Denjoy odometer with cut number 1 or 2

Ву

Masamichi Yoshida*

Abstract

We construct a new class of numeration systems which properly includes the class of dual Ostrowski numeration systems and whose associated odometers are topologically conjugate to Denjoy systems with cut number 1 or 2.

§ 1. Introduction

The main aim of this paper is a generalization of dual Ostrowski numeration system and its associated odometer. All statements in this section are proved later in a more general setup.

Let $\mathbb{N}_0 = \{0, 1, 2, \dots\}$ and $\mathbb{B} = (0, 1) \setminus \mathbb{Q}$. The Gauss map $G : \mathbb{B} \to \mathbb{B}$ is defined by $G(\alpha) = \{\frac{1}{\alpha}\}$ (the fractional part of $\frac{1}{\alpha}$). It is well-known that G generates the simple continued fraction expansion of α : precisely, letting $\alpha_n = G^n(\alpha)$ and $a_n = \lfloor \frac{1}{\alpha_n} \rfloor$, we have

$$\alpha = \frac{1}{a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \dots}}}.$$

Set $M^{\alpha} = \{x = x_0 x_1 x_2 \cdots \in \prod_{n \in \mathbb{N}_0} \{0, 1, \cdots, a_n\} \mid x_n = a_n \Longrightarrow x_{n+1} = 0\}$. It is also well-known that for any $\xi_0 \in [0, 1]$ there is $x \in M^{\alpha}$ with

$$\xi_0 = \nu^{\alpha}(x) := \sum_{n \in \mathbb{N}_0} x_n \prod_{j=0}^n \alpha_j$$

by using usual greedy algorithm, that is, setting $x_n = \lfloor \frac{\xi_n}{\alpha_n} \rfloor$ and $\xi_{n+1} = \{ \frac{\xi_n}{\alpha_n} \}$. This expansion of ξ_0 is called the **dual Ostrowski expansion** of ξ_0 based on α . See Subsection 6.4.3 of [3]. Moreover, we can see that for any $x \in M^{\alpha}$, the series $\nu^{\alpha}(x)$ converges and $\nu^{\alpha}(x) \in [0,1]$. Denote by $\{\nu^{\alpha}\}(x)$ the fractional part of $\nu^{\alpha}(x)$ and so we have a surjective map

$$\{\nu^{\alpha}\}: M^{\alpha} \to [0,1).$$

Received October 18, 2015. Revised March 28, 2016. Accepted 1 May 2016.

2010 Mathematics Subject Classification(s): 37B10

email:yoshida@sci.osaka-cu.ac.jp

© 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.

^{*}Deparment of Mathematics, Osaka City University, 3-3-138 Sugimoto Sumiyoshi-ku, Osaka-shi, 558-8585, Japan.

On the other hand, we have an "odometer"

$$H_{\alpha}: M^{\alpha} \to M^{\alpha}$$

in a natural way and call H_{α} the dual Ostrowski odometer on M^{α} . The formal definition of H_{α} is as follows. Define $c = a_0 0 a_2 0 \cdots$. For each $c \neq x \in M^{\alpha}$, let

$$L(x) = \min\{n \in \mathbb{N}_0 \mid x_n \neq c_n\}.$$

Note L(x) is even. Define $H_{\alpha}(c) = 0a_10a_30\cdots$ and for each $c \neq x \in M^{\alpha}$ with L = L(x)

$$H_{\alpha}(x) = \begin{cases} 0a_10a_3 \cdots 0a_{L-3}0(a_{L-1} - 1)(x_L + 1)x_{L+1}x_{L+2} \cdots \\ \text{if } x_L < a_L - 1 \text{ or if } x_L = a_L - 1 \text{ and } x_{L+1} = 0 \\ 0a_10a_3 \cdots 0a_{L-1}0(x_{L+1} - 1)x_{L+2}x_{L+3} \cdots \\ \text{otherwise.} \end{cases}$$

It is easy to check $H_{\alpha}(x) \in M^{\alpha}$. At first sight, the definition of H_{α} may look artificial, but it is natural under "carry operation". See the proof of Lemma 7.7 and its subsequent discussion. There is the following theorem:

- (1) $\{\nu^{\alpha}\}\$ is at most 2-to-1 and H_{α} is a homeomorphism with $\{\nu^{\alpha}\}\circ H_{\alpha}=R_{\alpha}\circ \{\nu^{\alpha}\}$ where $R_{\alpha}:[0,1)\to[0,1)$ is the rotation with angle α .
- (2) $\{\xi \in [0,1) \mid \sharp \{\nu^{\alpha}\}^{-1}(\xi) = 2\} = \mathcal{O}_{\alpha}$ where \mathcal{O}_{η} is the orbit of $\eta \in [0,1)$ under R_{α} , that is, $\mathcal{O}_{\eta} = \{R_{\alpha}^{n}(\eta) \mid n \in \mathbb{Z}\}$
- (3) $\mathbf{e} \circ \nu^{\alpha} : M^{\alpha} \to S^1$ is continuous where $\mathbf{e}(\eta) = \exp(2\pi i \eta)$ and $S^1 = \{z \in \mathbb{C} \mid |z| = 1\}$.

Fact (2) says that the points, which have 2-way expansions in M^{α} , form a single orbit \mathcal{O}_{α} . Under usual identification of R_{α} with $\mathbf{e} \circ R_{\alpha} \circ (\mathbf{e}|_{[0,1)})^{-1} : S^1 \to S^1$, (1) and (3) say that H_{α} is an at most 2-to-1 topological extension of $R_{\alpha} : S^1 \to S^1$. Moreover, this theorem implies that H_{α} is topologically conjugate to a *Denjoy system with rotation number* α *and cut number* 1. In other words, H_{α} is an odometer model for a Denjoy system with rotation number α and cut number 1. See Section 8 for definitions of Denjoy system, rotation number and cut number.

In this paper, when $\alpha \in \mathbb{B}$ and $\beta \in [0,1)$ are given, we address a generalization of this theorem: that is, to construct a numeration system $\nu^{\alpha,\beta}$ such that the points, which have 2-way expansions, form $\mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta}$ and an odometer $H_{\alpha,\beta}$ associated with $\nu^{\alpha,\beta}$ is topologically conjugate to a Denjoy system with rotation number α and cut number 1 or 2 (Theorems 1.1 and 1.2). In [1], Cortez and Rivera-Letelier showed a general model theorem (up to topological orbit equivalence) for the class of uniquely ergodic Cantor minimal (dynamical) systems, by using inverse limits of generalized odometers. More directly than [1], we shall construct an odometer model for the small subclass of Denjoy systems with rotation number α and cut number 1 or 2, without using inverse limit. Especially the odometer in this paper is a bijection.

Instead of the Gauss map G, we shall begin with $T: \mathbb{B} \times [0,1) \to \mathbb{B} \times [0,1)$ defined by

$$T(\alpha, \beta) = \begin{cases} \left(\left\{ \frac{1}{\alpha} \right\}, \left\{ \frac{-\beta}{\alpha} \right\} \right) & \text{if } \left\{ \frac{-1}{\alpha} \right\} \ge \left\{ \frac{-\beta}{\alpha} \right\} \\ \left(\left\{ \frac{-1}{\alpha} \right\}, \left\{ \frac{\beta}{\alpha} \right\} \right) & \text{otherwise.} \end{cases}$$

(cf. This map T is a modification of a map used in [2], Théorème 3.2, pp. 299-300.) Note $T(\alpha,0)=(G(\alpha),0)$ so T is an extension of G. Define $\iota:\mathbb{B}\times[0,1)\to\{0,1\}$ by

$$\iota(\alpha, \beta) = \begin{cases} 0 \text{ if } \{\frac{-1}{\alpha}\} \ge \{\frac{-\beta}{\alpha}\} \\ 1 \text{ otherwise.} \end{cases}$$

Letting $(\alpha_n, \beta_n) = T^n(\alpha, \beta)$, $\iota_n = \iota(\alpha_n, \beta_n)$, $a_n = \lfloor \frac{1}{\alpha_n} \rfloor + \iota_n$ and $b_n = \lceil \frac{\beta_n}{\alpha_n} \rceil$, set

$$M^{\alpha,\beta} = \left\{ x = x_0 x_1 x_2 \dots \in \prod_{n \in \mathbb{N}_0} \{0, 1, \dots, a_n\} \middle| \begin{array}{c} x_n = 0 \implies x_{n+1} \ge_{\iota_n} b_{n+1} - \iota_n \\ x_n = a_n \implies x_{n+1} \le_{\iota_n} b_{n+1} + \iota_n \end{array} \right\}$$

where the inequality \geq_0 (resp. \geq_1) means \geq (resp. \leq).

In particular when $\beta = 0$, we see that $\alpha_n = G^n(\alpha)$, $\beta_n = 0$, $\iota_n = 0$, $a_n = \lfloor 1/G^n(\alpha) \rfloor$ and $b_n = 0$ for each $n \in \mathbb{N}_0$, and hence $M^{\alpha,0} = M^{\alpha}$.

We propose a new numeration system $\nu^{\alpha,\beta}$ as follows. Define $\nu^{\alpha,\beta}:M^{\alpha,\beta}\to[0,1]$ by

$$\nu^{\alpha,\beta}(x) = \sum_{n \in \mathbb{N}_0} (-1)^{e_n} (x_n - (-1)^{\iota_n} \beta_{n+1}) \prod_{j=0}^n \alpha_j$$

where $e_0 = 0$ and $e_{n+1} = |e_n - \iota_n|$. See Sections 3 and 5 for precise argument about $\nu^{\alpha,\beta}$. Note that $(-1)^{e_n} = (-1)^{\iota_0 + \iota_1 + \dots + \iota_{n-1}}$ for each $n \ge 1$, because $(-1)^{e_{n+1}} = (-1)^{e_n} (-1)^{\iota_n}$.

In particular when $\beta = 0$, we have $\nu^{\alpha,0} = \nu^{\alpha}$ (because $\iota_n = \beta_n = 0$ and $\alpha_n = G^n(\alpha)$), that is, $\nu^{\alpha,\beta}$ is a generalization of dual Ostrowski numeration system.

On the other hand, we will show $\beta \notin \mathcal{O}_{\alpha}$ if and only if $0 < b_n < a_n$ for each $n \geq 1$. See Proposition 7.13 in Section 7. Here, we give an example:

Example. Let $\alpha = \sqrt{2} - 1$ and $\beta = \frac{1-\alpha}{2} = 1 - \frac{1}{\sqrt{2}}$. Since $\frac{1}{\alpha} = \sqrt{2} + 1$ and $\frac{\beta}{\alpha} = 1 - \beta$, we have $\lfloor \frac{1}{\alpha} \rfloor = 2$, $\{ \frac{1}{\alpha} \} = \alpha$, $\lceil \frac{\beta}{\alpha} \rceil = 1$ and $\{ \frac{-\beta}{\alpha} \} = \beta < 1 - \alpha = \{ \frac{-1}{\alpha} \}$. So $\iota(\alpha, \beta) = 0$ and $T(\alpha, \beta) = (\alpha, \beta)$. Hence $\alpha_n = \alpha$, $\beta_n = \beta$, $\iota_n = 0$, $a_n = 2$ and $b_n = 1$ for each $n \in \mathbb{N}_0$. So we have

$$M^{\alpha,\beta} = \left\{ x \in \{0,1,2\}^{\mathbb{N}_0} \middle| \begin{array}{l} x_n = 0 \Longrightarrow x_{n+1} \ge 1 \\ x_n = 2 \Longrightarrow x_{n+1} \le 1 \end{array} \right\},$$

in other words, $M^{\alpha,\beta} = \{x \in \{0,1,2\}^{\mathbb{N}_0} \mid x_n x_{n+1} \neq 00, 22 \text{ for each } n \in \mathbb{N}_0\}.$ Moreover

$$\nu^{\alpha,\beta}(x) = \sum_{n=0}^{\infty} (x_n - \beta)\alpha^{n+1} = -\frac{\alpha}{2} + \sum_{n=0}^{\infty} x_n \alpha^{n+1}.$$

Concluding this section, we will have main theorems. For each $(\alpha, \beta) \in \mathbb{B} \times [0, 1)$, we have an odometer,

$$H_{\alpha,\beta}: M^{\alpha,\beta} \to M^{\alpha,\beta},$$

which is natural under carry operation. See Section 7 for the definition of $H_{\alpha,\beta}$. Denote by $\{\nu^{\alpha,\beta}\}(x)$ the fractional part of $\nu^{\alpha,\beta}(x)$.

Theorem 1.1. Let $(\alpha, \beta) \in \mathbb{B} \times [0, 1)$. Then we have the following:

- (1) $\{\nu^{\alpha,\beta}\}: M^{\alpha,\beta} \to [0,1)$ is an at most 2-to-1 surjection and $H_{\alpha,\beta}: M^{\alpha,\beta} \to M^{\alpha,\beta}$ is a homeomorphism with $\{\nu^{\alpha,\beta}\} \circ H_{\alpha,\beta} = R_{\alpha} \circ \{\nu^{\alpha,\beta}\}$
- (2) $\{\xi \in [0,1) \mid \sharp \{\nu^{\alpha,\beta}\}^{-1}(\xi) = 2\} = \mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta}$
- (3) $\mathbf{e} \circ \nu^{\alpha,\beta} : M^{\alpha,\beta} \to S^1$ is continuous.

Theorem 1.2. If $(\alpha, \beta) \in \mathbb{B} \times [0, 1)$, $\varphi_X : X \to X$ is a Denjoy system with rotation number α , and the set of double points of a factor map $F_X : X \to S^1$ coincides $\mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta}$ under the identification [0, 1) with S^1 via $\mathbf{e}|_{[0,1)}$, then there is a homeomorphism $\psi : X \to M^{\alpha,\beta}$ such that $\psi \circ \varphi_X = H_{\alpha,\beta} \circ \psi$ and $F_X = \mathbf{e} \circ \nu^{\alpha,\beta} \circ \psi$.

See Section 8 for definitions of a factor map $F_X: X \to S^1$ and a double point of F_X where $\varphi_X: X \to X$ is a Denjoy system.

$\S 2$. Algorithm T

We study the property of $T: \mathbb{B} \times [0,1) \to \mathbb{B} \times [0,1)$ and the sequences $(\alpha_n, \beta_n) = T^n(\alpha, \beta)$, $\iota_n = \iota(\alpha_n, \beta_n)$, $a_n = \left\lfloor \frac{1}{\alpha_n} \right\rfloor + \iota_n$ and $b_n = \left\lceil \frac{\beta_n}{\alpha_n} \right\rceil$ when $(\alpha, \beta) \in \mathbb{B} \times [0,1)$ is given.

We begin with simple remarks. Note $\{-\xi\} = 1 - \{\xi\}$ for any $\xi \in \mathbb{R}$ with $\{\xi\} > 0$. So we have

Remark 2.1. $\iota(\alpha,\beta)=1 \iff 0<\left\{\frac{\beta}{\alpha}\right\}<\left\{\frac{1}{\alpha}\right\}.$

Remark 2.2.

$$\left\{\frac{1}{\alpha_n}\right\} = \iota_n + (-1)^{\iota_n} \alpha_{n+1}$$
$$\left\{\frac{-\beta_n}{\alpha_n}\right\} = \iota_n + (-1)^{\iota_n} \beta_{n+1}.$$

Since $\xi = \lfloor \xi \rfloor + \{\xi\} = \lceil \xi \rceil - \{-\xi\}$ for any $\xi \in \mathbb{R}$, we obtain the fundamental equations:

Recursive equations (1) $\frac{1}{\alpha_n} = a_n + (-1)^{\iota_n} \alpha_{n+1}$

$$(2) \frac{\beta_n}{\alpha_n} = b_n - \iota_n - (-1)^{\iota_n} \beta_{n+1}.$$

By Remark 2.1 and the definition of T, we have

Remark 2.3. If $\iota(x,y) = 1$ then $T(x,y) \in \{(z,w) \mid z \in \mathbb{B}, \ 0 < w < 1-z\}$. In general, $T(\mathbb{B} \times [0,1)) \subset \{(z,w) \mid z \in \mathbb{B}, \ 0 \le w \le 1-z\}$.

Lemma 2.4.

$$\begin{bmatrix} \frac{\beta}{\alpha} \end{bmatrix} + \begin{bmatrix} \frac{1-\beta}{\alpha} \end{bmatrix} = \begin{bmatrix} \frac{1}{\alpha} \end{bmatrix} + \iota(\alpha, \beta)$$

$$\left\{\frac{-\beta}{\alpha}\right\} + \left\{\frac{\beta - 1}{\alpha}\right\} = \left\{\frac{-1}{\alpha}\right\} + \iota(\alpha, \beta).$$

Proof. Note

$$\frac{1-\beta}{\alpha} = \frac{1}{\alpha} - \frac{\beta}{\alpha} = \left\lceil \frac{1}{\alpha} \right\rceil - \left\lceil \frac{\beta}{\alpha} \right\rceil - \left(\left\{ \frac{-1}{\alpha} \right\} - \left\{ \frac{-\beta}{\alpha} \right\} \right).$$

When $\{\frac{-1}{\alpha}\} - \{\frac{-\beta}{\alpha}\} \ge 0$ (i.e. $\iota(\alpha,\beta) = 0$), we have the desired one. Suppose $\iota(\alpha,\beta) = 1$. Then

$$-1 < \left\{ \frac{-1}{\alpha} \right\} - \left\{ \frac{-\beta}{\alpha} \right\} < 0$$

and so

$$\left\{\frac{-(1-\beta)}{\alpha}\right\} = 1 + \left\{\frac{-1}{\alpha}\right\} - \left\{\frac{-\beta}{\alpha}\right\} \text{ and } \left[\frac{1-\beta}{\alpha}\right] = \left[\frac{1}{\alpha}\right] - \left[\frac{\beta}{\alpha}\right] + 1.$$

Moreover we state two lemmas:

Lemma 2.5. For each $n \in \mathbb{N}_0$, there are $q, p \in \mathbb{Z}$ such that $\prod_{j=0}^n \alpha_j = q\alpha + p$.

Lemma 2.6.
$$\lim_{n\to\infty} \prod_{j=0}^n \alpha_j = 0.$$

In Appendix, we give the proof of these lemmas. We will use Lemma 2.6 in such a way that if $\{r_n\}_{n\in\mathbb{N}_0}\subset\mathbb{R}$ is bounded, then $\lim_{n\to\infty}r_n\prod_{j=0}^n\alpha_j=0$.

For convenience' sake, put

$$\iota_{-1} = 0.$$

We list the property of (a_n, b_n, ι_n) :

Proposition 2.7.

(1) For each $n \in \mathbb{N}_0$, $\iota_{n-1} \le b_n \le a_n - \iota_{n-1}$

(in other words,
$$\{b_n - \iota_{n-1}, b_n + \iota_{n-1}\} \subset \{0, 1, \dots, a_n\}$$
).

- (2) If there is $K \in \mathbb{N}_0$ such that $b_K = 0$, then $b_{K+1} = 0$.
- (3) If there is $K \geq 1$ such that $b_K = a_K$, then $b_{K+1} = a_{K+1}$.
- (4) If there is $K \in \mathbb{N}_0$ such that $\iota_n = 1$ $(\forall n \geq K)$, then there are $k, l \geq K + 1$ such that $b_k \neq 1$ and $b_l \neq a_l 1$.

Proof. By Lemma 2.4, for each $n \in \mathbb{N}_0$

$$b_n = \left\lceil \frac{\beta_n}{\alpha_n} \right\rceil = a_n + 1 - \left\lceil \frac{1 - \beta_n}{\alpha_n} \right\rceil.$$

(1) Since $\left\lceil \frac{\beta_n}{\alpha_n} \right\rceil \geq 0$ and $\left\lceil \frac{1-\beta_n}{\alpha_n} \right\rceil \geq 1$ (because $0 \leq \beta_n < 1$), we have $0 \leq b_n \leq a_n$. Furthermore if $\iota_{n-1} = 1$, then $0 < \beta_n < 1 - \alpha_n$ by Remark 2.3, hence $1 \leq b_n \leq a_n - 1$.

(2) Note $T(\alpha,0)=(G(\alpha),0)$ for any $\alpha\in\mathbb{B}$. Suppose $b_K=0$. Then $\beta_K=0$. So since

 $(\alpha_{K+1}, \beta_{K+1}) = T(\alpha_K, \beta_K) = (\alpha_{K+1}, 0)$, we have $b_{K+1} = 0$.

(3) Note $T(\alpha, 1 - \alpha) = (G(\alpha), 1 - G(\alpha))$ for any $\alpha \in \mathbb{B}$. Suppose $b_K = a_K$ for some $K \ge 1$. Then $\left\lceil \frac{1 - \beta_K}{\alpha_K} \right\rceil = 1$. Moreover $1 - \beta_K = \alpha_K$, because $\beta_K \le 1 - \alpha_K$ by Remark 2.3. So since $(\alpha_{K+1}, \beta_{K+1}) = T(\alpha_K, \beta_K) = (\alpha_{K+1}, 1 - \alpha_{K+1})$, we have $b_{K+1} = a_{K+1}$.

(4) By recursive equation (2)

$$\beta_n = (b_n - \iota_n)\alpha_n - (-1)^{\iota_n}\beta_{n+1}\alpha_n.$$

Notice that

$$1 - \alpha_n - \beta_n = (a_n - b_n - \iota_n)\alpha_n - (-1)^{\iota_n}(1 - \alpha_{n+1} - \beta_{n+1})\alpha_n$$

(indeed, $1 - \alpha_n - \beta_n = a_n \alpha_n + (-1)^{\iota_n} \alpha_{n+1} \alpha_n - (2\iota_n + (-1)^{\iota_n}) \alpha_n - (b_n - \iota_n) \alpha_n + (-1)^{\iota_n} \beta_{n+1} \alpha_n$ by recursive equations (1), (2) and $(-1)^{\iota_n} = 1 - 2\iota_n$).

Now we prove (4) by contradiction. Suppose that $\iota_n = 1$ for any $n \geq K$. Then $0 < \beta_{K+1} < 1 - \alpha_{K+1}$ by Remark 2.3.

