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Denjoy odometer with cut number 1 or 2

By

Masamichi YOSHIDA*

Abstract

We construct a new class of numeration systems which properly includes the class of dual Ostrowski
numeration systems and whose associated odometers are topologically conjugate to Denjoy systems with
cut number 1 or 2.

§1. Introduction

The main aim of this paper is a generalization of dual Ostrowski numeration system and its
associated odometer. All statements in this section are proved later in a more general setup.

Let Ng = {0,1,2,---} and B = (0,1) \ Q. The Gauss map G : B — B is defined by
G(a) = {1} (the fractional part of 1). It is well-known that G generates the simple continued
fraction expansion of a: precisely, letting o, = G"(«) and a,, = L%j, we have

Set M = {z = xgz129--- € HneNO{O, L.+ ,an} | xy = ap = zp41 = 0}. It is also well-known
that for any &, € [0, 1] there is © € M* with

by using usual greedy algorithm, that is, setting x,, = Li—”J and &,41 = {i—”} This expansion

n

of & is called the dual Ostrowski expansion of &, based on «. See Subsection 6.4.3 of [3].
Moreover, we can see that for any © € M®, the series v®(z) converges and v*(z) € [0, 1]. Denote
by {v*}(x) the fractional part of ¥*(x) and so we have a surjective map

(o) M* = [0,1).
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On the other hand, we have an “odometer”
Hy,: M*— M~
in a natural way and call H, the dual Ostrowski odometer on M. The formal definition of H,
is as follows. Define ¢ = ag0a30---. For each ¢ # z € M“, let
L(z) = min{n € Ny | z,, # ¢, }
Note L(x) is even. Define H,(c) = 0a10a30--- and for each ¢ # x € M with L = L(z)

0a10as - - -OaL_go(aL_1 — 1)(.TL + 1)«73L+1xL+2 cee

ifep <ap —1lorifexp =ar —1and xp41 =0
Oa10a3 cee OCLL_10($L+1 — 1)$L—|—2xL+3 cee

otherwise.

H,(z) =

It is easy to check H,(x) € M*. At first sight, the definition of H, may look artificial, but it
is natural under “carry operation”. See the proof of Lemma 7.7 and its subsequent discussion.
There is the following theorem:

(1) {v*} is at most 2-to-1 and H, is a homeomorphism with {v“} o H, = R, o {v}
where R, : [0,1) — [0, 1) is the rotation with angle .

(2) {€ €[0,1) | #{r*} (&) = 2} = O, where O, is the orbit of € [0,1) under R,,
that is, O, = {RL(n) | n € Z}

(3)eov®: M* — St is continuous where e(n) = exp(2min) and S = {z € C | |z| = 1}.

Fact (2) says that the points, which have 2-way expansions in M, form a single orbit O,. Under
usual identification of R, with e o Ry o (€]p,1)) " : ST — S*, (1) and (3) say that H, is an at
most 2-to-1 topological extension of R, : S' — S!. Moreover, this theorem implies that H, is
topologically conjugate to a Denjoy system with rotation number o and cut number 1. In other
words, H, is an odometer model for a Denjoy system with rotation number o and cut number
1. See Section 8 for definitions of Denjoy system, rotation number and cut number.

In this paper, when o € B and 8 € [0,1) are given, we address a generalization of this
theorem: that is, to construct a numeration system v®# such that the points, which have 2-way
expansions, form O, UOg and an odometer H, g associated with v*P is topologically conjugate
to a Denjoy system with rotation number o and cut number 1 or 2 (Theorems 1.1 and 1.2). In [1],
Cortez and Rivera-Letelier showed a general model theorem (up to topological orbit equivalence)
for the class of uniquely ergodic Cantor minimal (dynamical) systems, by using inverse limits
of generalized odometers. More directly than [1], we shall construct an odometer model for the
small subclass of Denjoy systems with rotation number a and cut number 1 or 2, without using
inverse limit. Especially the odometer in this paper is a bijection.

Instead of the Gauss map G, we shall begin with 7": B x [0,1) — B x [0,1) defined by

(D)
(23] e

T(e,B) =
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(cf. This map T is a modification of a map used in [2], Théoreme 3.2, pp. 299-300.) Note
T(a,0) = (G(«),0) so T is an extension of G. Define ¢ : B x [0,1) — {0,1} by

if =L =B
- P22

1 otherwise.

Letting (an, Bn) = T™(a, 8), tn = t(an, Bn), an = [5=] + tn and b, = fg—:}, set

MOC“B: {x:xoxlmQ.e H{0717... 7an}

neNg

Ty = 0 = Tn+1 ZLn bn+1 — L
Tp = 0An = Tn4tl < bn—i—l +

where the inequality >( (resp. >1) means > (resp. <).

In particular when 8 = 0, we see that o, = G"(«), By, =0, t, =0, a, = |1/G™(a)] and
b, = 0 for each n € Ny, and hence M*% = M.
We propose a new numeration system v*? as follows. Define v%# : M*# — [0,1] by

B @) = 3 (1) (@ — (1) Bus) H

n€eNp

where eg = 0 and e,41 = |e, — tn|. See Sections 3 and 5 for precise argument about v*?. Note
that (—1)¢» = (—1)tetatFin-1 for each n > 1, because (—1)+1 = (—1)¢n(—1)"r.

In particular when § = 0, we have v*? = v® (because t,, = 3, = 0 and a,, = G"(«)), that
is, v*P is a generalization of dual Ostrowski numeration system.

On the other hand, we will show 5 ¢ O, if and only if 0 < b, < a,, for each n > 1. See
Proposition 7.13 in Section 7. Here, we give an example:

Example. Let « =2 —1and § = _1_W Smce— V2+1and & -~ =1-0, we have

1] =2, {1} =q, f51 zland{TB}:B< 1—a={=}. So (e, B) :OandT(a,B): (o, B).

