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Dual substitutions over R.j—powered symbols

By

Jun-ichi TAMURA™*and Shin-ichi YASUTOMI**

Abstract

We will consider dual substitutions of substitutions over R+ g—powered symbols which are introduced in [12].
We give a class of weighted substitutions including the dual substitutions. We also introduce weighted tips which
generalize the unit tip in a stepped surface (discrete plane).

§1. Introduction

Let .o/ be an alphabet of d letters {1,2,...,d}. In [12] substitutions over C—powered symbols are
considered. Its crucial point of the weighted substitution is to attach a weight to each letter. We use the
terminology [a; : & for a; € o7/, o0 € C* instead of the terminology af* in [12]. Consider, for example
a Fibonacci like substitution o defined on the set of finite words over &/ = {1,2} which replaces |1 : 1]
with [1: 1][2:v/2—1] and [2: 1] with [1 : 1]. Tterating 6 on [1 : 1], we have [1: 1] — [1: 1][2: V2~ 1] —
MR :vV2—=1)[1:vV2—1] = [1:12:vV2—1][1:vV2—=1][1:vV2—1]2: (vV2—1)?].... In[7,8, 9]
substitutions over R~ o—powered symbols and related dynamical systems are considered.

In [12], we introduced geometric realization/representation in the unitary space C¢ for infinite words
over complex valued symbols, and we gave some new results related to Diophantine approximation of
complex numbers and Rauzy sets in C¢, which are the same as Rauzy fractals for ordinary substitutions. A
dual substitution associated to an ordinary substitution which was introduced in [1] is an excellent tool in
symbolic dynamical system and related areas (see [10]). In this paper we will consider dual substitutions
of substitutions over R~ g—powered symbols and introduce a class of substitutions including the dual
substitution. We also give a generalization of the unit tip in a stepped surface (discrete plane), which
is called a weighted tip. We remark that substitutions over R-o—powered symbols give algorithms by
which we have algebraic integral points near certain hyperplane. For example, by iterating the above ¢
we have algebraic integral points in Z[v/2] x Z[v/2] close to some line(see [12]). Similarly, by iterating
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the weighted dual maps of ¢ we have algebraic integral points in Z[v/2] x Z[v/2] close to some line. From
this number theoretical point of view we serve an open problem.

§2. Dual substitution

In this section we consider a dual substitution for a substitution following [1]. We denote by o7y
the free monoid on &7 x R, that is, &5 = U, (4 x R9)". We denote an element w in <7; by

w=[wi: @] - [wp: @], where wy € & and @y € R~o. Forw € &7 and a € R~ we define w* := [w; :
o]+ [wy - 00®,). Forw € o/ and i € o/, we define |wl; := Y, _; 0. A map f: o7 — R? is defined
by

Fw):="(wli,...,[wla).

Then, we have f(ww') = f(w)+ f(W') for w,w' € o (see [12]).

The reader is referred to [1, 11] for a dual map of a substitution. A substitution ¢ over &7 is a
homomorphism of 277 into <7f which satisfies that for every u;,us € <7, o(uju2) = o(u1)o(uz) and
for every a € Ryg and u € o7, 6(u*) = o(u)*. Let o([i: 1]) = a3 o a)l()] la,. (i) ()]fOI'l—l d.
We define P(0)\" (= P") and 5(0)\" (= ") by o ([i : 1]) = P(0)\"[a}" : @\"]S ( W fork=1,2,...,1.
The incidence matrix Iz = (my;) is d X d matrix with entries my; = |o([/ : 1])| We suppose that IG is
regular and primitive.

Let .Z be the free Z module over the set R? x .27 x R~. We define the endomorphism E; (o) on .7
as follows: for (%,i,) € RY x o/ x R

I . .
Ei(o Z BH+of(P),d" 0ol).

We denote by the .7 * and (%,i*, ®) the dual space of .# and its element which maps (,i, ) to 1,
and to 0 otherwise. We denote by E{ (o) the dual map of E; (o). From the definition of E{ (o) we have
the following lemma.

Lemma 2.1.  For substitutions 01,0, over &g, E{(0102) = E{(02) 0o E{(01) holds.

Lemma 2.2.  For a substitution & over gy , we have

* = % — - [ j * O
Ei(o)(&i"0)= Y ¥ (s G——fB).7"—5)
j@zfal((j):l- w, w,

Proof. Tt is not difficult to see that for each j with 1 < j <d, (I5(y) + wo.f (Pk(j )),a,(cj ), a)za),Ej )) are
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different from each other for k = 1,...,/;. Hence we have

(jv i w)<El(G)()77j7w2)) =1

0
(% 0) Y (ls() + @ f (P).a  r0”) = 1
0
x=1:)+ a)zf(Pk(j)),i = a,gj) and 0 = a)za),gj),
which implies Lemma 2.2. O

Since I is primitive, I5 has an eigenvalue A which is positive, simple and bigger in modulus than
the other eigenvalues. ‘I has a positive eigenvector v associated with 4. Let & be the plane which is
orthogonal to v.

