, Brun, and Jacobi‐Perron (multidimensional) contin‐
ued fraction algorithms. We also discuss the spectral properties of the associated symbolic dynamical
systems under a Pisot type assumption.

§1. Introduction

We consider in this paper  S‐adic expansions associated with substitutions provided by (mul‐
tidimensional) continued fraction algorithms, in the continuation of [23]. We focus in particular
on the substitutions associated with regular continued fractions (Sturmian substitutions), and
with Arnoux‐Rauzy, Brun, and Jacobi‐Perron (multidimensional) continued fraction algorithms.
As new contributions with respect to [23], the present paper presents spectral results related to
the existence of rotation factors for Pisot type  S‐adic systems.

We recall that an  S‐adic expansion corresponds to an infinite composition of substitutions.

More precisely, an infinite word  u is said to admit an  S‐adic expansion  i

 u=   \lim  \sigma_{0}\sigma_{1} . . .  \sigma_{n-1}(a_{n}) ,
  narrow\infty

where  \sigma_{n} :  \mathcal{A}_{n+1}^{*}  arrow  \mathcal{A}_{n}^{*} is a sequence of substitutions that belong to the set  S , and  (a_{n})_{n\in \mathbb{N}}
a sequence of letters with  a_{n}  \in  \mathcal{A}_{n} for all  n . Without reference to the set of substitutions, we

use the generic term  S‐adic expansion. If the substitutions are known to belong to some set
 S , we use the term  S‐adic expansion. There is a deep parallelism between subshifts associated

with such expansions (under natural assumptions like primitivity, see Section 2.2) and Bratteli‐
Vershik systems endowed with adic transformations, hence the terminology ‘adic’, with the letter
 S referring to ‘substitution’. Indeed, substitutive symbolic dynamical systems correspond to
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stationary Bratteli diagrams,  S‐adic symbolic dynamical systems to non‐stationary ones, and
 S‐adic dynamical systems having a finite set of substitutions  \{\sigma_{n}\} , assumed furthermore to be

positive, correspond to finite (topological) rank systems. This connection between adic models
and substitutions has been widely investigated; see e.g. [49], or [26] and the references therein. As
an example, explicit constructions of adding machines associated with substitutions for Denjoy

systems in the framework of continued fractions are given in [76]. The main difference with
the usual Bratteli‐Vershik viewpoint is that we work here with measure‐preserving dynamical

systems and not in a topological dynamics framework. Recall that it was shown in [70] that the
Vershik adic construction provides a one‐to‐one correspondence between minimal Cantor systems

and properly ordered Bratteli diagrams: any Cantor minimal system admits a Bratteli‐Vershik

representation (via topological conjugacy).
The  S‐adic systems considered here are associated with continued fraction algorithms that

produce matrices with nonnegative entries: we consider these matrices as incidence matrices

of substitutions. We consider mostly algorithms under an additive form: it makes it easier to

associate with them substitutions. Indeed the produced matrices have entries that belong to

 \{0 , 1  \} . For more details on this approach, see e.g. [22]. We focus here on algorithms such as
considered in [74] having exponential convergence (their second Lyapunov exponent is negative).
We are in a so‐called  S‐adic Pisot framework. We thus consider spectral properties of the

associated symbolic dynamical systems.

Let us briefly sketch the contents of this paper. Section 2 is devoted to the basic notions on

substitutions and  S‐adic systems that will be needed here. Section 3 introduces the substitutions

and  S‐adic systems associated with continued fractions. We focus on Pisot  S‐adic systems in

Section 4, and on their spectral properties.

§2. First definitions

§2.1. Words and substitutions

Let  \mathcal{A} be finite set of letters, called alphabet. A finite word is an element of the free monoid
 \mathcal{A}^{*} generated by  \mathcal{A} . We will work here both with one‐sided words and two‐sided words (it is
easier from a combinatorial viewpoint to generate one‐sided words in an  S‐adic way but working

with two‐sided words makes the shift invertible).
A substitution  \sigma over the alphabet  \mathcal{A} is a non‐erasing endomorphism of the free monoid  \mathcal{A}^{*}

(the image of a letter is never equal to the empty word, it contains at least one letter).
For  i  \in  \mathcal{A} and for  w  \in  \mathcal{A}^{*},  |w|_{i} stands for the number of occurrences of the letter  i in the

word  w . Let us denote by  d the cardinality of  \mathcal{A} . Let  \sigma be a substitution. Its incidence matri
 M_{\sigma}  =  (m_{i,j})_{1\leq i,j\leq d} is defined as the square matrix with entries  m_{i,j}  =  |\sigma(j)|_{i} for all  i,  j.  A

substitution is said primitive if there exists a power of its incidence matrix whose entries are all

positive. We say that  \sigma is unimodular if  \det(M_{\sigma})  =\pm 1 . The following notion is natural in the

framework of Bratteli diagrams: a substitution over  \mathcal{A} is said proper if there exist two letters

 b,  e\in \mathcal{A} such that for all  a\in \mathcal{A},  \sigma(a) begins with  b and ends with  e.

The set  \mathcal{A}^{\mathbb{Z}} is equipped with the product topology of the discrete topology on each copy of  \mathcal{A},
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it is a compact space. This topology is defined by the usual distance: for  u\neq v\in \mathcal{A}^{\mathbb{Z}},  d(u, v)=
 2^{-\min\{n\in \mathbb{N};}  u_{|n|}\neq v_{|n|}\} . The same holds analogously for  \mathcal{A}^{\mathbb{N}}.

A word   w_{1}\cdots  w_{\ell} is a factor of the word  u if there exists  k such that   u_{k}\cdots  u_{k+\ell-1}  =w_{1}\cdots  w_{\ell}.

A word  u=(u_{n})_{n}  \in \mathcal{A}^{\mathbb{N}} (or in  \mathcal{A}^{\mathbb{Z}} ) is uniformly recurrent if every word occurring in  u occurs in
an infinite number of positions with bounded gaps, that is, if for every factor  w , there exists  s

such that for every  n,  w is a factor of un:::  u_{n+s-1} . The set of factors  \mathcal{L}_{u} of an infinite word
 u is called its language. A word  u is said to be linearly recurrent if there exists a constant  C

such that every factor of length Cn contains every factor of length  n . The (factor) complexity
function of an infinite word  u counts the number of distinct factors of a given length. We recall

that linearly recurrent words have at most linear factor complexity [49].
Let  \Sigma stand for the (left) shift acting on  \mathcal{A}^{\mathbb{Z}} (or on  \mathcal{A}^{\mathbb{N}} ), that is,  \Sigma((u_{n})_{n})  =  (u_{n+1}) . One

associates with any infinite word in  \mathcal{A}^{\mathbb{Z}} (or in  \mathcal{A}^{\mathbb{N}} ) the symbolic dynamical system  (X_{u}, \Sigma) , where
 X_{u} is the closure of the orbit of  u under the shift. We also associate such a symbolic system

 (X_{\sigma}, \Sigma) with a primitive substitution  \sigma by considering the symbolic system  X_{u} associated with

any periodic word  u (that is, a word  u fixed by some power of  \sigma ):  X_{\sigma}  :=X_{u} . By primitivity,  X_{\sigma}

does not depend on the choice of  u . For more details, see e.g. [86]. More generally a subshift (also
called shift)  (X, \Sigma) of  \mathcal{A}^{\mathbb{N}} (respectively  \mathcal{A}^{\mathbb{Z}} ) is a closed shift invariant subset of  \mathcal{A}^{\mathbb{N}} (respectively
 \mathcal{A}^{\mathbb{Z}}) . Its language  \mathcal{L}_{X} is the set of its factors, that is, the set of factors of words in  X.

Let  u be a word in  \mathcal{A}^{\mathbb{N}} . The frequency of a letter  i in  u is defined as the limit when  n tends

towards infinity, if it exists, of the number of occurrences of  i in  u_{0}u_{1}\cdots u_{n-1} divided by  n . The

vector  f whose components are given by the frequencies of the letters (if they exist) is called
the letter frequency vector of  u . The word  u has uniform letter frequencies if, for every letter  i

of  u , the number of occurrences of  i in   u_{k}\cdots  u_{k+n-1} divided by  n has a limit when  n tends to

infinity, uniformly in  k . Similarly, we can define the frequency and the uniform frequency of a

factor, and we say that  u has uniform frequencies if all its factors have uniform frequency. This

extends in a natural way to two‐sided words and shifts.