Hence o, =, B, =B, tn, =0, a, =2 and b,, = 1 for each n € Ny. So we have

M8 = { z € {0,1,2}

Tpn=0= xp41>1
Tp =2= $n+1§1

in other words, M*# = {x € {0,1,2}" | z,,2,,.1 # 00,22 for each n € Ny}. Moreover

oo oo
v B(@) = (a0 = Ba" ! = =+ wpat?
n=0 n=0

Concluding this section, we will have main theorems. For each («a, ) € B x [0, 1), we have

an odometer,
Hyp: M*P — M*P

which is natural under carry operation. See Section 7 for the definition of H, g. Denote by
{v*B}(z) the fractional part of v%#(z).
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Theorem 1.1.  Let (o, 3) € B x [0,1). Then we have the following:
(1) {v*P} : M™P —[0,1) is an at most 2-to-1 surjection and Hy g : M*P — M*P s
a homeomorphism with {v*°} o Hy g = Ry o {v™F}
2){€€[0,1) | #{r™} 7€) =2} = 0 U Op
(3)eov®P . M*P — S is continuous.
Theorem 1.2. If (o,8) € B x [0,1), ox : X — X is a Denjoy system with rotation
number o, and the set of double points of a factor map Fx : X — S coincides O, U Og under

the identifcation [0,1) with S* via el(o,1), then there is a homeomorphism 1 : X — M*P such
thatwaoX = HCY,B Ow a/n,d FX = eoyazﬁow.

See Section 8 for definitions of a factor map Fx : X — S' and a double point of Fx where
px : X — X is a Denjoy system.

8§2. Algorithm T

We study the property of 7' : B x [0,1) — B x [0,1) and the sequences (ay,f,) =

T"(a,B), tn = tlan, Bn), an = {O%J + ¢, and b,, = [5—7;‘ when (a, 8) € B x [0,1) is given.

n an

We begin with simple remarks. Note {—¢} = 1 — {¢} for any £ € R with {{} > 0. So we

have

Remark 2.1. (a,f) =1 «— O<{§}<{%}

Remark 2.2.

1

{Oé_n} = tn + (=1)"ang

{ _Bn} = tn + (=1)" Bt
an

Since £ = [&] + {&} = [¢] — {—¢} for any £ € R, we obtain the fundamental equations:
1
Recursive equations (1) oo =an + (=) ap41
(2) i—n =bp —tn — (1) Bpi1.

By Remark 2.1 and the definition of T', we have

Remark 2.3. Ifu(x,y) =1 then T'(z,y) € {(z,w) |z € B, 0 <w <1-—2z}. In general,
TB x[0,1)) c{(z,w) | 2z€B, 0<w<1-—2z}.

4[] 2] e

Lemma 2.4.
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Proof. Note
1-5

6

Foa=I - - (- )
When {=1} — {%ﬁ} >0 (i.e. t(a,8) =0), we have the desired one. Suppose ¢(a, 3) = 1. Then

{2 ()
(2o 25 5 -2

Moreover we state two lemmas:

and so

n
Lemma 2.5.  For each n € Ny, there are q,p € Z such that H aj = go+p.
§=0

L 2.6. li = 0.
emma 2.6 ngﬂ;@ 1_[()&] 0
]:

In Appendix, we give the proof of these lemmas. We will use Lemma 2.6 in such a way that if

{rn}tnen, C R is bounded, then nh_g)lo r H a; = 0.
§=0

For convenience’ sake, put

L1 = 0.

We list the property of (an, by, tn):
Proposition 2.7.

(1) For eachmn € Ny, tn—1 <bp < ap —tn-1
(in other words, {by — tn—-1, bn +tn—1} C{0,1,---  a,}).
(2) If there is K € Ny such that b = 0, then bg1 = 0.
(3) If there is K > 1 such that b = ak, then bx11 = ax11.
(4) If there is K € Ny such that 1,, =1 (Yn > K), then there are k,l > K + 1 such that
b #1 and by # a; — 1.

Proof. By Lemma 2.4, for each n € Ny

b= [20] <1 - [0].

On On

(1) Since M—ﬂ > (0 and [%W > 1 (because 0 < 3, < 1), we have 0 < b,, < a,,. Furthermore
if t,_1 =1, then 0 < 8, <1 — «, by Remark 2.3, hence 1 <b, <a, — 1.
(2) Note T(a,0) = (G(«),0) for any o« € B. Suppose bxy = 0. Then Sx = 0. So since
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(ak+1,Br+1) = T(ak, Bk) = (ak+1,0), we have bx 1 = 0.
(3) Note T'(cv, 1 — ) = (G(ar), 1 — G()) for any a € B. Suppose bx = ax for some K > 1.
Then {%W = 1. Moreover 1 — g = ag, because g < 1 — ax by Remark 2.3. So since

(arx1,Br41) = T(ak, Bx) = (x 41,1 — axi1), we have b1 = ax 11
(4) By recursive equation (2)
Bn == (bn - Z/n)an - (_l)bnﬁn—i-lan-
Notice that
1-— Qp — Bn - (an - bn - Ln)an - (_1)Ln(1 — Qpy1 — Bn—i—l)an

(indeed, 1 — a, — Bn = anan + (=) " api1an — (20, + (=1)")ay, — (by — tp)n + (1) Bpiray,
by recursive equations (1), (2) and (—1)'» =1 — 2u,,).

Now we prove (4) by contradiction. Suppose that ¢,, = 1 for any n > K. Then 0 < fx 41 <
1 — agy1 by Remark 2.3.

Assume that b, = 1 for any n > K + 1. Then, by the above equations

Br+1 = Bn+1 H a; (Vn>K+1)
j=K+1

Taking n — oo, we have Sx 11 = 0 by Lemma 2.6, contradicting Sx11 > 0.
Similarly, assume that b,, = a,, — 1 for any n > K + 1. Then, by the above equations

1— a1 —Brar =1 —0np1 = Bup1) [ a5 (Wn>K+1)
j=K+1

Taking n — oo, we have 1 — ax11 — Bx4+1 = 0 by Lemma 2.6, contradicting Sx41 <1 — ag41.
O
By Proposition 2.7 (1), (2) and (3), we have

Remark 2.8.