Assume that $b_n = 1$ for any $n \ge K + 1$. Then, by the above equations

$$\beta_{K+1} = \beta_{n+1} \prod_{j=K+1}^{n} \alpha_j \quad (\forall n \ge K+1)$$

Taking $n \to \infty$, we have $\beta_{K+1} = 0$ by Lemma 2.6, contradicting $\beta_{K+1} > 0$.

Similarly, assume that $b_n = a_n - 1$ for any $n \ge K + 1$. Then, by the above equations

$$1 - \alpha_{K+1} - \beta_{K+1} = (1 - \alpha_{n+1} - \beta_{n+1}) \prod_{j=K+1}^{n} \alpha_j \quad (\forall n \ge K+1)$$

Taking $n \to \infty$, we have $1 - \alpha_{K+1} - \beta_{K+1} = 0$ by Lemma 2.6, contradicting $\beta_{K+1} < 1 - \alpha_{K+1}$.

By Proposition 2.7(1), (2) and (3), we have

Remark 2.8.

If there is $K \in \mathbb{N}_0$ such that $b_K = 0$, then $b_n = 0$ $(\forall n \geq K)$ and $\iota_n = 0$ $(\forall n \geq K - 1)$.

If there is $K \geq 1$ such that $b_K = a_K$, then $b_n = a_n \ (\forall n \geq K)$ and $\iota_n = 0 \ (\forall n \geq K - 1)$.

In particular, for each $K \geq 1$, we have $b_K \in \{0, a_K\} \implies \iota_K = 0$.

§ 3. (α, β) -Markovian numeration system

For each $i \in \{0,1\}$ and $\xi, \eta \in \mathbb{R}$, define

$$\xi \leq_i \eta \iff (-1)^i \xi \leq (-1)^i \eta.$$

Thus \leq_0 is the usual inequality \leq , and \leq_1 is the inequality \geq .

From now on, let $(\alpha, \beta) \in \mathbb{B} \times [0, 1)$ be arbitrarily fixed. First we define (α, β) -Markovian sequences:

Definition 3.1 (Markovian space). Let $x = x_0 x_1 x_2 \cdots \in \prod_{n \in \mathbb{N}_0} \{0, 1, \cdots, a_n\}$. We say that x is (α, β) -Markovian if x satisfies the following conditions, $(1)_n, (2)_n$, for each $n \in \mathbb{N}_0$:

$$(1)_n x_n = 0 \implies x_{n+1} \ge_{\iota_n} b_{n+1} - \iota_n$$

$$(2)_n x_n = a_n \implies x_{n+1} \le_{\iota_n} b_{n+1} + \iota_n.$$

Denote by M (or $M^{\alpha,\beta}$) the set of (α,β) -Markovian sequences.

We always use the 0-1 sequence $e_0e_1e_2\cdots$ defined by

$$e_0 = 0, \ e_{n+1} = |e_n - \iota_n|$$

and the following simple formula

$$(-1)^{e_{n+1}} = (-1)^{e_n} (-1)^{\iota_n}.$$

Write

$$\overline{0} = 1$$
 and $\overline{1} = 0$.

Simply note $e_n = 0 \iff e_{n+1} = \iota_n$ (or equivalently, $e_n = 1 \iff \overline{e_{n+1}} = \iota_n$). So we have

Remark 3.2. Consider the following conditions:

$$(1')_n x_n = e_n a_n \implies x_{n+1} \ge_{e_{n+1}} b_{n+1} - (-1)^{e_n} \iota_n$$

$$(2')_n x_n = \overline{e_n} a_n \implies x_{n+1} \le_{e_{n+1}} b_{n+1} - (-1)^{\overline{e_n}} \iota_n.$$

In case $e_n = 0$, we see that $(1')_n$ is the same condition as $(1)_n$ in Definition 3.1, and $(2')_n$ is $(2)_n$; in case $e_n = 1$, we see that $(1')_n$ is $(2)_n$, and $(2')_n$ is $(1)_n$.

Definition 3.3. For each $n \in \mathbb{N}_0$ and $k \in \mathbb{N}_0$ define

$$\nu_n(k) = (-1)^{e_n} (k - (-1)^{\iota_n} \beta_{n+1}) \prod_{j=0}^n \alpha_j,$$

and for each sequence $x = x_0 x_1 x_2 \cdots$ define (formally)

$$\nu(x) = \nu^{\alpha,\beta}(x) = \sum_{n \in \mathbb{N}_0} \nu_n(x_n).$$

In Section 5, we will prove that for any $x \in M$ the series $\nu(x)$ converges in [0,1]. We call the map $\nu: M \to [0,1]$ the (α,β) -numeration system.

We prove if a sequence $z=z_0z_1z_2\cdots$ is extremal in the following sense, then $\nu(z)$ converges.

Definition 3.4 (Extremal sequences). Let $z = z_0 z_1 z_2 \cdots$ and $k \in \mathbb{N}_0$. We call z a k-left extremal sequence if for each $n \geq k$,

$$z_n = \begin{cases} e_n a_n & \text{if } n \equiv k \mod 2\\ b_n - (-1)^{e_{n-1}} \iota_{n-1} & \text{otherwise.} \end{cases}$$

We call z a k-right extremal sequence if for each $n \geq k$,

$$z_n = \begin{cases} \overline{e_n} a_n & \text{if } n \equiv k \mod 2\\ b_n - (-1)^{\overline{e_{n-1}}} \iota_{n-1} & \text{otherwise.} \end{cases}$$

When z is k-left extremal (resp. k-right extremal) for some $k \in \mathbb{N}_0$, we say simply that z is left extremal (resp. right extremal). When z is left extremal or right extremal, we say simply that z is extremal.

(For example, when $\beta = 0$ (or equivalently, $b_0 = 0$), we have $\iota_n = b_n = e_n = 0$ ($\forall n$) and so the 0-left extremal sequence is $0000\cdots$ and the 0-right extremal sequence is $a_00a_20\cdots$.)

We use the convention that the symbol $\prod_{j=0}^{-1} \alpha_j$ means 1.

If z is extremal then $\nu(z)$ converges. Moreover, the following statements Lemma 3.5. hold:

(1) If
$$z$$
 is k -left extremal, then
$$\sum_{n=k}^{\infty} \nu_n(z_n) = -e_k \prod_{j=0}^{k-1} \alpha_j.$$
(2) If z is k -right extremal, then
$$\sum_{n=k}^{\infty} \nu_n(z_n) = \overline{e_k} \prod_{j=0}^{k-1} \alpha_j.$$

(2) If z is k-right extremal, then
$$\sum_{n=k}^{\infty} \nu_n(z_n) = \overline{e_k} \prod_{j=0}^{k-1} \alpha_j.$$

So since $e_0 = 0$, especially we have that if z is 0-left extremal then $\nu(z) = 0$; if z is 0-right extremal then $\nu(z) = 1$.

Note. We will prove the converse (in M) of (1), (2) in this lemma: see Proposition 5.2 in Section 5.

Proof. We show the following formula: for each $n \in \mathbb{N}_0$

$$(I) \ \nu_n(e_n a_n) + \nu_{n+1}(b_{n+1} - (-1)^{e_n} \iota_n) = -e_n \prod_{j=0}^{n-1} \alpha_j + e_{n+2} \prod_{j=0}^{n+1} \alpha_j$$
$$(II) \ \nu_n(\overline{e_n} a_n) + \nu_{n+1}(b_{n+1} - (-1)^{\overline{e_n}} \iota_n) = \overline{e_n} \prod_{j=0}^{n-1} \alpha_j - \overline{e_{n+2}} \prod_{j=0}^{n+1} \alpha_j.$$

$$(II)\,\nu_n(\overline{e_n}a_n) + \nu_{n+1}(b_{n+1} - (-1)^{\overline{e_n}}\iota_n) = \overline{e_n}\prod_{j=0}^{n-1}\alpha_j - \overline{e_{n+2}}\prod_{j=0}^{n+1}\alpha_j.$$

We use recursive equations (1), (2) and $(-1)^{e_{n+1}} = (-1)^{e_n} (-1)^{\iota_n}$ and the following three simple formulas: for each $s, t \in \{0, 1\}$

$$(-1)^{s} s = -s$$
$$(-1)^{s} \overline{s} = \overline{s}$$
$$|s - t| = s + (-1)^{s} t.$$

Proof of the formula (I):

$$\frac{\nu_{n}(e_{n}a_{n}) + \nu_{n+1}(b_{n+1} - (-1)^{e_{n}}\iota_{n})}{\prod_{j=0}^{n} \alpha_{j}}$$

$$= -e_{n}a_{n} - (-1)^{e_{n+1}}\beta_{n+1} + (-1)^{e_{n+1}}b_{n+1}\alpha_{n+1} + \iota_{n}\alpha_{n+1} - (-1)^{e_{n+1}}(-1)^{\iota_{n+1}}\beta_{n+2}\alpha_{n+1}$$

$$= -e_{n}a_{n} + \iota_{n}\alpha_{n+1} - (-1)^{e_{n+1}}\left(\beta_{n+1} - b_{n+1}\alpha_{n+1} + (-1)^{\iota_{n+1}}\beta_{n+2}\alpha_{n+1}\right)$$

$$= -e_{n}\left(\frac{1}{\alpha_{n}} - (-1)^{\iota_{n}}\alpha_{n+1}\right) + \iota_{n}\alpha_{n+1} + (-1)^{e_{n+1}}\iota_{n+1}\alpha_{n+1}$$
(by recursive equations (1) and (2))
$$= -\frac{e_{n}}{\alpha_{n}} + \left((-1)^{\iota_{n}}e_{n} + \iota_{n}\right)\alpha_{n+1} + (-1)^{e_{n+1}}\iota_{n+1}\alpha_{n+1}$$

$$= -\frac{e_{n}}{\alpha_{n}} + |e_{n} - \iota_{n}|\alpha_{n+1} + \left(|e_{n+1} - \iota_{n+1}| - e_{n+1}\right)\alpha_{n+1}$$

$$= -\frac{e_{n}}{\alpha_{n}} + (e_{n+1} + e_{n+2} - e_{n+1})\alpha_{n+1} = -\frac{e_{n}}{\alpha_{n}} + e_{n+2}\alpha_{n+1}.$$

In the same way, we show the formula (II):

$$\frac{\nu_{n}(\overline{e_{n}}a_{n}) + \nu_{n+1}(b_{n+1} - (-1)^{\overline{e_{n}}}\iota_{n})}{\displaystyle\prod_{j=0}^{n}\alpha_{j}}$$

$$= \overline{e_{n}}a_{n} - (-1)^{e_{n+1}}\beta_{n+1} + (-1)^{e_{n+1}}b_{n+1}\alpha_{n+1} - \iota_{n}\alpha_{n+1} - (-1)^{e_{n+1}}(-1)^{\iota_{n+1}}\beta_{n+2}\alpha_{n+1}$$

$$= \overline{e_{n}}a_{n} - \iota_{n}\alpha_{n+1} - (-1)^{e_{n+1}}\left(\beta_{n+1} - b_{n+1}\alpha_{n+1} + (-1)^{\iota_{n+1}}\beta_{n+2}\alpha_{n+1}\right)$$

$$= \overline{e_{n}}\left(\frac{1}{\alpha_{n}} - (-1)^{\iota_{n}}\alpha_{n+1}\right) - \iota_{n}\alpha_{n+1} + (-1)^{e_{n+1}}\iota_{n+1}\alpha_{n+1}$$

$$= \frac{\overline{e_{n}}}{\alpha_{n}} - \left((-1)^{\iota_{n}}\overline{e_{n}} + \iota_{n}\right)\alpha_{n+1} + (-1)^{e_{n+1}}\iota_{n+1}\alpha_{n+1}$$

$$= \frac{\overline{e_{n}}}{\alpha_{n}} - |\overline{e_{n}} - \iota_{n}|\alpha_{n+1} + \left(|e_{n+1} - \iota_{n+1}| - e_{n+1}\right)\alpha_{n+1}$$

$$= \frac{\overline{e_{n}}}{\alpha_{n}} - (\overline{e_{n+1}} - e_{n+2} + e_{n+1})\alpha_{n+1} = \frac{\overline{e_{n}}}{\alpha_{n}} - \overline{e_{n+2}}\alpha_{n+1}.$$

Now we return to the proof of Lemma 3.5.

(1) Let z be k-left extremal. Then by formula (I), for each $N \geq k$ with $N \equiv k \mod 2$

$$\sum_{n=k}^{N+1} \nu_n(z_n) = -e_k \prod_{j=0}^{k-1} \alpha_j + e_{N+2} \prod_{j=0}^{N+1} \alpha_j$$

and since

$$\nu_{N+2}(z_{N+2}) = \nu_{N+2}(e_{N+2}a_{N+2}) = -(e_{N+2}a_{N+2} + (-1)^{e_{N+3}}\beta_{N+3}) \prod_{j=0}^{N+2} \alpha_j,$$

we have

$$\sum_{n=k}^{N+2} \nu_n(z_n) = -e_k \prod_{j=0}^{k-1} \alpha_j + \left(e_{N+2} \left(\frac{1}{\alpha_{N+2}} - a_{N+2} \right) - (-1)^{e_{N+3}} \beta_{N+3} \right) \prod_{j=0}^{N+2} \alpha_j$$

$$= -e_k \prod_{j=0}^{k-1} \alpha_j + (e_{N+2}(-1)^{\iota_{N+2}} \alpha_{N+3} - (-1)^{e_{N+3}} \beta_{N+3}) \prod_{j=0}^{N+2} \alpha_j$$
(by recursive equation (1)).

As
$$N \to \infty$$
, $\sum_{n=k}^{\infty} \nu_n(z_n) = -e_k \prod_{j=0}^{k-1} \alpha_j$ by Lemma 2.6. Similarly (2) can be proved.

Lemma 3.6. Let $k \in \mathbb{N}_0$.

If x is k-left or k-right extremal, then for each $n \geq k$, $x_n \in \{0, 1, \dots, a_n\}$ and x satisfies conditions $(1)_n$ and $(2)_n$ in Definition 3.1.

So, especially if x is 0-left or 0-right extremal, then $x \in M$.

Proof. Let x be k-left extremal and $n \geq k$.

If n - k is even, then $x_n = e_n a_n \in \{0, a_n\}$. If n - k is odd, then $x_n = b_n - (-1)^{e_{n-1}} \iota_{n-1} \in \{b_n - \iota_{n-1}, b_n + \iota_{n-1}\} \subset \{0, 1, \dots, a_n\}$ by Proposition 2.7.

When n-k is even, the condition $(1')_n$ in Remark 3.2 holds. Consider the case n-k is odd.

First we show x satisfies the condition $(2)_n$, that is, $x_n = a_n \implies x_{n+1} \le_{\iota_n} b_{n+1} + \iota_n$. Suppose $x_n = a_n$. If $b_n = a_n$, then $b_{n+1} = a_{n+1}$ and $\iota_n = 0$ by Proposition 2.7 (note $n \ge k+1 \ge 1$), and so $x_{n+1} \le b_{n+1} + \iota_n$. Suppose $b_n \le a_n - 1$. Then $e_{n-1} = 1$, $\iota_{n-1} = 1$ and $b_n = a_n - 1$ because $b_n - (-1)^{e_{n-1}} \iota_{n-1} = x_n = a_n$. Hence $e_n = |e_{n-1} - \iota_{n-1}| = 0$ and $e_{n+1} = |0 - \iota_n| = \iota_n$. Now, since $x_{n+1} = \iota_n a_{n+1}$, we see that if $\iota_n = 0$ then $x_{n+1} = 0 \le b_{n+1} + \iota_n$; if $\iota_n = 1$ then $x_{n+1} = a_{n+1} \ge b_{n+1} + \iota_n$. Anyway $(2)_n$ holds.

Similarly we can show x satisfies the condition $(1)_n$. The proof in the case that x is k-right extremal is also similar.

Now, by Lemmas 3.5 and 3.6, we obtain typical examples of (α, β) -Markovian sequences:

- (1) If x is 0-left extremal then $x \in M$ and $\nu(x) = 0$.
- (2) If x is 0-right extremal then $x \in M$ and $\nu(x) = 1$.

Here note that $e_1 a_1 \leq_{\iota_0} b_1 + \iota_0$ and $\overline{e_1} a_1 \geq_{\iota_0} b_1 - \iota_0$, by Proposition 2.7 and $e_1 = \iota_0$. Suppose $\beta > 0$ (or equivalently, $b_0 \geq 1$).

(3) If x is 1-left extremal with $x_0 = b_0$, then x satisfies condition (2)₀ (since $e_1 a_1 \le_{\iota_0} b_1 + \iota_0$) so $x \in M$ and moreover by recursive equation (2)

$$\nu(x) = \nu_0(b_0) + \sum_{n=1}^{\infty} \nu_n(x_n) = (b_0 - (-1)^{\iota_0} \beta_1) \alpha_0 - e_1 \alpha_0 = \beta.$$

(4) If x is 1-right extremal with $x_0 = b_0 - 1$, then x satisfies condition (1)₀ (since $\overline{e_1}a_1 \ge_{\iota_0} b_1 - \iota_0$) so $x \in M$ and moreover by recursive equation (2)

$$\nu(x) = \nu_0(b_0 - 1) + \sum_{n=1}^{\infty} \nu_n(x_n) = (b_0 - 1 - (-1)^{\iota_0} \beta_1) \alpha_0 + \overline{e_1} \alpha_0 = \beta.$$

See Lemma 7.2 in Section 7 for another example of (α, β) -Markovian sequences.

§ 4. (α, β) -expansion of a real number in [0, 1]

In this section, we show

Proposition 4.1. For each $\xi \in [0,1]$, there is $x \in M$ such that $\xi = \nu(x)$.

For the proof, we use the following notation: Let $\xi \in \mathbb{R}$ and $i \in \{0,1\}$. Define

$$[\xi]_i = \begin{cases} \lfloor \xi \rfloor & \text{if } i = 0 \\ \lceil \xi \rceil - 1 & \text{if } i = 1 \end{cases} \text{ and } \{\xi\}_i = \begin{cases} \{\xi\} & \text{if } i = 0 \\ 1 - \{-\xi\} & \text{if } i = 1. \end{cases}$$

Then we have $\xi = [\xi]_i + \{\xi\}_i$ and note that

$$\xi \in \left[[\xi]_0, [\xi]_0 + 1 \right), \ 0 \le \{\xi\}_0 < 1$$

and

$$\xi \in ([\xi]_1, [\xi]_1 + 1], \ 0 < \{\xi\}_1 \le 1.$$

Write
$$\Delta_n = \left\{ \frac{-\beta_n}{\alpha_n} \right\}$$
.

Proof of Proposition 4.1. Recall if z is the 0-right extremal sequence, then $z \in M$ and $\nu(z) = 1$ by Lemmas 3.5 and 3.6. Suppose $0 \le \xi < 1$. Let $\xi_0 = \xi$. Define x_n and ξ_{n+1} inductively by

$$x_n = \left[\frac{\xi_n}{\alpha_n} + \Delta_n\right]_{e_n} \text{ and } \xi_{n+1} = \iota_n + (-1)^{\iota_n} \left\{\frac{\xi_n}{\alpha_n} + \Delta_n\right\}_{e_n}.$$

Let $x = x_0 x_1 x_2 \cdots$. We show that $x \in M$ and $\nu(x) = \xi$ by the following steps.

Note. Consider the case $\beta = 0$. Then for all $n \in \mathbb{N}_0$ we have $\alpha_n = G^n(\alpha)$, $\beta_n = \iota_n = 0$: recall Section 1. So $\Delta_n = e_n = 0$. Hence the definition of x_n and ξ_{n+1} in the case $\beta = 0$ is $x_n = \lfloor \frac{\xi_n}{\alpha_n} \rfloor$ and $\xi_{n+1} = \{\frac{\xi_n}{\alpha_n}\}$, that is, x is the dual Ostrowski expansion of ξ based on α . Thus Proposition 4.1 is a generalization of dual Ostrowski expansion.

Step 1:
$$e_n = 0 \Longrightarrow 0 \le \xi_n < 1$$
; $e_n = 1 \Longrightarrow 0 < \xi_n \le 1$

Indeed, the case n=0 is clear (recall $e_0=0$). Note $e_{n+1}=0$ if and only if $e_n=\iota_n$.

Step 2:
$$x_n \in \{0, 1, \dots, a_n\}$$
.

Indeed by Step 1

$$e_n = 0 \Longrightarrow \frac{\xi_n}{\alpha_n} + \Delta_n \in [\Delta_n, \frac{1}{\alpha_n} + \Delta_n); \quad e_n = 1 \Longrightarrow \frac{\xi_n}{\alpha_n} + \Delta_n \in (\Delta_n, \frac{1}{\alpha_n} + \Delta_n).$$

By Lemma 2.4 and definitions of a_n and ι_n

$$\frac{1}{\alpha_n} + \Delta_n = \left\lfloor \frac{1}{\alpha_n} \right\rfloor + 1 - \left\{ \frac{-1}{\alpha_n} \right\} + \left\{ \frac{-\beta_n}{\alpha_n} \right\} = a_n + 1 - \left\{ \frac{\beta_n - 1}{\alpha_n} \right\}.$$

So $e_n = 0 \Longrightarrow \frac{\xi_n}{\alpha_n} + \Delta_n \in [0, \ a_n + 1); \ e_n = 1 \Longrightarrow \frac{\xi_n}{\alpha_n} + \Delta_n \in (0, \ a_n + 1].$ Hence $0 \le x_n \le a_n$.

Here note that

$$(\dagger) \quad \frac{\xi_n}{\alpha_n} = x_n - (-1)^{\iota_n} \beta_{n+1} + (-1)^{\iota_n} \xi_{n+1}$$

because $\frac{\xi_n}{\alpha_n} + \Delta_n = x_n + \left\{ \frac{\xi_n}{\alpha_n} + \Delta_n \right\}_{e_n}$ and $\Delta_n = \iota_n + (-1)^{\iota_n} \beta_{n+1}$ by Remark 2.2.

