Dual substitutions over $\mathbb{R}_{>0}$ **-powered symbols**

Ву

Jun-ichi TAMURA* and Shin-ichi YASUTOMI**

Abstract

We will consider dual substitutions of substitutions over $\mathbb{R}_{>0}$ —powered symbols which are introduced in [12]. We give a class of weighted substitutions including the dual substitutions. We also introduce weighted tips which generalize the unit tip in a stepped surface (discrete plane).

§ 1. Introduction

Let \mathscr{A} be an alphabet of d letters $\{1,2,\ldots,d\}$. In [12] substitutions over \mathbb{C} —powered symbols are considered. Its crucial point of the weighted substitution is to attach a weight to each letter. We use the terminology $[a_i:\alpha]$ for $a_i\in\mathscr{A},\alpha\in\mathbb{C}^\times$ instead of the terminology a_i^α in [12]. Consider, for example a Fibonacci like substitution σ defined on the set of finite words over $\mathscr{A}=\{1,2\}$ which replaces [1:1] with $[1:1][2:\sqrt{2}-1]$ and [2:1] with [1:1]. Iterating σ on [1:1], we have $[1:1]\to[1:1][2:\sqrt{2}-1]\to[1:1][2:\sqrt{2}-1]$ in [7,8,9] substitutions over $\mathbb{R}_{>0}$ —powered symbols and related dynamical systems are considered.

In [12], we introduced geometric realization/representation in the unitary space \mathbb{C}^d for infinite words over complex valued symbols, and we gave some new results related to Diophantine approximation of complex numbers and Rauzy sets in \mathbb{C}^d , which are the same as Rauzy fractals for ordinary substitutions. A dual substitution associated to an ordinary substitution which was introduced in [1] is an excellent tool in symbolic dynamical system and related areas (see [10]). In this paper we will consider dual substitutions of substitutions over $\mathbb{R}_{>0}$ —powered symbols and introduce a class of substitutions including the dual substitution. We also give a generalization of the unit tip in a stepped surface (discrete plane), which is called a weighted tip. We remark that substitutions over $\mathbb{R}_{>0}$ —powered symbols give algorithms by which we have algebraic integral points near certain hyperplane. For example, by iterating the above σ we have algebraic integral points in $\mathbb{Z}[\sqrt{2}] \times \mathbb{Z}[\sqrt{2}]$ close to some line(see [12]). Similarly, by iterating

Recieved October 31, 2015. Revised March 1, 2016. Accepted May 1, 2016.

²⁰¹⁰ Mathematics Subject Classification(s): 68R15,37B10

Key Words: substitution, dual substitution, substitution over p stepped surface, discrete plane, substitution over $\mathbb{R}_{>0}-$ *powered symbols.*

^{*}Institute for Mathematics and Computer Science Tsuda College, 2-1-1 Tsudamachi, Kodaira-shi, Tokyo 187-8577, Japan. e-mail: jtamura@tsuda.ac.jp

^{**}Faculty of Science, Toho university, 2-2-1 Miyama Funabashi-shi Chiba 274-8510 Japan. e-mail: shinichi.yasutomi@sci.toho-u.ac.jp

the weighted dual maps of σ we have algebraic integral points in $\mathbb{Z}[\sqrt{2}] \times \mathbb{Z}[\sqrt{2}]$ close to some line. From this number theoretical point of view we serve an open problem.

§ 2. Dual substitution

In this section we consider a dual substitution for a substitution following [1]. We denote by \mathscr{A}_R^* the free monoid on $\mathscr{A} \times \mathbb{R}_{>0}$, that is, $\mathscr{A}_R^* = \bigcup_{n=1}^{\infty} (\mathscr{A} \times \mathbb{R}_{>0})^n$. We denote an element w in \mathscr{A}_R^* by $w = [w_1 : \omega_1] \cdots [w_n : \omega_n]$, where $w_k \in \mathscr{A}$ and $\omega_k \in \mathbb{R}_{>0}$. For $w \in \mathscr{A}_R^*$ and $\alpha \in \mathbb{R}_{>0}$ we define $w^{\alpha} := [w_1 : \alpha \omega_1] \cdots [w_n : \alpha \omega_n]$. For $w \in \mathscr{A}_R^*$ and $i \in \mathscr{A}$, we define $|w|_i := \sum_{w_k = i} \omega_k$. A map $f : \mathscr{A}_R^* \to \mathbb{R}^d$ is defined by

$$f(w) := {}^{t}(|w|_{1}, \dots, |w|_{d}).$$

Then, we have f(ww') = f(w) + f(w') for $w, w' \in \mathscr{A}_R^*$ (see [12]).

The reader is referred to [1, 11] for a dual map of a substitution. A substitution σ over \mathscr{A}_R^* is a homomorphism of \mathscr{A}_R^* into \mathscr{A}_R^* which satisfies that for every $u_1, u_2 \in \mathscr{A}_R^*$, $\sigma(u_1u_2) = \sigma(u_1)\sigma(u_2)$ and for every $\alpha \in \mathbb{R}_{>0}$ and $u \in \mathscr{A}_R^*$, $\sigma(u^\alpha) = \sigma(u)^\alpha$. Let $\sigma([i:1]) = [a_1^{(i)}:\omega_1^{(i)}] \cdots [a_{l_i}^{(i)}:\omega_{l_i}^{(i)}]$ for $i = 1, \ldots, d$. We define $P(\sigma)_k^{(i)}(=P_k^{(i)})$ and $S(\sigma)_k^{(i)}(=S_k^{(i)})$ by $\sigma([i:1]) = P(\sigma)_k^{(i)}[a_k^{(i)}:\omega_k^{(i)}]S(\sigma)_k^{(i)}$ for $k = 1, 2, \ldots, l_i$. The incidence matrix $I_\sigma = (m_{kl})$ is $d \times d$ matrix with entries $m_{kl} = |\sigma([l:1])|_k$. We suppose that I_σ is regular and primitive.