If there is K € Ny such that bx =0, then b, =0 (VYn > K) and t,, =0 (Vn > K —1).
If there is K > 1 such that bx = ak, then b, = a,, (Vn > K) and 1, =0 (Vn > K —1).

In particular, for each K > 1, we have by € {0,ax} = 1x = 0.

§3. (a,f)-Markovian numeration system
For each i € {0,1} and &, n € R, define
E<in <= (1)€< (=1)"n.
Thus <y is the usual inequality <, and <; is the inequality >.

From now on, let («a, 5) € B x [0,1) be arbitrarily fixed. First we define («, §)-Markovian
sequences:
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Definition 3.1 (Markovian space). Let x = xoz120--- € H {0,1,--- ,a,}. We say

n€eNg

that z is («, 8)-Markovian if x satisfies the following conditions, (1), (2),, for each n € Ny :

(1)n LT = 0 = Tn+1 an anrl —ln

(2)n Tp = Qp = Tnpitl Sbn bn+1 +in.

Denote by M (or M*#) the set of (a, 3)-Markovian sequences.

We always use the 0-1 sequnce egeies - - - defined by

e0 =0, ent1 =l|en —tn
and the following simple formula

(1) = (=1 (1)

Write
0=1and1=0.

Simply note e, =0 <= e,1+1 = t,, (or equivalently, e,, =1 <= €,77 = (,). So we have
Remark 3.2.  Consider the following conditions:

(1) zp = €nap = Tpi1 > bpie1 — (—1)"ey

—€n+1

(2/)71 Ty = aan - Tn+1 Sen_H bn+1 - (_1)abn-

In case e, = 0, we see that (1"),, is the same condition as (1), in Definition 3.1, and (2'),, is

(2)n; in case e, = 1, we see that (1), is (2)n, and (2), is (1),.

Definition 3.3. For each n € Ny and k € Ny define

Va(k) = (=1 (k — (=1)" Bus1) [ [ e,
=0

and for each sequence x = xgz1x2--- define (formally)
v(z) = Va,ﬁ(x) = Z Vn(xn)
n€ENp

In Section 5, we will prove that for any x € M the series v(z) converges in [0,1]. We call the

map v : M — [0, 1] the (o, 8)-numeration system.

We prove if a sequence z = zpz122 - - - is extremal in the following sense, then v(z) converges.

Definition 3.4 (Extremal sequences). Let z = 292122 -+ and k € Np.
We call z a k-left extremal sequence if for each n > k,

enln ifn =k mod 2
Zp = )
by, — (—1)¢"=14,,_1 otherwise.
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We call z a k-right extremal sequence if for each n > k,

€nan if n =k mod 2
Zp = S .
by, — (—1)"~14,,_1 otherwise.

When z is k-left extremal (resp. k-right extremal) for some k € Ny, we say simply that z is left
extremal (resp. right extremal). When z is left extremal or right extremal, we say simply that

2 is extremal.

(For example, when 5 = 0 (or equivalently, by = 0), we have ¢,, = b, = e,, = 0 (Vn) and so the
0-left extremal sequence is 0000 - -- and the 0-right extremal sequence is ag0Oaz0- - -.)

—1
We use the convention that the symbol H a; means 1.
§=0

Lemma 3.5. If z is extremal then v(z) converges. Moreover, the following statements
hold:

e k—1

(1) If z is k-left extremal, then Z Un(zn) = —eg H a;.
n==k 7=0
k—1

(2) If z is k-right extremal, then Z Un(zn) =€k H a;.
n==k 7=0
So since eg = 0, especially we have that if z is 0-left extremal then v(z) = 0; if z is 0-right
extremal then v(z) = 1.

Note. We will prove the converse (in M) of (1), (2) in this lemma: see Proposition 5.2 in Section
D.

Proof. We show the following formula: for each n € Ny

n—1 n+1
() n(enan) + Va1 (bnsr — (~1) 1) = —en [ [ oy + ensz [] o
=0 j=0

>—l|'

n— n+1
(II) vy (€nan) + Vng1(bpy1 — (_1)abn) =é€n H Qj — €n42 H Qg
3=0 F=0

We use recursive equations (1), (2) and (—1)¢+* = (—=1)°»(—1)* and the following three simple
formulas: for each s,t € {0,1}

5

ls —t] = s+ (=1)%t.

—~
|
—_
~—
»
»
Il



DENJOY ODOMETER WITH CUT NUMBER 1 OR 2 251
Proof of the formula (7):
Vn(enan) + Vn—l—l(bn—l—l - <_1)6nLn)
n
1o
j=0

= —€nlpn — <_1)en+lﬁn+1 + (_1)en+1bn—|—1an+1 + lnQni1 — (_1)en+1 (_1)Ln+lﬁn+2an+1

= —€nln + lnOn41 — (_1)€n+1 (ﬁn—l—l - bn—|—1an+1 + (_1)Ln+16n+2an—|—1>

o (_ - (_1)L"O‘n+1> + tnQnp1 + (1) 10

(by recursive equations (1) and (2))

(&
R <(_1)L”€n * L”>O‘n+1 + (=) paom g
n

€
=— Ozn + |6n - Ln|an+1 + <|en+1 - Ln+1| - 6n+1>04n+1

n

€En
- - + (6n+1 + €nt+2 — en+1)an+1 - -
Qp (679

€n

+ ent2Qn 1.