Let {eq,...,eq} be the canonical basis of R?. We say that (%,i*, @) € .#* is a weighted tip, if -7 < 0
and (X + we;) - v > 0, where for uj,u; € R4, uy - uy is the scalar product of two vectors.

We denote by .7 the set of all weighted tips in .%*. We denote by . the Z module over .#. We say
an element in .7 is geometric if its every coefficient represented by the basis .7 is 0 or 1.

Lemma 2.3. If(%,i*,0) € .7, then E; (0)(%,i*,0) € ¥ and E; (0)(%,i*, ®) is geometric.

Proof. 'We suppose that (¥,i*, ®) € .. By Lemma 2.2 we will check that for j € &7, ke {1,2,...,1;}
with o([j: 1) = PY[i : 0|5

1/ 0 ; . O
(Idl(x_mf(Pk(J)))a] ’W)Ey'
k

Wy
We see
) NN Yo V) NN S L LoV N
05" 0= T ) o= e 2 B go = g L) 1o <0
5 5 k
‘We have
1 w [0} _ _ 1._
<IGI<X_Wf(Pk(J)))+We]) VZ(X-F Wf(S]((J))—F(Del)'IV
0 o 0
(it we). Lo @ gy, Lo
= (¥4 we;) AHw(f)f(Sk ) )va()
(3
Thus, we have (I;'(x — %f(Pk(j))),j*,%) € /. Secondly, we will show that Ef(0)(%,i*,®) is
) O

geometric. We suppose that for ji, j» € &, k1,ky € Z with o([j; : 1]) = Pk(ljl)[i : a),g‘)]S,({{‘) and o([jz :

1]) = Pk(zjz)[l- : a)(jz)]S(jz)

b 1Pk
1 O N R e P (2)y) gz @
(Icr (X w]gjl)f(Pk] ))7.]17(0]5]'1)) (IG ( w]gjz)f(sz ))’]2’w]£j2)),
1 1 2 :
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which implies that j; = jp, a)lgf - (o,gZ) and f (Pk(lj 1)) =f (Pk(f)). Then, it is not difficult to see that

ki = k. Thus, we have Lemma 2.3. O

Lemma 2.4. If(x_hiT,a)]), (x_zﬂé,(l)z) €. and (x_l,iT,(m) =+ (x_z,l;,a)z), then
E{(o)((%1,17,01) + (2,05, 0)) is geometric.

Proof.  We suppose that (x7,i],®), (6,05, a) € . and Ej(0)((£71,i], 1) + (%2,53,@2)) is not

geometric. By Lemma 2.2 and Lemma 2.3 there exist j, j» € &/ and k;,ky € Z such that a,(cf D i,
O]

() _ Gy = O v o g, (j2) 0
ay”’ =i and (I5 Yo — —(jl)f(P )5 71 7 )= (I5" (2 —(jz)f(P ))sJ3, 0 )). Then, we have
k1 k] ko ka
J1=1J2, O _ _® and X7 — w? f(P(“)) =X — &f(P( )) We assume k; < kr without loss of
w(/l) w( Jj2) oV ky wl?) ka
k ky k1 ko

generality. In the case of k; = kp we see (x7,i], @) = (2,13, ). Therefore, k| < k» holds. We have

B _ Q]
xz=x1+wleil+w(—j1])<f([ agV V]l s o) - £llal: ofV)).,
ky

which implies x> - v > 0. This is a contradiction.

We define ¢ as the set of all geometric elements in ..
By Lemma 2.3 and Lemma 2.4 we have

Proposition 2.5. Ej(0).Y C . and E{(0)9 C 9.

§3. Certain Extension

Now, we define a class of endomorphisms 7, (o) on .%#* for a € R by

Tie)®i @)=L ¥ (s (@)= w(@) " f(B)), j*, o(@”)* 7).

We note that £} (o) = T (o) . We call the above o the weight of 7, (o).

Lemma3.1. [f (% i* @) €.7, then T;(0)(%,i*,0) € .7 .

Proof.  'We suppose that (¥,i*,®) € .. We will check that for j € o7, k with o([j : 1]) = Pk(j) [i:
wlgj)]sl(cj)

3.1) (15 (02— (021 £(PYY), j, 0(0)* 1) € 7.