Let \mathscr{F} be the free \mathbb{Z} module over the set $\mathbb{R}^d \times \mathscr{A} \times \mathbb{R}_{>0}$. We define the endomorphism $E_1(\sigma)$ on \mathscr{F} as follows: for $(\bar{x}, i, \omega) \in \mathbb{R}^d \times \mathscr{A} \times \mathbb{R}_{>0}$

$$E_1(\boldsymbol{\sigma})(\bar{x},i,\boldsymbol{\omega}) := \sum_{k=1}^{l_i} (I_{\boldsymbol{\sigma}}(\bar{x}) + \boldsymbol{\omega} f(P_k^{(i)}), a_k^{(i)}, \boldsymbol{\omega} \boldsymbol{\omega}_k^{(i)}).$$

We denote by the \mathscr{F}^* and (\bar{x}, i^*, ω) the dual space of \mathscr{F} and its element which maps (\bar{x}, i, ω) to 1, and to 0 otherwise. We denote by $E_1^*(\sigma)$ the dual map of $E_1(\sigma)$. From the definition of $E_1^*(\sigma)$ we have the following lemma.

Lemma 2.1. For substitutions σ_1, σ_2 over \mathscr{A}_R^* , $E_1^*(\sigma_1\sigma_2) = E_1^*(\sigma_2) \circ E_1^*(\sigma_1)$ holds.

Lemma 2.2. For a substitution σ over \mathscr{A}_{R}^{*} , we have

$$E_1^*(\sigma)(\bar{x},i^*,\pmb{\omega}) = \sum_{j\in\mathscr{A}} \sum_{a_k^{(j)}=i} (I_\sigma^{-1}(\bar{x} - \frac{\pmb{\omega}}{\pmb{\omega}_k^{(j)}} f(P_k^{(j)})), j^*, \frac{\pmb{\omega}}{\pmb{\omega}_k^{(j)}}).$$

Proof. It is not difficult to see that for each j with $1 \le j \le d$, $(I_{\sigma}(\bar{y}) + \omega_2 f(P_k^{(j)}), a_k^{(j)}, \omega_2 \omega_k^{(j)})$ are

different from each other for $k = 1, ..., l_j$. Hence we have

$$(\bar{x}, i^*, \boldsymbol{\omega})(E_1(\boldsymbol{\sigma})(\bar{y}, j, \boldsymbol{\omega}_2)) = 1$$

$$\updownarrow$$

$$(\bar{x}, i^*, \boldsymbol{\omega}) \sum_{k=1}^{l_j} (I_{\boldsymbol{\sigma}}(\bar{y}) + \boldsymbol{\omega}_2 f(P_k^{(j)}), a_k^{(j)}, \boldsymbol{\omega}_2 \boldsymbol{\omega}_k^{(j)}) = 1$$

$$\updownarrow$$

$$\bar{x} = I_{\boldsymbol{\sigma}}(\bar{y}) + \boldsymbol{\omega}_2 f(P_k^{(j)}), i = a_k^{(j)} \text{ and } \boldsymbol{\omega} = \boldsymbol{\omega}_2 \boldsymbol{\omega}_k^{(j)},$$

which implies Lemma 2.2.

Since I_{σ} is primitive, I_{σ} has an eigenvalue λ which is positive, simple and bigger in modulus than the other eigenvalues. ${}^tI_{\sigma}$ has a positive eigenvector \bar{v} associated with λ . Let \mathscr{P} be the plane which is orthogonal to \bar{v} .

Let $\{e_1, \ldots, e_d\}$ be the canonical basis of \mathbb{R}^d . We say that $(\bar{x}, i^*, \omega) \in \mathscr{F}^*$ is a weighted tip, if $\bar{x} \cdot \bar{v} < 0$ and $(\bar{x} + \omega e_i) \cdot \bar{v} \ge 0$, where for $u_1, u_2 \in \mathbb{R}^d$, $u_1 \cdot u_2$ is the scalar product of two vectors.

We denote by \mathscr{S} the set of all weighted tips in \mathscr{F}^* . We denote by $\overline{\mathscr{S}}$ the \mathbb{Z} module over \mathscr{S} . We say an element in $\overline{\mathscr{S}}$ is geometric if its every coefficient represented by the basis \mathscr{S} is 0 or 1.

Lemma 2.3. If
$$(\bar{x}, i^*, \omega) \in \mathcal{S}$$
, then $E_1^*(\sigma)(\bar{x}, i^*, \omega) \in \overline{\mathcal{S}}$ and $E_1^*(\sigma)(\bar{x}, i^*, \omega)$ is geometric.

Proof. We suppose that $(\bar{x}, i^*, \omega) \in \mathcal{S}$. By Lemma 2.2 we will check that for $j \in \mathcal{A}$, $k \in \{1, 2, ..., l_j\}$ with $\sigma([j:1]) = P_k^{(j)}[i:\omega_k^{(j)}]S_k^{(j)}$

$$(I_{\sigma}^{-1}(\bar{x}-\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{k}^{(j)}}f(P_{k}^{(j)})),j^{*},\frac{\boldsymbol{\omega}}{\boldsymbol{\omega}_{k}^{(j)}})\in\mathscr{S}.$$

We see

$$(I_{\sigma}^{-1}(\bar{x}-\frac{\pmb{\omega}}{\pmb{\omega}_{k}^{(j)}}f(P_{k}^{(j)})))\cdot\bar{v}=(\bar{x}-\frac{\pmb{\omega}}{\pmb{\omega}_{k}^{(j)}}f(P_{k}^{(j)}))\cdot\frac{1}{\lambda}\bar{v}=\bar{x}\cdot\frac{1}{\lambda}\bar{v}-\frac{\pmb{\omega}}{\pmb{\omega}_{k}^{(j)}}f(P_{k}^{(j)})\cdot\frac{1}{\lambda}\bar{v}<0.$$

We have

$$(I_{\sigma}^{-1}(\bar{x}-rac{\omega}{\omega_{k}^{(j)}}f(P_{k}^{(j)}))+rac{\omega}{\omega_{k}^{(j)}}e_{j})\cdot ar{v}=(ar{x}+rac{\omega}{\omega_{k}^{(j)}}f(S_{k}^{(j)})+\omega e_{i})\cdot rac{1}{\lambda}ar{v} \ =(ar{x}+\omega e_{i})\cdot rac{1}{\lambda}ar{v}+rac{\omega}{\omega_{k}^{(j)}}f(S_{k}^{(j)})\cdot rac{1}{\lambda}ar{v}\geq 0.$$