Step 3: $x_n = 0 \Longrightarrow x_{n+1} \ge_{\iota_n} b_{n+1} - \iota_n$; $x_n = a_n \Longrightarrow x_{n+1} \le_{\iota_n} b_{n+1} + \iota_n$. Indeed, note that by (†) and the definition of b_{n+1}

$$\frac{(-1)^{\iota_n}}{\alpha_{n+1}} \left(\frac{\xi_n}{\alpha_n} - x_n \right) = \frac{\xi_{n+1}}{\alpha_{n+1}} - \frac{\beta_{n+1}}{\alpha_{n+1}} = \frac{\xi_{n+1}}{\alpha_{n+1}} + \Delta_{n+1} - b_{n+1}$$

and so

$$\left[\frac{(-1)^{\iota_n}}{\alpha_{n+1}}\left(\frac{\xi_n}{\alpha_n} - x_n\right)\right]_{e_{n+1}} = x_{n+1} - b_{n+1}.$$

Case 1: $x_n = 0$.

Then

$$x_{n+1} - b_{n+1} = \left[\frac{(-1)^{i_n} \xi_n}{\alpha_{n+1} \alpha_n}\right]_{e_{n+1}}.$$

If $\iota_n = 0$, then $e_{n+1} = e_n$ and by Step 1

$$\xi_n \begin{cases} \ge 0 \text{ if } e_{n+1} = 0 \\ > 0 \text{ if } e_{n+1} = 1 \end{cases}$$
 and so we have $x_{n+1} - b_{n+1} = \left[\frac{\xi_n}{\alpha_{n+1}\alpha_n}\right]_{e_{n+1}} \ge 0.$

If $\iota_n = 1$, then $e_{n+1} = \overline{e_n}$ and by Step 1

$$-\xi_n \begin{cases} < 0 \text{ if } e_{n+1} = 0\\ \le 0 \text{ if } e_{n+1} = 1 \end{cases} \text{ and so we have } x_{n+1} - b_{n+1} = \left[\frac{-\xi_n}{\alpha_{n+1}\alpha_n}\right]_{e_{n+1}} \le -1.$$

Hence $x_n = 0 \Longrightarrow x_{n+1} \ge_{\iota_n} b_{n+1} - \iota_n$.

Case 2: $x_n = a_n$.

Then by recursive equation (1) we have $\frac{\xi_n}{\alpha_n} - x_n = \frac{\xi_n - 1}{\alpha_n} + (-1)^{\iota_n} \alpha_{n+1}$ and so

$$x_{n+1} - b_{n+1} = \left[\frac{(-1)^{\iota_n} (\xi_n - 1)}{\alpha_{n+1} \alpha_n} \right]_{e_{n+1}} + 1.$$

If $\iota_n = 0$, then $e_{n+1} = e_n$ and by Step 1

$$\xi_n - 1 \begin{cases} < 0 \text{ if } e_{n+1} = 0 \\ \le 0 \text{ if } e_{n+1} = 1 \end{cases}$$
 and so we have $x_{n+1} - b_{n+1} = \left[\frac{\xi_n - 1}{\alpha_{n+1} \alpha_n}\right]_{e_{n+1}} + 1 \le 0.$

If $\iota_n = 1$, then $e_{n+1} = \overline{e_n}$ and by Step 1

$$1 - \xi_n \begin{cases} \ge 0 \text{ if } e_{n+1} = 0\\ > 0 \text{ if } e_{n+1} = 1 \end{cases} \text{ and so we have } x_{n+1} - b_{n+1} = \left[\frac{1 - \xi_n}{\alpha_{n+1} \alpha_n}\right]_{e_{n+1}} + 1 \ge 1.$$

Hence $x_n = a_n \Longrightarrow x_{n+1} \le_{\iota_n} b_{n+1} + \iota_n$.

Therefore by Steps 2 and 3, the sequence $x = x_0 x_1 x_2 \cdots$ belongs to M.

Step 4: $\xi = \nu(x)$.

First we claim that for each $N \in \mathbb{N}_0$

$$(*_N)$$
 $\xi = \sum_{n=0}^{N} \nu_n(x_n) + (-1)^{e_{N+1}} \xi_{N+1} \prod_{j=0}^{N} \alpha_j$

by induction on N. Indeed by (\dagger)

$$\xi = \xi_0 = (x_0 - (-1)^{\iota_0} \beta_1) \alpha_0 + (-1)^{\iota_0} \xi_1 \alpha_0 = \nu_0(x_0) + (-1)^{e_1} \xi_1 \alpha_0$$

because $e_0 = 0$ and $e_1 = \iota_0$. So $(*_0)$ holds. Let $N \in \mathbb{N}$ and suppose $(*_{N-1})$ holds, that is,

$$\xi = \sum_{n=0}^{N-1} \nu_n(x_n) + (-1)^{e_N} \xi_N \prod_{j=0}^{N-1} \alpha_j.$$

Since $\xi_N = (x_N - (-1)^{\iota_N} \beta_{N+1}) \alpha_N + (-1)^{\iota_N} \xi_{N+1} \alpha_N$ by (\dagger) , $(*_N)$ holds (recall $(-1)^{e_{N+1}} = (-1)^{e_N} (-1)^{\iota_N}$). Now by this claim and Lemma 2.6, we have $\xi = \nu(x)$.

§ 5. Tail inequality

In this section, we show the following two propositions.

Proposition 5.1. Let $k \in \mathbb{N}_0$, z be k-left extremal and \widetilde{z} be k-right extremal. Then for any $x \in M$ and $l \geq k$,

$$\sum_{n=k}^{l} \nu_n(z_n) - \prod_{j=0}^{l} \alpha_j \le \sum_{n=k}^{l} \nu_n(x_n) \le \sum_{n=k}^{l} \nu_n(\widetilde{z}_n) + \prod_{j=0}^{l} \alpha_j.$$

Hence by Lemmas 2.6, 3.5 and Proposition 5.1, we see that for any $x \in M$, the sequence $\{\sum_{j=0}^{n} \nu_j(x_j)\}_{n \in \mathbb{N}_0}$ is a Cauchy sequence and $\nu(x)$ converges in [0,1].

Proposition 5.2 (Tail inequality). For any $x \in M$ and $k \in \mathbb{N}_0$

$$-e_k \prod_{j=0}^{k-1} \alpha_j \le \sum_{n=k}^{\infty} \nu_n(x_n) \le \overline{e_k} \prod_{j=0}^{k-1} \alpha_j.$$

We call this inequality tail inequality. Moreover we have the following.

- (1) $\sum_{n=k}^{\infty} \nu_n(x_n) = -e_k \prod_{j=0}^{k-1} \alpha_j \text{ if and only if } x \text{ is } k\text{-left extremal.}$
- (2) $\sum_{n=k}^{\infty} \nu_n(x_n) = \overline{e_k} \prod_{j=0}^{k-1} \alpha_j$ if and only if x is k-right extremal.

Note. We will prove local version of tail inequality: see Proposition 8.3 in Section 8.

To prove propositions, we begin with a technical lemma:

Lemma 5.3. Let $n \in \mathbb{N}_0$, $x \in \mathbb{N}$, $y \in \mathbb{Z}$ with $y \ge -a_n$. If $x + y\alpha_n < 0$, then x = 1, $y = -a_n$, $\iota_n = 1$ and $x + y\alpha_n = -\alpha_{n+1}\alpha_n$. *Proof.* By recursive equation (1)

$$0 > x + y\alpha_n = (x - 1) + (y + a_n)\alpha_n + (-1)^{\iota_n}\alpha_{n+1}\alpha_n \ge (-1)^{\iota_n}\alpha_{n+1}\alpha_n$$

hence $\iota_n = 1$ and $x + y\alpha_n = (x - 1) + (y + a_n)\alpha_n - \alpha_{n+1}\alpha_n < 0$. Furthermore we see x = 1 and $y = -a_n$, because $\alpha_n, \alpha_{n+1} \in (0, 1)$.

From now on we fix $k \in \mathbb{N}_0$.

Let z be k-left extremal and $x \in M$. Define a sequence $m_k m_{k+1} m_{k+2} \cdots$ by

$$m_n = (-1)^{e_n} (x_n - z_n).$$

Then for each $l \geq k$

$$\sum_{n=k}^{l} \nu_n(x_n) - \sum_{n=k}^{l} \nu_n(z_n) = \sum_{n=k}^{l} m_n \prod_{j=0}^{n} \alpha_j.$$

Claim 5.4. For each $n \ge k$ with $n \equiv k \mod 2$, we have the following.

(1) $m_n \geq 0$.

If $m_n = 0$ then $m_{n+1} \ge 0$.

(2) $m_{n+1} \ge -a_{n+1}$.

If $m_{n+1} = -a_{n+1}$ and $\iota_{n+1} = 1$, then

$$\iota_n = 1, \ b_{n+1} = \begin{cases} 1 & \text{if } e_n = 0 \\ a_{n+1} - 1 & \text{if } e_n = 1 \end{cases} \text{ and } m_{n+2} - 1 \ge \begin{cases} b_{n+2} & \text{if } e_n = 0 \\ a_{n+2} - b_{n+2} & \text{if } e_n = 1. \end{cases}$$

Proof. (1) By definition

$$m_n = \begin{cases} x_n & \text{if } e_n = 0\\ a_n - x_n & \text{if } e_n = 1 \end{cases}$$

and so $m_n \ge 0$. If $m_n = 0$ (i.e. $x_n = e_n a_n$), then by remark 3.2, $x_{n+1} \ge e_{n+1} z_{n+1}$ thus $m_{n+1} \ge 0$. (2) By definition

$$m_{n+1} = (-1)^{e_{n+1}}(x_{n+1} - b_{n+1} + (-1)^{e_n}\iota_n) = (-1)^{e_{n+1}}(x_{n+1} - b_{n+1}) - \iota_n.$$

First, we show that $m_{n+1} \geq -a_{n+1}$ and that if $m_{n+1} = -a_{n+1}$, then $x_{n+1} = e_{n+1}a_{n+1}$ and

(\$\\$)
$$b_{n+1} = \begin{cases} a_{n+1} - \iota_n & \text{if } e_{n+1} = 0 \\ \iota_n & \text{if } e_{n+1} = 1. \end{cases}$$

Case 1: $e_{n+1} = 0$.

By Proposition 2.7, we have

$$m_{n+1} = x_{n+1} - b_{n+1} - \iota_n \ge -b_{n+1} - \iota_n \ge -a_{n+1}.$$

Moreover if $m_{n+1} = -a_{n+1}$, then $x_{n+1} = 0$ and $b_{n+1} = a_{n+1} - \iota_n$.

Case 2: $e_{n+1} = 1$.

By Proposition 2.7, we have

$$m_{n+1} = -x_{n+1} + b_{n+1} - \iota_n \ge -a_{n+1} + b_{n+1} - \iota_n \ge -a_{n+1}.$$

Moreover if $m_{n+1} = -a_{n+1}$, then $x_{n+1} = a_{n+1}$ and $b_{n+1} = \iota_n$.

Next, suppose $m_{n+1} = -a_{n+1}$ and $\iota_{n+1} = 1$. Since $\iota_{n+1} = 1$, we have $b_{n+1} \notin \{0, a_{n+1}\}$ by Remark 2.8. Hence $\iota_n = 1$ by (\diamondsuit) , and so $e_n = \overline{e_{n+1}} = e_{n+2}$. Moreover since $x \in M$ and $x_{n+1} = e_{n+1}a_{n+1}$, we have $x_{n+2} \ge e_n b_{n+2} + (-1)^{e_n}$ by Remark 3.2. Therefore if $e_n = 0$ then $m_{n+2} = x_{n+2} \ge b_{n+2} + 1$; if $e_n = 1$ then $a_{n+2} - m_{n+2} = x_{n+2} \le b_{n+2} - 1$.

Claim 5.5. Let $K \geq k$ be $K \equiv k \mod 2$. For each $L \in \mathbb{N}$, the following proposition (P_L) holds:

holds:

$$(P_L) \text{ If } \sum_{n=K}^{K+2l-1} m_n \prod_{j=0}^n \alpha_j < 0 \text{ for each } 1 \le l \le L, \text{ then}$$

$$(i) \ \iota_n = 1 \ (K \le \forall n \le K + 2L - 1)$$

$$(ii) \ b_n = \begin{cases} 1 & \text{if } e_K = 0 \\ a_n - 1 \text{ if } e_K = 1 \end{cases} (K + 1 \le \forall n \le K + 2L - 1)$$

$$(iii) \ \sum_{n=K}^{K+2l-1} m_n \prod_{j=0}^n \alpha_j = -\prod_{j=0}^{K+2l} \alpha_j \ (1 \le \forall l \le L)$$

$$(iv) \ m_{K+2L} - 1 \ge \begin{cases} b_{K+2L} & \text{if } e_K = 0 \\ a_{K+2L} - b_{K+2L} \text{ if } e_K = 1. \end{cases}$$

Proof. Let $S_l = \sum_{n=K}^{K+2l-1} m_n \prod_{j=0}^n \alpha_j$. We use induction on L.

We show that (P_1) holds. Suppose $S_1 < 0$. Then $m_K + m_{K+1}\alpha_{K+1} < 0$ and so by Claim 5.4 (1), $m_K \ge 1$. Hence by Lemma 5.3, we have $m_{K+1} = -a_{K+1}$, $\iota_{K+1} = 1$ and $S_1 = -\prod_{j=0}^{K+2} \alpha_j$. By Claim 5.4 (2),

$$\iota_K = 1, \ b_{K+1} = \begin{cases} 1 & \text{if } e_K = 0 \\ a_{K+1} - 1 & \text{if } e_K = 1 \end{cases} \text{ and } m_{K+2} - 1 \ge \begin{cases} b_{K+2} & \text{if } e_K = 0 \\ a_{K+2} - b_{K+2} & \text{if } e_K = 1. \end{cases}$$

Thus (P_1) holds.

We show $(P_L) \Longrightarrow (P_{L+1})$. Suppose (P_L) holds and $S_l < 0$ for each $1 \le l \le L+1$. It suffices to show the following:

$$\iota_n = 1, \quad b_n = \begin{cases} 1 & \text{if } e_K = 0 \\ a_n - 1 & \text{if } e_K = 1 \end{cases} \quad \text{for } n = K + 2L, \quad K + 2L + 1$$

$$S_{L+1} = -\prod_{j=0}^{K+2L+2} \alpha_j$$

$$\text{and } m_{K+2L+2} - 1 \ge \begin{cases} b_{K+2L+2} & \text{if } e_K = 0 \\ a_{K+2L+2} - b_{K+2L+2} & \text{if } e_K = 1. \end{cases}$$

Note $e_{K+2L} = e_{K+2L-2} = \cdots = e_{K+2} = e_K$ by (i) in (P_L) . Since $S_L = -\prod_{j=0}^{K+2L} \alpha_j$ by (iii) in (P_L) , we have

$$S_{L+1} = (m_{K+2L} - 1 + m_{K+2L+1}\alpha_{K+2L+1}) \prod_{j=0}^{K+2L} \alpha_j.$$

Since $\iota_{K+2L-1} = 1$ by (i) in (P_L) , we have by Proposition 2.7

$$1 \le b_{K+2L} \le a_{K+2L} - 1$$

Hence $m_{K+2L} - 1 \ge 1$ by (iv) in (P_L) . So since $S_{L+1} < 0$, we have by Lemma 5.3

$$m_{K+2L}-1=1, \ m_{K+2L+1}=-a_{K+2L+1}, \ \iota_{K+2L+1}=1 \ {\rm and} \ S_{L+1}=-\prod_{j=0}^{K+2L+2} \alpha_j.$$

The equality $m_{K+2L} - 1 = 1$ implies

$$b_{K+2L} = \begin{cases} 1 & \text{if } e_K = 0\\ a_{K+2L} - 1 & \text{if } e_K = 1. \end{cases}$$

By Claim 5.4 (2), the equalities $m_{K+2L+1}=-a_{K+2L+1},\ \iota_{K+2L+1}=1$ and $e_{K+2L}=e_{K}$ imply

$$\iota_{K+2L} = 1, \ b_{K+2L+1} = \begin{cases} 1 & \text{if } e_K = 0\\ a_{K+2L+1} - 1 & \text{if } e_K = 1 \end{cases}$$

and

$$m_{K+2L+2} - 1 \ge \begin{cases} b_{K+2L+2} & \text{if } e_K = 0\\ a_{K+2L+2} - b_{K+2L+2} & \text{if } e_K = 1. \end{cases}$$

Therefore (P_{L+1}) holds.

Let \widetilde{z} be k-right extremal and $x \in M$. Define a sequence $\widetilde{m_k} \widetilde{m_{k+1}} \widetilde{m_{k+2}} \cdots$ by

$$\widetilde{m_n} = (-1)^{e_n} (\widetilde{z_n} - x_n).$$

Then for each $l \geq k$

$$\sum_{n=k}^{l} \nu_n(\widetilde{z_n}) - \sum_{n=k}^{l} \nu_n(x_n) = \sum_{n=k}^{l} \widetilde{m_n} \prod_{j=0}^{n} \alpha_j.$$

In the same way as the proofs of Claims 5.4 and 5.5, we obtain the following statements:

Claim 5.6. For each $n \ge k$ with $n \equiv k \mod 2$, we have the following.

(1) $\widetilde{m_n} \geq 0$.

If $\widetilde{m_n} = 0$ then $\widetilde{m_{n+1}} \ge 0$.

(2) $\widetilde{m_{n+1}} \ge -a_{n+1}$.

If $\widetilde{m_{n+1}} = -a_{n+1}$ and $\iota_{n+1} = 1$, then

$$\iota_n = 1, \ b_{n+1} = \begin{cases} 1 & \text{if } e_n = 1 \\ a_{n+1} - 1 & \text{if } e_n = 0 \end{cases} \text{ and } \widetilde{m_{n+2}} - 1 \ge \begin{cases} b_{n+2} & \text{if } e_n = 1 \\ a_{n+2} - b_{n+2} & \text{if } e_n = 0. \end{cases}$$

Claim 5.7. Let $K \geq k$ be $K \equiv k \mod 2$. For each $L \in \mathbb{N}$, the following proposition $(\widetilde{P_L})$ holds:

$$(\widetilde{P_L})$$
 If $\sum_{n=K}^{K+2l-1} \widetilde{m_n} \prod_{j=0}^n \alpha_j < 0$ for each $1 \le l \le L$, then

$$(i) \ \iota_n = 1 \ (K \le \forall n \le K + 2L - 1)$$

(ii)
$$b_n = \begin{cases} 1 & \text{if } e_K = 1 \\ a_n - 1 & \text{if } e_K = 0 \end{cases} (K + 1 \le \forall n \le K + 2L - 1)$$

$$(iii) \sum_{n=K}^{K+2l-1} \widetilde{m_n} \prod_{j=0}^{n} \alpha_j = -\prod_{j=0}^{K+2l} \alpha_j \quad (1 \le \forall l \le L)$$

(iv)
$$\widetilde{m_{K+2L}} - 1 \ge \begin{cases} b_{K+2L} & \text{if } e_K = 1\\ a_{K+2L} - b_{K+2L} & \text{if } e_K = 0. \end{cases}$$

(Proof of Proposition 5.1)

Let $k \in \mathbb{N}_0$, z be k-left extremal, \widetilde{z} be k-right extremal and $x \in M$.

Recall the sequence $m_k m_{k+1} m_{k+2} \cdots$, that is, $m_n = (-1)^{e_n} (x_n - z_n)$, and so for each $l \ge k$

$$\sum_{n=k}^{l} m_n \prod_{j=0}^{n} \alpha_j = \sum_{n=k}^{l} \nu_n(x_n) - \sum_{n=k}^{l} \nu_n(z_n).$$

We show for any $l \ge k$, $\sum_{n=k}^{l} \nu_n(z_n) - \prod_{j=0}^{l} \alpha_j \le \sum_{n=k}^{l} \nu_n(x_n)$, in other words,

$$(*)_l \quad T_l := \sum_{n=k}^l m_n \prod_{j=0}^n \alpha_j \ge - \prod_{j=0}^l \alpha_j.$$

The inequality $(*)_k$ is clearly holds because $m_k \geq 0$ by Claim 5.4 (1). Let l > k. Define

$$J = \left\lfloor \frac{l - k + 1}{2} \right\rfloor \ge 1.$$

Then $l \in \{k+2J-1, k+2J\}$ and so $T_l \ge T_{k+2J-1}$ because $m_{k+2J} \ge 0$ by claim 5.4 (1). Hence, in order prove the inequality $(*)_l$, it suffices to show

$$T_{k+2J-1} \ge -\prod_{j=0}^{l} \alpha_j.$$

It suffices to consider the case $T_{k+2J-1} < 0$. Define

$$J_0 = \min\{1 \le i \le J \mid i \le \forall p \le J, \ T_{k+2p-1} < 0\}.$$

Since $T_{k+2J_0-3} \geq 0$ (if $J_0 \geq 2$), we have

$$\sum_{n=k+2J_0-2}^{k+2p-1} m_n \prod_{j=0}^{n} \alpha_j < 0 \text{ for each } J_0 \le p \le J.$$

By Claim 5.5 (iii)

$$\sum_{n=k+2J_0-2}^{k+2J-1} m_n \prod_{j=0}^n \alpha_j = -\prod_{j=0}^{k+2J} \alpha_j.$$

Therefore

$$T_{k+2J-1} = T_{k+2J_0-3} + \sum_{n=k+2J_0-2}^{k+2J-1} m_n \prod_{j=0}^{n} \alpha_j \ge -\prod_{j=0}^{k+2J} \alpha_j \ge -\prod_{j=0}^{l} \alpha_j$$

(recall $k + 2J \ge l$).