A probability measure  \mu on  X_{u} is said invariant if  \mu(\Sigma^{-1}A)  =  \mu(A) for every measurable

set  A\subset X_{u} . An invariant probability measure on  X_{u} is ergodic if any shift‐invariant measurable

set has either measure  0 or 1. The property of having uniform factor frequencies for a shift is

equivalent to unique ergodicity. For more details on invariant measures and ergodicity, we refer

to [86] and [26, Chap. 7].
Recall that if  \sigma is a primitive substitution, then  (X_{\sigma}, \Sigma) is minimal, linearly recurrent,

uniquely ergodic. Hence, any of its elements has at most linear factor complexity. For more

details, see [86, 53].
Let  u  \in  \mathcal{A}^{\mathbb{N}} and assume that each letter  i has frequency  f_{i} in  u . The discrepancy of  u is

 \triangle(u)  =   \lim\sup_{i\in \mathcal{A}},  n\in \mathbb{N}||u_{0}u_{1}\ldots u_{n-1}|_{i}  -nf_{i}| . The quantity  \triangle(u) is considered e.g. in [1, 2].
A word  u  \in  \mathcal{A}^{\mathbb{N}} is said to be  C‐balanced if for any pair  v,  w of factors of the same length of  u,

and for any letter  i\in \mathcal{A} , one has  ||v|_{i}-  |w|_{i}|  \leq C . It is said balanced if there exists  C>0 such

that it is  C‐balanced. If  u has letter frequencies, then  u is balanced if and only if its discrepancy

 \triangle(u) is finite. It is also said to have bounded deviation (the term ‘deviation’ refers here to the
ergodic averages, that is, the Birkhoff sums associated with the indicator function of the cylinders

associated with letters).
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Let us recall that an algebraic integer  \alpha>  1 is a Pisot‐Vijayaraghavan number or a Pisot

number if all its algebraic conjugates  \lambda other than  \alpha itself satisfy  |\lambda|  <  1 . According to Perron‐

Frobenius’ theorem (see e.g. [92]), if a substitution is primitive, then its incidence matrix admits
a dominant eigenvalue (it dominates strictly in modulus the other eigenvalues) that is (strictly)
positive. It is called its Perron‐Frobenius eigenvalue, or else its expansion factor. A primitive
substitution is said to be Pisot if its expansion number is a Pisot number. A primitive substitution

is said Pisot irreducible if the characteristic polynomial of its incidence matrix is the minimal

polynomial of a Pisot number. Recall that primitive Pisot substitutions are balanced, and have

finite discrepancy (see e.g. [1, 2]). See also [41, 89] for similar results for primitive tiling spaces.

§2.2.  S‐adic shifts

Let  S be a set of substitutions. Let  s=(\sigma_{n})_{n\in \mathbb{N}}\in S^{\mathbb{N}} , with  \sigma_{n} :  \mathcal{A}_{n+1}^{*}  arrow \mathcal{A}_{n}^{*} , be a sequence

of substitutions, and let  (a_{n})_{n\in \mathbb{N}} be a sequence of letters with  a_{n}  \in  \mathcal{A}_{n} for all  n . The infinite

word  u\in \mathcal{A}^{\mathbb{N}} is said to admit  (\sigma_{n}, a_{n})_{n} as an  S ‐adic expansion1  i

 u= \lim_{narrow\infty}\sigma_{0}\sigma_{1} . . .  \sigma_{n-1}(a_{n}) .

The sequence  s is called the directive sequence. We work here under the assumption that al

substitutions in  S are defined on the same alphabet  \mathcal{A}.

Let us stress the fact that any word admits many possible  S‐adic expansions, such as il‐

lustrated by the now classical example by J. Cassaigne (see [23, Remark 3] and Section 3.6).
We now introduce several properties of  S‐adic expansions that induce relevant properties for the

generated words.

An  S‐adic expansion with directive sequence  (\sigma_{n})_{n} is said weakly primitive if, for each  n,

there exists  r such that the substitution  \sigma_{n} . . .  \sigma_{n+r} is positive. It is said strongly primitive  i

the set of substitutions  \{\sigma_{n}\} is finite, and if there exists  r such that the substitution  \sigma_{n} . . .  \sigma_{n+r}

is positive, for each  n.

Assume we are given  a (weakly) primitive directive sequence  s  =  (\sigma_{n})_{n\in \mathbb{N}} . Let  u be an
infinite word of the form  u  =   \bigcap_{n}\sigma_{0}\cdots\sigma_{n}(\mathcal{A}^{\mathbb{N}}) , where the substitutions  \sigma_{n} of the directive  s

are defined on the alphabet  \mathcal{A} . According to [11], such a word is called a limit word of the
directive sequence  s (the intersection which defines  u is reduced to a unique infinite word by
primitivity of  s ). We define the shift  (X(s), \Sigma) generated by  s as  X(s)  :=X_{u} , for  u limit word
of  s , and its language  \mathcal{L}(s) as  \mathcal{L}(s)  :=\mathcal{L}_{u} . One checks that these definitions do not depend on
 u by Theorem 2.1 below. For a discussion on the way (two‐sided) subshifts can be associated
with directive sequences of substitutions (without any primitivity assumption), see [13] where
the notions of global (one can desubstitute infinitely often) and local  S‐adic subshifts (defined
in terms of language) are developed.

Theorem 2.1 ([53]). If an infinite word  u admits a weakly primitive  S ‐adic expansion,
then  u is uniformly recurrent and the shift  (X_{u}, \Sigma) is minimal. If moreover  u admits a strongly

primitive  S ‐adic expansion, then  (X_{u}, T) is also uniquely ergodic and it has at most linear facto

complexity.

1We recall that, without reference to the set of substitutions, we use the generic term  S‐adic expansion. If the
substitutions are known to belon to some set  \mathcal{S} , we use the term  \mathcal{S}‐adic expansion.
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Furthermore, an infinite word is linearly recurrent if and only if it admits a strongly primitive

and proper  S ‐adic expansion, where an  S ‐adic expansion is said to be proper if the substitutions

in  S are proper.

Analogous results exists in the framework of Vershik adic maps; see e.g. [48] for the case
of strongly primitive systems: Cantor minimal systems with topological finite rank are either

expansive or topologically conjugate to an odometer.

Recall that for a primitive matrix  M (with non‐negative entries), the cones  M^{n}\mathbb{R}_{+}^{d} nest down
to a single line directed by the Perron‐Frobenius eigendirection at an exponential convergence

speed (see e.g. [92]). Recall also that the situation for invariant measures for  S‐adic systems
is not as simple as it can be for substitutive dynamical systems, for which primitivity implies

unique ergodicity. This is well understood since Keane’s counterexample for unique ergodicity

for 4‐interval exchanges [71]: weak primitivity does not imply unique ergodicity.
We recall here a handy characterization of unique ergodicity (see [23, Theorem 5.7]). Let

 X(s) be an  S‐adic shift with directive sequence  s  =  (\sigma_{n})_{n} . Denote by  (M_{n})_{n} the associated

sequence of incidence matrices. We assume that the directive sequence  s is everywhere growing,

that is, for any sequence of letters  (a_{n})_{n} , one has   \lim_{narrow+\infty}|\sigma_{0}\cdots\sigma_{n-1}|(a_{n})  =+\infty . The  S‐adic

dynamical system  (X(s), \Sigma) is uniquely ergodic if and only if, for each  k , the limit cone

 C^{(k)}  = \bigcap_{narrow\infty}M_{k}
. . .  M_{n}\mathbb{R}_{+}^{d}

is one‐dimensional. Here  d stands for the cardinality of the alphabet  \mathcal{A} on which the substitutions

are defined. See also [34, 56, 101] for analogous rests for Bratteli‐Vershik adic maps.
The following condition is then a sufficient condition for the sequence of cones  M_{0}\cdots M_{n}\mathbb{R}_{+}^{d}

to nest down to a single line as  n tends to infinity (for square matrices with non‐negative entries).

Theorem 2.2 ([59, pp. 91−95]). Let  (M_{n})_{n} be a sequence of non‐negative integer matri‐
ces of size  d . Assume that there exist a strictly positive matrix  B and indices  j_{1}  <  k_{1}  \leq  j_{2}  <

 k_{2}  \leq. . . such that  B=M_{j_{1}}\cdots M_{k_{1}-1}  =M_{j_{2}}\cdots M_{k_{2}-1}  =\cdots . Then,

  \bigcap_{n\in \mathbb{N}}M_{0}\cdots M_{n-1}\mathbb{R}_{+}^{d}  =\mathbb{R}_{+}f for some positive vector  f\in \mathbb{R}_{+}^{d}.

This vector  f , when normalized so that the sum of its coordinates equals 1, is called the gen‐

eralized right eigenvector associated with the  S‐adic expansion of  u= \lim_{narrow\infty}\sigma_{0}\sigma_{1}\cdots\sigma_{n-1} (an).
In fact, this vector  f is the letter frequency vector of  u . The above condition of Theorem 2.2 im‐

plies that  u admits uniform letter frequencies (by [23, Theorem 5.7]), and even unique ergodicity
(in other words, uniform factor frequencies).

We now introduce further dynamics acting on the set of directive sequences. Let  S be a

finite set of substitutions, and let  (D, \Sigma, \mu) with  D  \subset  S^{\mathbb{N}} be an ergodic shift equipped with a

probability measure  \mu . Here  \Sigma stands for the shift acting on  D . We will assume  D to have

positive entropy, and it will be here a sofic shift or a shift of finite type. We call such a shift

an  S ‐adic system. Since we will work with continued fraction algorithms, it might prove useful

also to work with countable sets of substitutions  S , and thus with shifts  (D, \Sigma, \mu) defined on
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a countable alphabet  S (we then loose compactness for  S^{\mathbb{N}} ). This formalism is inspired by the
study of interval exchanges in connection with the TeichmUller flow, see e.g. [98, 102]. The main
difference here is that the second Lyapunov exponent is negative [103].

§3. Continued fractions

We introduce in this section the continued fraction algorithms we will work with and asso‐
ciated sets of substitutions.