Thus, we have $(I_{\sigma}^{-1}(\bar{x}-\frac{\omega}{\omega_k^{(j)}}f(P_k^{(j)})),j^*,\frac{\omega}{\omega_k^{(j)}})\in\mathscr{S}$. Secondly, we will show that $E_1^*(\sigma)(\bar{x},i^*,\omega)$ is geometric. We suppose that for $j_1,j_2\in\mathscr{A}$, $k_1,k_2\in\mathbb{Z}$ with $\sigma([j_1:1])=P_{k_1}^{(j_1)}[i:\omega_{k_1}^{(j_1)}]S_{k_1}^{(j_1)}$ and $\sigma([j_2:1])=P_{k_2}^{(j_2)}[i:\omega_{k_2}^{(j_2)}]S_{k_2}^{(j_2)}$

$$(I_{\sigma}^{-1}(\bar{x}-\frac{\pmb{\omega}}{\pmb{\omega}_{k_1}^{(j_1)}}f(P_{k_1}^{(j_1)})),j_1^*,\frac{\pmb{\omega}}{\pmb{\omega}_{k_1}^{(j_1)}})=(I_{\sigma}^{-1}(\bar{x}-\frac{\pmb{\omega}}{\pmb{\omega}_{k_2}^{(j_2)}}f(P_{k_2}^{(j_2)})),j_2^*,\frac{\pmb{\omega}}{\pmb{\omega}_{k_2}^{(j_2)}}),$$

which implies that $j_1 = j_2$, $\omega_{k_1}^{(j_1)} = \omega_{k_2}^{(j_2)}$ and $f(P_{k_1}^{(j_1)}) = f(P_{k_2}^{(j_2)})$. Then, it is not difficult to see that $k_1 = k_2$. Thus, we have Lemma 2.3.

Lemma 2.4. If $(\bar{x_1}, i_1^*, \omega_1), (\bar{x_2}, i_2^*, \omega_2) \in \mathcal{S}$ and $(\bar{x_1}, i_1^*, \omega_1) \neq (\bar{x_2}, i_2^*, \omega_2)$, then $E_1^*(\sigma)((\bar{x_1}, i_1^*, \omega_1) + (\bar{x_2}, i_2^*, \omega_2))$ is geometric.

Proof. We suppose that $(\bar{x_1}, i_1^*, \omega_1), (\bar{x_2}, i_2^*, \omega_2) \in \mathscr{S}$ and $E_1^*(\sigma)((\bar{x_1}, i_1^*, \omega_1) + (\bar{x_2}, i_2^*, \omega_2))$ is not geometric. By Lemma 2.2 and Lemma 2.3 there exist $j_1, j_2 \in \mathscr{A}$ and $k_1, k_2 \in \mathbb{Z}$ such that $a_{k_1}^{(j_1)} = i_1$, $a_{k_2}^{(j_2)} = i_2$ and $(I_{\sigma}^{-1}(\bar{x_1} - \frac{\omega_1}{\omega_{k_1}^{(j_1)}}), j_1^*, \frac{\omega_1}{\omega_{k_1}^{(j_1)}}) = (I_{\sigma}^{-1}(\bar{x_2} - \frac{\omega_2}{\omega_{k_2}^{(j_2)}}), j_2^*, \frac{\omega_2}{\omega_{k_2}^{(j_2)}})$. Then, we have $j_1 = j_2$, $\frac{\omega_1}{\omega_{k_1}^{(j_1)}} = \frac{\omega_2}{\omega_{k_2}^{(j_2)}}$ and $\bar{x_1} - \frac{\omega_1}{\omega_{k_1}^{(j_1)}} f(P_{k_1}^{(j_1)}) = \bar{x_2} - \frac{\omega_2}{\omega_{k_2}^{(j_2)}} f(P_{k_2}^{(j_2)})$. We assume $k_1 \leq k_2$ without loss of generality. In the case of $k_1 = k_2$ we see $(\bar{x_1}, i_1^*, \omega_1) = (\bar{x_2}, i_2^*, \omega_2)$. Therefore, $k_1 < k_2$ holds. We have

$$\bar{x_2} = \bar{x_1} + \boldsymbol{\omega_1} e_{i_1} + \frac{\boldsymbol{\omega_1}}{\boldsymbol{\omega_{k_1}^{(j_1)}}} \left(f([a_{k_1}^{(j_1)} : \boldsymbol{\omega_{k_1}^{(j_1)}}] \cdots [a_{k_2-1}^{(j_1)} : \boldsymbol{\omega_{k_2-1}^{(j_1)}}]) - f([a_{k_1}^{(j_1)} : \boldsymbol{\omega_{k_1}^{(j_1)}}]) \right),$$

which implies $\bar{x_2} \cdot \bar{v} \ge 0$. This is a contradiction.

We define \mathscr{G} as the set of all geometric elements in $\overline{\mathscr{S}}$. By Lemma 2.3 and Lemma 2.4 we have

Proposition 2.5. $E_1^*(\sigma)\overline{\mathscr{S}}\subset\overline{\mathscr{S}}$ and $E_1^*(\sigma)\mathscr{G}\subset\mathscr{G}$.

§ 3. Certain Extension

Now, we define a class of endomorphisms $T_{\alpha}^*(\sigma)$ on \mathscr{F}^* for $\alpha \in \mathbb{R}$ by

$$T_{\alpha}^{*}(\sigma)(\bar{x}, i^{*}, \boldsymbol{\omega}) := \sum_{j \in \mathscr{A}} \sum_{a_{k}^{(j)} = i} (I_{\sigma}^{-1}((\boldsymbol{\omega}_{k}^{(j)})^{\alpha} \bar{x} - \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha - 1} f(P_{k}^{(j)})), j^{*}, \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha - 1}).$$

We note that $E_1^*(\sigma) = T_0^*(\sigma)$. We call the above α the weight of $T_\alpha^*(\sigma)$.