In the same way, we show the formula (I7):

Vn(aan) + Vn+1(bn+1 — (_1)al/n)
[
7=0

= €nln — (_1)6n+1/8n—|—1 + (_1)€n+1bn+1an—|—1 — nQny1 — (_1)€n+1(_1)bn+16n+2an+1

:aan —lnOn41 — (_1)en+1 <Bn+1 - bn+1an+1 + (_l)bn+15n+2an+1>

_ (1
- (a_ - (_1)Lnan+1) — Qi1 + (=1) T ipp10m 4
n
€n
= — (1) + tn )@t + () 10
n
€n _
= an - |€n - Ln‘an—l—l + <|en+1 - Ln—l—l’ - en—i—l)an—l—l
n
€n €en
=— — (en—|—l —€ént2 + e7L—|—1)Oén—|—l = = Ent20n 1.
(67 Qp

Now we return to the proof of Lemma 3.5.
(1) Let z be k-left extremal. Then by formula (I), for each N > k with N = k mod 2

N+1 k-1 N+1
Z z/n(zn) = —ep H a; + en42 H Q;
n=k §=0 §=0
and since
N42
vnt2(2n42) = Unta(ent2anya) = —(entoansa + (1) Byys) [] oy,

J=0
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we have
N+2 k—1 1 N+2
> valen) = —ex [J aj + <€N+2 (— - aN+2) - (—1)EN+35N+3) e
5 N2 5
n=~k 7=0 7=0
k—1 N+2
=—er [ [ o+ (ensa(=1)"2anss — (1) Bxss) [] @
Jj=0 j=0
(by recursive equation (1)).
00 k—1
As N — oo, Z Un(2zn) = —ek H a; by Lemma 2.6. Similarly (2) can be proved. O
n=k j=0

Lemma 3.6. Let k € Nj.
If x is k-left or k-right extremal, then for each n > k, z, € {0,1,---  a,} and x satisfies
conditions (1),, and (2),, in Definition 3.1.

So, especially if x is 0-left or 0-right extremal, then x € M.

Proof. Let x be k-left extremal and n > k.

If n — k is even, then z,, = eya, € {0,a,}. If n — k is odd, then x,, = b, — (—=1)°"~1¢,_1 €
{bn — tn-1, by +tn—1} C{0,1,--- ,a,} by Proposition 2.7.

When n — k is even, the condition (1’),, in Remark 3.2 holds. Consider the case n — k is
odd.

First we show z satisfies the condition (2),,, that is, z,, = a, = xp+1 <., bpt1 + tn-
Suppose &, = a,. If b, = a,, then b, 11 = a,+1 and ¢, = 0 by Proposition 2.7 (note n > k+1 >
1), and so xp+1 < byt1 + tn. Suppose b, < a, — 1. Thene, 1 =1, t,_1 =1and b, =a, — 1
because b, — (—1)*"~'¢,_1 = x,, = a,. Hence e,, = |e,—1 — tn—1| =0 and e,11 = |0 — tp] = tp-
Now, since T,4+1 = tnapy1, We see that if ¢, = 0 then z,41 = 0 < byy1 + tp; if ¢, = 1 then
Tp+l = Apt1 > bpt1 + Ly Anyway (2), holds.

Similarly we can show z satisfies the condition (1),. The proof in the case that z is k-right

extremal is also similar. O

Now, by Lemmas 3.5 and 3.6, we obtain typical examples of («, #)-Markovian sequences:
(1) If = is O-left extremal then x € M and v(x) = 0.
(2) If = is O-right extremal then x € M and v(z) = 1.

Here note that e;a1 <,, b1 +¢¢ and e1a; >,, by — 1o, by Proposition 2.7 and e; = ¢y. Suppose
B > 0 (or equivalently, by > 1).
(3) If = is 1-left extremal with xy = by, then z satisifies condition (2)¢ (since eja; <,, b1 +¢g) so

x € M and moreover by recursive equation (2)
v(z) = vo(bo) + Z Vn(2n) = (bo — (—1)"°B1)ag — erag = 3.
n=1

(4) If z is 1-right extremal with xo = by —1, then z satisifies condition (1) (since e1a; >,, b1 —to)
so x € M and moreover by recursive equation (2)

v(x) =vo(bo — 1) + Y vn(an) = (b — 1 = (1) By )ag + E1ag = B.

n=1
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See Lemma 7.2 in Section 7 for another example of (a, 8)-Markovian sequences.

§4. (a,f)-expansion of a real number in [0, 1]

In this section, we show
Proposition 4.1.  For each £ € [0, 1], there is x € M such that £ = v(z).

For the proof, we use the following notation: Let £ € R and ¢ € {0,1}. Define
ifi=0 ifi=0
IR R I D S S
(€] —1lifi=1 1—{-¢}ifi=1.
Then we have £ = [£]; + {£}; and note that

¢ € [leo,€lo+1), 0< {€ho <1

and

¢e (I8 leh+1], 0<feh <1

_ﬂn
On
Proof of Proposition 4.1. Recall if z is the 0O-right extremal sequence, then z € M and

v(z) = 1 by Lemmas 3.5 and 3.6. Suppose 0 < £ < 1. Let £ = £. Define z, and &,11
inductively by

Write A,, =

and &,41 =tp + (—1)" {f_n + An} .

On

e[era

On

€n

Let © = zoz122---. We show that x € M and v(x) = £ by the following steps.

Note. Consider the case 3 = 0. Then for all n € Ny we have o, = G™(«), By, = t, = 0 : recall
Section 1. So A,, = e, = 0. Hence the definition of x,, and &,4+1 in the case f =0 is z,, = L%J
and E,41 = {i—"}, that is, x is the dual Ostrowski expansion of €& based on . Thus Proposition

4.1 15 a generalization of dual Ostrowski expansion.

Stepl: e, =0=0<¢, <l;e,=1—=0<¢,<1
Indeed, the case n = 0 is clear (recall eg = 0). Note e, 11 = 0 if and only if e,, = ¢,,.