§3.1. General definitions

We consider here unimodular continued fraction algorithms by following the formalism in‐

troduced in [74] which covers most classical unimodular types of algorithms, such as discussed
in [95, 36, 91].

Let  d  \geq  1 . A  d‐dimensional unimodular continued fraction algorithm associates with  \alpha  =

 (\alpha_{1}, \cdots , \alpha_{d-1})  \in  [0 , 1  ]^{d-1} a sequence of matrices  (A^{(n)})_{n\in \mathbb{N}} with values in  GL(d, \mathbb{Z}) . Matrices
 A^{(n)} play the role of partial quotients and the matrices  A^{(1)}\cdots A^{(n)} produce convergents. These

latter products provide Diophantine approximations (via their column vectors) of the direction
 (\alpha, 1) by points of the lattice  \mathbb{Z}^{d} . The rational approximations are obtained by using the following

projection2

 \pi :  \mathbb{R}^{d}\backslash \{ (x_{1}, \cdot \cdot \cdot x_{d}) |x_{d}=0\}arrow 
\mathbb{R}^{d-1},  (x_{1}, \cdot \cdot \cdot x_{d})\mapsto(x_{1}/x_{d}, \cdot \cdot \cdot x_{d-1}
/x_{d}) .

The last element of each column of  A^{(1)}\cdots A^{(n)} is a denominator for the associated simul‐

taneous rational approximations.

Such an algorithm producing a sequence of matrices  (A^{(n)})_{n\in \mathbb{N}} is usually defined in dynam‐

ical terms. We will have here mostly a measure‐theoretical viewpoint: the algorithms will be

defined a.e. with respect to the Lebesgue measure on  [0 , 1  ]^{d-1}.
Let   X\subset  [0 , 1  ]^{d-1} . (Usually  X is  [0,1]^{d-1} but some algorithms can also be defined on sets  0

the form  \{x= (x_{1}, \cdots , x_{d-1}) \in [0, 1]^{d-1} |0\leq x_{1} \leq. . . \leq 
x_{d-1} \leq 1\}. ) A  d‐dimensional continued
fraction map over  X is given by measurable maps

 T :  Xarrow X,  A :  Xarrow GL(d, \mathbb{Z}) ,  \theta :  Xarrow \mathbb{R}+

that satisfy the following: for a.e.  x\in X , one has

 \{\begin{array}{l}
x
1
\end{array}\} =\theta(x)A(x) \{\begin{array}{l}
T(x)
1
\end{array}\}
The associated continued fraction algorithm consists in iteratively applying the map  T on a

vector  x\in X which yields the matrices  A^{(n)}  :=A(T^{n}(x)) for   n\geq  1.

2Note one can also choose to work directly on the projective space  \mathbb{P}(\mathbb{R}^{d}) by associating with each element
 [y_{1} : y_{2} : : y_{d-1} : y_{d}] the representative defined by   \max y_{i}  =  1 and by working with projectivizations  0

matrices in  GL(d, \mathbb{Z}) .
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Let

 A_{n}(x)=A(x)A(T(x))_{:::} A(T^{n-1}(x)) , \theta_{n}(x)=\theta(x)\theta(T(x))_
{:::} \theta(T^{n-1}(x)) .

One has

 \{\begin{array}{l}
x
1
\end{array}\} =\theta_{n}(x)A_{n}(x) \{\begin{array}{l}
T^{n}(x)
1
\end{array}\}
The map  A :  X  arrow  GL(d, \mathbb{Z}) is a matrix cocycle. Indeed one has the following cocycle type
relation

 A_{m+n}(x)=A_{m}(x)A_{n} (Tmx):

The map  \theta can be considered as an arithmetic uniformization map. In the regular continued

fraction case (see Section 3.2), one has  \theta_{n}(x)  =  xT_{G}(x)\cdots T_{G}^{n-1}(x)  =  |q_{n-1}x-p_{n-1}| , where
 p_{n}/q_{n} stands for the n‐th convergent of  x , and  T_{G} :  [0, 1]arrow  [0 , 1  ],  x  \mapsto  \{1/x\} , if  x  \neq  0 , with

 T_{G}(0)  =  0 . More generally, if  l_{n}(x) stands for the vector provided by the last line of  A_{n}(x)^{-1},
then  \theta_{n}(x)=\langle l_{n}(x) ,  (x, 1)\rangle.

Such an algorithm is said Markovian or ‘without memory’. Indeed, the  (n+1)th step of the

algorithm only depends on the map  T and on the value  T^{n}(\alpha) , contrary for example to lattice

reduction or LLL algorithms, such as developed e.g. in [55, 54, 73, 68, 35].
An algorithm is said to be positive if the linear cocyle  A takes its values in the set  0

matrices with nonnegative entries. The algorithm thus produces a sequence of basis of  \mathbb{R}^{d} that

all determine a homogeneous cone in  \mathbb{R}^{d} that contains the ray  \{\lambda(\alpha, 1) | \lambda\geq 0\} . The convergence

(weak or strong) has to do with the fact that the vectors of the basis have to converge (in angle
or in distance) to the ray  (\alpha , 1  ) .

An algorithm is said to be additive in [74] if all the matrices belong to a finite set. We
even consider here positive algorithms whose matrices have coefficients that belong to  \{0 , 1  \} : the

linear cocyle  A takes its values in the set matrices with entries in  \{0 , 1  \}.
The associated maps are assumed to be measurable piecewise continuous maps. Usually

 T is piecewisely an homography, and is called linear simplex‐splitting algorithm in [74]: if the
algorithm is assumed to be positive, the homogeneous cone   \{ (y_{1}, \cdots , y_{d}) \in \mathbb{R}_{+}^{d} | y_{d} = \max y_{i}\}
is partitioned into a countable number of homogeneous integral subcones (via the matrices pro‐
duced by  A ) and the corresponding maps are fractional linear transformations provided (via a
‘projectivization’ step) by the inverses of the matrices produced by  A . For the existence of an
absolutely continuous invariant measure, see e.g. [15, Lemma 2.1].

We then can associate with the matrices produced by a positive algorithm substitutions

whose incidence matrices coincide with them. In other words, the continued fraction algorithm

produces directive sequences, and thus  S‐adic words and shifts. The connection between con‐

tinued fraction algorithms and  S‐adic shifts then goes through frequencies: an expansion of the

continued fraction algorithm produces an  S‐adic shift which is such that its letter frequency

vector (under suitable assumptions that provide its existence) admits this particular expansion.
The continued fraction algorithm can be seen as a renormalization process that acts on the

frequencies of words.
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Observe also that the interest of this measure‐theroretical dynamical approach is that under

rather mild assumption, Kingman’s subadditive ergodic theorem [72] or Oseledet’s multiplica‐
tive ergodic theorem [83] can be applied. Ergodic invariant measures of the continued fraction
algorithm can then be transported to the set of directive sequences.

§3.2. Sturmian words

The first example of continued fraction substitutions, namely Sturmian substitutions, is

provided by the regular continued fraction algorithm. Recall that the Gauss map

 T_{G} :  [0, 1]arrow  [0 , 1  ],  x\mapsto\{1/x\} , ifx  \neq 0,  andT_{G}(0)=0

produces the digits in the continued fraction algorithm. Consider the continued fraction expan‐

sion of   x\in  (0,1) , i.e.,  x=   \frac{1}{1} ; one has  a_{n}=  [ \frac{1}{T^{n-1}(x)}] for   n\geq  1 . Matricially, this can

 a_{1}+-
  a_{2}+\cdots

be written as

 \{\begin{array}{l}
x
1
\end{array}\} =x \{\begin{array}{ll}
0   1
1[\frac{1}{x}]   
\end{array}\} \{\begin{array}{l}
T(x)
1
\end{array}\}
The Gauss map produces infinitely many matrices (  [1/x] takes generically infinitely many values),
this will thus prove to be more convenient to work with its additive version, the Farey map  T_{F},

is defined on  [0 , 1  ] as

 T_{F}(x)=   \frac{x}{1-x} if   x\leq  1/2,  T_{F}(x)=   \frac{1-x}{x} if   x\geq  1/2.

Its linear form is defined on  8he cone  \mathbb{R}_{+}^{2}\backslash \{0\} as follows

 T^{(L)} :  \{\begin{array}{l}
(A, B)\mapsto(A-B, B) , if A\geq B
(A, B)\mapsto(A, B-A) , if A\leq B.
\end{array}
;

Let

 M_{1} = \{\begin{array}{l}
11
01
\end{array}\} ,

Let  (A_{1}, B_{1})=T_{F}^{(L)}(A, B) . One has

 \{\begin{array}{l}
A
B
\end{array}\}  =M_{1}  \{\begin{array}{l}
A_{1}
B_{1}
\end{array}\} if  A\geq B,

 M_{2}  =  \{\begin{array}{l}
10
11
\end{array}\}

 \{\begin{array}{l}
A
B
\end{array}\}  =M_{2}  \{\begin{array}{l}
A_{1}
B_{1}
\end{array}\} if  A\leq B.