We see

. . 1 . 1
62 =) (o5 71— of(P)- 77).
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On the other hand,

(3.3)

Since x-v < 0 and (X + we;) - v > 0, we have the inequalities (3.2) < 0 and (3.3) > 0. Hence, we have
T (o) (%,i", 0) € 7.

0
We have following Lemma 3.2 as well as Lemma 2.4.

Lemma 3.2. If(x‘l,if,a)l), (x_z,i;,a)z) €. and (X_l,iT,(Dl) #* (x_z,l;,a)z), then
Ty (o) (k1,17 01) + (2,85, @) is geometric for o # 1.

Proof. Let oo # 1. First, we will show that T*( o)(%,i}, ;) is geometric. We suppose that for
ji, 2 € o ki ky € Zowith ([ 2 1)) = PV (i oV)sy and o ([ : 1)) = B lir - 0?5

(5 (o) %5 — o1 (@)L F(BIV)), i, n (V)21
= (I (o) %5 — o (0 L F(BI)), j3, an (),

which implies that j; = j, and ky = ky. Therefore, T;; (o) (%, i}, 1) is geometric. Similarly, T;; (o) (X, i3, @2)
is geometric.

Secondly, we suppose that (xy,i], ), (%2,55, @) € . and Ty (o)((%1,i], 1) + (%2,i5,@2)) is not
geometric. Then, there exist j;, j» € o/ and k;,ky € Z such that a(] - =1y, a,((] 2 =i, and
s (@) %5 — o1 () F(RI)). it o1 () )

= (I;' (@) %5 — an (@)L F(BI)), j3, an(0))* ).

Then, we have ji = 2. @1 (@)~ = @y ()" and (0]) %51 —on (o)~ F(P]) = (o) %5
a)z(a),gZ))“*lf(Pk(f)). We assume k; < ky without loss of generality. In the case of k; = kp we see
(%1,i7, 1) = (42,15, axn). Therefore, k| < ko holds. We have

(CO]gZ))ax_z

= (@)% + o1 (0f) %, + o (o) (f(la : oV

LoD = £l o))

which implies x; - v > 0. This is a contradiction.

For a =1, T;(0)¥ C ¥ does not generally hold. We give a sufficient condition
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Proposition 3.3.  We suppose that for every j € {1,2,...,d} and 1 <ky,ky <1, ifa](({) = a,(é) and
ki < ko, 0 < o holds. Then, T (6)% < & holds.

Proof. We suppose that (¥,i*, ) € .. We Will show that 7}* (o) (%,i*, @) is geometric. We suppose

that for ji, j» € . ki, k> € Z with o ([j1 : 1) = PV [i - oV ]S )andG([]z 1)) = PP i: 0?51

(I (03— wf(BI)), ji,0) = (I; (05— o f (B))). j3, ©),
which implies that j; = j, and
(3.4) (0~ o)7= o(F(E) ~ F(B)).

We suppose that k| # k. Then, we suppose that k| < k, without loss of generality. Then, (a),g 2) (o,glj 1)))2-

7 <0and o (F(RL?) — f(P)) -7 > 0 hold, which contradicts (3.4). Therefore, we have k| = k. We
can prove that for (x7,i}, 1), (2,53, ) € .7 T (o) (41,1}, 01) + (2,83, @2)) is geometric as well as the
proof of Lemma 3.2. O

T, (o) has the following property as well as E} (o).

Lemma 3.4.  For substitutions Gy, 0, over <, T;(0102) =T, (02) o T;(01) holds.

Proof. Leto([i:1])= [agi) : a)l(i)] e [al(l_i) : wl(ii)] fori=1,....,dand oy([i: 1]) = [bgi) . l,tll(i)] . [bl({i) :
y/l({i)] fori=1,....d.
Let (%,i*, ) € .Z*. We see

= Ty (02)( X g ()%= (@) £(P(o1)]). i (M) )
o1 (Li:1)=P(o1)V [z 1s(on)

o1 (L) =P(on Vo V15! o ([a: 1) =P(02) 2 (11w 15(02)
— (@)% £(P(a1){M)) — (W) o(0) 1 £(P(02) ), 5. (W) ()% )
S Y (w15 (o))

ikiag=i kb =it
3.5

—o(ay) PN ) = (wg ) (e ) G F(P(o2) ), i (w ) el ).
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On the other hand, we have

T, (0102)(%,i", @)