Step 2: x, € {0,1,--- ,;a,}.
Indeed by Step 1

en=0= %=+ A, €[A;, L +A); en=1= 24 A,€(A,, 2 +A,]

By Lemma 2.4 and definitions of a,, and ¢,

LA = {LJ+1—{__1}+{—5n}:an+1_{ﬂn—1}_
(07% (679 Oy (7% Qo
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Soen:0=>§—z+An€ [0, an+1);en:1:>2—’;+An€(0, an + 1]. Hence 0 < z,, < ay,.

Here note that

0 =y — (1) B + (1)

Qp

because i—" + A, =x, + {i—" + An} and A, = t, + (=1)"" 5,41 by Remark 2.2.

€n

Step 3z, =0= Tn+1 ZLn bn—|—1 —ln; Tp = Qn == Tnt1 SLn bn—|—1 + tn.
Indeed, note that by (1) and the definition of b, 11

—1)in n n n n
u(g_—:):n) e + Ang1 — bngr

an+1 (679 O-/n—ﬁ—l an—i—l an+1
and so
(_1)Ln én
— — In = Tnt1 — bn—l—l-
an+1 (079 eni1
Case 1: =, = 0.
Then
<_1)Ln§n
Tptl —bpp1 = |——— .
an—i—lan eni1

If ¢, =0, then e, 11 = e, and by Step 1

> 0if =0
fn =~ 1 6n—|—1 and SO we ha.Ve xn—}—l - bn+1 = |:£—n:| 2 O
"o o X Gn+1Gn o

If v, =1, then e, 1 =€, and by Step 1

<0ifep41 =0 _
— and so we have x —b = [#] < —1.
. {S Oif ey =1 e e Fnt1%n e 1y T

Hence z,, =0 = xp41 >,, but1 — tn.
Case 2: z, = a,.
En _ — &n—-1

-y =2+ (—1)"ay,+1 and so

(=) —1)

|+
On4+1Qn ent1

Then by recursive equation (1) we have

Tn4+1 — bn+1 - |:

If ¢, =0, then e, +1 = e, and by Step 1

<0ifept1 =0 €, —1
& —1 { <Oifeney =1 and so we have x,,11 — b,+1 = [anﬂan]e . +1<0.

If ¢, = 1, then e, 11 =€, and by Step 1

> 0if Cn+1 = 0 1-—
— - and so we have x —b :[ g”] +1>1.
fn {> 0if Cnil = 1 Wi v n+1 n+1 Qn41Qn |, — =

Hence z,, = a,, = Tn41 <., bny1 + tn.
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Therefore by Steps 2 and 3, the sequence x = zgx1z2 - belongs to M.

Step 4: £ = v(x).
First we claim that for each NV € Ny

N
(xn) &= Zyn (zn) + (=1)N+1EN 1 Hozj
i=0

by induction on N. Indeed by (7)

§ =& = (w0 — (=1)"*Br)ao + (=1)"&ra0 = vo(z0) + (=1) &1
because eg = 0 and e; = tp. So (xg) holds. Let N € N and suppose (*y_1) holds, that is,

N-1

Z + (=1)VEn 1:[ Q.
n—=0 j=0

Since &y = (zny — (=1)"VBni1)an + (—1)"¥Enyp1an by (T), (+n) holds (recall (—1)N+1 =
(—=1)¢~(—=1)*~). Now by this claim and Lemma 2.6, we have & = v(x). O

§ 5. Tail inequality
In this section, we show the following two propositions.

Proposition 5.1. Let k € Ng, z be k-left extremal and z be k-right extremal. Then for
anyx € M andl > k,

l

l l l l
Zyn Zn) H Zun(a:n) < Zun(gn)—I—Hozj.
n==k 7=0 n==k 7=0

n=k
Hence by Lemmas 2.6, 3.5 and Proposition 5.1, we see that for any x € M, the sequence
{Z?:o vj(z;)}nen, is a Cauchy sequence and v(z) converges in [0, 1].

Proposition 5.2 (Tail inequality).  For any x € M and k € Ny

—ekHOé]<ZVnﬂUn <er Hozj

We call this inequality tail 1nequa11ty. Moreover we have the following.

0o k—1
(1) Z Un(Tyn) = —eg H a; if and only if x is k-left extremal.
n=Fk j=0
0o k—1
Z (xn) =€k H o if and only if x is k-right extremal.
n==k 7=0

Note. We will prove local version of tail inequality : see Proposition 8.3 in Section 8.

To prove propositions, we begin with a technical lemma:

Lemma 5.3. Letne Ny, x €N, yeZ withy > —a,.
If x +ya, <0, thenxz =1, y = —an, t, =1 and x + ya, = —Qp410y,.



256 MASAMICHI YOSHIDA

Proof. By recursive equation (1)
O0>z+ya,=(x—1)+ (y+an)a, + ()" apt10, > (1) api10p

hence ¢, = 1 and = + ya,, = (z — 1) + (y + an)an — apy1a, < 0. Furthermore we see z = 1 and
Yy = —ay, because ay,,a,41 € (0,1). O

From now on we fix k € Nj.
Let z be k-left extremal and x € M. Define a sequence mpmyy1myio--- by
my = (—1)" (2, — 2n)-

Then for each [ > k
l ! l n
Z Un(Tn) — Z Un(2n) = Z My, H a;.
n=~k n=k n=~k 7=0

Claim 5.4. For each n > k with n = k mod 2, we have the following.
(1) m, > 0.
If m,, = 0 then m,41 > 0.
(2) Mpt1 > —apy1-

If mp41 = —apy1 and tp41 = 1, then
1 if e, =0 b if e,, =0
tn =1, bpy1 = 1 “n and my49 — 1> n+2 1 En
any1 — life, =1 Gpto — bpioife, =1.

Proof. (1) By definition

{xn ife, =0
My, =

ap —Tpif e, =1

and so m,, > 0. If m,, =0 (i.e. z,, = e,a,), then by remark 3.2, z,, 4, Zepi1 Znt1 thusmy 1 > 0.
(2) By definition

Mn+1 = (_1)en+1(xn+1 —bpy1 + <_1)€nbn) = (_1)en+1 (xn-kl - bn—H) — ln.
First, we show that m,4+1 > —a,+1 and that if m,,1 = —a,41, then z,,11 = e,411a,41 and

Gn+1 — tpif ey =0

(<>) bn—|—1 - {

2% if En+1 = 1.