Lemma 3.1. If
$$(\bar{x}, i^*, \omega) \in \mathcal{S}$$
, then $T_{\alpha}^*(\sigma)(\bar{x}, i^*, \omega) \in \overline{\mathcal{S}}$.

Proof. We suppose that $(\bar{x}, i^*, \omega) \in \mathscr{S}$. We will check that for $j \in \mathscr{A}$, k with $\sigma([j:1]) = P_k^{(j)}[i:\omega_k^{(j)}]S_k^{(j)}$

$$(3.1) (I_{\sigma}^{-1}((\boldsymbol{\omega}_{k}^{(j)})^{\alpha}\bar{x} - \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha-1}f(P_{k}^{(j)})), j^{*}, \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha-1}) \in \mathscr{S}.$$

We see

$$(I_{\sigma}^{-1}((\boldsymbol{\omega}_{k}^{(j)})^{\alpha}\bar{x} - \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha-1}f(P_{k}^{(j)}))) \cdot \bar{v} = ((\boldsymbol{\omega}_{k}^{(j)})^{\alpha}\bar{x} - \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha-1}f(P_{k}^{(j)})) \cdot \frac{1}{\lambda}\bar{v}$$

$$= (\boldsymbol{\omega}_{k}^{(j)})^{\alpha-1}(\boldsymbol{\omega}_{k}^{(j)}\bar{x} \cdot \frac{1}{\lambda}\bar{v} - \boldsymbol{\omega}f(P_{k}^{(j)}) \cdot \frac{1}{\lambda}\bar{v}).$$
(3.2)

On the other hand,

$$(I_{\sigma}^{-1}((\boldsymbol{\omega}_{k}^{(j)})^{\alpha}\bar{x} - \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha-1}f(P_{k}^{(j)})) + \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha-1}e_{j}) \cdot \bar{v}$$

$$= ((\boldsymbol{\omega}_{k}^{(j)})^{\alpha}\bar{x} + \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha-1}f(S_{k}^{(j)}) + \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha}e_{i}) \cdot \frac{1}{\lambda}\bar{v}$$

$$= (\boldsymbol{\omega}_{k}^{(j)})^{\alpha}(\bar{x} + \boldsymbol{\omega}e_{i}) \cdot \frac{1}{\lambda}\bar{v} + \boldsymbol{\omega}(\boldsymbol{\omega}_{k}^{(j)})^{\alpha-1}f(S_{k}^{(j)}) \cdot \frac{1}{\lambda}\bar{v}.$$

$$(3.3)$$

Since $\bar{x} \cdot \bar{v} < 0$ and $(\bar{x} + \omega e_i) \cdot \bar{v} \ge 0$, we have the inequalities (3.2) < 0 and $(3.3) \ge 0$. Hence, we have $T_{\alpha}^*(\sigma)(\bar{x}, i^*, \omega) \in \overline{\mathscr{S}}$.

We have following Lemma 3.2 as well as Lemma 2.4.

Lemma 3.2. If $(\bar{x_1}, i_1^*, \omega_1), (\bar{x_2}, i_2^*, \omega_2) \in \mathcal{S}$ and $(\bar{x_1}, i_1^*, \omega_1) \neq (\bar{x_2}, i_2^*, \omega_2)$, then $T_{\alpha}^*(\sigma)((\bar{x_1}, i_1^*, \omega_1) + (\bar{x_2}, i_2^*, \omega_2))$ is geometric for $\alpha \neq 1$.

Proof. Let $\alpha \neq 1$. First, we will show that $T_{\alpha}^*(\sigma)(\bar{x}, i_1^*, \omega_1)$ is geometric. We suppose that for $j_1, j_2 \in \mathscr{A}, k_1, k_2 \in \mathbb{Z}$ with $\sigma([j_1:1]) = P_{k_1}^{(j_1)}[i_1:\omega_{k_1}^{(j_1)}]S_{k_1}^{(j_1)}$ and $\sigma([j_2:1]) = P_{k_2}^{(j_2)}[i_1:\omega_{k_2}^{(j_2)}]S_{k_2}^{(j_2)}$

$$\begin{split} &(I_{\sigma}^{-1}((\boldsymbol{\omega}_{k_{1}}^{(j_{1})})^{\alpha}\bar{x} - \boldsymbol{\omega}_{1}(\boldsymbol{\omega}_{k_{1}}^{(j_{1})})^{\alpha-1}f(P_{k_{1}}^{(j_{1})})), j_{1}^{*}, \boldsymbol{\omega}_{1}(\boldsymbol{\omega}_{k_{1}}^{(j_{1})})^{\alpha-1}) \\ &= &(I_{\sigma}^{-1}((\boldsymbol{\omega}_{k_{2}}^{(j_{2})})^{\alpha}\bar{x} - \boldsymbol{\omega}_{1}(\boldsymbol{\omega}_{k_{2}}^{(j_{2})})^{\alpha-1}f(P_{k_{2}}^{(j_{2})})), j_{2}^{*}, \boldsymbol{\omega}_{1}(\boldsymbol{\omega}_{k_{2}}^{(j_{2})})^{\alpha-1}), \end{split}$$

which implies that $j_1 = j_2$ and $k_1 = k_2$. Therefore, $T_{\alpha}^*(\sigma)(\bar{x}, i_1^*, \omega_1)$ is geometric. Similarly, $T_{\alpha}^*(\sigma)(\bar{x}, i_2^*, \omega_2)$ is geometric.