Similarly we can show that for any $l \geq k$,

$$\sum_{n=k}^{l} \nu_n(x_n) \le \sum_{n=k}^{l} \nu_n(\widetilde{z_n}) + \prod_{j=0}^{l} \alpha_j.$$

(Proof of Proposition 5.2)

Let $k \in \mathbb{N}_0$ and $x \in M$. By Lemmas 2.6, 3.5 and Proposition 5.1, we have the tail inequality:

$$-e_k \prod_{j=0}^{k-1} \alpha_j \le \sum_{n=k}^{\infty} \nu_n(x_n) \le \overline{e_k} \prod_{j=0}^{k-1} \alpha_j.$$

Let z be k-left extremal. Recall that for each $l \geq k$, $m_n = (-1)^{e_n}(x_n - z_n)$ and

$$\sum_{n=k}^{l} m_n \prod_{j=0}^{n} \alpha_j = \sum_{n=k}^{l} \nu_n(x_n) - \sum_{n=k}^{l} \nu_n(z_n).$$

By Lemma 3.5, $\sum_{n=k}^{\infty} m_n \prod_{j=0}^n \alpha_j = \sum_{n=k}^{\infty} \nu_n(x_n) + e_k \prod_{j=0}^{k-1} \alpha_j$. Hence, in order prove (1) in Proposition 5.2, it suffices to show if $\sum_{n=k}^{\infty} m_n \prod_{j=0}^n \alpha_j = 0$ then $m_n = 0$ for each $n \geq k$. To this end, we show a claim:

If there is $r \ge k$ with $r \equiv k \mod 2$ and $m_r + m_{r+1}\alpha_{r+1} < 0$, then $\sum_{n=k}^{\infty} m_n \prod_{j=0}^{n} \alpha_j > 0$. Let

$$K = \min\{r \ge k \mid r \equiv k \mod 2 \text{ and } m_r + m_{r+1}\alpha_{r+1} < 0\}.$$

Then (if $K \ge k+2$) $m_l + m_{l+1}\alpha_{l+1} \ge 0$ for each $k \le l \le K-2$ with $l \equiv k \mod 2$, and so

$$\sum_{n=k}^{K-1} m_n \prod_{j=0}^n \alpha_j \ge 0.$$

Assume that for any $l \in \mathbb{N}_0$

$$\sum_{n=K}^{K+2l+1} m_n \prod_{j=0}^{n} \alpha_j < 0.$$

Then by Claim 5.5 (i) and (ii), we have

$$\iota_n = 1 \ (\forall n \ge K)$$
 and $b_n = \begin{cases} 1 & \text{if } e_K = 0 \\ a_n - 1 & \text{if } e_K = 1. \end{cases} (\forall n \ge K + 1)$

contradicting Proposition 2.7. Hence $\sum_{n=K}^{K+2l+1} m_n \prod_{j=0}^n \alpha_j \geq 0$ for some $l \in \mathbb{N}_0$. Let

$$L = \min\{l \in \mathbb{N}_0 \mid \sum_{n=K}^{K+2l+1} m_n \prod_{j=0}^n \alpha_j \ge 0\}.$$

Since $m_K + m_{K+1}\alpha_{K+1} < 0$, we see that $L \ge 1$ and for each $1 \le l \le L$

$$\sum_{n=K}^{K+2l-1} m_n \prod_{j=0}^{n} \alpha_j < 0.$$

Hence by Claim 5.5 (iii) and (i), we have

$$\sum_{n=K}^{K+2L+1} m_n \prod_{j=0}^{n} \alpha_j = \left(-1 + m_{K+2L} + m_{K+2L+1} \alpha_{K+2L+1}\right) \prod_{j=0}^{K+2L} \alpha_j$$

and
$$\iota_{K+2L-1}=1$$
. So $1\leq b_{K+2L}\leq a_{K+2L}-1$ by Proposition 2.7, and hence by Claim 5.5 (iv) $-1+m_{K+2L}\geq 1$. Therefore $\sum_{n=K}^{K+2L+1}m_n\prod_{j=0}^n\alpha_j\neq 0$, because α_{K+2L+1} is irrational. Thus

$$\sum_{n=K}^{K+2L+1} m_n \prod_{j=0}^{n} \alpha_j > 0.$$

On the other hand, by Lemma 3.5 and tail inequality, we have

$$\sum_{n=K+2L+2}^{\infty} m_n \prod_{j=0}^{n} \alpha_j = \sum_{n=K+2L+2}^{\infty} \nu_n(x_n) - \sum_{n=K+2L+2}^{\infty} \nu_n(z_n) \ge 0$$

because z is also (K + 2L + 2)-left extremal. Summarizing the above, we have

$$\sum_{n=k}^{\infty} m_n \prod_{j=0}^{n} \alpha_j > 0$$

hence the above claim is proved.

Now we prove (1). Suppose $\sum_{n=k}^{\infty} m_n \prod_{j=0}^n \alpha_j = 0$. Then $m_i + m_{i+1}\alpha_{i+1} \ge 0$ for each $i \ge k$ with $i \equiv k \mod 2$ by the above claim. Moreover $m_i + m_{i+1}\alpha_{i+1} = 0$ for each $i \geq k$ with $i \equiv k$ mod 2. So $m_i = m_{i+1} = 0$ for each $i \geq k$ with $i \equiv k \mod 2$, because α_{i+1} is irrational. Thus $m_n = 0$ for each $n \ge k$. Similarly we can prove (2).

Doubleton lemma

In preceding sections, we have constructed the (α, β) -numeration system $\nu: M \to [0, 1]$. Define

$$\{\nu\}: M \to [0,1)$$
 by $\{\nu\}(x) = \{\nu(x)\}$ (the fractional part of $\nu(x)$).

To show $\{\nu\}: M \to [0,1)$ is at most 2-to-1, we begin with the following lemma:

Lemma 6.1.

(1) Let x be k-left extremal and y be (k-1)-left extremal.

If
$$x_k = y_k$$
, then $x_n = y_n = e_k a_n \ (\forall n \ge k)$.

(2) Let x be k-right extremal and y be (k-1)-right extremal.

If
$$x_k = y_k$$
, then $x_n = y_n = \overline{e_k} a_n \ (\forall n \ge k)$.

(3) Any left (resp. right) extremal sequence is not right (resp. left) extremal.

Proof. Note that

$$-(-1)^{e_{k-1}}\iota_{k-1} = (-1)^{e_k}\iota_{k-1}$$

because $(-1)^{e_k} = (-1)^{e_{k-1}}(-1)^{\iota_{k-1}}$ and $(-1)^s s = -s$ for each $s \in \{0, 1\}$.

We show (1) and (2). It suffices to show (i) and (ii): for $k \in \mathbb{N}_0$ with $k \geq 1$,

- (i) If $e_k a_k = b_k (-1)^{e_{k-1}} \iota_{k-1}$, then $\iota_n = 0 \ (\forall n \ge k 1)$ and $e_n = e_k$, $b_n = e_k a_n \ (\forall n \ge k)$.
- (ii) If $\overline{e_k}a_k = b_k (-1)^{\overline{e_{k-1}}}\iota_{k-1}$, then $\iota_n = 0$ ($\forall n \geq k-1$) and $e_n = e_k$, $b_n = \overline{e_k}a_n$ ($\forall n \geq k$). Let $e_k a_k = b_k + (-1)^{e_k}\iota_{k-1}$. So if $e_k = 0$ then $0 = b_k + \iota_{k-1}$; if $e_k = 1$ then $a_k = b_k \iota_{k-1}$. Hence $\iota_{k-1} = 0$ and $b_k = e_k a_k$. By Remark 2.8, (i) holds. The proof of (ii) is similar. We show (3) by contradiction. Assume there is a sequence z which is l-left and r-right extremal. Then by
- (3) by contradiction. Assume there is a sequence z which is l-left and r-right extremal. Then by definition, $r \equiv l+1 \mod 2$. Letting $k = \max\{l, r\} + 1$, we have the following system of equations:

$$e_n a_n = z_n = b_n - (-1)^{e_n} \iota_{n-1} \text{ if } n \equiv l \mod 2$$

 $\overline{e_n} a_n = z_n = b_n + (-1)^{e_n} \iota_{n-1} \text{ if } n \equiv l+1 \mod 2$ (for each $n \ge k$).

Case 1: $\exists K \geq k \text{ such that } \iota_{K-1} = 0.$

Then $b_K \in \{0, a_K\}$. By Remark 2.8, for each $n \ge K$, we have that $\iota_n = 0$ and $e_n = e_K$ and that if $b_K = 0$ then $b_n = 0$; if $b_K = a_K$ then $b_n = a_n$. It contradicts the above system of equations. Case 2: $\forall n \ge k, \ \iota_{n-1} = 1$.

Then $b_k \in \{1, a_k - 1\}$ and $e_{n+2} = \overline{e_{n+1}} = e_n$ for each $n \ge k$. By the above system of equations, we can see if $b_k = 1$ then $b_n = 1$; if $b_k = a_k - 1$ then $b_n = a_n - 1$. It contradicts Proposition 2.7.

For each left (resp. right) extremal sequence z, define

$$k(z) = \min\{k \in \mathbb{N}_0 \mid z \text{ is } k\text{-left (resp. } k\text{-right) extremal}\}.$$

For each sequence $x = x_0 x_1 x_2 \cdots$ and each $k \in \mathbb{N}_0$, define

$$x[0,k] = x_0 x_1 \cdots x_k.$$

Now we introduce the main notion of this section:

Definition 6.2 (Doubleton). Let $x \in M$ be left extremal and $y \in M$ be right extremal. We say x and y form a doubleton if the following conditions hold:

(i)
$$k(x) = k(y) =: k$$

(ii)
$$x_{k-1} = y_{k-1} + (-1)^{e_{k-1}}$$
 if $k \ge 1$

(iii)
$$x[0, k-2] = y[0, k-2]$$
 if $k \ge 2$

Lemma 6.3 (Doubleton lemma). Let $x, y \in M$ with $x \neq y$. Then, we have the following: $\{\nu\}(x) = \{\nu\}(y)$ if and only if x and y form a doubleton.

Proof. Let x and y form a doubleton where x is left extremal and y is right extremal and k(x) = k(y) = k. We show $\{\nu\}(x) = \{\nu\}(y)$. In the case k = 0, $\nu(x) = 0$ and $\nu(y) = 1$ by Lemma 3.5. Consider the case $k \ge 1$. By Lemma 3.5

$$\sum_{n=k-1}^{\infty} \nu_n(x_n) = \nu_{k-1}(x_{k-1}) - e_k \prod_{j=0}^{k-1} \alpha_j$$

$$= \nu_{k-1}(y_{k-1} + (-1)^{e_{k-1}}) - e_k \prod_{j=0}^{k-1} \alpha_j$$

$$= \nu_{k-1}(y_{k-1}) + (1 - e_k) \prod_{j=0}^{k-1} \alpha_j$$

$$= \sum_{n=k-1}^{\infty} \nu_n(y_n).$$

Hence $\nu(x) = \nu(y)$.

We show the 'only if' part. Suppose $\{\nu\}(x) = \{\nu\}(y)$.

If $\nu(x) = 0$ (resp. $\nu(x) = 1$), then x is 0-left extremal (resp. 0-right extremal) by Proposition 5.2 and $\nu(y) = 1$ (resp. $\nu(y) = 0$) because $x \neq y$, so x and y form a doubleton. Consider the case $0 < \nu(x) < 1$. Then $\nu(x) = \nu(y)$. Let

$$k = \min\{n \in \mathbb{N}_0 \mid x_n \neq y_n\}.$$

Without the loss of generality, we can suppose $x_k > y_k$. Since $\nu(x) = \nu(y)$,

$$\nu_k(x_k) - \nu_k(y_k) = \sum_{n=k+1}^{\infty} \nu_n(y_n) - \sum_{n=k+1}^{\infty} \nu_n(x_n).$$

Consider the case $e_k = 0$. Then, since

$$\nu_k(x_k) - \nu_k(y_k) = (x_k - y_k) \prod_{j=0}^k \alpha_j \ge \prod_{j=0}^k \alpha_j$$

and

$$\sum_{n=k+1}^{\infty} \nu_n(y_n) - \sum_{n=k+1}^{\infty} \nu_n(x_n) \leq \overline{e_{k+1}} \prod_{j=0}^k \alpha_j - (-e_{k+1}) \prod_{j=0}^k \alpha_j = \prod_{j=0}^k \alpha_j \text{ (by tail inequality)},$$

we have $x_k = y_k + 1$ and moreover x is (k+1)-left extremal and y is (k+1)-right extremal by Proposition 5.2. So $k(x) \le k+1$ by the definition of k(x). We show that k(x) = k+1. Assume that k(x) < k+1.

Case 1: $k(x) \equiv k \mod 2$.

In this case, $x_k = e_k a_k = 0$ (since $e_k = 0$), contradicting $x_k > y_k$.

Case 2: $k(x) \equiv k + 1 \mod 2$.

In this case, $x_{k-1} = e_{k-1}a_{k-1}$ and $x_k = b_k - (-1)^{e_{k-1}}\iota_{k-1}$. Since $y_{k-1} = x_{k-1}$ and $e_k = 0$ and $y \in M$, we have $y_k \ge b_k - (-1)^{e_{k-1}}\iota_{k-1} = x_k$ by Remark 3.2, contradicting $x_k > y_k$.

Hence k(x) = k + 1. Similarly we can show k(y) = k + 1. So x and y form a doubleton. The proof in the case $e_k = 1$ is also similar.

Denote by $R_{\alpha}: [0,1) \to [0,1)$ the rotation by angle α , that is, $R_{\alpha}(\xi) = \{\xi + \alpha\}$, and by \mathcal{O}_{ξ} the orbit of ξ under R_{α} , that is, $\mathcal{O}_{\xi} = \{R_{\alpha}^{n}(\xi) \mid n \in \mathbb{Z}\}.$

Lemma 6.4. If $x \in M$ is extremal, then $\{\nu\}(x) \in \mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta}$.

Proof. We show that for each $N \in \mathbb{N}_0$

(i)
$$\sum_{n=0}^{2N} \nu_n(0) = \beta - \sum_{n=0}^{N} (-1)^{e_{2n}} (b_{2n} - \iota_{2n}) \prod_{j=0}^{2n} \alpha_j$$
(ii)
$$\sum_{n=0}^{2N+1} \nu_n(0) = -\sum_{n=0}^{N} (-1)^{e_{2n+1}} (b_{2n+1} - \iota_{2n+1}) \prod_{j=0}^{2n+1} \alpha_j.$$

Note that for each $n \in \mathbb{N}_0$

$$\nu_{n}(0) + \nu_{n+1}(0) = -(-1)^{e_{n}}(-1)^{\iota_{n}}\beta_{n+1} \prod_{j=0}^{n} \alpha_{j} - (-1)^{e_{n+1}}(-1)^{\iota_{n+1}}\beta_{n+2} \prod_{j=0}^{n+1} \alpha_{j}$$

$$= -(-1)^{e_{n+1}} \left(\frac{\beta_{n+1}}{\alpha_{n+1}} + (-1)^{\iota_{n+1}}\beta_{n+2} \right) \prod_{j=0}^{n+1} \alpha_{j}$$

$$= -(-1)^{e_{n+1}} (b_{n+1} - \iota_{n+1}) \prod_{j=0}^{n+1} \alpha_{j} \quad \text{(by recursive equation (2))}.$$

When N = 0, by recursive equation (2) we have $\nu_0(0) = -(-1)^{\iota_0} \beta_1 \alpha_0 = \beta - (b_0 - \iota_0) \alpha_0$. When $N \ge 1$,

$$\sum_{n=0}^{2N} \nu_n(0) = \nu_0(0) + \sum_{n=1}^{N} \left(\nu_{2n-1}(0) + \nu_{2n}(0) \right) = \beta - (b_0 - \iota_0)\alpha_0 - \sum_{n=1}^{N} (-1)^{e_{2n}} (b_{2n} - \iota_{2n}) \prod_{j=0}^{2n} \alpha_j.$$

So (i) holds. On the other hand

$$\sum_{n=0}^{2N+1} \nu_n(0) = \sum_{n=0}^{N} \left(\nu_{2n}(0) + \nu_{2n+1}(0) \right) = -\sum_{n=0}^{N} (-1)^{e_{2n+1}} (b_{2n+1} - \iota_{2n+1}) \prod_{j=0}^{2n+1} \alpha_j,$$

that is, (ii) also holds.

Now, let $x \in M$ be k-left extremal. We show $\{\nu\}(x) \in \mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta}$. When k = 0, we have $\nu(x) = 0 \in \mathcal{O}_{\alpha}$ by Lemma 3.5. When $k \geq 1$, by Lemma 3.5

$$\nu(x) = \sum_{n=0}^{k-1} \nu_n(x_n) - e_k \prod_{j=0}^{k-1} \alpha_j = \sum_{n=0}^{k-1} \nu_n(0) + \sum_{n=0}^{k-1} (-1)^{e_n} x_n \prod_{j=0}^n \alpha_j - e_k \prod_{j=0}^{k-1} \alpha_j$$

and so, by (i), (ii) and Lemma 2.5, we have $\{\nu\}(x) \in \mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta}$. In the same way, we can show that $\{\nu\}(x) \in \mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta}$ for any right extremal sequence $x \in M$.

Remark 6.5. By Lemma 6.3, the map $\{\nu\}: M \to [0,1)$ is at most 2-to-1: more precisely we have (with Lemma 6.4)

$$\{\xi \in [0,1) \mid \sharp\{\nu\}^{-1}(\xi) \geq 2\}$$

$$\subset \{\xi \in [0,1) \mid \xi = \{\nu\}(x) = \{\nu\}(y) \text{ for some doubleton } \{x,y\}\}$$

$$\subset \{\{\nu\}(x) \mid x \in M : \text{left extremal}\} \cap \{\{\nu\}(y) \mid y \in M : \text{right extremal}\}$$

$$\subset \{\{\nu\}(x) \mid x \in M : \text{left extremal}\} \cup \{\{\nu\}(y) \mid y \in M : \text{right extremal}\}$$

$$\subset \mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta}.$$

\S 7. Odometer on M

In this section, we introduce the odometer $H: M \to M$ and study its properties.

Definition 7.1. Define the sequences c and a - c by

$$c_n = \begin{cases} a_n - \iota_n & \text{if } n \text{ is even} \\ \iota_n & \text{if } n \text{ is odd} \end{cases}$$
 and $(a - c)_n = a_n - c_n$.

for each $n \in \mathbb{N}_0$. Thus, $c = (a_0 - \iota_0)\iota_1(a_2 - \iota_2)\iota_3 \cdots$ and $a - c = \iota_0(a_1 - \iota_1)\iota_2(a_3 - \iota_3) \cdots$.

Note $a_n - \iota_n = \left| \frac{1}{\alpha_n} \right| > 0$. Recall conditions $(1)_n$ and $(2)_n$ in Definition 3.1:

$$(1)_n x_n = 0 \implies x_{n+1} \ge_{\iota_n} b_{n+1} - \iota_n$$

$$(2)_n x_n = a_n \implies x_{n+1} \le_{\iota_n} b_{n+1} + \iota_n.$$

Lemma 7.2. $\{c, a-c\} \subset M$.

Proof. Since $a_n \neq \iota_n$, it suffices to show c (resp. a-c) satisfies conditions $(1)_{2n+1}, (2)_{2n}$ (resp. $(1)_{2n}, (2)_{2n+1}$) for each $n \in \mathbb{N}_0$. We can show them by using following claim.

Claim: $\iota_n = 0 \implies \iota_{n+1} \leq b_{n+1} \leq a_{n+1} - \iota_{n+1}$. Indeed, when $\iota_n = 0$, we have, by Proposition 2.7 and Remark 2.8, $0 \leq b_{n+1} \leq a_{n+1}$ and if $\iota_{n+1} = 1$ then $b_{n+1} \notin \{0, a_{n+1}\}$.

For each sequence $x = x_0 x_1 x_2 \cdots$ and each $k \in \mathbb{N}_0$, define

$$x[k,\infty) = x_k x_{k+1} x_{k+2} \cdots.$$

Definition 7.3 (Odometer). For each $x \in M$, define a sequence $H(x) (= H_{\alpha,\beta}(x))$ as follows. Define

$$H(c) = a - c$$
.

Let $c \neq x \in M$ and define

$$L = L(x) = \min\{n \in \mathbb{N}_0 \mid x_n \neq c_n\}.$$

Case (1): L = 0, or L > 0 is even with $x_L \ge b_L$. Define

$$H(x) = \begin{cases} (a-c)[0, L-2](a_{L-1} - \overline{\iota_{L-1}})(x_L+1)x[L+1, \infty) \\ \text{if } x_L < a_L - 1 \text{ or if } x_L = a_L - 1 \text{ and } x_{L+1} \le b_{L+1} \\ (a-c)[0, L](x_{L+1} - 1)x[L+2, \infty) \\ \text{otherwise.} \end{cases}$$

Case (2): L > 0 is even with $x_L < b_L$. Define

$$H(x) = (a-c)[0, L-3] \ \overline{\iota_{L-2}} \ 0 \ x[L,\infty).$$

Case (3): L is odd with $x_L \leq b_L$. Define

$$H(x) = \begin{cases} (a-c)[0, L-2] \ \overline{\iota_{L-1}} \ (x_L - 1)x[L+1, \infty) \\ \text{if } x_L > 1 \text{ or if } x_L = 1 \text{ and } x_{L+1} \ge b_{L+1} \\ (a-c)[0, L](x_{L+1} + 1)x[L+2, \infty) \\ \text{otherwise.} \end{cases}$$

Case (4): L is odd with $x_L > b_L$. Define

$$H(x) = (a-c)[0, L-3](a_{L-2} - \overline{\iota_{L-2}})a_{L-1}x[L, \infty).$$

Note. Consider the case $\beta = 0$. For all $n \in \mathbb{N}_0$, $\iota_n = b_n = 0$ and $M = M^{\alpha} = \{x \in \prod_{n \in \mathbb{N}_0} \{0, 1, \dots, a_n\} \mid x_n = a_n \Longrightarrow x_{n+1} = 0\}$: recall Section 1. Hence $c = a_0 0 a_2 0 \cdots$ and the case (1) in Definition 7.3 only occurs. So $H = H_{\alpha}$ (dual Ostrowski odometer).