If one works directly with the Farey map  T_{F} , things are more complicated to describe

matricially than when one works with the linear form: this is why we favor linear descriptions  0

algorithms in the following. Indeed, let  x= \inf(A, B)/\max(A, B) . If  A\geq B , one has  x=B/A,
and

 \{\begin{array}{l}
1
x
\end{array}\}  =   \frac{1}{1+T_{F}(x)}M_{1}  \{\begin{array}{l}
1
T_{F}(x)
\end{array}\} if   x\leq  1/2,  \{\begin{array}{l}
1
x
\end{array}\}  =xM_{1}  \{\begin{array}{l}
T_{F}(x)
1
\end{array}\} if   x\geq  1/2,
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and if  A\leq B , then  x=A/B , and

 \{\begin{array}{l}
x
1
\end{array}\}  =   \frac{1}{1+T_{F}(x)}M_{2}  \{\begin{array}{l}
T_{F}(x)
1
\end{array}\} if   x\leq  1/2,  \{\begin{array}{l}
x
1
\end{array}\}  =xM_{2}  \{\begin{array}{l}
1
T_{F}(x)
\end{array}\} if   x\geq  1/2.

Let us thus come back to the linear form. Consider the substitutions  \mu_{1} and  \mu_{2} defined over

the alphabet  \mathcal{A}_{2}  =\{1 , 2  \} as

 \mu_{1} :  1\mapsto 1,  2\mapsto 21  \mu_{2} :  1\mapsto 12,  2\mapsto 2.

They have respectively as incidence matrices  M_{1} and  M_{2} . Let  (i_{n}) be a sequence in  \{ 1,  2\}^{\mathbb{N}} (it
will provide the directive sequence  (\mu_{i_{n}})_{n} )  .One checks that the following limit

 u= \lim_{narrow\infty}\mu_{i_{0}}\mu_{i_{1}}\cdots\mu_{i_{n-1}}(1)

exists. Furthermore, if the sequence  (i_{n})_{n\geq 0} is not ultimately constant, then the directive se‐

quence  (\mu_{i_{n}})_{n} is weakly primitive. A Sturmian word is an infinite word whose set of factors
coincides with the set of factors of an infinite word of the previous form, with the sequence

 (i_{n})_{n\geq 0} being not ultimately constant, that is, an element of a minimal symbolic dynamical

system  (X_{u}, \Sigma) generated by a word  u of the previous form, with  (i_{n})_{n} not constant. For more

on Sturmian words, see e.g. [75, 79, 85].
A Sturmian substitution is a substitution such that the image of any Sturmian word is a

Sturmian word. Sturmian substitutions are known to be exactly the substitutions that belong

to the monoid generated by  \mu_{1} and  i_{1} :   1\mapsto  1,   2\mapsto  12 , together with the permutation that

exchanges the letters (one checks that  i_{2} :  1\mapsto 21,2\mapsto 2 also belongs to this monoid). Moreover,
any fixed point of a Sturmian substitution is a Sturmian word. For more details, see for instance

[75, Section 2.3].
As an example the fixed point  u  =   \lim_{narrow\infty}\sigma^{n}(1) of the Fibonacci substitution  \sigma defined

by  \sigma(1)  =  21 and  \sigma(2)  =  1 is a Sturmian word. Consider indeed the square of  \sigma . One has
 \sigma^{2}  =\tilde{\mu}_{1}\tilde{\mu}_{2} . Hence  u= \lim_{narrow\infty}(\tilde{\mu}_{1}\tilde{\mu}_{2})^{n}(1) .

Consider a Sturmian word of the form  u= \lim_{narrow\infty}\mu_{i_{0}}\mu_{i_{1}}\cdots\mu_{i_{n-1}}(1) with directive sequence

 s=(\mu_{i_{n}})_{n} . If the sequence  (i_{n})_{n} is not ultimately constant, then one checks that the conditions

of Theorem 2.2 apply, and that the frequencies of letters exist for  u and for the (uniquely ergodic)
shift symbolic system  (X_{u}, \Sigma) it generates. Let  f  =  (f_{1}, f_{2}) be the letter frequency vector  0

 u (that is, the generalized right eigenvector provided by   \bigcap_{n\in \mathbb{N}}M_{i_{0}}\cdots M_{i_{n-1}}\mathbb{R}_{+}^{d}. ) One recovers
the sequence  (i_{n})_{n} from the continued fraction expansion of  f_{1}/f_{2} . This allows one to deduce

numerous properties of Sturmian words from the continued fraction expansion of  f_{1}/f_{2} . For

instance, a Sturmian word is linearly recurrent if and only if its partial quotients are bounded

[79, 53].

§3.3. Arnoux‐Rauzy words

Arnoux and Rauzy introduced in [9] a generalization of Sturmian words to higher size alpha‐
bets: these words are now called Arnoux‐Rauzy words, or else, strict episturmian words (see e.g.
the survey [61]). Arnoux‐Rauzy words are particular codings of interval exchanges. In particular,
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they have factor complexity  (d-1)n+1 when defined on an alphabet of cardinality  d . Never‐

theless, they do not behave like generic interval exchanges. Some Arnoux‐Rauzy words might
have bounded deviation, other not. However, when  d=  2 , Sturmian words are known to be 1‐

balanced [75] (they have bounded deviation); they even are exactly the 1‐balanced infinite words
that are not eventually periodic. The combinatorial and spectral behaviors of Arnoux‐Rauzy

words have been described very accurately in [43, 42]. In particular, there exist Arnoux‐Rauzy
words that are (measure‐theoretically) weak mixing. Note that Arnoux‐Rauzy words are widely
studied, in the word combinatorics community, but also in the interval exchange community,

for their connections with systems of isometries of thin type such as introduced by Dynnikov in

[45]. Systems of isometries [60] are a natural generalization of interval exchange transformations
and interval translation mappings. The Arnoux‐Rauzy continued fraction algorithm that will

be described below has moreover the particularity to be defined on a set of zero mesure for
 d=3 , called Rauzy gasket; see [10, 45, 44] and the references therein; see also [17] which proves
that the Hausdorff dimension of the Rauzy gasket is less than 2, and [18] which constructs a
natural invariant measure for the Rauzy gasket (an invariant measure of maximal entropy) using
thermodynamical formalism.

Let  \mathcal{A}  =  \{1, 2, :::, d\} . The set of elementary  Arnoux-Rauzy substitutions is defined as

 S_{AR}=\{\mu_{i} |i\in \mathcal{A}\} where

 \mu_{i} :  i\mapsto i,  j\mapsto ji for  j\in \mathcal{A}\backslash \{i\}.

One recovers Sturmian words in the case  d=2 . An Arnoux‐Rauzy word [9] is an infinite word
in  \mathcal{A}^{\mathbb{N}} whose set of factors coincides with the set of factors of a sequence of the form

  \lim_{narrow\infty}\mu_{i_{0}}\mu_{i_{1}} . . .  \mu_{i_{n}}(1) ,

where the sequence  (i_{n})_{n\geq 0}  \in \mathcal{A}^{\mathbb{N}} is such that every letter in  \mathcal{A} occurs infinitely often in  (i_{n})_{n\geq 0}.
Under this latter assumption, the directive sequence  (\mu_{i_{n}})_{n} is weakly primitive. Note that the

sequence  (i_{n}) associated with an Arnoux‐Rauzy word  u is uniquely determined. The sequence

 (\mu_{i_{n}})_{n} is called the directive sequence of  u.

The symbolic dynamical systems generated by Arnoux‐Rauzy words for which the directive

sequence  (\mu_{i_{n}})_{n\geq 0}  \in  \mathcal{A}^{\mathbb{N}} is such that every letter in  \mathcal{A} occurs infinitely often in  (i_{n})_{n\geq 0} are

minimal and uniquely ergodic. Minimality comes from Theorem 2.1, and unique ergodicity

comes from Theorem 2.2. We can thus consider the letter frequency vector  f associated with

the shift generated by the directive sequence  (\mu_{i_{n}})_{n}.
Let  f^{(n)} stand for the letter frequency vector  f associated with the shift generated by the

directive sequence  \Sigma^{n}((i_{k})_{k})=  (i_{n+k})_{k\geq 0} . For all  n , there exist  \lambda_{n}\in \mathbb{R}_{+} such that

 \lambda_{n}f=M_{i_{1}} . . .  M_{i_{n}}f^{(n)}.

The coefficient  \lambda_{n} can be expressed in terms of the coefficients of the matrix  (M_{i_{1}}\cdots M_{i_{n}})^{-1} ;

indeed one has  1/\lambda_{n}=  \langle(M_{i_{1}}\cdots M_{i_{n}})^{-1}f,  ( 1,  \cdots ,  1)\rangle.
The Rauzy gasket discussed above is defined as the set of frequencies of Arnoux‐Rauzy

words. We recall that this set has zero measure for  d=3.

The continued fraction algorithm which acts as a renormalisation map is thus defined in its

linear version on the cone  \mathbb{R}_{+}^{3}\backslash \{0\} as follows for the  d=3 case (see e.g. [9]):
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 \{\begin{array}{l}
(A, B, C)\mapsto(A-B-C, B, C) if A>B+C
(A, B, C)\mapsto(A, B-A-C, C) if B>A+C
(A, B, C)\mapsto(A, B, C-A-B) if C>A+B.
\end{array}
The algorithm is not defined if one has equality between a coordinate and the sum of two other

coordinates, but we only consider these algorithms in a measure‐theoretical sense.