Secondly, we suppose that $(\bar{x_1}, i_1^*, \omega_1), (\bar{x_2}, i_2^*, \omega_2) \in \mathscr{S}$ and $T_{\alpha}^*(\sigma)((\bar{x_1}, i_1^*, \omega_1) + (\bar{x_2}, i_2^*, \omega_2))$ is not geometric. Then, there exist $j_1, j_2 \in \mathscr{A}$ and $k_1, k_2 \in \mathbb{Z}$ such that $a_{k_1}^{(j_1)} = i_1, a_{k_2}^{(j_2)} = i_2$ and

$$\begin{split} &(I_{\sigma}^{-1}((\boldsymbol{\omega}_{k_{1}}^{(j_{1})})^{\alpha}\bar{x_{1}}-\boldsymbol{\omega}_{1}(\boldsymbol{\omega}_{k_{1}}^{(j_{1})})^{\alpha-1}f(P_{k_{1}}^{(j_{1})})),j_{1}^{*},\boldsymbol{\omega}_{1}(\boldsymbol{\omega}_{k_{1}}^{(j_{1})})^{\alpha-1})\\ &=(I_{\sigma}^{-1}((\boldsymbol{\omega}_{k_{2}}^{(j_{2})})^{\alpha}\bar{x_{2}}-\boldsymbol{\omega}_{2}(\boldsymbol{\omega}_{k_{2}}^{(j_{2})})^{\alpha-1}f(P_{k_{2}}^{(j_{2})})),j_{2}^{*},\boldsymbol{\omega}_{2}(\boldsymbol{\omega}_{k_{2}}^{(j_{2})})^{\alpha-1}). \end{split}$$

Then, we have $j_1 = j_2$, $\omega_1(\omega_{k_1}^{(j_1)})^{\alpha-1} = \omega_2(\omega_{k_2}^{(j_2)})^{\alpha-1}$ and $(\omega_{k_1}^{(j_1)})^{\alpha}\bar{x_1} - \omega_1(\omega_{k_1}^{(j_1)})^{\alpha-1}f(P_{k_1}^{(j_1)}) = (\omega_{k_2}^{(j_2)})^{\alpha}\bar{x_2} - \omega_2(\omega_{k_2}^{(j_2)})^{\alpha-1}f(P_{k_2}^{(j_2)})$. We assume $k_1 \leq k_2$ without loss of generality. In the case of $k_1 = k_2$ we see $(\bar{x_1}, i_1^*, \omega_1) = (\bar{x_2}, i_2^*, \omega_2)$. Therefore, $k_1 < k_2$ holds. We have

$$\begin{split} &(\boldsymbol{\omega}_{k_2}^{(j_2)})^{\alpha} \bar{x_2} \\ &= (\boldsymbol{\omega}_{k_1}^{(j_1)})^{\alpha} \bar{x_1} + \boldsymbol{\omega}_1 (\boldsymbol{\omega}_{k_1}^{(j_1)})^{\alpha} e_{i_1} + \boldsymbol{\omega}_1 (\boldsymbol{\omega}_{k_1}^{(j_1)})^{\alpha-1} \left(f([a_{k_1}^{(j_1)}:\boldsymbol{\omega}_{k_1}^{(j_1)}] \cdots [a_{k_2-1}^{(j_1)}:\boldsymbol{\omega}_{k_2-1}^{(j_1)}]) - f([a_{k_1}^{(j_1)}:\boldsymbol{\omega}_{k_1}^{(j_1)}]) \right), \end{split}$$

which implies $\bar{x_2} \cdot \bar{v} \ge 0$. This is a contradiction.

For $\alpha = 1$, $T_{\alpha}^{*}(\sigma)\mathscr{G} \subset \mathscr{G}$ does not generally hold. We give a sufficient condition.

Proposition 3.3. We suppose that for every $j \in \{1, 2, ..., d\}$ and $1 \le k_1, k_2 \le l_j$, if $a_{k_1}^{(j)} = a_{k_2}^{(j)}$ and $k_1 \le k_2$, $\omega_{k_1}^{(j)} \le \omega_{k_2}^{(j)}$ holds. Then, $T_1^*(\sigma) \mathcal{G} \subset \mathcal{G}$ holds.

Proof. We suppose that $(\bar{x}, i^*, \omega) \in \mathscr{S}$. We will show that $T_1^*(\sigma)(\bar{x}, i^*, \omega)$ is geometric. We suppose that for $j_1, j_2 \in \mathscr{A}$, $k_1, k_2 \in \mathbb{Z}$ with $\sigma([j_1:1]) = P_{k_1}^{(j_1)}[i:\omega_{k_1}^{(j_1)}]S_{k_1}^{(j_1)}$ and $\sigma([j_2:1]) = P_{k_2}^{(j_2)}[i:\omega_{k_2}^{(j_2)}]S_{k_2}^{(j_2)}$

$$(I_{\sigma}^{-1}(\boldsymbol{\omega}_{k_{1}}^{(j_{1})}\bar{x}-\boldsymbol{\omega}f(P_{k_{1}}^{(j_{1})})),j_{1}^{*},\boldsymbol{\omega})=(I_{\sigma}^{-1}(\boldsymbol{\omega}_{k_{2}}^{(j_{2})}\bar{x}-\boldsymbol{\omega}f(P_{k_{2}}^{(j_{2})})),j_{2}^{*},\boldsymbol{\omega}),$$

which implies that $j_1 = j_2$ and

(3.4)
$$(\omega_{k_2}^{(j_2)} - \omega_{k_1}^{(j_1)})\bar{x} = \omega(f(P_{k_2}^{(j_2)}) - f(P_{k_1}^{(j_1)})).$$

We suppose that $k_1 \neq k_2$. Then, we suppose that $k_1 < k_2$ without loss of generality. Then, $(\omega_{k_2}^{(j_2)} - \omega_{k_1}^{(j_1)})\bar{x} \cdot \bar{v} \leq 0$ and $\omega_1(f(P_{k_2}^{(j_2)}) - f(P_{k_1}^{(j_1)})) \cdot \bar{v} > 0$ hold, which contradicts (3.4). Therefore, we have $k_1 = k_2$. We can prove that for $(\bar{x_1}, i_1^*, \omega_1), (\bar{x_2}, i_2^*, \omega_2) \in \mathscr{S}$ $T_1^*(\sigma)((\bar{x_1}, i_1^*, \omega_1) + (\bar{x_2}, i_2^*, \omega_2))$ is geometric as well as the proof of Lemma 3.2.