Example (continued). Let $\alpha = \sqrt{2} - 1$ and $\beta = 1 - \frac{1}{\sqrt{2}}$. In this example, $\iota_n = 0$, $a_n = 2$ and $b_n = 1$ for each $n \in \mathbb{N}_0$: recall Section 1. So $c = 2020 \cdots$ and $a - c = 0202 \cdots$. Since $\iota_n = 0 \ (\forall n)$, cases (2) and (4) in Definition 7.3 do not occur by Claim 7.4 (i) (see below). Let $c \neq x \in M$ and L = L(x). When L is even (so $x_L \neq 2$ and if L > 0 then $x_L \neq 0$)

$$H(x) = \begin{cases} 0202 \cdots 0201(x_L + 1)x[L + 1, \infty) & \text{if } L = 0 \text{ and } x_0 = 0 \text{ or if } x_L = 1 \text{ and } x_{L+1} \le 1\\ 0202 \cdots 0201x[L + 2, \infty) & \text{otherwise (that is, } x_L x_{L+1} = 12), \end{cases}$$

and when L is odd (so $x_L = 1$)

$$H(x) = \begin{cases} 0202 \cdots 021(x_L - 1)x[L + 1, \infty) & \text{if } x_L = 1 \text{ and } x_{L+1} \ge 1\\ 0202 \cdots 021x[L + 2, \infty) & \text{otherwise (that is, } x_L x_{L+1} = 10). \end{cases}$$

In order to show $H(M) \subset M$, we prepare the following technical claim.

Claim 7.4. Let $c \neq x \in M$ and L = L(x).

(i) In case (2) or (4) (i.e. when L > 0 is even and $x_L < b_L$ or when L is odd and $x_L > b_L$),

$$\iota_{L-1} = 1, \ H(x)_{L-1} = \begin{cases} x_{L-1} - 1 \text{ if } L \text{ is even} \\ x_{L-1} + 1 \text{ if } L \text{ is odd.} \end{cases}$$
 and $H(x)_{L-2} \begin{cases} \leq b_{L-2} \text{ if } L \text{ is even} \\ \geq b_{L-2} \text{ if } L > 1 \text{ is odd.} \end{cases}$

(ii) When L > 0 is even with $a_L - 1 \ge x_L \ge b_L$ or when L is odd with $1 \le x_L \le b_L$,

$$H(x)_{L-1} \begin{cases} \geq b_{L-1} \text{ if } L \text{ is even} \\ \leq b_{L-1} \text{ if } L \text{ is odd.} \end{cases}$$

(iii) When L is even with $x_L = a_L$ or when L is odd with $x_L = 0$,

$$x_{L+1} \begin{cases} > b_{L+1} \text{ if } L \text{ is even} \\ < b_{L+1} \text{ if } L \text{ is odd.} \end{cases}$$

Proof. (i) We show $\iota_{L-1} = 1$ in case (2) or (4). Indeed suppose L > 0 and $\iota_{L-1} = 0$. Then, by definitions of L(x) and c,

$$x_{L-1} = c_{L-1} = \begin{cases} 0 & \text{if } L \text{ is even} \\ a_{L-1} & \text{if } L \text{ is odd.} \end{cases}$$

Since x satisfies conditions $(1)_{L-1}$ and $(2)_{L-1}$,

$$x_L \begin{cases} \geq b_L \text{ if } L \text{ is even} \\ \leq b_L \text{ if } L \text{ is odd.} \end{cases}$$

Hence, in case (2) or (4), $\iota_{L-1} = 1$ and $x_{L-1} = 1$ if L is even; $x_{L-1} = a_{L-1} - 1$ if L is odd. So, in these cases, $H(x)_{L-1} = 0 = x_{L-1} - 1$ if L is even; $H(x)_{L-1} = a_{L-1} = x_{L-1} + 1$ if L is odd.

Consider the case (2). Then $b_L \neq 0$ (since $0 \leq x_L < b_L$) and hence $b_{L-2} \geq 1$ by Remark 2.8. So $H(x)_{L-2} = \overline{\iota_{L-2}} \leq b_{L-2}$.

Consider the case (4) with L > 1. Then $b_L \neq a_L$ (since $a_L \geq x_L > b_L$) and hence $b_{L-2} \leq a_{L-2} - 1$ by Remark 2.8. So $H(x)_{L-2} = a_{L-2} - \overline{\iota_{L-2}} \geq b_{L-2}$.

(ii) If L > 0 is even with $a_L - 1 \ge x_L \ge b_L$ then $H(x)_{L-1} \ge a_{L-1} - 1$ and $a_{L-1} - 1 \ge b_{L-1}$ by Remark 2.8. Similarly, if L is odd with $1 \le x_L \le b_L$ then $H(x)_{L-1} \le 1 \le b_{L-1}$.

(iii) Suppose L is even with $x_L = a_L$. Since $x_L \neq c_L = a_L - \iota_L$, we have $\iota_L = 1$ and so $x_{L+1} \geq b_{L+1} + 1$ because x satisfies condition $(2)_L$. The proof in case that L is odd with $x_L = 0$ is similar.

Now we show $H(M) \subset M$; the proof may look somewhat tedious.

Lemma 7.5. For each $x \in M$, $H(x) \in M$. We call $H: M \to M$ the (α, β) -odometer.

Proof. It suffices to consider the case $x \neq c$. Let L = L(x).

Case (1): L = 0, or L > 0 is even and $x_L \ge b_L$. Subcase (1)-1: $x_L < a_L - 1$, or $x_L = a_L - 1$ with $x_{L+1} \le b_{L+1}$. In this subcase,

$$H(x) = (a-c)[0, L-2](a_{L-1} - \overline{\iota_{L-1}})(x_L+1)x[L+1, \infty).$$

Note that $(a-c)_{L-2} = \iota_{L-2}$ if L > 0. It suffices to show that H(x) satisfies $(2)_L$, and $(1)_{L-1}, (2)_{L-1}, (1)_{L-2}$ if L > 0. Indeed suppose $H(x)_L = a_L$. Then $x_L = a_L - 1$ and so we have $x_{L+1} \le b_{L+1}$ and $\iota_L = 0$ (because $x_L \ne c_L = a_L - \iota_L$). Therefore $H(x)_{L+1} \le \iota_L$ b_{L+1} + ι_L , that

is, $(2)_L$ holds. Suppose L > 0. Since $x_L \ge b_L$, we can see that H(x) satisfies $(1)_{L-1}$, $(2)_{L-1}$ (note $a_{L-1} - \overline{\iota_{L-1}} = 0 \Longrightarrow \iota_{L-1} = 0$, because $a_{L-1} \ge 1$). If $H(x)_{L-2} = 0$, then $\iota_{L-2} = 0$ and so $H(x)_{L-1} \ge_{\iota_{L-2}} b_{L-1} - \iota_{L-2}$ by Claim 7.4 (ii), that is, $(1)_{L-2}$ holds. Subcase (1)-2: $x_L = a_L - 1$ with $x_{L+1} > b_{L+1}$, or $x_L = a_L$.

In this subcase,

$$H(x) = (a - c)[0, L](x_{L+1} - 1)x[L + 2, \infty).$$

Note that $(a-c)_L = \iota_L$ and $x_{L+1} > b_{L+1}$ by Claim 7.4 (iii). It suffices to show that H(x) satisfies $(1)_{L+1}$ and $(1)_L$. Suppose $H(x)_{L+1} = 0$. Then $b_{L+1} = 0$ (since $x_{L+1} - 1 \ge b_{L+1}$). So by Remark 2.8, we have $\iota_{L+1} = 0 = b_{L+2}$. Hence $H(x)_{L+2} \ge \iota_{L+1} 0 = b_{L+2} - \iota_{L+1}$, that is, $(1)_{L+1}$ holds. Since $x_{L+1} - 1 \ge b_{L+1}$, we can see that H(x) satisfies $(1)_L$.

Case (2): L > 0 is even and $x_L < b_L$.

In this case,

$$H(x) = (a-c)[0, L-3] \ \overline{\iota_{L-2}} \ 0 \ x[L,\infty).$$

Note that $(a-c)_{L-3} = a_{L-3} - \iota_{L-3}$ if L > 2. It suffices to show that H(x) satisfies $(1)_{L-1}$, $(1)_{L-2}$, $(2)_{L-2}$ and $(2)_{L-3}$ if L > 2. Since $\iota_{L-1} = 1$ (by Claim 7.4 (i)) and $x_L < b_L$,

we can see that H(x) satisfies $(1)_{L-1}$. Suppose $H(x)_{L-2} = 0$. Then $\iota_{L-2} = 1$ and so $H(x)_{L-1} = 0 \ge \iota_{L-2} \ b_{L-1} - \iota_{L-2}$ (by Proposition 2.7), that is, $(1)_{L-2}$ holds. We can see that H(x) satisfies $(2)_{L-2}$ (note $\overline{\iota_{L-2}} = a_{L-2} \implies \iota_{L-2} = 0$, because $a_{L-2} \ge 1$). Suppose L > 2 and $H(x)_{L-3} = a_{L-3}$. Then $\iota_{L-3} = 0$ and so $H(x)_{L-2} \le \iota_{L-3} \ b_{L-2} + \iota_{L-3}$ by Claim 7.4 (i), that is, $(2)_{L-3}$ holds.

Case (3): L is odd and $x_L \leq b_L$.

Subcase (3)-1: $x_L > 1$, or $x_L = 1$ with $x_{L+1} \ge b_{L+1}$.

In this subcase,

$$H(x) = (a-c)[0, L-2] \ \overline{\iota_{L-1}} \ (x_L-1)x[L+1, \infty).$$

We can see that $H(x) \in M$ by the similar argument to Subcase (1)-1.

Subcase (3)-2: $x_L = 1$ with $x_{L+1} < b_{L+1}$, or $x_L = 0$.

In this subcase,

$$H(x) = (a-c)[0, L](x_{L+1} + 1)x[L+2, \infty).$$

We can see that $H(x) \in M$ by the similar argument to Subcase (1)-2.

Case (4): L is odd and $x_L > b_L$.

In this case,

$$H(x) = (a-c)[0, L-3](a_{L-2} - \overline{\iota_{L-2}})a_{L-1}x[L, \infty).$$

We can see that $H(x) \in M$ by the similar argument to Case (2).

Here we equip the space $\prod_{n\in\mathbb{N}_0} \{0,1,\cdots,a_n\}$ with a usual metric d defined by $d(x,y) = (1+\min\{n\in\mathbb{N}_0\mid x_n\neq y_n\})^{-1}$ for $x\neq y$. Then M is compact and moreover by the definition of L(x), we have

Remark 7.6. $H: M \to M$ is continuous.

Now we introduce *carry formula*:

Carry formula

$$(C)_0 \nu(x) = 1 + \nu((x_0 - a_0)(x_1 - 1)x[2, \infty))$$

$$(C)_n \nu(x) = \nu \left(x[0, n - 2](x_{n-1} + (-1)^{\iota_{n-1}})(x_n - a_n)(x_{n+1} - 1)x[n + 2, \infty) \right) \text{ for } n \in \mathbb{N}$$

Proof of Carry formula. Recall the definition of $\nu_n(x_n)$ in Definition 3.3. First, by $e_0 = 0$, $e_1 = \iota_0$ and recursive equation (1), we have

$$1 + \nu_0(x_0 - a_0) + \nu_1(x_1 - 1) = 1 + \nu_0(x_0) - a_0\alpha_0 + \nu_1(x_1) - (-1)^{\iota_0}\alpha_1\alpha_0 = \nu_0(x_0) + \nu_1(x_1)$$

and so carry formula $(C)_0$ holds. Let $n \in \mathbb{N}$. By multiplying both sides of recursive equation (1) into $(-1)^{e_n} \prod_{j=0}^n \alpha_j$, we have

$$(-1)^{\iota_{n-1}}(-1)^{e_{n-1}}\prod_{j=0}^{n-1}\alpha_j = a_n(-1)^{e_n}\prod_{j=0}^n\alpha_j + (-1)^{e_{n+1}}\prod_{j=0}^{n+1}\alpha_j$$

(recall $(-1)^{e_{n+1}} = (-1)^{e_n}(-1)^{\iota_n}$). Hence

$$\nu_{n-1}(x_{n-1} + (-1)^{\iota_{n-1}}) + \nu_n(x_n - a_n) + \nu_{n+1}(x_{n+1} - 1) = \nu_{n-1}(x_{n-1}) + \nu_n(x_n) + \nu_{n+1}(x_{n+1})$$

and so carry formula $(C)_n$ also holds.

Define
$$=$$
 by

$$x = y \iff \{\nu\}(x) = \{\nu\}(y).$$

Then we can rewrite carry formula as

$$(C)_{0}^{-} x = (x_{0} - a_{0})(x_{1} - 1)x[2, \infty)$$

$$(C)_{0}^{+} x = (x_{0} + a_{0})(x_{1} + 1)x[2, \infty)$$

$$(C)_{n}^{-} x = x[0, n - 2](x_{n-1} + (-1)^{\iota_{n-1}})(x_{n} - a_{n})(x_{n+1} - 1)x[n + 2, \infty) \text{ for } n \in \mathbb{N}$$

$$(C)_{n}^{+} x = x[0, n - 2](x_{n-1} - (-1)^{\iota_{n-1}})(x_{n} + a_{n})(x_{n+1} + 1)x[n + 2, \infty) \text{ for } n \in \mathbb{N}.$$

By using carry formula, we have **carry operation**: Typical operation is as follows. (Note $\overline{s} = s + (-1)^s$ for each $s \in \{0, 1\}$.)

$$(c_{0}+1)c[1,\infty) = (a_{0}+\overline{\iota_{0}}) \quad \iota_{1} \quad (a_{2}-\iota_{2}) \quad \iota_{3} \quad (a_{4}-\iota_{4}) c[5,\infty)$$

$$\stackrel{=}{=} \quad \overline{\iota_{0}} \quad (-\overline{\iota_{1}}) \quad (a_{2}-\iota_{2}) \quad \iota_{3} \quad (a_{4}-\iota_{4}) c[5,\infty) \text{ by } (C)_{0}^{-}$$

$$\stackrel{=}{=} \quad \iota_{0} \quad (a_{1}-\overline{\iota_{1}}) (a_{2}+\overline{\iota_{2}}) \quad \iota_{3} \quad (a_{4}-\iota_{4}) c[5,\infty) \text{ by } (C)_{1}^{+}$$

$$\stackrel{=}{=} \quad \iota_{0} \quad (a_{1}-\iota_{1}) \quad \overline{\iota_{2}} \quad (-\overline{\iota_{3}}) \quad (a_{4}-\iota_{4}) c[5,\infty) \text{ by } (C)_{2}^{-}$$

$$\stackrel{=}{=} \quad \iota_{0} \quad (a_{1}-\iota_{1}) \quad \iota_{2} \quad (a_{3}-\overline{\iota_{3}}) (a_{4}+\overline{\iota_{4}}) c[5,\infty) \text{ by } (C)_{3}^{+}$$

and so on. Now we can show

Lemma 7.7.
$$\{\nu\} \circ H = R_{\alpha} \circ \{\nu\}.$$

Proof. Note that for each $x \in M$

$$R_{\alpha}(\{\nu\}(x)) = \{\nu(x) + \alpha\} = \{\nu\} \Big((x_0 + 1)x[1, \infty) \Big).$$

It is sufficient to show $(x_0 + 1)x[1, \infty) = H(x)$. First we have $(c_0 + 1)c[1, \infty) = a - c = H(c)$ by using the above carry operation indefinitely.

Next let $c \neq x \in M$ and L = L(x).

Case 1: L = 0.

- If $x_0 < a_0 1$ or if $x_0 = a_0 1$ and $x_1 \le b_1$, then $(x_0 + 1)x[1, \infty) = H(x)$ by definition.
- If $x_0 = a_0 1$ and $x_1 > b_1$ or if $x_0 = a_0$, then $x_0 = a_0 \overline{\iota_0}$ (because $x_0 \neq c_0 = a_0 \iota_0$) and so by carry formula $(C)_0^-$

$$(x_0+1)x[1,\infty) = (a_0+\iota_0)x[1,\infty) = \iota_0(x_1-1)x[2,\infty) = (a-c)_0(x_1-1)x[2,\infty) = H(x).$$

Case 2: $L \ge 1$.

Then $(x_0+1)x[1,\infty)=(c_0+1)c[1,L-1]x[L,\infty)$. By carry operation as above (via carry formulas $(C)_0^-,(C)_1^+,\cdots,(C)_{L-2}^\mp$), we have

$$(x_0+1)x[1,\infty) = \begin{cases} (a-c)[0,L-3]\overline{\iota_{L-2}}(-\overline{\iota_{L-1}})x[L,\infty) & \text{if } L \text{ is even} \\ (a-c)[0,L-3](a_{L-2}-\overline{\iota_{L-2}})(a_{L-1}+\overline{\iota_{L-1}})x[L,\infty) & \text{if } L \text{ is odd.} \end{cases}$$

Subcase 2-1: L is even.

- If $x_L < b_L$ (i.e. Case (2) in Definition 7.3), then $\iota_{L-1} = 1$ by Claim 7.4 (i) and so we have $(x_0 + 1)x[1, \infty) = (a c)[0, L 3]\overline{\iota_{L-2}} \ 0 \ x[L, \infty) = H(x)$.
- Suppose $x_L \geq b_L$. By carry formula $(C)_{L-1}^+$

$$(x_0+1)x[1,\infty) = (a-c)[0,L-3]\iota_{L-2}(a_{L-1}-\overline{\iota_{L-1}})(x_L+1)x[L+1,\infty)$$
$$= (a-c)[0,L-2](a_{L-1}-\overline{\iota_{L-1}})(x_L+1)x[L+1,\infty).$$

- * If $x_L < a_L 1$ or if $x_L = a_L 1$ and $x_{L+1} \le b_{L+1}$, then $(x_0 + 1)x[1, \infty) = H(x)$.
- * If $x_L = a_L 1$ and $x_{L+1} > b_{L+1}$ or if $x_L = a_L$, then $x_L = a_L \overline{\iota_L}$ (since $x_L \neq c_L = a_L \iota_L$) and so

$$(x_0 + 1)x[1, \infty) = (a - c)[0, L - 2](a_{L-1} - \overline{\iota_{L-1}})(a_L + \iota_L)x[L + 1, \infty)$$

$$= (a - c)[0, L - 2](a_{L-1} - \iota_{L-1})\iota_L(x_{L+1} - 1)x[L + 2, \infty) \quad \text{by } (C)_L^-$$

$$= (a - c)[0, L](x_{L+1} - 1)x[L + 2, \infty) = H(x).$$

Subcase 2-2: L is odd.

Similarly we can show
$$(x_0 + 1)x[1, \infty) = H(x)$$
.

Discussion. In the above proof, we used carry operation. Remember the outline of this proof: First consider the sequence $(x_0 + 1)x[1, \infty)$ (naive adding 1). We applied carry operation to $(x_0 + 1)x[1, \infty)$ in order to make the deformed sequence belong to M (normalization by carry), and then the normalized sequence is H(x). In this process, we used carry operation at most

L(x) + 1 times (precisely, L(x) - 1, L(x) or L(x) + 1 times). Moreover we will see (by theorem 1.1) that, among deformed-by-carry-operation sequences of $(x_0 + 1)x[1, \infty)$, H(x) is the unique sequence which belongs to M.

Next we show $H: M \to M$ is a bijection. Before making a formal definition of the inverse H^{-1} we give another carry operation, by using carry formulas $(C)_0^+, (C)_1^-, (C)_2^+$ and $(C)_3^-$, in the following way:

$$((a-c)_{0}-1)(a-c)[1,\infty) = (-\overline{\iota_{0}}) (a_{1}-\iota_{1}) \quad \iota_{2} (a_{3}-\iota_{3}) \quad \iota_{4} (a-c)[5,\infty)$$

$$\stackrel{=}{=} (a_{0}-\overline{\iota_{0}}) (a_{1}+\overline{\iota_{1}}) \quad \iota_{2} (a_{3}-\iota_{3}) \quad \iota_{4} (a-c)[5,\infty)$$

$$\stackrel{=}{=} c_{0} \quad \overline{\iota_{1}} (-\overline{\iota_{2}}) (a_{3}-\iota_{3}) \quad \iota_{4} (a-c)[5,\infty)$$

$$\stackrel{=}{=} c_{0} \quad c_{1} (a_{2}-\overline{\iota_{2}}) (a_{3}+\overline{\iota_{3}}) \quad \iota_{4} (a-c)[5,\infty)$$

$$\stackrel{=}{=} c_{0} \quad c_{1} \quad c_{2} \quad \overline{\iota_{3}} (-\overline{\iota_{4}}) (a-c)[5,\infty)$$

and so on. This is the inverse operation of adding 1 (i.e. H), that is, adding (-1).

Definition 7.8. For each $x \in M$, define a sequence K(x) as follows. Define firstly

$$K(a-c)=c.$$

Let $a - c \neq x \in M$ and define

$$J = J(x) = \min\{n \in \mathbb{N}_0 \mid x_n \neq a_n - c_n\}.$$

Case (I): J=0, or J>0 is even with $x_J \leq b_J$. Define

$$K(x) = \begin{cases} c[0, J-2] \ \overline{\iota_{J-1}} \ (x_J - 1)x[J+1, \infty) \\ \text{if } x_J > 1 \text{ or if } x_J = 1 \text{ and } x_{J+1} \ge b_{J+1} \\ c[0, J](x_{J+1} + 1)x[J+2, \infty) \\ \text{otherwise.} \end{cases}$$

Case (II): J > 0 is even with $x_J > b_J$. Define

$$K(x) = c[0, J - 3](a_{J-2} - \overline{\iota_{J-2}})a_{J-1}x[J, \infty).$$

Case (III): J is odd with $x_J \geq b_J$. Define

$$K(x) = \begin{cases} c[0, J-2](a_{J-1} - \overline{\iota_{J-1}})(x_J + 1)x[J+1, \infty) \\ \text{if } x_J < a_J - 1 \text{ or if } x_J = a_J - 1 \text{ and } x_{J+1} \le b_{J+1} \\ c[0, J](x_{J+1} - 1)x[J+2, \infty) \\ \text{otherwise.} \end{cases}$$

Case (IV): J is odd with $x_J < b_J$. Define

$$K(x) = c[0, J-3] \ \overline{\iota_{J-2}} \ 0 \ x[J,\infty).$$

In the same way as the proofs in Claim 7.4 and Lemma 7.5, we can show the following:

Claim 7.9. Let $a - c \neq x \in M$ and J = J(x).