Note that if one considers transposes of the substitutions, then one gets the so‐called fully

subtractive algorithm (see e.g. [91]), which can be described as follows: one subtracts the smallest
entry to the other ones. For more on this algorithm and on variations, see [57].

There is a simple characterization of primitivity for finite products of Arnoux‐Rauzy sub‐
stitutions.

Theorem 3.1. [14] Let  A  =  A_{i_{1}}\cdots A_{i_{n}} be a product of incidence matrices of Arnoux‐
Rauzy substitutions in dimension  d . The matrix  A is primitive if and only if all letters  i

 \{ 1,  \cdots ,  d\} occur in  (i_{1}, \cdots , i_{n}) . Moreover, if the matrix is primitive, then it is Pisot irreducible.

Here again there is a simple characterization of linearly recurrent Arnoux‐Rauzy words.  A

directive sequence  (\mu_{i_{n}})_{n}  \in  \{1, 2, \cdots , n\}^{\mathbb{N}} that contains each  \mu_{i} infinitely often is said to have

bounded strong partial quotients if every substitution in  (\mu_{i_{n}})_{n} occurs with bounded gaps.

Proposition 3.2. An Arnoux‐Rauzy word is linearly recurrent if and only if it has bounded

strong partial quotients.

Proof. This proof comes from [29]. Let  u be an Arnoux‐Rauzy word with directive sequence
 (\mu_{i_{n}})_{n} . It is easy to check that strong partial quotients have to be bounded for an Arnoux‐

Rauzy word  u to be linearly recurrent. Conversely, we cannot apply directly Theorem 2.1 since

the substitutions are not proper. Nevertheless, one can deduce linear recurrence from [53] by
noticing that the largest difference between two consecutive occurrences of a word of length 2

in  u^{(k)} is uniformly bounded (with respect to  k ), where  u^{(k)} is associated with  (\mu_{i_{n}})_{n\geq k}.  \square 

§3.4. Brun substitutions

We now consider an algorithm, namely Brun algorithm, that is defined for every vector  0

frequencies, contrarily to the Arnoux‐Rauzy algorithm. Together with Jacobi‐Perron algorithm,

it is one of the most classical algorithms studied in this framework. Brun algorithm is closely

related to the modified Jacobi‐Perron algorithm, introduced in [84]: this latter algorithm is a
two‐point extension of Brun algorithm.

One efficient way to describe Brun algorithm is to consider its linear version (see e.g. [40]):
it consists in subtracting the second largest entry to the largest. We focus here on the two‐

dimensional case for the sake of simplicity. Its 3‐dimensional linear and additive form is thus

given as follows on th8 cone  \mathbb{R}_{+}^{3}\backslash \{0\} :

 \{\begin{array}{l}
(A, B, C)\mapsto(A, B, C-B) , if B\leq C-B,
(A, B, C)\mapsto(A, C-B, B) , if A\leq C-B\leq C,
(A, B, C)\mapsto(C-B, A, B) , if C-B\leq A.
\end{array}
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Its projectivized additive form  T_{B} is defined on the set  \triangle_{2}  :=  \{(x_{1}, x_{2})  \in  \mathbb{R}^{2} :  0  \leq  x_{1}  \leq

 x_{2}  \leq  1\} as follows

 T_{B} :  \{\begin{array}{l}
(x_{1}, x_{2})\mapsto (\frac{x_{1}}{1-x_{2}}, \frac{x_{2}}{1-x_{2}}) , for x_{2}
\leq \frac{1}{2},
(x_{1}, x_{2})\mapsto (\frac{x_{1}}{x_{2}}, \frac{1-x_{2}}{x_{2}}) , for 
\frac{1}{2} \leq x_{2} \leq 1-x_{1},
(x_{1}, x_{2})\mapsto (\frac{1-x_{2}}{x_{2}}, \frac{x_{1}}{x_{2}}) , for 1 -- x_
{1} \leq x_{2}.
\end{array}
The Brun matrices are

 (\begin{array}{l}
100
010
011
\end{array}) , (\begin{array}{l}
100
001
011
\end{array}) , (\begin{array}{l}
010
001
101
\end{array}) :

The set of Brun subs itutions  S_{BR} is defined on the alphabet  \mathcal{A}_{3}  =  \{1 , 2, 3  \} as  S_{BR}  =

 \{\beta_{1}, \beta_{2}, \beta_{3}\} with

 \beta_{1} :  \{\begin{array}{l}
1\mapsto 1
2\mapsto 23
3\mapsto 3
\end{array}  \beta_{2} :  \{\begin{array}{l}
1\mapsto 1
2\mapsto 3
3\mapsto 23
\end{array}  \beta_{3} :  \{\begin{array}{l}
1\mapsto 3
2\mapsto 1
3\mapsto 23
\end{array}
Their incidence matrices coincide with the three Brun matrices above.

There is again a simple characterization of primitivity for finite products of Brun matrices

(see [14]). Let  B=B_{i_{1}}\cdots B_{i_{n}} be a product of Brun matrices of size 3. Then,  B is primitive  i

and only if the matrix B3 occurs in the product. If  B is primitive, then it is Pisot irreducible.

There is no canonical choice for Brun substitutions. In particular one could choose to flip

the letters in the definition of the  \beta_{i} ’s by mapping letters on 32 instead of mapping them on

23. Experimental studies have confirmed that consistency in the ordering of letters yields better

approximation results (see e.g. [25] for a discussion on experimental studies that have been
conducted). There exist also in the literature various sets of Brun substitutions according to the
fact that one wants to use substitutions or so‐called dual substitutions: the differences one can

encounter among these substitutions comes from the fact that the substitutions might be defined

with respect to the Brun matrices or with respect to their transposes. Some choices are given

e.g. in [14, 24, 30, 46].

§3.5. Jacobi‐Perron substitutions

The Jacobi‐Perron algorithm is not defined in terms of ordered positions. We focus here

also on the two‐dimensional case for the sake of simplicity. It is defined on the cone  \{(A, B, C)  \in

 \mathbb{R}_{+}^{3}\backslash \{0\}  |  0\leq A,  B\leq C\} as follows:

 (A, B, C)\mapsto(B-[B/A]A, C-[C/A]A, A) if  A\neq 0.

Its projectivized form is defined on  [0 , 1  ]^{} as

 T_{JP} :  (x_{1}, x_{2})\mapsto(\{x_{2}/x_{1}\}, \{1/x_{1}\}) .

The Jacobi‐Perron matrices are of the form
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 M_{a,b}= (\begin{array}{ll}
0   01
1   0a
0   b1
\end{array})
for non‐negative integers  a and  b , and  a\leq b,   b\geq  1.

The set of Jacobi‐Perron substitutions  S_{JP} is defined on the alphabet  \mathcal{A}_{3}  =  \{1 , 2, 3  \} as

 S_{JP}=\{\sigma_{a,b}\} with

 \sigma_{a,b} :  1\mapsto 2,  2\mapsto 3,  3\mapsto 12^{a}3^{b}

This algorithm is not complete but nevertheless Markovian. Let  (x_{1}^{(n)}, x_{2}^{(n)})  =T_{JP}^{n}(x_{1}, x_{2}) ,

 a_{n}=  [ \frac{x_{2}^{(n-1)}}{x_{1}^{(n-1)}}],  b_{n}=  [ \frac{1}{x_{1}^{(n-1)}}] , for all  n . The sequence  (a_{n}, b_{n})_{n\geq 1} is the Jacobi‐Perron expansion

of some vector  (x_{1}, x_{2}) if only if for every  n  \geq  1 , we have  0  \leq  a_{n}  \leq  b_{n},  b_{n}  \neq  0 , and  a_{n}  =  b_{n}

implies  a_{n+1}  \neq 0 (see e.g. [82, 91]).
By [52], every finite product of Jacobi‐Perron substitutions is primitive and Pisot irreducible

if  0\leq a_{n}  \leq b_{n} and  b_{n}\neq 0 for all   n\geq  1.

Here again there exist also Jacobi‐Perron substitutions associated with the transpose ma‐

trices  M_{a,b} such as considered in [31, 30]. This depends on the chosen application. Note also
that we can decompose Jacobi‐Perron algorithm into additive steps.

§3.6. Elementary substitutions

We work here with continued fractions algorithms which can be decomposed, under their

linear form, as successions of steps that consist in subtracting an element to another one, together

with permutations of entries. Their associated matrices (more precisely the non‐negative ones
produced by the linear cocyle  A ) can thus be decomposed as products of elementary matrices
together with permutation matrices.

We consider elementary matrices  M_{ij} defined as follows for  i  \neq  j  (i, j \in \{1,2, \cdots , d\}) :

the entries of index  (i, j) or  (k, k)  (k \in \{1,2, \cdots , d\}) are equal to 1, and  M_{ij} has zero entries

elsewhere. The image by  M_{ij} of the column vector  (a_{1}, \cdots , a_{d}) is the vector whose ith entry

is equal to  a_{i}+a_{k} , and whose other coordinates are unchanged. The inverse matrix  ij-1 thus

performs the following: the ith entry is replaced by  a_{i}-a . and the other ones are unchanged. We

now introduce the substitutions that have as incidence matrices the elementary matrices  M_{i}\cdot,

for  i,  j\in\{1, 2, \cdots , d\} , with  i\neq j :

 \sigma_{ij}:j\mapsto ij,  k\mapsto k for  k\neq j  \overline{\sigma}_{ij}:j\mapsto ji,  k\mapsto k for  k\neq j.