 $T_{\alpha}^{*}(\sigma)$ has the following property as well as $E_{1}^{*}(\sigma)$.

Lemma 3.4. For substitutions σ_1, σ_2 over $\mathscr{A}_R^*, T_\alpha^*(\sigma_1\sigma_2) = T_\alpha^*(\sigma_2) \circ T_\alpha^*(\sigma_1)$ holds.

$$\begin{array}{ll} \textit{Proof.} & \text{Let } \sigma_1([i:1]) = [a_1^{(i)}:\omega_1^{(i)}] \cdots [a_{l_i}^{(i)}:\omega_{l_i}^{(i)}] \text{ for } i = 1, \ldots, d \text{ and } \sigma_2([i:1]) = [b_1^{(i)}:\psi_1^{(i)}] \cdots [b_{l_i'}^{(i)}:\psi_1^{(i)}] \text{ for } i = 1, \ldots, d. \\ & \text{Let } (\bar{x}, i^*, \omega) \in \mathscr{F}^*. \text{ We see} \end{array}$$

$$T_{\alpha}^{*}(\sigma_{2})(T_{\alpha}^{*}(\sigma_{1})(\bar{x}, i^{*}, \omega))$$

$$= T_{\alpha}^{*}(\sigma_{2})(\sum_{\sigma_{1}([j_{1}:1])=P(\sigma_{1})_{k_{1}}^{(j_{1})}[i:\omega_{k_{1}}^{(j_{1})}]S(\sigma_{1})_{k_{1}}^{(j_{1})}}(I_{\sigma_{1}}^{-1}((\omega_{k_{1}}^{(j_{1})})^{\alpha}\bar{x} - \omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}f(P(\sigma_{1})_{k_{1}}^{(j_{1})})), j_{1}^{*}, \omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}))$$

$$= \sum_{\sigma_{1}([j_{1}:1])=P(\sigma_{1})_{k_{1}}^{(j_{1})}[i:\omega_{k_{1}}^{(j_{1})}]S(\sigma_{1})_{k_{1}}^{(j_{1})}\sigma_{2}([j_{2}:1])=P(\sigma_{2})_{k_{2}}^{(j_{2})}[j_{1}:\psi_{k_{2}}^{(j_{2})}]S(\sigma_{2})_{k_{2}}^{(j_{2})}$$

$$-\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}f(P(\sigma_{1})_{k_{1}}^{(j_{1})})) - (\psi_{k_{2}}^{(j_{2})})^{\alpha-1}\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}I_{\sigma_{2}}^{-1}f(P(\sigma_{2})_{k_{2}}^{(j_{2})})), j_{2}^{*}, (\psi_{k_{2}}^{(j_{2})})^{\alpha-1}\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1})$$

$$= \sum_{j_{1},k_{1}:a_{(k_{1})}^{(j_{1})}=i} \sum_{j_{2},k_{2}:b_{(k_{2})}^{(j_{2})}=j_{1}} ((\psi_{k_{2}}^{(j_{2})})^{\alpha}(I_{\sigma_{2}}^{-1})(I_{\sigma_{1}}^{-1}((\omega_{k_{1}}^{(j_{1})})^{\alpha}\bar{x}$$

$$= \sum_{j_{1},k_{1}:a_{(k_{1})}^{(j_{1})}=i} \sum_{j_{2},k_{2}:b_{(k_{2})}^{(j_{2})}=j_{1}} ((\psi_{k_{2}}^{(j_{2})})^{\alpha}(I_{\sigma_{2}}^{-1})(I_{\sigma_{1}}^{-1}((\omega_{k_{1}}^{(j_{1})})^{\alpha}\bar{x}$$

$$(3.5)$$

$$-\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}f(P(\sigma_{1})_{k_{1}}^{(j_{1})})) - (\psi_{k_{2}}^{(j_{2})})^{\alpha-1}\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}I_{\sigma_{2}}^{-1}f(P(\sigma_{2})_{k_{2}}^{(j_{2})})), j_{2}^{*}, (\psi_{k_{2}}^{(j_{2})})^{\alpha-1}\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}).$$

On the other hand, we have

$$T_{\alpha}^{*}(\sigma_{1}\sigma_{2})(\bar{x}, i^{*}, \omega)$$

$$= \sum_{\substack{\sigma_{1}(\sigma_{2}([j_{2}:1])) = \sigma_{1}(P(\sigma_{2})_{k_{2}}^{(j_{2})})\sigma_{1}([j_{1}:\psi_{k_{2}}^{(j_{2})}])\sigma_{1}(S(\sigma_{2})_{k_{2}}^{(j_{2})}) \\ \sigma_{1}([j_{1}:\psi_{k_{2}}^{(j_{2})}]) = (P(\sigma_{1})_{k_{1}}^{(j_{1})})^{\psi_{k_{2}}^{(j_{2})}}[i:\omega_{k_{1}}^{(j_{1})}\psi_{k_{2}}^{(j_{2})}](S(\sigma_{1})_{k_{1}}^{(j_{1})})^{\psi_{k_{2}}^{(j_{2})}} \\ -\omega(\omega_{k_{1}}^{(j_{1})}\psi_{k_{2}}^{(j_{2})})^{\alpha-1}f(\sigma_{1}(P(\sigma_{2})_{k_{2}}^{(j_{2})})(P(\sigma_{1})_{k_{1}}^{(j_{1})})^{\psi_{k_{2}}^{(j_{2})}})), j_{2}^{*}, (\psi_{k_{2}}^{(j_{2})})^{\alpha-1}\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1})$$

$$= \sum_{j_{1},k_{1}:a_{(k_{1})}^{(j_{1})}=i, \text{ and } j_{2},k_{2}:b_{(k_{2})}^{(j_{2})}=j_{1}} (I_{\sigma_{1}}^{-1}\sigma_{2}((\omega_{k_{1}}^{(j_{1})}\psi_{k_{2}}^{(j_{2})}))^{\alpha}\bar{x}$$