(i) In case (II) or (IV) (i.e. when J > 0 is even with $x_J > b_J$ or J is odd with $x_J < b_J$),

$$\iota_{J-1} = 1, \ K(x)_{J-1} = \begin{cases} x_{J-1} + 1 \text{ if } J \text{ is even} \\ x_{J-1} - 1 \text{ if } J \text{ is odd.} \end{cases} \text{ and } K(x)_{J-2} \begin{cases} \geq b_{J-2} \text{ if } J \text{ is even} \\ \leq b_{J-2} \text{ if } J > 1 \text{ is odd.} \end{cases}$$

(ii) When J > 0 is even with $1 \le x_J \le b_J$ or J is odd with $a_J - 1 \ge x_J \ge b_J$,

$$K(x)_{J-1} \begin{cases} \leq b_{J-1} \text{ if } J \text{ is even} \\ \geq b_{J-1} \text{ if } J \text{ is odd.} \end{cases}$$

(iii) When J is even with $x_J = 0$ or J is odd with $x_J = a_J$,

$$x_{J+1}$$
 $\begin{cases} < b_{J+1} \text{ if } J \text{ is even} \\ > b_{J+1} \text{ if } J \text{ is odd.} \end{cases}$

Lemma 7.10. For each $x \in M$, $K(x) \in M$.

Now we show

Lemma 7.11. $H: M \to M$ is bijective and $H^{-1} = K$.

Proof. We show $K \circ H = \mathrm{id}_M$. By definition, $K \circ H(c) = c$. Let $x \in M$ with $x \neq c$ and L = L(x). Write

$$j = J(H(x)).$$

Case (1): L = 0, or L > 0 is even and $x_L \ge b_L$. Subcase (1)-1: $x_L < a_L - 1$, or $x_L = a_L - 1$ with $x_{L+1} \le b_{L+1}$. In this subcase,

$$H(x) = (a-c)[0, L-2](a_{L-1} - \overline{\iota_{L-1}})(x_L+1)x[L+1, \infty).$$

Suppose L > 0. Then j = L - 1 because $(a - c)_{L-1} = a_{L-1} - \iota_{L-1}$. So since j is odd with $H(x)_j \geq b_j$ by Claim 7.4 (ii), we apply the case (III) in Definition 7.8 to H(x). Now since $H(x)_j = a_j - \overline{\iota_j}$ and $H(x)_{j+1} = x_L + 1 > b_L = b_{j+1}$, we have $K(H(x)) = c[0, j](H(x)_{j+1} - 1)H(x)[j+2,\infty) = c[0, L-1]x_Lx[L+1,\infty) = x$.

Suppose L=0. Then $H(x)_0=x_0+1$, $H(x)_1=x_1$. Moreover we have

$$j = \begin{cases} 1 \text{ if } x_0 = 0 \text{ and } \iota_0 = 1\\ 0 \text{ otherwise.} \end{cases}$$

(Indeed, notice that $H(x)_0 = (a-c)_0$ (i.e. $x_0 + 1 = \iota_0$) $\iff x_0 = 0$ and $\iota_0 = 1$. If $x_0 = 0$ and $\iota_0 = 1$, then $b_1 < a_1$ by Proposition 2.7 and so since $x \in M$, $H(x)_1 < b_1 \le a_1 - 1 \le (a-c)_1$, hence j = 1.) In case j = 1, we apply the case (IV) to H(x) (since $H(x)_1 < b_1$) and so

 $K(H(x)) = 0x[j, \infty) = x$ (since $x_0 = 0$). Next consider the case j = 0. Then we apply the case (I) to H(x). Note that if $H(x)_0 = 1$, then $x_0 = 0$ and $t_0 = 0$ (because j = 0) and hence $H(x)_1 \ge b_1$ (since $x \in M$). Now we have $K(H(x)) = (H(x)_j - 1)H(x)[j+1, \infty) = x$.

Subcase (1)-2: $x_L = a_L - 1$ with $x_{L+1} > b_{L+1}$, or $x_L = a_L$.

In this subcase,

$$H(x) = (a-c)[0, L](x_{L+1} - 1)x[L + 2, \infty).$$

(Note that $x_L = a_L - \overline{\iota_L}$ because $x_L \neq c_L$.) Then

$$j = \begin{cases} L + 2 \text{ if } x_{L+1} = a_{L+1} \text{ and } \iota_{L+1} = 1\\ L + 1 \text{ otherwise.} \end{cases}$$

(Indeed, $H(x)_{L+1} = (a-c)_{L+1}$ (i.e. $x_{L+1} - 1 = a_{L+1} - \iota_{L+1}$) $\iff x_{L+1} = a_{L+1}$ and $\iota_{L+1} = 1$. If $x_{L+1} = a_{L+1}$ and $\iota_{L+1} = 1$, then $b_{L+2} > 0$ by Proposition 2.7 and $H(x)_{L+2} > b_{L+2} \ge 1 \ge (a-c)_{L+2}$, hence j = L+2.) In case j = L+2, we apply the case (II) to H(x) (since $H(x)_{L+2} > b_{L+2}$) and so $K(H(x)) = c[0, j-3](a_{j-2} - \overline{\iota_{j-2}})a_{j-1}H(x)[j,\infty) = x$ (because $x_L = a_L - \overline{\iota_L}$ and $x_{L+1} = a_{L+1}$). Consider the case j = L+1. By Claim 7.4 (iii), we apply the case (III) to H(x). Note that if $H(x)_{L+1} = a_{L+1} - 1$, then $x_{L+1} = a_{L+1}$ and $\iota_{L+1} = 0$ (since j = L+1) and so $H(x)_{L+2} = x_{L+2} \le b_{L+2}$ (since $x \in M$). Now we have $K(H(x)) = c[0, j-2](a_{j-1} - \overline{\iota_{j-1}})(H(x)_j + 1)H(x)[j+1,\infty) = x$ (because $x_L = a_L - \overline{\iota_L}$).

Case (2): L > 0 is even and $x_L < b_L$.

In this case,

$$H(x) = (a-c)[0, L-3] \ \overline{\iota_{L-2}} \ 0 \ x[L,\infty).$$

Then j = L - 2 because $(a - c)_{L-2} = \iota_{L-2}$. Since $H(x)_j \leq b_j$ by Claim 7.4 (i), we apply the case (I) to H(x). Note that if $H(x)_{L-2} = 1$ (that is, $\iota_{L-2} = 0$), then $x_{L-2} = c_{L-2} = a_{L-2}$ and so by Claim 7.4 (i), we have $H(x)_{j+1} = x_{L-1} - 1 \leq b_{L-1} - 1$ (because $x \in M$). Hence $K(H(x)) = c[0, j](H(x)_{j+1} + 1)H(x)[j+2, \infty) = x$.

Case (3): L is odd and $x_L \leq b_L$.

Subcase (3)-1: $x_L > 1$, or $x_L = 1$ with $x_{L+1} \ge b_{L+1}$.

In this subcase,

$$H(x) = (a-c)[0, L-2] \overline{\iota_{L-1}} (x_L-1)x[L+1, \infty).$$

Then j = L - 1 because $(a - c)_{L-1} = \iota_{L-1}$. We can see that K(H(x)) = x by the similar argument to Subcase (1)-1 with L > 0.

Subcase (3)-2: $x_L = 1$ with $x_{L+1} < b_{L+1}$, or $x_L = 0$.

In this subcase,

$$H(x) = (a-c)[0, L](x_{L+1} + 1)x[L + 2, \infty).$$

(Note that $x_L = \overline{\iota_L}$ because $x_L \neq c_L$.) Then

$$j = \begin{cases} L + 2 \text{ if } x_{L+1} = 0 \text{ and } \iota_{L+1} = 1\\ L + 1 \text{ otherwise.} \end{cases}$$

(Indeed, $H(x)_{L+1} = (a-c)_{L+1}$ (that is, $x_{L+1} + 1 = \iota_{L+1}$) $\iff x_{L+1} = 0$ and $\iota_{L+1} = 1$. If $x_{L+1} = 0$ and $\iota_{L+1} = 1$, then $b_{L+2} < a_{L+2}$ by Proposition 2.7 and so since $x \in M$, $H(x)_{L+2} < a_{L+3}$

 $b_{L+2} \le a_{L+2} - 1 \le (a-c)_{L+2}$, hence j = L+2.) We can see that K(H(x)) = x by the similar argument to Subcase (1)-2.

Case (4): L is odd and $x_L > b_L$.

In this case,

$$H(x) = (a - c)[0, L - 3](a_{L-2} - \overline{\iota_{L-2}})a_{L-1}x[L, \infty).$$

In case L > 1, we have j = L - 2 (because $(a - c)_{L-2} = a_{L-2} - \iota_{L-2}$) and so K(H(x)) = x by the similar argument to Case (2). Consider the case L = 1. Then j = 0. So we apply the case (I) to H(x). Note $H(x)_0 = a_0 = \lfloor \frac{1}{\alpha} \rfloor + \iota_0 > 1$ because $\iota_0 = 1$ by Claim 7.4 (i). Hence $K(H(x)) = (H(x)_0 - 1)H(x)[1, \infty) = x$ (since $H(x)_0 = x_0 + 1$ by Claim 7.4 (i)).

We complete the proof of $K \circ H = \mathrm{id}_M$. Similarly we can show $H \circ K = \mathrm{id}_M$.

Proof of Theorem 1.1 (1) and (2).

Recall Remarks 6.5 and 7.6, Proposition 4.1, Lemmas 7.7 and 7.11. It suffices to show

$$\mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta} \subset D := \{ \xi \in [0,1) \mid \sharp \{\nu\}^{-1}(\xi) > 2 \}.$$

Recall examples in the end of Section 3: if x is 0-left extremal or 0-right extremal, then $x \in M$ and $\{\nu\}(x) = 0$; when $\beta > 0$, if x is 1-left extremal with $x_0 = b_0$ or 1-right extremal with $x_0 = b_0 - 1$, then $x \in M$ and $\{\nu\}(x) = \beta$. Hence $\{0, \beta\} \subset D$. Since H is bijective and $\{\nu\} \circ H = R_{\alpha} \circ \{\nu\}$, we have $\mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta} \subset D$.

Lemma 7.12. We have the following:

- (1) c is left extremal \iff a c is left extremal.
- (2) c is right extremal \iff a c is right extremal.

(Hence, c is not extremal \iff a - c is not extremal.)

Moreover when c is k-left or k-right extremal,

$$b_{k+1} = \begin{cases} 0 & \text{if } k \text{ is even} \\ a_{k+1} & \text{if } k \text{ is odd.} \end{cases}$$

Proof. (1) Let $k \in \mathbb{N}_0$. First we show that if c is k-left extremal, then for any $n \geq k$

$$\iota_n = 0, \ e_n = \begin{cases} 1 \text{ if } k \text{ is even} \\ 0 \text{ if } k \text{ is odd} \end{cases} \text{ and } b_{n+1} = \begin{cases} 0 & \text{if } k \text{ is even} \\ a_{n+1} \text{ if } k \text{ is odd.} \end{cases}$$

Since $c_k = e_k a_k$ (and $a_k \neq \iota_k$), we see that

$$\iota_k = 0$$
 and $e_k = \begin{cases} 1 \text{ if } k \text{ is even} \\ 0 \text{ if } k \text{ is odd.} \end{cases}$

Moreover $e_k = e_{k+2}$ because $c_{k+2} = e_{k+2}a_{k+2}$. So $e_{k+1} = |e_k - \iota_k| = e_k = e_{k+2}$. Since $b_{k+1} = b_{k+1} - (-1)^{e_k}\iota_k = c_{k+1}$ and $\iota_{k+1} = |e_{k+1} - e_{k+2}| = 0$, we have $b_{k+1} = 0$ if k is even; $b_{k+1} = a_{k+1}$ if k is odd. Now we have the desired result by Remark 2.8.

Next we show that c is k-left extremal $\implies a-c$ is (k+1)-left extremal. By the above, we have that for each $n \ge k+1$ with $n \equiv k+1 \pmod 2$

$$(a-c)_n = \begin{cases} a_n \text{ if } k \text{ is even} \\ 0 \text{ if } k \text{ is odd} \end{cases} = e_n a_n$$

and

$$(a-c)_{n+1} = \begin{cases} 0 & \text{if } k \text{ is even} \\ a_{n+1} & \text{if } k \text{ is odd} \end{cases} = b_{n+1} = b_{n+1} - (-1)^{e_n} \iota_n,$$

that is, a - c is (k + 1)-left extremal.

Similarly, we can show that a-c is k-left extremal $\implies c$ is (k+1)-left extremal. The proof of (2) is also similar.

Proposition 7.13. The following conditions are equivalent:

- (1) $b_k \in \{0, a_k\} \text{ for some } k \ge 1.$
- (2) $\beta \in \mathcal{O}_{\alpha}$.
- (3) c is extremal.

Proof. (1) \Longrightarrow (2): Recall the equations in the proof of Proposition 2.7 (4), that is,

$$\beta_n = (b_n - \iota_n)\alpha_n - (-1)^{\iota_n}\beta_{n+1}\alpha_n.$$

and

$$1 - \alpha_n - \beta_n = (a_n - b_n - \iota_n)\alpha_n - (-1)^{\iota_n}(1 - \alpha_{n+1} - \beta_{n+1})\alpha_n.$$

(Recall $\beta_0 = \beta$, $\alpha_0 = \alpha$.) By induction on N, we can show that

$$\beta = \sum_{n=0}^{N} (-1)^n (-1)^{e_n} (b_n - \iota_n) \prod_{j=0}^{n} \alpha_j + (-1)^{N+1} (-1)^{e_{N+1}} \beta_{N+1} \prod_{j=0}^{N} \alpha_j$$

$$1 - \alpha - \beta = \sum_{n=0}^{N} (-1)^n (-1)^{e_n} (a_n - b_n - \iota_n) \prod_{j=0}^{n} \alpha_j + (-1)^{N+1} (-1)^{e_{N+1}} (1 - \alpha_{N+1} - \beta_{N+1}) \prod_{j=0}^{N} \alpha_j$$

(recall $e_0 = 0$, $e_1 = \iota_0$ and $(-1)^{e_{n+1}} = (-1)^{e_n} (-1)^{\iota_n}$). Taking $N \to \infty$, we have

(i)
$$\beta = \sum_{n=0}^{\infty} (-1)^n (-1)^{e_n} (b_n - \iota_n) \prod_{j=0}^n \alpha_j$$

$$(ii) 1 - \alpha - \beta = \sum_{n=0}^{\infty} (-1)^n (-1)^{e_n} (a_n - b_n - \iota_n) \prod_{j=0}^n \alpha_j$$

by Lemma 2.6.

Suppose $b_k = 0$ for some k. Then by Remark 2.8, we have $b_n - \iota_n = 0 \ (\forall n \geq k)$ and so by Lemma 2.5 and $(i), \beta \in \mathcal{O}_{\alpha}$.

Suppose $b_k = a_k$ for some $k \ge 1$. Then by Remark 2.8, we have $a_n - b_n - \iota_n = 0 \ (\forall n \ge k)$ and so by Lemma 2.5 and (ii), $1 - \alpha - \beta = q\alpha + p \ (\exists q, p \in \mathbb{Z})$, and hence $\beta \in \mathcal{O}_{\alpha}$.

 $(2) \Longrightarrow (3)$: Firstly, consider the case $\beta = 0$ (i.e. dual Ostrowski case). In this case, $\iota_n = b_n =$

 $e_n = 0 \ (\forall n)$ and so $c = a_0 0 a_2 0 \cdots$ is 0-right extremal.

Let $0 < \beta \in \mathcal{O}_{\alpha}$. It suffices to show if c is not right extremal, then c is left extremal. Suppose c is not right extremal. Here we use the following notations:

$$\mathbf{O}_x = \{H^n(x) \mid n \in \mathbb{Z}\} \text{ for } x \in M$$

and let **1** be 0-right extremal and **b** be 1-right extremal with $\mathbf{b}_0 = b_0 - 1$. So $\mathbf{1}, \mathbf{b} \in M$ and $\{\nu\}(\mathbf{1}) = 0, \{\nu\}(\mathbf{b}) = \beta$.

Since c is not right extremal, a-c is also not right extremal by Lemma 7.12. Therefore since 1 is 0-right extremal, we have by the definition of H (and H^{-1})

 $\forall x \in \mathbf{O_1}, \ \exists k \in \mathbb{N} : \text{even such that } x \text{ is } k\text{-right extremal.}$

On the other hand $\{\nu\}(\mathbf{b}) = \{\nu\}(x^*)$ for some $x^* \in \mathbf{O_1}$ because $\{\nu\}(\mathbf{b}) = \beta \in \mathcal{O}_{\alpha} = \mathcal{O}_{\{\nu\}(\mathbf{1})} = \{\nu\}(\mathbf{O_1})$. Since **b** is right extremal, we have $\mathbf{b} = x^*$ by Lemma 6.3. Thus **b** is 1-right and k-right extremal for some even $k \in \mathbb{N}$. Then by (ii) in the proof of Lemma 6.1, we have $\iota_n = 0$, $e_n = e_k$, $b_n = \overline{e_k}a_n$ $(\forall n \geq k)$. So $c[k, \infty) = a_k 0 a_{k+2} 0 \cdots$ and we can see that if $e_k = 0$ then c is (k+1)-left extremal; if $e_k = 1$ then c is k-left extremal.

$$(3) \Longrightarrow (1)$$
: by Lemma 7.12.

In particular, we have that $\beta \notin \mathcal{O}_{\alpha}$ if and only if $0 < b_n < a_n$ for each $n \ge 1$. In next section we use the following:

Lemma 7.14. Let $x \in M$. Then we have

- (1) x is left extremal $\iff H(x)$ is left extremal.
- (2) x is right extremal $\iff H(x)$ is right extremal.

(Hence, x is not extremal \iff H(x) is not extremal.)

Proof. We also use the notation O_x (the orbit of x under H) as above.

(1) It is sufficient to show if $x \in M$ is left extremal, then y is left extremal for each $y \in \mathbf{O}_x$. Suppose $x \in M$ is left extremal.

Case 1: c is not left extremal.

Then a-c is also not left extremal by Lemma 7.12, and so we have, by the definition of H (and H^{-1}), y is left extremal for each $y \in \mathbf{O}_x$.

Case 2: c is left extremal.

Then a-c is also left extremal by Lemma 7.12, and hence z is left extremal for each $z \in \mathbf{O}_c$ (by the definition of H and H^{-1}). Moreover $\beta \in \mathcal{O}_{\alpha}$ by Proposition 7.13. Since x is left extremal and so $\{\nu\}(x) \in \mathcal{O}_{\alpha} = \mathcal{O}_{\{\nu\}(c)} = \{\nu\}(\mathbf{O}_c)$, we have $x \in \mathbf{O}_c$ by Lemma 6.3, that is, $\mathbf{O}_x = \mathbf{O}_c$. Similarly we can show (2).

§ 8. Odometer model theorem

In this section, we introduce the notion of *Denjoy systems* (cf. [4], [5]) and show the (α, β) -odometer $H: M \to M$ is topologically conjugate to a Denjoy system with cut number 1 or 2.

Let $l \in \mathbb{N}_0$ and $w = w_0 w_1 \cdots w_l \in \prod_{n=0}^l \{0, 1, \cdots, a_n\}$. We say w is (α, β) -admissible if w satisfies conditions $(1)_n, (2)_n$ in Definition 3.1 for each $0 \le n \le l-1$. For convenience' sake, we regard the empty word ϕ as an (α, β) -admissible word. When $w = w_0 w_1 \cdots w_l$ is (α, β) -admissible, define

$$[w] = \{x \in M \mid x[0, l] = w\}.$$

For each (α, β) -admissible word w, we define associated extremal sequences, l^w and r^w , as follows:

Definition 8.1 (l^w and r^w). For each $k \ge 1$ and each (α, β) -admissible word $w = w_0 w_1 \cdots w_{k-1}$ of length k, define

$$L^{w} = \begin{cases} k & \text{if } w_{k-1} \neq e_{k-1} a_{k-1} \\ k+1 & \text{if } w_{k-1} = e_{k-1} a_{k-1}, \end{cases} \quad R^{w} = \begin{cases} k & \text{if } w_{k-1} \neq \overline{e_{k-1}} a_{k-1} \\ k+1 & \text{if } w_{k-1} = \overline{e_{k-1}} a_{k-1} \end{cases}$$

and let $l^w = l_0^w l_1^w \cdots$ be the L^w -left extremal sequence with

$$l^{w}[0, L^{w} - 1] = \begin{cases} w & \text{if } w_{k-1} \neq e_{k-1}a_{k-1} \\ w(b_{k} - (-1)^{e_{k-1}}\iota_{k-1}) & \text{if } w_{k-1} = e_{k-1}a_{k-1} \end{cases}$$

and $r^w = r_0^w r_1^w \cdots$ be the R^w -right extremal sequence with

$$r^{w}[0, R^{w} - 1] = \begin{cases} w & \text{if } w_{k-1} \neq \overline{e_{k-1}} a_{k-1} \\ w(b_k - (-1)^{\overline{e_{k-1}}} \iota_{k-1}) & \text{if } w_{k-1} = \overline{e_{k-1}} a_{k-1}. \end{cases}$$

Denote the empty word by ϕ and let l^{ϕ} be 0-left extremal and r^{ϕ} be 0-right extremal.

Lemma 8.2. Let $k \in \mathbb{N}_0$ and $w = w_0 w_1 \cdots w_{k-1}$ be (α, β) -admissible. Then we have the following:

- (1) $\{l^w, r^w\} \subset [w]$.
- (2) $\nu(l^w) < \nu(r^w)$. Write

$$I_w = [\nu(l^w), \nu(r^w)] \ (\subset \mathbb{R})$$

and denote its length by $|I_w|$. For any $x \in M$, we have $\lim_{l \to \infty} |I_{x[0,l]}| = 0$.