We consider the set  S_{e}  =  \{\sigma_{ij} i \neq j, 1 \leq i, j \leq d\}\cup\{\overline{\sigma}_{ij} i \neq
j, 1 \leq i, j \leq d\}  0

elementary substitutions. We also consider the set  \mathcal{P} of substitutions whose incidence matrices

are permutations. For instance, for  d=2 , the substitutions in  \mathcal{P} are

 1\mapsto 1,  2\mapsto 2 and  1\mapsto 2,  2\mapsto 1.

These substitutions are free group automorphisms: when extended to morphisms of the

free group generated by  \mathcal{A} , they are invertible. They are furthermore positive free group au‐

tomorphisms since they map letters in  \mathcal{A} on words that contain only occurrences of positive
letters.
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We say that a positive automorphism of the free group on  \mathcal{A} is tame if it belongs to the

submonoid generated by the set of permutations  \mathcal{P} of  \mathcal{A} together with the set of elementary

substitutions  S_{e} of  \mathcal{A} . Recall that the group of all automorphisms (positive or not) is generated
by the elementary Nielsen automorphisms [81].

Sturmian substitutions are known to be tame: they are generated by elementary substitu‐

tions together with permutations. Every two‐letter positive automorphism is also a product  0

permutations and elementary substitutions [100]. In other words, a 2‐letter substitution generates
a Sturmian word if and only if it is a free group automorphism (for more detail, see e.g. [75] and
the references therein). The connections between invertible substitutions, products of elementary
substitutions (and permutations) and generalized Sturmian words does not hold anymore on a
larger size alphabet. The monoid of positive automorphisms is not finitely generated as soon as

the alphabet has at least three generators. Recall indeed that there exist three‐letter invertible

substitutions that cannot be decomposed as products of invertible substitutions, according to

[96].
More generally,  S‐adic expansions that are produced by elementary substitutions on an al‐

phabet of size at least 3 do not behave like in the Sturmian case, in particular with respect to fac‐

tor complexity. Recall that an  S‐adic expansion defined by the directive sequence  (\sigma_{n})_{n\in \mathbb{N}} is said

to be everywhere growing if for any sequence of letters  (a_{n})_{n} , one has   \lim_{narrow+\infty}|\sigma_{0}\cdots\sigma_{n-1}|(a_{n})=
 +\infty . According to [23, Theorem 4.3], any everywhere growing  S‐adic word  u whose directive se‐
quence takes its values in a finite set  S of substitutions has zero entropy, that is,   \lim_{narrow\infty}\frac{\log p_{u}(n)}{n}  =

 0 , where  p_{u} stands for the factor complexity of  u . In particular, any everywhere growing  S_{e}' ‐adic

word  u (e.g., any weakly primitive  S_{e}' ‐adic word) whose directive sequence takes its values in the
set of elementary substitutions and permutations  S_{e}'  =S_{e}\cup \mathcal{P} has zero entropy. Nevertheless,

we will see below how to get high factor complexity (among zero entropy words and shifts).
Recall that for any word   u\in  \{1, 2\}^{\mathbb{N}} , the word  3u admits an  S_{e}' ‐adic representation whose

directive sequence takes its values in the set  S_{e}'  =S_{e}\cup \mathcal{P} on a three‐letter alphabet, according

to the following construction due to J. Cassaigne. Take the two tame substitutions

 \overline{\sigma}_{13} :  1\mapsto 1,  2\mapsto 2,  3\mapsto 31

 \overline{\sigma}_{23} :  1\mapsto 1,  2\mapsto 2,  3\mapsto 32.

One has  3u= \lim_{narrow\infty}\overline{\sigma}_{u_{0}}\cdots\overline{\sigma}_{u_{n}}
(3) . Note however that the word  3u is not recurrent.

The following construction is due to J. Cassaigne and J. Leroy. This construction is inspired

by similar constructions in [47, 50]. For any word  v in  \{ 1,  2\}^{*} , let

 \alpha_{v} :  1\mapsto 3v1,  2\mapsto 3v2,  3\mapsto 3v.

One checks that  \alpha_{v} is tame. Its incidence matrix is primitive as soon as  v contains the letters 1

and 2. We fix an increasing sequence of positive integers  (k_{n})_{n} . Let  (v_{n})_{n} be a sequence of words

such that, for all  n,  v_{n} contains all the words of length  k_{n} over the alphabet {1, 2}. We consider
the uniformly recurrent  S_{e}' ‐adic word  u  =   \lim_{narrow\infty}\alpha_{v_{0}}\cdots\alpha_{v_{n}}(3) . Note that  |\alpha_{v_{0}}\cdots\alpha_{v_{n}}(1)|  =

 |\alpha_{v_{0}}\cdots\alpha_{v_{n}}(2)| , for all  n . Set  \ell_{n}  :=  |\alpha_{v_{0}}\cdots\alpha_{v_{n}}(1)|  =  |\alpha_{v_{0}}\cdots\alpha_{v_{n}}(2)| . Take  j with  1\leq j\leq k_{n+1}.

The number of factors of  u of length  j\ell_{n} is at least  2^{j} . Indeed, all the words of length  j occur in

 v_{n+1} and their respective images by  \alpha_{v_{1}}\cdots\alpha_{v_{n}} all have the same length and are distinct.
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For any  d , it remains to choose the sequence  (k_{n})_{n} with a sufficiently large growth sat‐

isfying  2^{k_{n+1}}  >  (k_{n+1}\ell_{n})^{d} , for  n large enough, to get a uniformly recurrent  S_{e}' ‐adic word

  \lim_{narrow\infty}\alpha_{v_{0}}\cdots\alpha_{v_{n}}(3) which admits an everywhere growing  S_{e}' ‐adic representation and which

has a factor complexity that is not of polynomial order  d . These examples illustrate the fact

that  S_{e}' ‐adic words, with substitutions in the directive sequence being tame, can have various

combinatorial behaviors. As examples of such  S_{e}' ‐adic words, see the family of tree words such as

developed in [33]. This family includes Arnoux‐Rauzy words and codings of interval exchanges.
Note that the  S‐adic expansions produced by continued fraction algorithms beneficiate from

their ergodic properties. Both algorithms (Brun and Jacobi‐Perron) are known to have an
invariant ergodic probability measure equivalent to the Lebesgue measure (see for instance [91]).
However, this measure is not known explicitly for Jacobi‐Perron (the density of the measure
is shown to be a piecewise analytical function in [38]), whereas it is known explicitly for Brun
[8, 58, 63]. Brun algorithm is a space‐ordering algorithm according to the terminology introduced
in [64]. (Note that it is called ordered Jacobi‐Perron in [63].) Furthermore, each step of Brun
algorithm produces only one partial quotient. This helps in computing the natural extension and

the invariant measure of Brun algorithm (see e.g. [8] which shows in a very efficient way how to
determine the invariant measure of Brun algorithm thanks to the natural extension). Contrary
to Brun algorithm, the role played by the first two entries is not determined by a comparison

between both parameters in Jacobi‐Perron case; this might explain the fact that an explicit

realization of the natural extension of this algorithm is still not known.

§4. Pisot case

We introduce in this section an  S‐adic counterpart to Pisot substitutions via the notion  0

Pisot  S‐adic systems and we discuss their spectral properties.

§4.1.  S‐adic systems and Lyapunov exponents

Consider a positive continued fraction algorithm  (T, A, \theta) . We associate with it an  S‐adic

system as follows. Let  S be the set of substitutions produced by the algorithm. These substi‐

tutions have as incidence matrices the matrices that lie in the image of the matrix cocycle  A.

We define  D as the closure in  S^{\mathbb{N}} of the set of directive sequences associated with orbits under

the map  A , that is,  D is the closure of the set of sequences  (\gamma_{n})_{n} for which there exists  x such

that  \gamma_{n} has for incidence matrix  A(T^{n}x) , for all  n . We also consider an ergodic shift invariant

measure  \mu on  D . We get an ergodic shift  (D, \Sigma, \mu) , with  D\subset S^{\mathbb{N}} . Recall that  \Sigma stands for the
shift.

We now introduce Lyapunov exponents associated with the linear cocyle map  A . For sim‐

plicity we also use the notation  A for the following map

 A:Darrow GL(d, \mathbb{Z}) , \gamma=(\gamma_{n})_{n\in \mathbb{N}}\mapsto 
M_{\gamma_{0}}

where  M_{\gamma_{0}} is the incidence matrix of  \gamma_{0} . We assume that the map  A is  \log ‐integrable3, that is,

  \log\max(\Vert A(\gamma)\Vert, \Vert A(\gamma)^{-1}\Vert)d\mu(\gamma) <1.
X

 3We also say that  (D, ) is  \log‐integrable.
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If the matrices  A(\gamma) are bounded (e.g. if the set  S is finite) and unimodular, then this condition
is automatically satisfied. We then define the Lyapunov exponents  \theta_{1}^{\mu},  \theta_{2}^{\mu} , :::,  \theta_{d}^{\mu}  (d stands for

the cardinality of the alphabet on which the substitu ions in  S are defined) as the  \mu-a.e . limit  0

  \theta_{1}^{\mu}+\theta_{2}^{\mu}+\cdots+\theta_{k}^{\mu}=\lim_{n} \frac{1}{n}
\log\Vert\wedge^{k} (A(\gamma)A(\Sigma\gamma)\cdots A(\Sigma^{n-1}\gamma))\Vert
for  1  \leq  k  \leq  d , where  \wedge^{k} denotes the  k‐fold wedge product. In particular, the first Lyapunov

exponent  \theta_{1}^{\mu} is the  \mu-a.e . limit

  \theta_{1}^{\mu}=\lim_{n} \frac{\log\Vert A_{n}(\gamma)\Vert}{n},
with  A_{n}(\gamma)  :=M_{\gamma_{0}}\cdots M_{\gamma_{n-1}}.