$$(3.6) - \boldsymbol{\omega}(\boldsymbol{\omega}_{k_1}^{(j_1)}\boldsymbol{\psi}_{k_2}^{(j_2)})^{\alpha-1} f(\boldsymbol{\sigma}_1(P(\boldsymbol{\sigma}_2)_{k_2}^{(j_2)})(P(\boldsymbol{\sigma}_1)_{k_1}^{(j_1)})^{\boldsymbol{\psi}_{k_2}^{(j_2)}})), j_2^*, (\boldsymbol{\psi}_{k_2}^{(j_2)})^{\alpha-1} \boldsymbol{\omega}(\boldsymbol{\omega}_{k_1}^{(j_1)})^{\alpha-1})$$

where

$$\omega(\omega_{k_{1}}^{(j_{1})}\psi_{k_{2}}^{(j_{2})})^{\alpha-1}f(\sigma_{1}(P(\sigma_{2})_{k_{2}}^{(j_{2})})(P(\sigma_{1})_{k_{1}}^{(j_{1})})^{\psi_{k_{2}}^{(j_{2})}}$$

$$=\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}(\psi_{k_{2}}^{(j_{2})})^{\alpha-1}f(\sigma_{1}(P(\sigma_{2})_{k_{2}}^{(j_{2})}))+\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}(\psi_{k_{2}}^{(j_{2})})^{\alpha}f(P(\sigma_{1})_{k_{1}}^{(j_{1})})$$

$$=\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}(\psi_{k_{2}}^{(j_{2})})^{\alpha-1}I_{\sigma_{1}}(f(P(\sigma_{2})_{k_{2}}^{(j_{2})}))+\omega(\omega_{k_{1}}^{(j_{1})})^{\alpha-1}(\psi_{k_{2}}^{(j_{2})})^{\alpha}f(P(\sigma_{1})_{k_{1}}^{(j_{1})}).$$

$$(3.7)$$

By (3.5), (3.6) and (3.7) we have $T_{\alpha}^{*}(\sigma_{2})(T_{\alpha}^{*}(\sigma_{1})(\bar{x},i^{*},\omega)) = T_{\alpha}^{*}(\sigma_{1}\sigma_{2})(\bar{x},i^{*},\omega)$. Thus we have Lemma

By Lemma 3.1, 3.2 and 3.4 we have following Theorem.

Theorem 3.5.

- 1. For every $\alpha \in \mathbb{R}$ with $\alpha \neq 1$, $T_{\alpha}^*(\sigma)\overline{\mathscr{S}} \subset \overline{\mathscr{S}}$ and $T_{\alpha}^*(\sigma)\mathscr{G} \subset \mathscr{G}$.
- 2. For every $\alpha \in \mathbb{R}$, $T_{\alpha}^*(\sigma_1 \sigma_2) = T_{\alpha}^*(\sigma_2) \circ T_{\alpha}^*(\sigma_1)$.

We also define a class of endomorphisms $F_{\alpha}^*(\sigma)$ on \mathscr{F}^* for $\alpha \in \mathbb{R}$ by

$$F_{\alpha}^{*}(\sigma)(\bar{x}, i^{*}, \omega) := \sum_{j \in \mathscr{A}} \sum_{a_{k}^{(j)} = i} (I_{\sigma}^{-1}((\omega_{k}^{(j)})^{\alpha} \bar{x} - \omega(\omega_{k}^{(j)})^{\alpha - 1} f(S_{k}^{(j)})), j^{*}, \omega(\omega_{k}^{(j)})^{\alpha - 1}).$$

We consider a reversed word w and a reversed substitution $\overline{\sigma}$ defined by $\overline{w} = w_l w_{l-1} \cdots w_1$ for w = $w_1w_2\cdots w_l$ and $\overline{\sigma}(i)=\overline{\sigma(i)}$. Then, $F_{\alpha}^*(\sigma)=T_{\alpha}^*(\overline{\sigma})$. Thus we have Theorem 3.6.

Theorem 3.6.

- 1. For every $\alpha \in \mathbb{R}$ with $\alpha \neq 1$, $F_{\alpha}^{*}(\sigma)\overline{\mathscr{S}} \subset \overline{\mathscr{S}}$ and $F_{\alpha}^{*}(\sigma)\mathscr{G} \subset \mathscr{G}$.
- 2. For every $\alpha \in \mathbb{R}$, $F_{\alpha}^*(\sigma_1 \sigma_2) = F_{\alpha}^*(\sigma_2) \circ F_{\alpha}^*(\sigma_1)$.

We denote by U (resp.U') $\sum_{i \in \mathscr{A}} (-e_i, i^*, 1)$ (resp. $\sum_{i \in \mathscr{A}} (0, i^*, 1)$). We note that the equality $T_{\alpha}^*(\sigma)(U')$ – $T_{\alpha}^*(\sigma)(U) = U' - U$ holds for not all $\alpha \in \mathbb{R}$. We give a sufficient condition.

Proposition 3.7. $T_1^*(\sigma)(U') - T_1^*(\sigma)(U) = U' - U.$

Proof. We have

$$\begin{split} &T_1^*(\sigma)(U') - T_1^*(\sigma)(U) = T_1^*(\sum_{i \in \mathscr{A}} (0, i^*, 1)) - T_1^*(\sum_{i \in \mathscr{A}} (-e_i, i^*, 1)) \\ &= \sum_{i \in \mathscr{A}} \sum_{j \in \mathscr{A}} \sum_{a_k^{(j)} = i} (I_\sigma^{-1}(-f(P_k^{(j)})), j^*, 1) - \sum_{i \in \mathscr{A}} \sum_{j \in \mathscr{A}} \sum_{a_k^{(j)} = i} (I_\sigma^{-1}(-\omega_k^{(j)} e_i - f(P_k^{(j)})), j^*, 1) \\ &= \sum_{j \in \mathscr{A}} \sum_{k = 1}^{l_j} (I_\sigma^{-1}(-f(P_k^{(j)})), j^*, 1) - \sum_{j \in \mathscr{A}} \sum_{k = 1}^{l_j} (I_\sigma^{-1}(-\omega_k^{(j)} e_{a_k^{(j)}} - f(P_k^{(j)})), j^*, 1) \\ &= \sum_{j \in \mathscr{A}} \sum_{k = 1}^{l_j} (I_\sigma^{-1}(-f(P_k^{(j)})), j^*, 1) - \sum_{j \in \mathscr{A}} (\sum_{k = 1}^{l_j - 1} (I_\sigma^{-1}(-f(P_k^{(j)})), j^*, 1) + (-e_j, j^*, 1)) \\ &= U' - U. \end{split}$$