- (3) If ww_k is (α, β) -admissible, then $I_{ww_k} \subset I_w$.
- (4) If wv_k and ww_k are (α, β) -admissible and $v_k \neq w_k$, then $I_{wv_k} \cap int \ I_{ww_k} = \emptyset$ where int I is the interior of I.

Proof. (1) It suffices to show $\{l^w, r^w\} \subset M$. The case $w = \phi$ or $w_{k-1} \notin \{0, a_{k-1}\}$ is clear by Lemma 3.6. Consider the case $w_{k-1} = e_{k-1}a_{k-1}$. We have, by Lemma 3.6, that $l^w = w(b_k - (-1)^{e_{k-1}}\iota_{k-1})l^w[k+1,\infty) \in M$. In order to prove $r^w \in M$, it suffices to show $r^w = wr^w[k,\infty)$ satisfies the condition $(1')_{k-1}$ in Remark 3.2. Since $\iota_{k-1} \leq b_k \leq a_k - \iota_{k-1}$ (by Proposition 2.7), we have $r_k^w = \overline{e_k}a_k \geq_{e_k} b_k - (-1)^{e_{k-1}}\iota_{k-1}$, that is, r^w satisfies $(1')_{k-1}$. The proof in case $w_{k-1} = \overline{e_{k-1}}a_{k-1}$ is similar.

(2) First we show $\nu(l^w) < \nu(r^w)$. By Lemma 3.5, $\nu(l^\phi) = 0 < 1 = \nu(r^\phi)$. So suppose $k \in \mathbb{N}$ and write $\nu_w = \sum_{n=0}^{k-1} \nu_n(w_n)$. When $w_{k-1} \notin \{0, a_{k-1}\}$, we have (by Lemma 3.5)

$$\nu(r^w) - \nu(l^w) = \nu_w + \overline{e_k} \prod_{j=0}^{k-1} \alpha_j - (\nu_w - e_k \prod_{j=0}^{k-1} \alpha_j) = \prod_{j=0}^{k-1} \alpha_j > 0.$$

Consider the case $w_{k-1} = e_{k-1}a_{k-1}$. Then

$$\nu(l^w) = \nu_w + \nu_k (b_k - (-1)^{e_{k-1}} \iota_{k-1}) - e_{k+1} \prod_{j=0}^k \alpha_j$$

$$\nu(r^w) = \nu_w + \overline{e_k} \prod_{j=0}^{k-1} \alpha_j = \nu_w + \overline{e_k} (a_k + (-1)^{\iota_k} \alpha_{k+1}) \prod_{j=0}^k \alpha_j \quad \text{(by recursive equation (1))}.$$

So

$$\frac{\nu(r^w) - \nu(l^w)}{\prod_{j=0}^k \alpha_j} = \overline{e_k}(a_k + (-1)^{\iota_k}\alpha_{k+1}) - (-1)^{e_k}(b_k - (-1)^{e_{k-1}}\iota_{k-1} - (-1)^{\iota_k}\beta_{k+1}) + e_{k+1}$$

$$= \overline{e_k}a_k - (-1)^{e_k}(b_k - (-1)^{e_{k-1}}\iota_{k-1}) + \overline{e_k}(-1)^{\iota_k}\alpha_{k+1} + (-1)^{e_k}(-1)^{\iota_k}\beta_{k+1} + e_{k+1}.$$

Here recall that

$$e_{k-1} = \iota_{k-1} \iff e_k = 0 \iff e_{k+1} = \iota_k$$

(by the definition: $e_n = |e_{n-1} - \iota_{n-1}|$) and that

$$-(-1)^{e_{k-1}}\iota_{k-1} = (-1)^{e_k}\iota_{k-1}$$

(because $(-1)^{e_k} = (-1)^{e_{k-1}} (-1)^{\iota_{k-1}}$ and $(-1)^s s = -s$ for each $s \in \{0, 1\}$). Therefore

$$\frac{\nu(r^w) - \nu(l^w)}{\prod_{j=0}^k \alpha_j} \stackrel{=}{=} \begin{cases} a_k - b_k - \iota_{k-1} + (-1)^{\iota_k} \alpha_{k+1} + (-1)^{\iota_k} \beta_{k+1} + \iota_k & \text{if } e_k = 0 \\ b_k - \iota_{k-1} - (-1)^{\iota_k} \beta_{k+1} + \overline{\iota_k} & \text{if } e_k = 1 \end{cases}$$

$$= \begin{cases} a_k - b_k - \iota_{k-1} + 1 - \left\{ \frac{\beta_k - 1}{\alpha_k} \right\} & \text{if } e_k = 0 \\ b_k - \iota_{k-1} + 1 - \left\{ \frac{-\beta_k}{\alpha_k} \right\} & \text{if } e_k = 1 \end{cases}$$
(by Remark 2.2 and Lemma 2.4)
$$> 0 \quad \text{(because } \iota_{k-1} \leq b_k \leq a_k - \iota_{k-1} \text{)},$$

that is, $\nu(l^w) < \nu(r^w)$. Notice that

$$\frac{\nu(r^w) - \nu(l^w)}{\prod_{j=0}^k \alpha_j} = \begin{cases} \frac{1 - \beta_k}{\alpha_k} - \iota_{k-1} & \text{if } e_k = 0\\ \frac{\beta_k}{\alpha_k} + \overline{\iota_{k-1}} & \text{if } e_k = 1 \end{cases}$$

by the above equality = and recursive equations (1) and (2). Thus

$$\nu(r^{w}) - \nu(l^{w}) = \begin{cases} (1 - \beta_{k} - \iota_{k-1}\alpha_{k}) \prod_{j=0}^{k-1} \alpha_{j} & \text{if } e_{k} = 0\\ (\beta_{k} + \overline{\iota_{k-1}}\alpha_{k}) \prod_{j=0}^{k-1} \alpha_{j} & \text{if } e_{k} = 1 \end{cases}$$

The proof in case $w_{k-1} = \overline{e_{k-1}} a_{k-1}$ is similar. Now, by Lemma 2.6, we have that $\lim_{l \to \infty} \left| I_{x[0,l]} \right| = 0$ for any $x \in M$.

(3) We show $\nu(l^w) \leq \nu(l^{ww_k})$. The case $w = \phi$ is clear. Suppose $k \in \mathbb{N}$.

Case 1: $w_{k-1} \neq e_{k-1} a_{k-1}$.

In this case

$$\nu(l^w) = \nu_w - e_k \prod_{j=0}^{k-1} \alpha_j.$$

If $w_k = e_k a_k$, then $l^{ww_k} = w(e_k a_k)(b_{k+1} - (-1)^{e_k} \iota_k) l^w[k+2,\infty) = l^w$ by definitions of l^{ww_k} and l^w , and so $\nu(l^{ww_k}) = \nu(l^w)$.

Suppose $w_k \neq e_k a_k$. Then by Lemma 3.5 and recursive equation (1)

$$\nu(l^{ww_k}) - \nu(l^w) = \nu_k(w_k) - e_{k+1} \prod_{j=0}^k \alpha_j + e_k \prod_{j=0}^{k-1} \alpha_j$$
$$= \nu_k(w_k) - e_{k+1} \prod_{j=0}^k \alpha_j + e_k (a_k + (-1)^{\iota_k} \alpha_{k+1}) \prod_{j=0}^k \alpha_j.$$

Note that if $e_k = 0$ then $w_k \ge 1$; if $e_k = 1$ then $a_k - w_k \ge 1$. Hence

$$\frac{\nu(l^{ww_k}) - \nu(l^w)}{\prod_{j=0}^k \alpha_j} = \begin{cases}
w_k - (-1)^{\iota_k} \beta_{k+1} - \iota_k & \text{if } e_k = 0 \text{ (so } e_{k+1} = \iota_k) \\
-w_k + (-1)^{\iota_k} \beta_{k+1} - \overline{\iota_k} + a_k + (-1)^{\iota_k} \alpha_{k+1} & \text{if } e_k = 1 \text{ (so } e_{k+1} = \overline{\iota_k})
\end{cases}$$

$$= \begin{cases}
w_k - \left\{ \frac{-\beta_k}{\alpha_k} \right\} & \text{if } e_k = 0 \\
a_k - w_k - \left\{ \frac{\beta_k - 1}{\alpha_k} \right\} & \text{if } e_k = 1
\end{cases}$$
(by Remark 2.2 and Lemma 2.4)
$$> 0.$$

Case 2: $w_{k-1} = e_{k-1}a_{k-1}$.

In this case, since ww_k is (α, β) -admissible, we have by Remark 3.2

$$w_k \ge_{e_k} b_k - (-1)^{e_{k-1}} \iota_{k-1} \ (= b_k + (-1)^{e_k} \iota_{k-1}).$$

We show $l^{ww_k}[k+1,\infty) = l^w[k+1,\infty)$. It is clear if $w_k \neq e_k a_k$. Suppose $w_k = e_k a_k$. Then $e_k a_k = b_k + (-1)^{e_k} \iota_{k-1} = b_k - (-1)^{e_{k-1}} \iota_{k-1}$. By (i) in the proof of Lemma 6.1, we have

 $\iota_n = 0, \ e_n = e_k, \ b_n = e_k a_n \ (\forall n \ge k)$. We can see that if $e_k = 0$ then $l^{ww_k}[k+1,\infty) = 000 \cdots = l^w[k+1,\infty)$; if $e_k = 1$ then $l^{ww_k}[k+1,\infty) = a_{k+1}a_{k+2}a_{k+3} \cdots = l^w[k+1,\infty)$. Now we have

$$\nu(l^{ww_k}) - \nu(l^w) = \nu_k(w_k) - \nu_k(b_k - (-1)^{e_{k-1}} \iota_{k-1}) \ge 0.$$

Similarly we can show $\nu(r^{ww_k}) \leq \nu(r^w)$. Therefore $I_{ww_k} \subset I_w$.

(4) Consider the case $(-1)^{e_k}v_k < (-1)^{e_k}w_k$. Then $v_k \neq \overline{e_k}a_k$ and $w_k \neq e_ka_k$. So we have

$$\nu(l^{ww_k}) - \nu(r^{wv_k}) = \nu_k(w_k) - e_{k+1} \prod_{j=0}^k \alpha_j - \nu_k(v_k) - \overline{e_{k+1}} \prod_{j=0}^k \alpha_j$$
$$= \left((-1)^{e_k} (w_k - v_k) - 1 \right) \prod_{j=0}^k \alpha_j \ge 0$$

hence $I_{wv_k} \cap int \ I_{ww_k} = \emptyset$. The proof in case $(-1)^{e_k} v_k > (-1)^{e_k} w_k$ is similar.

Now we have local version of tail inequality:

Proposition 8.3. Let $k \in \mathbb{N}_0$, $w = w_0 w_1 \cdots w_{k-1}$ be (α, β) -admissible and $I_w = [\nu(l^w), \nu(r^w)]$. Then

$$\nu([w]) = I_w \text{ and } \nu^{-1}(int \ I_w) = [w] \setminus \{l^w, r^w\}.$$

Proof. First we show that $\nu([w]) \subset I_w$ and $\nu([w] \setminus \{l^w, r^w\}) \subset (\nu(l^w), \nu(r^w))$ (i.e. $[w] \setminus \{l^w, r^w\} \subset \nu^{-1}(int\ I_w)$). Let $x \in [w]$. We show that $\nu(x) \geq \nu(l^w)$ and that if $\nu(x) = \nu(l^w)$ then $x = l^w$. When $w = \phi$ or $w_{k-1} \neq e_{k-1}a_{k-1}$, by Proposition 5.2 and Lemma 3.5

$$\nu(x) - \nu(l^w) = \sum_{n=k}^{\infty} \nu_n(x_n) - \sum_{n=k}^{\infty} \nu_n(l_n^w) \ge 0$$

and if $\nu(x) = \nu(l^w)$ then $x[k, \infty) = l^w[k, \infty)$ and so $x = l^w$.

Consider the case $w_{k-1} = e_{k-1}a_{k-1}$. Then we have $x_k \ge_{e_k} b_k - (-1)^{e_{k-1}}\iota_{k-1} = l_k^w$ by Remark 3.2 (because $x \in M$ and $x_{k-1} = e_{k-1}a_{k-1}$) and so

$$\nu_k(x_k) \geq \nu_k(l_k^w).$$

On the other hand, by Proposition 5.2 and Lemma 3.5

$$\sum_{n=k+1}^{\infty} \nu_n(x_n) \ge \sum_{n=k+1}^{\infty} \nu_n(l_n^w).$$

Therefore since $\nu(x) - \nu(l^w) = \nu_k(x_k) - \nu_k(l_k^w) + \sum_{n=k+1}^{\infty} \nu_n(x_n) - \sum_{n=k+1}^{\infty} \nu_n(l_n^w)$, we have that $\nu(x) \geq \nu(l^w)$ and that if $\nu(x) = \nu(l^w)$ then $x_k = l_k^w$ and $x[k+1,\infty) = l^w[k+1,\infty)$ (by Proposition 5.2), thus $x = l^w$. Similarly we can show that $\nu(x) \leq \nu(r^w)$ and that if $\nu(x) = \nu(r^w)$ then $x = r^w$. Next we show the following claim (recall $w = w_0 w_1 \cdots w_{k-1}$): for each (α, β) -admissible word $\nu(x) = \nu(r^w)$ of length k,

$$v \neq w \Longrightarrow \nu([v]) \cap int \ I_w = \emptyset.$$

In case k = 0, there is nothing to prove and so suppose $k \in \mathbb{N}$. Let $l = \min\{n \mid v_n \neq w_n\}$ and $c = w_0 w_1 \cdots w_{l-1}$. By Lemma 8.2 (3), we have $\nu([v]) \subset I_v \subset I_{cv_l}$ and $int \ I_w \subset int \ I_{cw_l}$. Hence $\nu([v]) \cap int \ I_w \subset I_{cv_l} \cap int \ I_{cw_l} = \emptyset$ by Lemma 8.2 (4).

Next we show $\nu^{-1}(int\ I_w) \subset [w] \setminus \{l^w, r^w\}$. Let $x \in \nu^{-1}(int\ I_w)$. If $x[0, k-1] \neq w$, then $\nu(x) \notin int\ I_w$ by the above claim, and so it is a contradiction. Thus $x \in [w] \setminus \{l^w, r^w\}$.

Finally we have $\nu([w]) \supset I_w$ because $\nu : M \to [0,1]$ is surjective (by Proposition 4.1), $\nu^{-1}(int I_w) \subset [w] \setminus \{l^w, r^w\}$ and $\nu(\{l^w, r^w\}) \subset \nu([w])$.

Proof of Theorem 1.1 (3).

Let $x \in M$. By Proposition 8.3, $\nu(x) \in \nu\left(\left[x[0,l]\right]\right) = I_{x[0,l]}$ and moreover we have $\lim_{l \to \infty} \left|I_{x[0,l]}\right| = 0$ by Lemma 8.2 (2). Hence $\nu: M \to [0,1]$ is continuous, and $\mathbf{e} \circ \nu: M \to S^1$ is also continuous where $\mathbf{e}(\eta) = \exp(2\pi i\eta)$.

We recall the notion of Denjoy systems (cf. [4], [5]) and prove Theorem 1.2. Suppose $\varphi: S^1 \to S^1$ is an orientation-preserving homeomorphism. (Naturally we identify S^1 with [0,1) via $\mathbf{e}|_{[0,1)}$.) Letting $\widetilde{\varphi}: \mathbb{R} \to \mathbb{R}$ be a lift of φ and $\xi \in \mathbb{R}$, $\lim_{n \to \infty} \frac{\widetilde{\varphi}^n(\xi)}{n}$ exists where $\widetilde{\varphi}^n$ is the n-th iteration of $\widetilde{\varphi}$, and moreover its fractional part $\alpha \in [0,1)$ is independent of the choices of $\widetilde{\varphi}$ and ξ . We say $\rho(\varphi) := \alpha$ is the **rotation number** of φ . One can show that $\rho(\varphi)$ is irrational if and only if φ has no periodic points. Now we can state the *Poincare's rotation number theorem*:

Suppose the rotation number α of φ is irrational. Then there is a degree 1 map $F: S^1 \to S^1$ such that $F \circ \varphi = R_{\alpha} \circ F$ (such F is called a **factor map** of the dynamical system (S^1, φ)). Furthermore we have the following three properties.

(1) F is unique up to rotation (i.e. when G is a factor map, $G = R_{\theta} \circ F$ for some θ). Define $A = \{\xi \in S^1 \mid \sharp F^{-1}F(\xi) = 1\}$ (so $\varphi(A) = A$ and A is independent of the choice of factor maps), and let

$$X = cl A$$
 (the closure of A).

(2) The following dichotomy holds: $A = S^1$, otherwise X is a Cantor set.

We say that φ is a *Denjoy homeomorphism* if the second case holds (i.e. $A \neq S^1$). In this case, denote the restriction of φ to X by $\varphi_X : X \to X$. The subsystem (X, φ_X) is called a **Denjoy system**, and a connected component of $S^1 \setminus X$ is called a *cutout interval*; in particular, a cutout interval is an open arc.

(3) Suppose φ is a Denjoy homeomorphism. Then X is the unique minimal set under φ (here we say X is minimal if closed φ -invariant subset of X is \emptyset or X; it is clear that the minimality of X is equivalent to the condition each φ -orbit of X is dense in X) and furthermore we have

$$X \setminus A = \{ \xi \in S^1 \mid \xi \text{ is an endpoint of some cutout interval} \}$$

and $\sharp F(cl\ I)=1$ for each cutout interval I. So, in particular, the restriction $F_X:X\to S^1$ of F to X is surjective and $\sharp F_X^{-1}F_X(\xi)=2$ for each $\xi\notin A.$

Let φ be a Denjoy homeomorphism. By the above third property (3), the following diagram

commutes:

$$X \xrightarrow{\varphi_X} X$$

$$F_X \downarrow \qquad \qquad \downarrow F_X$$

$$S^1 \xrightarrow{R_{\alpha}} S^1$$

and F_X is at most 2-to-1 surjective; precisely $\xi \in X \setminus A$ if and only if ξ is an endpoint of some cutout interval I, and in this case $F_X^{-1}F_X(\xi)$ is the set of endpoints of I.

We say $\eta \in S^1$ is a **double point** of F_X if $\eta \in F_X(X \setminus A)$. Since there is countably many cutout intervals, the set $F_X(X \setminus A)$ of double points is countable and $R_\alpha(F_X(X \setminus A)) = F_X(X \setminus A)$. Therefore there is $d \in \mathbb{N} \cup \{\infty\}$ such that

$$F_X(X \setminus A) = \bigcup_{k=1}^d \mathcal{O}_{\eta_k} \ (disjoint) \ \text{ for some } \{\eta_k\}_{k=1}^d \subset S^1$$

in other words, the set of double points is split into at most countably many R_{α} -orbits (by the above first property (1), we can suppose $\eta_1 = \alpha$ without the loss of generality). Moreover note that the cardinality d is independent of the choice of F_X 's. We call d the **cut number** of φ (or φ_X).

For each closed arc $I \subset S^1$, we write $I = [\xi, \eta]$ where ξ (resp. η) is the minimum (resp. maximum) of I in circular order (that is, the counterclockwise orientation of S^1) and so write $\xi = \min I$, $\eta = \max I$ and $int I = (\xi, \eta)$ where int I is the interior of I:

Remark 8.4. Let $\xi, \eta \in S^1$ be distinct double points of F_X (so $F^{-1}(\xi)$ and $F^{-1}(\eta)$ are disjoint closed arcs). Define $\widetilde{\xi} = \max F^{-1}(\xi)$, $\widetilde{\eta} = \min F^{-1}(\eta)$ and let $I = [\xi, \eta]$. Then $\{\widetilde{\xi}, \widetilde{\eta}\} \cup F_X^{-1}(\operatorname{int} I) = [\widetilde{\xi}, \widetilde{\eta}] \cap X$. (So, in particular, $\{\widetilde{\xi}, \widetilde{\eta}\} \cup F_X^{-1}(\operatorname{int} I)$ is closed.)

Proof. Since $F: S^1 \to S^1$ is degree 1 (hence F is (continuous) monotone non-decreasing), we have $F^{-1}(int\ I) = (\widetilde{\xi}, \widetilde{\eta})$. So $F_X^{-1}(int\ I) = (\widetilde{\xi}, \widetilde{\eta}) \cap X$.

Proof of Theorem 1.2.

Let (X, φ_X) be a Denjoy system with rotation number α and a factor map F which satisfies $F_X(X \setminus A) = \mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta}$ where we identify F with $(\mathbf{e}|_{[0,1)})^{-1} \circ F : S^1 \to [0,1)$. Define

$$E = \{x \in M \mid x : \text{extremal}\} \text{ and } N = M \setminus E.$$

Recall that the restriction, $F_A: A \to [0,1) \setminus \mathcal{O}_\alpha \cup \mathcal{O}_\beta$, of F to A is bijective and that $\mathcal{O}_\alpha \cup \mathcal{O}_\beta = \{\nu\}(E)$ and the restriction, $\{\nu\}_N: N \to [0,1) \setminus \mathcal{O}_\alpha \cup \mathcal{O}_\beta$, of $\{\nu\}$ to N is also bijective (by Theorem 1.1).