Remark that we get  a (forward) random dynamical system according to the terminology
of [6]:  T (the continued fraction map) is the base transformation (it is not invertible here) and
 A is the generator; we consider  S‐adic systems for which directive sequences are one‐sided  (D
is one‐sided,  \Sigma is not invertible). Oseledet’s theorem [83] yields in this one‐sided framework a
filtration, and not a splitting. If we need a splitting of the space, we need to consider an invertible

shift, hence a natural extension for  T . This is the approach developed in [12] where Markov
partitions are associated with ‘Pisot’ non‐stationary biinfinite sequences of toral automorphisms

(these are the linear Anosov families of [7]) associated with multidimensional continued fraction
algorithms, such as Brun. The  S‐adic Pisot assumption (such as defined below) yields non‐
stationary hyperbolic dynamics.

§4.2.  S‐adic Pisot systems and shifts

We introduce in this section the notion of  S‐adic Pisot systems. We first recall the following

result from [23]. A finite product of substitutions  \gamma_{0}\ldots\gamma_{k-1} is said positive if the associated
matrix  M_{\gamma_{0}:::}  M_{\gamma_{k-1}} is positive. Recall that if  \gamma  =  (\gamma_{n}) , then  A_{n}(\gamma)  :=   M_{\gamma_{0}}\cdots  M_{\gamma_{n-1}} for

positive integer  n . Recall also that if the finite word  w is a factor of the subshift  D , then the

cylinder  [w] is the set of infinite sequences in  D having  w as a prefix.

Theorem 4.1. Let  S be a set of substitutions with invertible incidence matrices, and let

 (D, \Sigma, \mu) , with  D\subset S^{\mathbb{N}} , be an ergodic shift with respect to the shift invariant probability measure

 \mu . Let  \mathcal{A} stand for the alphabet of the substitutions in  S , and  d stand for its cardinality. Assume

that there exists a nite word in  S^{*} such that the matrix of the associated product of substitutions

is positive and whose associated cylinder has positive measure for  \mu . Then, for  \mu ‐almost every

sequence  \gamma\in D , the corresponding  S ‐adic subshift  X_{D}(\gamma) is uniquely ergodic. Furthermore, one
has  \theta_{1}^{\mu}  >0 and  \theta_{1}^{\mu}  >\theta_{2}^{\mu}.

Let us denote by  f(\gamma)  =  (f_{i}(\gamma))_{i\in \mathcal{A}} the generalized right eigenvector of a  \mu ‐generic sequence

 \gamma . For  \mu ‐almost every  S ‐adic sequence in  D,  X_{D}(\gamma) is weakly convergent:

  \lim_{narrow\infty i\in}\max_{\mathcal{A}}\frac{1}{n} logd  ( \frac{A_{n}(\gamma)e_{i}}{\Vert A_{n}(\gamma)e_{i}\Vert_{1}}, f(\gamma))  =\theta_{2}^{\mu}-\theta_{1}^{\mu},

where  (e_{1}, \cdots , e_{d}) stands for the canonical basis of  \mathbb{R}^{d}.
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Moreover, if  \theta_{2}^{\mu}  <  0 , then, for  \mu ‐almost every  S ‐adic sequence in  D,  X_{D}(\gamma) is strongly

convergent:

  \lim_{narrow\infty i\in}\max_{\mathcal{A}}\frac{1}{n}\log d(A_{n}(\gamma)e_{i}
, f(\gamma))=\theta_{2}^{\mu},
and for  \mu ‐almost all  \gamma in  D,  X_{D}(\gamma) has bounded deviation, that is, there exists a constant

 C=C(\gamma) such that for every letter  i\in \mathcal{A} , every word  u in  X_{D}(\gamma) and every  n , we have

 ||u_{0}\ldots u_{n-1}|_{i}-nf_{i}(\gamma)| \leq C.

In particular, each word in  X_{D}(\gamma) is  C ‐balanced.

The positivity condition of Theorem 4.1 is in the flavour of condition H5 in [74]; see also [14].
The quantity  1-   \frac{\theta_{2}^{\mu}}{\theta_{1}^{\mu}}  =   \frac{1}{\theta_{1}^{\mu}}(\theta_{1}^{\mu}-\theta_{2}^{\mu}) is expressed in [74] as the uniform approximation exponent
for unimodular continued fractions algorithms; see also [19, 20]. For a thorough study of the
Lyapounov exponents of the Jacobi‐Perron algorithm (which also applies to Brun algorithm),
see [38, 39]. Note that the  \log‐integrability for the accelerated (i.e., multiplicative) version comes
from the the comparability of the invariant measure with respect to Lebesgue measure (see e.g.
[74, Theorem 1.1]). This yields in particular the a.e. exponential (strong) convergence of Brun
[58, 78, 90] and of Jacobi‐Perron algorithm [39] (see also [74]): there exists  \delta  >  0 s.t. for a.e.
 (\alpha, \beta) , there exists  n_{0}=n_{0}(\alpha, \beta) s.t. for all  n\geq n_{0}

 | \alpha-p_{n}/q_{n}| < \frac{1}{q_{n}^{1+\delta}}, |\beta-r_{n}/q_{n}| < \frac
{1}{q_{n}^{1+\delta}},
where  p_{n},  q_{n},  r_{n} are given by the algorithm. For a criterium for the simplicity of the Lyapunov

spectrum, see [16, 77].
We now can introduce the  S‐adic counterpart of the notion of Pisot irreducible substitu‐

tion following [14, 23]. Recall that a substitution is said Pisot irreducible if the characteristic
polynomial of its incidence matrix is the minimal polynomial of a Pisot number.

Definition 4.2 (  S‐adic Pisot system). Let  S be a set of substitutions with invertible
incidence matrices over the alphabet  \mathcal{A} , and let  (D, \Sigma, \mu) with  D  \subset  S^{\mathbb{N}} be an ergodic, shift

equipped with the probability measure  \mu . We also assume  \log‐integrability for  (D, \mu) . Let

 (\theta_{i}^{\mu})_{i\in \mathcal{A}} stand for its Lyapunov exponents. We say that  (D, \Sigma, \mu) satisfies the Pisot condition  i

 \theta_{1}^{\mu} >0>\theta_{2}^{\mu}.

According to Theorem 4.1, for a.e.  \gamma,  (X_{D}(\gamma)) is uniquely ergodic, minimal, and  C‐balanced.

The analog of algebraic irreducibility is then the following. According to [29], the directive
sequence  \gamma is said to be algebraically irreducible if, for each  k\in \mathbb{N} , the characteristic polynomial

of   M_{\gamma_{k}}\cdots  M_{\gamma_{\ell}} is irreducible for all sufficiently large  \ell . Recall that the the sequence  \gamma is said to

be (weakly) primitive if, for each  k\in \mathbb{N},   M_{\gamma_{k}}\cdots  M_{\gamma_{\ell}} is a positive matrix for some  \ell>k.

As examples of Pisot irreducible systems, one has Arnoux‐Rauzy (in any dimension), and
Brun  S‐adic systems, when  d=3 , by [14], for a large choice of measures  \mu.
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§4.3. Rotation factors and the Pisot condition

We now consider spectral properties of  S‐adic Pisot shifts. Recall that Pisot irreducible

substitutions are assumed to have pure discrete spectrum: this is the so‐called Pisot substitution

conjecture. For more details, see e.g. [3].
We first recall a classical statement in topological dynamics relating bounded deviation for

ergodic averages associated with a continuous function  f , that is, bounded sums   \sum_{n=0}f(T^{n}x) ,

and the fact that  f is a coboundary. This will allow us to exhibit (topological) eigenfunctions.
For more on the connections between this statement and bounded remainder sets, see the survey

[69].

Theorem 4.3 (Gottschalk‐Hedlund [62]). Let  X be a compact metric space and  T :   Xarrow

 X be a minimal homeomorphism. Let  f :  Xarrow \mathbb{R} be a continuous function. Then  f is a cobound‐

ary, that is,

 f=g-g\circ T

for a continuous function  g if and only if there exists  C>0 such that

 | \sum_{n=0}^{N}f(T^{n}(x))| <C
for all  N and all  x.

We will apply it here to the shift  \Sigma acting on the two‐sided shift spaces  X_{D}(\gamma) . Recall that

the directive sequence of substitutions  \gamma is said to be algebraically irreducible if, for each  k\in \mathbb{N},

the characteristic polynomial of  M_{\gamma_{k}\cdots\gamma\ell} is irreducible for all sufficiently large  \ell.