Case 1: e,41 = 0.
By Proposition 2.7, we have

Mp41 = Tn41 — bn+1 —lp > _bn—|—1 —lp = —0n41-

Moreover if my, 11 = —an+t1, then 2,11 =0 and by, 41 = any1 — Ly
Case 2: epy1 = 1.
By Proposition 2.7, we have

Mp+1 = —Tp41 + bn+1 —lp > —Qpy1 + bn—|—1 —lp = —Qp41-
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Moreover if my 11 = —a@n+1, then x,11 = ap41 and by = 1y

Next, suppose myu411 = —Gp41 and tp41 = 1. Since tp41 = 1, we have b, 11 ¢ {0,an4+1}
by Remark 2.8. Hence ¢, = 1 by (), and so e, = €,11 = €,12. Moreover since z € M and
T4l = €pt1Gn41, We have x,19 > bpio + (—1)°» by Remark 3.2. Therefore if e,, = 0 then
Mpyt2 = Tpyo > bpyo+1;if e, =1 then apio — mpyo = Tpio <bpyo — 1. ]

Claim 5.5. Let K >k be K =k mod 2. For each L € N, the following proposition (Py,)
holds:

K+21—1 n
(Pr) If Z my, H a; < 0 for each 1 <[ < L, then
n=K §=0

(1) tn=1 (K<Vn< K+2L-1)

1 if =0
(m‘)bn:{a ﬁfZK | (K+1<vVn<K+2L-1)
n — K —

K+21—-1 n K+21
(iii) > mp [Joj=—J[ &y A<Vi<L)
n=K 7=0 j=0

(tv) mgqor — 12> oL Tf ex =0
arx42r —briorif ex = 1.

K+2l—1 n
Proof. Let S; = Z My, H aj. We use induction on L.
n=K §=0
We show that (P;) holds. Suppose S; < 0. Then mg +mg 1k +1 < 0 and so by Claim 5.4
(1), mg > 1. Hence by Lemma 5.3, we have mg 11 = —ax+1, tx+1 = 1 and S; = — H;Sf a;.

By Claim 5.4 (2),

1 ifeK:O
CLK+1—1if€K:1

bK+2 if (&7¢ =0

Ltk =1, b =
K Kt { QK +2 — bK_|_2 if CK = 1.

Thus (P;) holds.
We show (Pr) = (Pp+1). Suppose (Pr) holds and S; < 0 for each 1 <[ < L+1. It suffices
to show the following:

1 if e =
in=1, b, = e =0 o n— K42l K+20+1
an — lifeg =1

K+42L+2

SL_|_1 = — H Oéj

J=0

br2r+2 ifex =0
and mgor42 —12 Al )
ax+42r4+2 — brjori2if ex = 1.

Note ex10r = €xtor,—2 =+ = €42 = ex by (i) in (Pg). Since S;, = —HJK:JBM a; by (i) in

(Pr), we have
K+2L
Sp41=(mrqor — 1 +mMKor 10K y2041) H Q.
J=0
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Since txyor,—1 = 1 by (i) in (Pr), we have by Proposition 2.7

1 <bgior <agqor —1

Hence myor — 1> 1 by (iv) in (Pr). So since Sp41 < 0, we have by Lemma 5.3

K+2L+2
miior — 1 =1, mgyor41 = —axior41, tk42r+1 = 1L and Spyq = — H Q.
§=0
The equality mg o7, —1 = 1 implies
b - 1 if EK = 0
KAL) Ggepor — lifex = 1.
By Claim 5.4 (2), the equalities mg or+1 = —@k+20+1, tk+20+1 = 1 and ex o7, = ex imply
1 if EK — 0
tk+or = 1, bxqary1 = .
AK4+2L+1 — 1if EK — 1
and
bK L if EKg — 0
Mri2r42 — 1 2> ek .
ar+2r4+2 — brtor+2if ex = 1.
Therefore (Pr,41) holds. O

Let Z be k-right extremal and 2 € M. Define a sequence mgmy1my1o- -+ by

My = (—=1)" (2, — xp).
Then for each | > k
! l l n
> ) - Yol =Y i [T
n=~k n=~k n=~k 7=0
In the same way as the proofs of Claims 5.4 and 5.5, we obtain the following statements:

Claim 5.6. For each n > k with n = k mod 2, we have the following.
(1) iy > 0.
If m,, = 0 then m,+; > 0.

(2) 77/1;;—/1 > —Aan41-

If mp41 = —apy1 and ty41 = 1, then
1 if e,, =1 by if e, =1
tn =1, bpy1 = 1 ‘ and m,12 — 12> 2 1 ‘
an+1 — life, =0 Gpnt+2 — bpyoif e, = 0.

Claim 5.7. Let K > k be K = k mod 2. For each L € N, the following proposition (]32)
holds:



DENJOY ODOMETER WITH CUT NUMBER 1 OR 2 259
K+21—-1 n
(Pp) If Z WTnHozj<Ofor each 1 <[ < L, then
n=K j=0

(1) tn=1 (K<Vn< K+2L-1)

1 if e =1
(z’i)bn:{ 1?feK g (K+1<vn<K+20L-1)
a, — 11t e =

K+20—1 n K+21
@ity > i [Jej=— ][ oy A<Vi<L)
n=K 3=0 j=0
(iv) mgqor —12> K2k 1 K
ar+2r — br4or if ex = 0.

(Proof of Proposition 5.1)
Let k € Ny, z be k-left extremal, z be k-right extremal and = € M.