Define $\psi: X \to M$ in the following way. For each $\xi \in A$, define

$$\psi(\xi) = \{\nu\}_N^{-1} \circ F(\xi).$$

Let $\xi \in X \setminus A$. Then $F(\xi) \in \mathcal{O}_{\alpha} \cup \mathcal{O}_{\beta}$ and $F^{-1}F(\xi)$ is the closure of a cutout interval. So by the argument in the proof of Theorem 1.1 (1) and (2), we have $F(\xi) = \{\nu\}(x) = \{\nu\}(y)$ for some doubleton $\{x,y\}$ where x is left extremal and y is right extremal. Define

$$\psi(\xi) = \begin{cases} x \text{ if } \xi = \max F^{-1} F(\xi) \\ y \text{ if } \xi = \min F^{-1} F(\xi). \end{cases}$$

First we show $\psi: X \to M$ is bijective. Indeed, we can naturally define the inverse $\psi^{-1}: M \to X$ as follows. For each $x \in N$, define

$$\psi^{-1}(x) = F_A^{-1} \circ \{\nu\}(x)$$

and for each $x \in E$, define

$$\psi^{-1}(x) = \begin{cases} \max F^{-1}\{\nu\}(x) & \text{if } x \text{ is left extremal} \\ \min F^{-1}\{\nu\}(x) & \text{if } x \text{ is right extremal.} \end{cases}$$

(Note $\{\nu\} \circ \psi = F_X$, $\psi(A) = N$ and $\psi(X \setminus A) = E$ by definition.) Next we show $\psi \circ \varphi = H \circ \psi$. For each $\xi \in A$,

$$\psi \circ \varphi(\xi) = \{\nu\}_N^{-1} \circ F \circ \varphi(\xi) = \{\nu\}_N^{-1} \circ R_\alpha \circ F(\xi) = H \circ \{\nu\}_N^{-1} \circ F(\xi) = H \circ \psi(\xi).$$

Since $\varphi: S^1 \to S^1$ is orientation-preserving, notice that $\xi = \max F^{-1}F(\xi)$ if and only if $\varphi(\xi) = \max F^{-1}F\varphi(\xi)$ for each $\xi \in X \setminus A$. For each $x \in E$, by Lemma 7.14, x is left extremal if and only if H(x) is left extremal. Hence, for each $\xi \in X \setminus A$, we have that $\psi \circ \varphi(\xi)$ is left extremal if and only if $H \circ \psi(\xi)$ is left extremal. Since $\{\nu\} \circ \psi \circ \varphi(\xi) = F \circ \varphi(\xi) = R_{\alpha} \circ F(\xi) = R_{\alpha} \circ \{\nu\} \circ \psi(\xi) = \{\nu\} \circ H \circ \psi(\xi)$, we have (by Lemma 6.3) $\psi \circ \varphi(\xi) = H \circ \psi(\xi)$ for each $\xi \in X \setminus A$.

Finally we show $\psi: X \to M$ is continuous. It suffices to show that $\psi^{-1}([w]) \subset X$ is open for each (α, β) -admissible word w of length $k \geq 1$. At first, we show $\psi^{-1}([w])$ is closed. By Proposition 8.3, we have

$$\{\nu\}^{-1}(int\ I_w) = [w] \setminus \{l^w, r^w\}.$$

So

$$F_X^{-1}(int\ I_w) = \psi^{-1}\{\nu\}^{-1}(int\ I_w) = \psi^{-1}([w] \setminus \{l^w, r^w\}) = \psi^{-1}([w]) \setminus \{\psi^{-1}(l^w), \psi^{-1}(r^w)\}.$$

Here, regarding $I_w = [\nu(l^w), \nu(r^w)]$ as a closed arc in S^1 , the closed arc I_w has $\{\nu\}(l^w)$ as its minimum and $\{\nu\}(r^w)$ as its maximum. Since $\psi^{-1}(l^w) = \max F^{-1}\{\nu\}(l^w)$ and $\psi^{-1}(r^w) = \min F^{-1}\{\nu\}(r^w)$, we have, by Remark 8.4,

$$\psi^{-1}([w]) = \{\psi^{-1}(l^w), \psi^{-1}(r^w)\} \cup F_X^{-1}(int \ I_w) \text{ is closed.}$$

Since

$$\psi^{-1}([w]) = X \setminus \bigcup \{\psi^{-1}([v]) \mid v : (\alpha, \beta)\text{-admissible of length } k \text{ with } v \neq w\},$$

 $\psi^{-1}([w])$ is open in X.

$\S 9.$ Appendix: Proof of Lemma 2.5 and Lemma 2.6

First recall basic properties of general continued fractions. We use the following notation:

$$\frac{B_0}{A_0 + \frac{B_1}{A_1 + \cdots + \frac{B_n}{A_n}}} = \frac{B_0}{A_0} + \frac{B_1}{A_1} + \cdots + \frac{B_n}{A_n}.$$

Definition 9.1. Define sequences $\{Q_n\}_{n\geq -2}$ and $\{P_n\}_{n\geq -2}$ by

$$\begin{pmatrix} P_{-2} & P_{-1} \\ Q_{-2} & Q_{-1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and for $n \geq 0$,

$$P_n = A_n P_{n-1} + B_n P_{n-2}$$
$$Q_n = A_n Q_{n-1} + B_n Q_{n-2}.$$

We call $\{Q_n\}_{n\geq -2}$ and $\{P_n\}_{n\geq -2}$ the sequences associated with $\{A_n\}_{n\geq 0}$ and $\{B_n\}_{n\geq 0}$.

Claim 9.2. For each $n \geq 0$

$$\frac{P_n}{Q_n} = \frac{B_0}{|A_0|} + \frac{B_1}{|A_1|} + \dots + \frac{B_n}{|A_n|}.$$

Proof. It suffices to show that for each $n \geq 0$

$$\frac{A_n P_{n-1} + B_n P_{n-2}}{A_n Q_{n-1} + B_n Q_{n-2}} = \frac{B_0}{|A_0|} + \frac{B_1}{|A_1|} + \dots + \frac{B_n}{|A_n|}.$$

Indeed, it is clear when n = 0. Now suppose the above statement holds for n. Then

$$\frac{B_0}{A_0} + \frac{B_1}{A_1} + \dots + \frac{B_{n+1}}{A_{n+1}} = \frac{B_0}{A_0} + \frac{B_1}{A_1} + \dots + \frac{B_{n-1}}{A_{n-1}} + \frac{B_n}{A_n + \frac{B_{n+1}}{A_{n+1}}}$$

$$= \frac{(A_n + \frac{B_{n+1}}{A_{n+1}})P_{n-1} + B_n P_{n-2}}{(A_n + \frac{B_{n+1}}{A_{n+1}})Q_{n-1} + B_n Q_{n-2}}$$

$$= \frac{P_n + \frac{B_{n+1}}{A_{n+1}}P_{n-1}}{Q_n + \frac{B_{n+1}}{A_{n+1}}Q_{n-1}}$$

$$= \frac{A_{n+1}P_n + B_{n+1}P_{n-1}}{A_{n+1}Q_n + B_{n+1}Q_{n-1}}.$$

So by induction on n, we have the desired result.

Claim 9.3. For each $n \geq 0$

$$Q_n P_{n-1} - Q_{n-1} P_n = (-1)^{n+1} B_0 B_1 \cdots B_n.$$

Proof. First note that for each $n \geq 0$

$$\begin{pmatrix} Q_n Q_{n-1} \\ P_n P_{n-1} \end{pmatrix} = \begin{pmatrix} Q_{n-1} Q_{n-2} \\ P_{n-1} P_{n-2} \end{pmatrix} \begin{pmatrix} A_n 1 \\ B_n 0 \end{pmatrix}.$$

So we have for each $n \geq 0$.

$$\begin{pmatrix} Q_n Q_{n-1} \\ P_n P_{n-1} \end{pmatrix} = \begin{pmatrix} A_0 1 \\ B_0 0 \end{pmatrix} \begin{pmatrix} A_1 1 \\ B_1 0 \end{pmatrix} \cdots \begin{pmatrix} A_n 1 \\ B_n 0 \end{pmatrix}.$$

By taking determinants, we obtain the claim.

Claim 9.4. Let $B_0 = 1$, and suppose that $\{\gamma_n\}_{n \geq 0} \subset \mathbb{R}$ satisfies the following conditions:

$$A_n \gamma_n + B_{n+1} \gamma_{n+1} \gamma_n = 1 \quad (n = 0, 1, \dots).$$

Then for each $n \geq 0$, we have

$$(1)\,\gamma_0(Q_n + Q_{n-1}B_{n+1}\gamma_{n+1}) = P_n + P_{n-1}B_{n+1}\gamma_{n+1}$$

(2)
$$Q_n \gamma_0 - P_n = (-1)^{n+1} B_1 \cdots B_{n+1} \gamma_{n+1} \gamma_n \cdots \gamma_0$$

$$(3) \gamma_0 - \frac{P_n}{Q_n} = \frac{(-1)^{n+1} B_1 \cdots B_{n+1} \gamma_{n+1}}{Q_n (Q_n + Q_{n-1} B_{n+1} \gamma_{n+1})}$$

(4)
$$\gamma_n \cdots \gamma_0 = \frac{1}{Q_n + Q_{n-1} B_{n+1} \gamma_{n+1}}$$
.

Proof. We show the following statement: for each $n \geq 0$

$$Q_n \gamma_0 - P_n = -B_{n+1} \gamma_{n+1} (Q_{n-1} \gamma_0 - P_{n-1}).$$

Indeed, we show by induction on n. First

$$Q_0\gamma_0 - P_0 = A_0\gamma_0 - B_0 = 1 - B_1\gamma_1\gamma_0 - B_0 = -B_1\gamma_1\gamma_0 = -B_1\gamma_1(Q_{-1}\gamma_0 - P_{-1}).$$

Suppose the above statement holds for n. Then we have

$$\begin{aligned} Q_{n+1}\gamma_0 - P_{n+1} &= (A_{n+1}Q_n + B_{n+1}Q_{n-1})\gamma_0 - (A_{n+1}P_n + B_{n+1}P_{n-1}) \\ &= A_{n+1}(Q_n\gamma_0 - P_n) + B_{n+1}(Q_{n-1}\gamma_0 - P_{n-1}) \\ &= -A_{n+1}B_{n+1}\gamma_{n+1}(Q_{n-1}\gamma_0 - P_{n-1}) + B_{n+1}(Q_{n-1}\gamma_0 - P_{n-1}) \\ &= (-A_{n+1}\gamma_{n+1} + 1)B_{n+1}(Q_{n-1}\gamma_0 - P_{n-1}) \\ &= B_{n+2}\gamma_{n+2}\gamma_{n+1}B_{n+1}(Q_{n-1}\gamma_0 - P_{n-1}) \\ &= -B_{n+2}\gamma_{n+2}(Q_n\gamma_0 - P_n), \end{aligned}$$

that is, the above statement also holds for n + 1.

Now (1) follows the above statement. Since $Q_{-1}\gamma_0 - P_{-1} = \gamma_0$, (2) also follows the above. So by (1) and Claim 9.3, we have

$$\gamma_0 - \frac{P_n}{Q_n} = \frac{P_n + P_{n-1}B_{n+1}\gamma_{n+1}}{Q_n + Q_{n-1}B_{n+1}\gamma_{n+1}} - \frac{P_n}{Q_n}$$

$$= \frac{Q_n(P_n + P_{n-1}B_{n+1}\gamma_{n+1}) - P_n(Q_n + Q_{n-1}B_{n+1}\gamma_{n+1})}{Q_n(Q_n + Q_{n-1}B_{n+1}\gamma_{n+1})}$$

$$= \frac{(Q_nP_{n-1} - P_nQ_{n-1})B_{n+1}\gamma_{n+1}}{Q_n(Q_n + Q_{n-1}B_{n+1}\gamma_{n+1})}$$

$$= \frac{(-1)^{n+1}B_1 \cdots B_{n+1}\gamma_{n+1}}{Q_n(Q_n + Q_{n-1}B_{n+1}\gamma_{n+1})},$$

thus (3) holds. Finally (4) follows (2) and (3).

Now we prove Lemmas 2.5 and 2.6.

Recall definitions of $\{a_n\}_{n\geq 0}$, $\{\iota_n\}_{n\geq -1}$ and $\{\alpha_n\}_{n\geq 0}$.

Proof of Lemma 2.5.

Let $A_n = a_n$ and $B_n = (-1)^{\iota_{n-1}}$ for each $n \ge 0$ (in particular $B_0 = 1$ since $\iota_{-1} = 0$). Then by recursive equation (1)

$$A_n \alpha_n + B_{n+1} \alpha_{n+1} \alpha_n = 1.$$

So letting $\{Q_n\}_{n\geq -2}$ and $\{P_n\}_{n\geq -2}$ be sequences associated with $\{A_n\}_{n\geq 0}$ and $\{B_n\}_{n\geq 0}$, we have by Claim 9.4 (2)

$$\prod_{j=0}^{n+1} \alpha_j = (-1)^{n+1} (-1)^{\iota_0 + \iota_1 + \dots + \iota_n} (Q_n \alpha - P_n)$$

for each $n \geq 0$.

In order to show Lemma 2.6, we need the following two propositions.

Proposition 9.5. Let $N \in \mathbb{N}_0$. For each $n \geq 0$, define

$$A_n = a_{N+n}$$

and

$$B_0 = 1, \ B_n = (-1)^{t_{N+n-1}} \ (n \ge 1).$$

Let $\{Q_n\}_{n\geq -2}$ and $\{P_n\}_{n\geq -2}$ be the sequences associated with $\{A_n\}_{n\geq 0}$ and $\{B_n\}_{n\geq 0}$. Then

$$Q_{n-1} < Q_n \ (\forall n \ge 1), \quad \lim_{n \to \infty} Q_n = \infty \ \ and \quad \lim_{n \to \infty} \frac{P_n}{Q_n} = \alpha_N.$$

Proof. First (recall $a_n \ge 1$ and) notice that if $\iota_{n-1} = 1$ or $\iota_n = 1$, then $a_n \ge 2$. Indeed $a_n = \left\lfloor \frac{1}{\alpha_n} \right\rfloor + \iota_n \ge 1 + \iota_n$ and moreover, by Proposition 2.7, we have $a_n \ge b_n + \iota_{n-1} \ge 2\iota_{n-1}$.

Next we show that $\{Q_n\}_{n\geq 0}$ is strictly increasing sequence in \mathbb{N} (therefore $\lim_{n\to\infty} Q_n = \infty$). Indeed, by induction, we show $Q_n > Q_{n-1} \geq 1$ for each $n \geq 1$. Firstly $Q_0 = a_N \geq 1$ and so

$$Q_1 - Q_0 = (a_{N+1} - 1)Q_0 + (-1)^{\iota_N} Q_{-1} = (a_{N+1} - 1)a_N + (-1)^{\iota_N}.$$

So if $\iota_N = 0$ then $Q_1 - Q_0 \ge (-1)^{\iota_N} = 1$; if $\iota_N = 1$ then $Q_1 - Q_0 \ge a_N + (-1)^{\iota_N} \ge 1$. Let $n \ge 2$ and suppose $Q_{n-1} > Q_{n-2} \ge 1$. Here

$$Q_n - Q_{n-1} = (a_{N+n} - 1)Q_{n-1} + (-1)^{\iota_{N+n-1}}Q_{n-2}.$$

So if $\iota_{N+n-1} = 0$ then $Q_n - Q_{n-1} \ge (-1)^{\iota_{N+n-1}}Q_{n-2} = Q_{n-2} \ge 1$; if $\iota_{N+n-1} = 1$ then $Q_n - Q_{n-1} \ge Q_{n-1} + (-1)^{\iota_{N+n-1}}Q_{n-2} = Q_{n-1} - Q_{n-2} \ge 1$.

Next, define for each $n \geq 0$

$$\gamma_n = \alpha_{N+n}$$
.

Then $\{\gamma_n\}_{n\geq 0}$ satisfies the assumption in Claim 9.4 (by recursive equation (1)). Hence by Claim 9.4 (3), we have for each $n\geq 1$

$$\alpha_N - \frac{P_n}{Q_n} = \frac{(-1)^{n+1}(-1)^{\iota_N + \iota_{N+1} + \dots + \iota_{N+n}} \alpha_{N+n+1}}{Q_n(Q_n + Q_{n-1}(-1)^{\iota_{N+n}} \alpha_{N+n+1})}$$

and so (since $Q_n - Q_{n-1} \ge 1$ and $0 < \alpha_{N+n+1} < 1$)

$$\left| \alpha_N - \frac{P_n}{Q_n} \right| = \frac{\alpha_{N+n+1}}{Q_n(Q_n + Q_{n-1}(-1)^{\iota_{N+n}}\alpha_{N+n+1})} < \frac{1}{Q_n}.$$

Hence
$$\lim_{n\to\infty} \frac{P_n}{Q_n} = \alpha_N$$
.

Note. In particular, by Proposition 9.5 and Claim 9.2, we have the semi-regular continued fraction expansion of α :

$$\alpha = \frac{1}{a_0 + \frac{(-1)^{\iota_0}}{a_1 + \frac{(-1)^{\iota_1}}{a_2 + \dots}}}.$$

Proposition 9.6. Let $N \in \mathbb{N}_0$. If $\iota_n = 1$ for each $n \geq N$, then $a_{n_0} \geq 3$ for some $n_0 \geq N$.

Proof. Note $a_n \geq 2$ for each $n \geq N$ (because $a_n = \left\lfloor \frac{1}{\alpha_n} \right\rfloor + \iota_n$). We show by contradiction. Assume $a_n = 2$ for each $n \geq N$. Following the setup in Proposition 9.5, define

$$A_n = a_{N+n} = 2 \quad (n \ge 0)$$

and

$$B_0 = 1, \ B_n = (-1)^{\iota_{N+n-1}} = -1 \ (n \ge 1)$$

and let $\{Q_n\}_{n\geq -2}$ and $\{P_n\}_{n\geq -2}$ be the sequences associated with $\{A_n\}_{n\geq 0}$ and $\{B_n\}_{n\geq 0}$. So by Proposition 9.5

$$\alpha_N = \lim_{n \to \infty} \frac{P_n}{Q_n}.$$

On the other hand, by Claim 9.2, for each $n \geq 0$

$$\frac{P_n}{Q_n} = \frac{1}{2} + \underbrace{\frac{-1}{2} + \dots + \frac{-1}{2}}_{n \text{ times}}.$$

Moreover we show for each $n \geq 0$

$$\frac{P_n}{Q_n} = \frac{n+1}{n+2}.$$

Indeed, it is clear for n=0. Let $n\geq 0$, and suppose that $\frac{P_n}{Q_n}=\frac{n+1}{n+2}$. Then by the above representation of $\frac{P_{n+1}}{Q_{n+1}}$ in finite continued fraction form, we have

$$2 - \left(\frac{P_{n+1}}{Q_{n+1}}\right)^{-1} = \frac{1}{2} + \underbrace{\frac{-1}{2} + \dots + \frac{-1}{2}}_{n \text{ times}} = \frac{P_n}{Q_n} = \frac{n+1}{n+2}$$

and so $\frac{P_{n+1}}{Q_{n+1}} = \frac{n+2}{n+3}$. Therefore

$$\alpha_N = \lim_{n \to \infty} \frac{P_n}{Q_n} = 1$$

contradicting $\alpha_N < 1$.

Proof of Lemma 2.6.

First note that $\{\alpha_n \cdots \alpha_0\}_{n \geq 0}$ is a strictly decreasing sequence in (0,1). So, in order to prove $\lim \alpha_n \cdots \alpha_0 = 0$, it suffices to show there is a subsequence converging to zero. Following the setup in Proposition 9.5, define

$$A_n = a_n \quad (n > 0)$$

and

$$B_n = (-1)^{\iota_{n-1}} \quad (n \ge 0)$$

(in particular $B_0 = 1$ since $\iota_{-1} = 0$) and let $\{Q_n\}_{n \geq -2}$ and $\{P_n\}_{n \geq -2}$ be the sequences associated with $\{A_n\}_{n\geq 0}$ and $\{B_n\}_{n\geq 0}$. Then we have by Claim 9.4 (4), for each $n\geq 0$

$$\alpha_n \cdots \alpha_0 = \frac{1}{Q_n + Q_{n-1}(-1)^{\iota_n} \alpha_{n+1}}.$$

Here let $N = \{n \in \mathbb{N}_0 \mid \iota_n = 0\}.$

Case 1: $\sharp N = \infty$.

For each $n \in N$

$$\alpha_n \cdots \alpha_0 = \frac{1}{Q_n + Q_{n-1}\alpha_{n+1}} < \frac{1}{Q_n}.$$

Hence the subsequence $\{\alpha_n \cdots \alpha_0\}_{n \in \mathbb{N}}$ converges to zero.

Case 2: $\sharp N < \infty$.

Then, letting $L = \{n \in \mathbb{N}_0 \mid a_n \geq 3\}$, we have $\sharp L = \infty$ by Proposition 9.6. For each $n \in L$

$$Q_n + Q_{n-1}(-1)^{\iota_n} \alpha_{n+1} = a_n Q_{n-1} + (-1)^{\iota_{n-1}} Q_{n-2} + Q_{n-1}(-1)^{\iota_n} \alpha_{n+1} > (a_n - 2)Q_{n-1} \ge Q_{n-1}$$

and so

$$\alpha_n \cdots \alpha_0 = \frac{1}{Q_n + Q_{n-1}(-1)^{\iota_n} \alpha_{n+1}} < \frac{1}{Q_{n-1}}.$$

Hence the subsequence $\{\alpha_n \cdots \alpha_0\}_{n \in L}$ converges to zero.

Acknowledgements. The author is deeply grateful to the referee for apt criticism.

References

- [1] M.I. Cortez and J. Rivera-Letelier: Topological orbit equivalence classes and numeration scales of logistic maps Erg.Th. and Dynam.Sys. 32, pp.1501-1526 (2012).
- [2] G. Didier: Codages de rotations et fractions continues. J. Number Theory 71, pp.275-306 (1998).
- [3] N.P. Fogg: Substitutions in Dynamics, Arithmetics and Combinatorics. Lecture Notes in Math. Vol.1794, Springer (2002).
- [4] B.A. Itza-Ortiz and N.C. Phillips: Realization of a simple higher-dimensional noncommutative torus as a transformation group C*-algebra. Bull. London Math. Soc. 40, pp.217-226 (2008).
- [5] K. Masui, F. Sugisaki and M. Yoshida *Denjoy systems and dimension groups*. Erg.Th. and Dynam.Sys. **28**, pp.877-913 (2008).