Theorem 4.4. Let  S be a set of substitutions with invertible incidence matrices on a

alphabet  \mathcal{A} of cardinality  d , and let  (D, \Sigma, \mu) , with  D  \subset  S^{\mathbb{N}} , be an ergodic shift with respect to

the shift invariant probability measure  \mu . We assume that  (D, \Sigma, \mu) satisfies the Pisot condition.

Let  \theta_{1}^{\mu}  >  0 stand for its first Lyapunov exponent. Then, for  \mu almost every  \gamma , if  \gamma is moreove

algebraically irreducible, then  (X_{D}(\gamma), \Sigma) admits as a topological factor a minimal translation  0

the torus  \mathbb{T}^{d-1} . In particular, it is not weakly mixing.

Proof. Let  (X, \Sigma) be a topological dynamical system. Recall that a non‐zero complex‐

valued continuous function in  C(X) is an eigenfunction for  S if there exists  \lambda  \in  \mathbb{C} such that
 \forall x  \in  X,  f  (Sx)=  \lambda f(x) . The system  (X, \Sigma) is said to have topological discrete spectrum if the

eigenfunctions span  C(X) .

According to Theorem 4.1, for  \mu a.e.  \gamma\in D , the shift space  X_{D}(\gamma) is minimal. We consider

the two‐sided version of  X_{D}(\gamma) , that is, the set of two‐sided words in  \mathcal{A}^{\mathbb{Z}} whose language is equal

to the language of  X_{D}(\gamma) . We keep the same notation for the two‐sided version of  X_{D}(\gamma) . The

shift  \Sigma acting on the two‐sided shift  (X_{D}(\gamma), \Sigma) is thus a minimal homeomorphism acting on it.

Let  \gamma be a generic point such that two‐sided space  X_{D}(\gamma) is minimal and  C‐balanced, for

some  C (that depends on  \gamma ). Let  a be a letter of the alphabet  \mathcal{A} on which the substitutions  0

 S are defined. Consider the continuous map  f=  1_{[a]}(x)-f_{a}1 defined on  X_{D}(\gamma) , where 1  [a] is
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the characteristic function of the cylinder set of sequences  (u_{n})_{n\in \mathbb{Z}}  \in  X_{D}(\gamma) such that  u_{0}  =a,

and where 1 stands for the constant function taking value 1. Since  f has bounded deviation

by  C‐balancedness, we can apply Theorem 4.3: there exists a continuous function  g such that

  f=g-g\circ\Sigma . Note that  e^{2i\pi 1_{[a]}(v)}  =1 for any  v\in X_{D}(\gamma) . This yields

 \exp^{2i\pi go\Sigma}=\exp^{2i\pi f_{a}}\exp^{2i\pi g},

where  f_{a} stands for the frequency of the letter  a . Hence  \exp^{2i\pi g} is a continuous eigenfunction

associated with the eigenvalue  \exp^{2i\pi f_{a}}.
We assume  \gamma algebraically irreducible. The proof follows [29]. Let us prove that the

coordinates of the letter frequency vector  f  =  (f_{a})_{a\in \mathcal{A}} are rationally independent. Let  z  \in

 \mathbb{Z}^{d}\backslash \{0\} such that  \langle f,   z\rangle  =  0 . Recall that  A_{n}(\gamma)  :=   M_{\gamma_{0}}\cdots  M_{\gamma_{n-1}} . One has  \langle tA_{n}(\gamma)z,   e_{i}\rangle  =

 \langle z,   A_{n}(\gamma)e_{i}\rangle is bounded (uniformly in n) for each  i\in \mathcal{A} . Indeed, by strong convergence, one has
  \lim_{narrow\infty}   \frac{\log d(A_{n}(\gamma)e_{i},\mathbb{R}f(\gamma))}{n}  =\theta_{2}^{\mu}  <0 and  \langle f,   z\rangle  =0 . The vectors  tA_{n}(\gamma)f take furthermore inte‐

ger values. The values taken by  ||^{t}A_{n}(\gamma)f|| are thus bounded. Hence, there exist  k and infinitely

many  \ell  >  k such that  tA_{k}(\gamma)f  =  tA_{\ell}(\gamma)f . One has  tA_{k}(\gamma)f  \neq  0 by algebraic irreducibility.

Hence, it is an eigenvector of  t(M_{k}\cdots M_{\ell-1} ) associated with the eigenvalue 1. This contradicts
the fact that   M_{k}\cdots  M_{\ell-1} has irreducible characteristic polynomial for large  \ell.

Let  \mathcal{A}=\{1, 2, \cdots , d\} . We consider the toral translation  R_{f} by the vector  =  (f1, :::, f_{d-1})
on the  d‐dimensional torus  \mathbb{T}^{d-1}  =\mathbb{R}^{d-1}/\mathbb{Z}^{d-1} :

 R_{f}  (x_{1}, \cdots , x_{d-1})=(x_{1}+f_{1}, \cdots , x_{d-1}+f_{d-1}) modulo 1:

This translation is minimal since the coordinates of the letter frequency vector  f=(f_{a})_{a\in \mathcal{A}} are

rationally independent. Since its spectrum, i.e.,   \exp(2i\pi\sum_{a\in \mathcal{A}}\mathbb{Z}f_{a}) , is included in the continuous

spectrum of  X_{D}(\gamma) , this translation is a topological factor of  X_{D}(\gamma) .  \square 

If we drop the algebraic irreducibility condition in Theorem 4.3, there still exists a non‐trivial

rotation factor but it is not necessarily defined on  \mathbb{T}^{d-1}.

Note that more can be said on the two‐letter case: the Pisot conjecture in this two‐letter
 S‐adic setting has been proved in [32]. Recall that the two‐letter substitutive case has been
solved in [65] together with [21], and in [66].

§4.4. Arnoux‐Rauzy and Brun words

We now end the present paper by recalling results from [29]: in dimension  d=3 , we even
have (measure‐theoretical) pure discrete spectrum for a.e. Arnoux‐Rauzy and Brun  S‐adic shifts.

Theorem 4.5 ([29]). Let  S_{AR} be the set of Arnoux‐Rauzy substitutions over three letters
and consider the shift  (S_{AR}^{\mathbb{N}}, \Sigma, \mu) for some shift invariant ergodic probability measure  \mu that as‐

signs positive measure to each cylinder. Then  (S_{AR}^{\mathbb{N}}, \Sigma, \mu) satisfies the Pisot condition. Moreover,
for  \mu ‐almost all sequences  \gamma\in S_{AR}^{\mathbb{N}} , the  S_{AR} ‐adic shift  (X_{\gamma}, \Sigma) is (measure‐theoretically) isomor‐
phic to a translation on the two‐dimensional torus  \mathbb{T}^{2} , that is,  (X_{\gamma}, \Sigma) has (measure‐theoretically)
pure discrete spectrum.

Let  S_{BR} be the set of Brun substitutions over three letters, and consider the shift  (S_{BR}^{\mathbb{N}}, \Sigma, \mu)
for some shift invariant ergodic probability measure  \mu that assigns positive measure to each
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cylinder. Then  (S_{BR}^{\mathbb{N}}, \Sigma, \mu) satisfies the Pisot condition. Moreover, for  \mu ‐almost all sequences

 \gamma\in S_{BR}^{\mathbb{N}} , the  S_{BR} ‐adic shift  (X_{\gamma}, \Sigma) is measure‐theoretically isomorphic to a translation on the
torus  \mathbb{T}^{2}.

As an example of a measure satisfying the assumptions of Theorem 4.5 for Arnoux‐Rauzy

shifts, consider the measure of maximal entropy for the suspension flow of the Rauzy gasket

constructed in [18]. The suspension flow is a renormalization flow obtained analogously as for
the TeichmUller flow in the classical case of interval exchanges [97]: it is based on a roof function
associated with the cocyle which is the first return time to some subsimplex of the parameter

space and on the accelerated version of the Arnoux‐rauzy algorithm (which is proved to be log‐
integrable in [18]). Hence, with respect to this Gibbs measure, a.e. Arnoux‐Rauzy word has pure
discrete spectrum.

Let us conclude with the case of Brun shifts. Consider the measure  \mu  :=m\circ\phi^{-1} on  S_{BR}^{\mathbb{N}} : here

 m is the (ergodic) invariant measure absolutely continuous with respect to Lebesgue measure  0

the additive version of Brun algorithm (it is a finite measure), is the natural measure‐theoretic
isomorphism between  (\triangle_{2}, T_{B}, m) and  (S_{BR}^{\mathbb{N}}, \Sigma, v) , where  \triangle_{2}  =  \{(x_{1}, x_{2})  \in  \mathbb{R}^{2} :  0  \leq  x_{1}  \leq

 x_{2}  \leq  1\} , and  T_{B} is the projectivized additive form of Brun algorithm introduced in Section 3.4.

The measure  \mu is shift‐invariant, ergodic and gives positive measure to each cylinder. For more

details, see [29, Proof of Theorem 8]. In other words, by Theorem 4.5, the  S_{BR}‐adic shifts
associated with Brun algorithm provide natural symbolic codings of almost all rotations on the
torus  \mathbb{T}^{2}.
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