Recall the sequence mymy1myo - -+, that is, m, = (=1)"(x,, — z,), and so for each | > k
l n l l
Do Loy =2 vnlwn) = 3 valzn)
n==k 7=0 n==k n==k

l !
We show for any [ > k, Z Un(2n) — H a; < Z Vn(Zy), in other words,

l n l
(*)l ﬂ— E mnHaj>—Hon
n==k 7=0 7=0

Then ! € {k+2J —1,k+2J} and so T; > Tky25—1 because myi2; > 0 by claim 5.4 (1). Hence,
in order prove the inequality (x);, it suffices to show

l

Thioj-1 2> — H Q.
i=0

It suffices to consider the case T;y27-1 < 0. Define
Jo=min{l <i<J|i<Vp<J, Thpop1 <0}

Since Ti425,—3 > 0 (if Jo > 2), we have

k+2p—1 n
Z mnHaj<OforeaChJ0§p§J.
n=k-+2Jo—2 j=0
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By Claim 5.5 (ii)

k+27—1 n k+2J
> ma]lay=-1] o
n=k42Jo—2 =0 =0
Therefore
k+2J—1 k+2J

Tk+2J—1 = Tk—|—2J0—3 + Z mpy H a; > — H a > — H aj

n=k+2Jg—2 7=0

(recall k4 2J > 1).
Similarly we can show that for any [ > k,

l l

l
Z Vn(a:n) < Z Vn(/z\;) + H Q.
n=k 7=0

n=~k

(Proof of Proposition 5.2)
Let £ € Ny and z € M. By Lemmas 2.6, 3.5 and Proposition 5.1, we have the tail inequality:

—ekHa]<Zyn (zn) Se_

Let z be k-left extremal. Recall that for each I > k, m,, = (—-1)*(z,, — 2z,) and

l n l l
z_; 1:[ Z;C n(Tn) — Z;Cl/n(zn).

z |

<.
Il
=

By Lemma 3.5, Y 2, m, HJ 0 = >l Un() + e H 0 «;. Hence, in order prove (1) in
Proposition 5.2, it suffices to show if Y>> m, Hj:o aj = 0 then m,, = 0 for each n > k. To
this end, we show a claim:
If there is r > k with » = k mod 2 and m, + my 41,41 <0, then Y07, m,, H?:o a; > 0.
Let
K =min{r > k| r =k mod 2 and m, + m, 1,41 < 0}.

Then (if K > k+2) m; +myp10401 > 0 for each £ <[ < K — 2 with [ = k mod 2, and so
K-—1 n
B ICE
n=k §=0

Assume that for any [ € Ny
K+20+1

Z mnHon<0

Then by Claim 5.5 () and (i), we have

1 ifex =
=1 (vn>K) and bn:{ ew =0 > K +1)

an, — lif ex = 1.
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K+214+1 n
contradicting Proposition 2.7. Hence Z My, H aj > 0 for some [ € Ny. Let
n=K §j=0
K+21+1 n

L = min{l € Ny | Z mnHaj > 0}.
n=K =0

Since mg + mrr1akx+1 < 0, we see that L > 1 and for each 1 <1 < L

K+4+21-1 n
E Moy, H o < 0.
n=K =0

Hence by Claim 5.5 (i7i) and (), we have

K+2L+1 n K+2L

Z My, H a;j = (—14+mgior + Mryor+10K+2041) H aj
n—K =0 §=0

and txior—1 = 1. So 1 <bgior < agyor, — 1 by Proposition 2.7, and hence by Claim 5.5 (iv)
K+2L+1 n

—1 4+ mg42or, > 1. Therefore Z My, H aj # 0, because o 42141 is irrational. Thus
n=K §=0

K+4+2L+1

Z mnﬁaj > 0.
§=0

n=K

On the other hand, by Lemma 3.5 and tail inequality, we have

o0 n o0 o0
E My, H a; = g Un(Tp) — E Un(2zn) >0
n=K+2L+2  j=0 n=K-+2L+2 n=K-+2L+2

because z is also (K + 2L + 2)-left extremal. Summarizing the above, we have

[o@) n
Z my, H a; >0
n=~k 7=0

hence the above claim is proved.

Now we prove (1). Suppose Y - my, H?:o a; = 0. Then m; +m;y1a,41 > 0 for each i > k
with ¢« = k£ mod 2 by the above claim. Moreover m; + m;110a;11 = 0 for each ¢ > k with i = k
mod 2. So m; = m;+1 = 0 for each ¢ > k with ¢ = k£ mod 2, because ;1 is irrational. Thus
my, = 0 for each n > k. Similarly we can prove (2). O

§6. Doubleton lemma

In preceeding sections, we have constructed the («, 5)-numeration system v : M — [0, 1].
Define
{v}: M —10,1) by {v}(x) = {v(x)} (the fractional part of v(x)).

To show {v}: M — [0,1) is at most 2-to-1, we begin with the following lemma:
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Lemma 6.1.

(1) Let x be k-left extremal and y be (k — 1)-left extremal.
If xp, = yi, then z, =y, = exa, (Vn > k).
(2) Let x be k-right extremal and y be (k — 1)-right extremal.
If x, = yi, then x,, =y, = exa, (Yn > k).
(3) Any left (resp. right) extremal sequence is not right (resp. left) extremal.

Proof. Note that
—(=D* g1 = (1) %k

because (—1)¢ = (—1)¢-1(—1)*-1 and (—1)%s = —s for each s € {0,1}.

We show (1) and (2). It suffices to show (i) and (ii): for k € Ny with k& > 1,
(¢) If exap, = by, — (—1)%*~11p_q, then ¢, =0 (Yn >k — 1) and e,, = ex, b, = ega, (Yn > k).
(1) If egar = by — (—1)% =114, then 1, =0 (Vn > k — 1) and e, = ek, b, = exa, (Yn > k).
Let egar = by + (—1)%*15—1. So if e = 0 then 0 = by + t—1; if e = 1 then ax = by — 1.
Hence (1 = 0 and by = erax. By Remark 2.8, (i) holds. The proof of (ii) is similar. We show
(3) by contradiction. Assume there is a sequence z which is [-left and r-right extremal. Then by
definition, r = [+ 1 mod 2. Letting k& = max{l,r}+ 1, we have the following system of equations:

nln — n:bn__lenn— ifn=1 d?2
e_a ® (=) en—1 1 " o (for each n > k).
Entn = 2n = by + (—1)"1p_1if n =141 mod 2

Case 1: 4K > k such that 11 = 0.