§ 4. Example

Following [1], we associate the hyperface $\{\bar{x} + \omega e_i + \omega \sum_{j \neq i} \lambda_j e_j | 0 \leq \lambda_j \leq 1\}$ to (\bar{x}, i^*, ω) . Let us consider the following substitution σ :

$$\begin{split} &\sigma[1:1] = [1:1][1:1][2:1],\\ &\sigma[2:1] = [1:\sqrt{2}-1][3:1],\\ &\sigma[3:1] = [1:1]. \end{split}$$

Then, $I_{\sigma} = \begin{pmatrix} 2\sqrt{2} - 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ and it is regular and primitive. The following figures are $(T^*_{weight}(\sigma))^9(U)$ for weight= 0, 1, 2, 3.

Figure 1(weight 0)

Figure 2(weight 1)

Figure 3(weight 2)

Figure 4(weight 3)

§ 5. Problem

Let **K** be a finite algebraic field over \mathbb{Q} and $O_{\mathbf{K}}$ be all algebraic integers in **K**. Let $E_{\mathbf{K}}$ be the unit group of $O_{\mathbf{K}}$. We suppose that **K** is generated by $\omega_k^{(i)} (i \in \mathcal{A}, 1 \le k \le l_i)$ over \mathbb{Q} , $\omega_k^{(i)} (i \in \mathcal{A}, 1 \le k \le l_i) \in E_{\mathbf{K}}$ holds and the determinant of I_{σ} is in $E_{\mathbf{K}}$. We denote by $\mathscr{G}(\mathbf{K})$ $\{(\bar{x}, i^*, \omega) \in \mathscr{G} | \bar{x} \in (O_{\mathbf{K}})^d, \omega \in O_{\mathbf{K}}\}$. By Theorem 3.5 we see $T_{\alpha}^*(\sigma)\mathscr{G}(\mathbf{K}) \subset \mathscr{G}(\mathbf{K})$ for every $\alpha \in \mathbb{Z}$ $(\alpha \ne 1)$. $\mathscr{G}(\mathbf{K})$ is significant in Diophantine approximation. In fact, in [6] for dual substitutions associated with a multidimensional continued fraction algorithm, the problem to determine whether $\lim_{n\to\infty} E_1^*(\sigma)^n(U)$ are equal to stepped surfaces is considered, which is used to obtain the results related to the simultaneous Diophantine approximation for certain cubic pairs in [5]. We serve a following problem:

Problem.

Does the equation
$$\bigcup_{n\in\mathbb{Z},k\in\mathbb{Z}_{\geq 0}}\Psi((T_k^*(\sigma))^n)(U))=\Pi_1(\mathscr{G}(\mathbf{K}))$$
 hold , where $\Psi:\overline{\mathscr{S}}\to 2^{\mathbb{R}^d}$ is defined by $\Psi((\bar{x_1},i_1^*,\omega_1)+\dots(\bar{x_n},i_n^*,\omega_n))=\{\bar{x_1},\dots\bar{x_n}\}$ for $(\bar{x_1},i_1^*,\omega_1)+\dots(\bar{x_n},i_n^*,\omega_n)\in\overline{\mathscr{S}}$ and $\Pi_1(\bar{x},i^*,\omega)=\bar{x}$ for $(\bar{x},i^*,\omega)\in\mathscr{S}$?

We remark that generating stepped surfaces (discrete planes) with substitutions are considered in [2],[3],[4].

Acknowledgement.

This work was supported by Grant-in-Aid for Scientific Research(C) Grant Number 15K00342.

The authors would like to thank the referee for their valuable comments which helped to improve the manuscript.

References

- [1] P.Arnoux, S.Ito; Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), no. 2, 181-207.
- [2] V.Berthé, J.Bourdon, T.Jolivet, A. Siegel; Generating discrete planes with substitutions Words 2013, LNCS 8079 (2013) 107-118.
- [3] V. Berthé, T. Jolivet, A. Siegel; Substitutive Arnoux-Rauzy sequences have pure discrete spectrum Uniform distribution theory 7 (2012) 173-197.
- [4] M.Furukado, S.Ito, S.Yasutomi; The condition for the generation of the stepped surfaces in terms of the modified Jacobi-Perron algorithm (2013), preprint.
- [5] S.Ito, J.Fujii, H.Higashino, S.Yasutomi; On simultaneous approximation to (α, α^2) with $\alpha^3 + k\alpha 1 = 0$, J. Number Theory 99 (2003), no. 2, 255-283.
- [6] S.Ito, M.Ohtsuki; Parallelogram tilings and Jacobi-Perron algorithm, Tokyo J. Math. 17 (1994), no. 1, 33-58.
- [7] T.Kamae; Numeration systems as dynamical systems. Report available at http://www14.plala.or.jp/kamae (new version of reference [8]).
- [8] T.Kamae; Numeration systems, fractals and stochastic processes, Israel J. Math. 149 (2005), 87-135.
- [9] T.Kamae; Mixing properties of numeration systems coming from weighted substitutions, Ergodic Theory Dyn. Syst. 30(2010), No. 4, 1111-1118.
- [10] N. Pytheas Fogg; Editors: V. Berthé, S.Ferenczi, C. Mauduit, A. Siegel; Substitutions in dynamics, arithmetics and combinatorics. Lecture Notes in Mathematics. 1794. Berlin: Springer(2002).
- [11] Y.Sano, P.Arnoux, S.Ito; Higher dimensional extensions of substitutions and their dual maps,J. Anal. Math. 83(2001), 183–206.
- [12] J.Tamura, S.Yasutomi; Substitutions over C-powered symbols, and Rauzy fractals for imaginary directions, preprint