= Y (I, (0 w5
o1(02([j2 : 1) = o1 (P(02) )1 (Ljn : y Do (8(02) )
. . (J2) . (j2)
o1 ([jr : W2']) = (P(en)F) ¥ iz @y (s(on) 1)) Y
. . (j2) .
— o(o y) ! f(o1(P(02) ) (P(on)) 2 ), s, (W) @(w) )
=Y U@y
J1,k1 :aEii;:i, and jz,kzzbglj;;:jl
. . (j2) . .
3.6 ooy (o1 (P(e) ) (P(an)) M2 ), 5 (W) Lo ()2 )
where
. . . . (J2)
oy ) (o (o) (Plon) )
= o(o")* (y) ! (o1 (P2 ) + o(0f) (w2 £ (P(o1))
Gn = a]) ) e (FPe)) + ool (w)  r(pe)).

By (3.5), (3.6 )and (3.7 ) we have T; (02)(T, (01)(%,i*, w)) = T, (0102)(%,i*, @). Thus we have Lemma
34. O

By Lemma 3.1, 3.2 and 3.4 we have following Theorem.

Theorem 3.5.
1. Foreverya € Rwitha # 1, T} (06).7 C .7 and T} (6)9 C 4.
2. Forevery a € R, T;(0102) =T,4(02) o Ty(07).

We also define a class of endomorphisms Fj; (o) on .7 * for a € R by

Fio)& i)=Y Y (5 (o) % - o) f(s), i, o(o)* ).

je%al((ﬁ:i

We consider a reversed word w and a reversed substitution & defined by w = wyw;_1---w; for w =
wiwy---wy and 6 (i) = o(i). Then, F;(c) = T,; (7). Thus we have Theorem 3.6.

Theorem 3.6.
1. Forevery a € Rwitha # 1, Fi(0). C ./ and F ()9 C 9.
2. Forevery a € R, F;(0102) = F;(02) o Fi(0y).

We denote by U (resp.U") Yic.r(—ei,i*, 1) (resp.Y e (0,i*, 1)). We note that the equality 75 (o) (U’) —
T;(o)(U) =U’"—U holds for not all o € R. We give a sufﬁc1ent condition.
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Proposition 3.7. T} (o)(U') - T} (o)(U) =U'—U.

Proof. We have

icd icd
=Y Y Y . )-Y Y Y U5 (~ofe—f(B)). i)
iedjemfal((j):i ieﬂjeﬂa,(f):z
Lj lj . .
=Y YU .0 - Y YU (—oe o - £(R)), 5% 1)
jeol k=1 jed k=1 k

4. Example

Following [1], we associate the hyperface {¥+ we; + @Y ;. Aje;|0 < A; < 1} to (X,i*, ®). Let us
consider the following substitution o

o[l:1]=[1:1][1:1][2:1],
o2:1]=[1:v2-1][3:1],
c[3:1]=[1:1].
2v2-11
Then,Io = |1 0O 0| anditis regular and primitive. The following figures are (7", gh[(o))9(U ) for
0O 1 O

weight=0,1,2,3.
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level=0 ——

150
100
50

-50
-100
-150

Figure 1(weight 0)
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level=1 ——

30
Figure 2(weight 1)
level=2 ——
-15
-10
-5
0
5
10
15
0 10 20

Figure 3(weight 2)
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level=3 ——

10
15

- 0 20
20 55— 40 80 20 10 0

Figure 4(weight 3)

§5. Problem

Let K be a finite algebraic field over Q and Ok be all algebraic integers in K. Let Eg be the unit group
of Og. We suppose that K is generated by a)lgi)(i €, 1 <k<I)overQ, a)lgi)(i e, 1<k<l)€Ek
holds and the determinant of I, is in Ex. We denote by 4(K) {(%,i*, w) € 4|% € (Ox)?,w € Ok}. By
Theorem 3.5 we see T; (0)9(K) C 4(K) for every a@ € Z (a0 # 1). ¢(K) is significant in Diophan-
tine approximation. In fact, in [6] for dual substitutions associated with a multidimensional continued
fraction algorithm, the problem to determine whether lim, .. E{(0)"(U) are equal to stepped surfaces is
considered, which is used to obtain the results related to the simultaneous Diophantine approximation for
certain cubic pairs in [5]. We serve a following problem:

Problem.
Does the equation Uyez ez, ¥((7; (0))")(U)) = I11(¥(K)) hold , where ¥ : 7 — 2R is defined by
V(1,85 01) + ... (G, 5, @) = {51, ... X} for (61,1}, @1) + ... (%, i, 0,) € 7 and
IT; (x,i*, ) = X for (%,i*, ) € /7

We remark that generating stepped surfaces (discrete planes) with substitutions are considered in

[21.[3],[4].
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