Then bx € {0,ax}. By Remark 2.8, for each n > K, we have that ¢,, = 0 and e,, = ex and that

if by = 0 then b, = 0; if bx = ax then b,, = a,,. It contradicts the above system of equations.

Case 2: Vn >k, 1,1 = 1.

Then by € {1,ax, — 1} and e, 12 = €,71 = e, for each n > k. By the above system of equations,

we can see if by = 1 then b, = 1; if by = a — 1 then b,, = a,, — 1. It contradicts Proposition 2.7.
O

For each left (resp. right) extremal sequence z, define
k(z) = min{k € Ng | z is k-left (resp. k-right) extremal}.
For each sequence x = xgx1zs--- and each k € Ny, define
z[0, k] = zoxy - - - Xk
Now we introduce the main notion of this section:

Definition 6.2 (Doubleton). Let 2 € M be left extremal and y € M be right extremal.
We say = and y form a doubleton if the following conditions hold:

(i) k(z) =k(y) =k
(i1) Tp—1 = yp—1 + ()1 if k> 1
(131) z[0,k — 2] = y[0,k — 2] if kK > 2
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Lemma 6.3 (Doubleton lemma).  Let z,y € M with x # y. Then, we have the following:
{v}(z) =A{v}(y) if and only if x and y form a doubleton.

Proof. Let x and y form a doubleton where x is left extremal and y is right extremal and
k(x) = k(y) = k. We show {v}(z) = {v}(y). In the case k = 0, v(z) = 0 and v(y) = 1 by
Lemma 3.5. Consider the case k£ > 1. By Lemma 3.5

—k—

n 1

k—1
Vn(@n) = vk—1(zr-1) — ek [ [
7=0

vk (ko1 + (D) —er [ o

Hence v(z) = v(y).

We show the ‘only if’ part. Suppose {v}(z) = {v}(y).
If v(x) = 0 (resp. v(x) = 1), then x is 0-left extremal (resp. O-right extremal) by Proposition
5.2 and v(y) = 1 (resp. v(y) = 0) because = # y, so x and y form a doubleton. Consider the
case 0 < v(z) < 1. Then v(z) = v(y). Let

k =min{n € Ng | z,, # yn }.

Without the loss of generality, we can suppose xj > yi. Since v(x) = v(y),

oo oo

vk(zr) — vk(yr) = Z Vn(Yn) — Z Vn(Tn)-

Consider the case e = 0. Then, since

k k
vi(wr) = vi(ye) = (2 — i) [ o5 > [
— =0

j=0
and
0o 0o k k k
Z Vn(Yn) — Z Un(2n) < H —€k+1 H = H (by tail inequality),

we have z = yr, + 1 and moreover z is (k + 1)-left extremal and y is (k + 1)-right extremal by
Proposition 5.2. So k(x) < k + 1 by the definition of k(x). We show that k(z) = k + 1.

Assume that k(z) < k+ 1.

Case 1: k(z) =k mod 2.

In this case, z = epar, = 0 (since e = 0), contradicting = > yy.
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Case 2: k(z) =k + 1 mod 2.

In this case, rx_1 = ex—1ax—1 and zp = by — (—1)*~11,_;1. Since yx_1 = x—1 and e = 0 and
y € M, we have yp, > b — (—1)®*-11,_1 = xp, by Remark 3.2, contradicting xx > yp.

Hence k(z) = k + 1. Similarly we can show k(y) = k + 1. So = and y form a doubleton. The

proof in the case e, = 1 is also similar. O

Denote by R, : [0,1) = [0,1) the rotation by angle «, that is, R, (§) = {{ + a}, and by O¢
the orbit of £ under R,, that is, O¢ = {RL(§) | n € Z}.

Lemma 6.4. Ifx € M is extremal, then {v}(z) € Oy U Op.

Proof. We show that for each N € Ny

2N N 2n
)Y vn(0) =B =D (=) (ban — t2n) [ [ @
n=0 n=0 7=0
2N+1 N 2n+1
(i) Y vn(0) = =Y (1) (bani1 — tant1) [ o
n=0 n=0 7=0

Note that for each n € Ny

n—+1

Vn(0) + vp41(0) = = (=1)* (=1)"" Bry1 H aj — (=1) 1 (=1)" 1 B io H Q;
5=0

n+1
= _(_1)€n+1 (fén—i—l + (_1)Ln+1/8n+2> H oy
n+1 j=0
n+1
=—(=1)"* (bpt1 — tnt1) H a; (by recursive equation (2)).
j=0

When N = 0, by recursive equation (2) we have 1(0) = —(—1)"S1a9 = 8 — (bp — to)vg. When
N>1,

2N N N
Z Vn(o) = V()(O) + Z (VQn—l(O) + V2n(0)> = ﬁ bO - LO Qo — Z 62n b2n - L2n H Q.
n=0 n=1

n=1

So (i) holds. On the other hand

2N+1 N N 2n+1
> 0) = 3 (van(0) + van11(0)) = = 3 (=)= (bansr = 12011) [ @,
n=0 n=0 n=0 7=0

that is, (4¢) also holds.
Now, let x € M be k-left extremal. We show {v}(z) € Oy, U Og. When k = 0, we have
v(z) =0 € O, by Lemma 3.5. When k£ > 1, by Lemma 3.5

v(r) =

k— k—1
n

1 k—1 n k—1
>_ vn(@a) = e H% =2 w0+ (=)@ [ oy —ex [T o
n=0 7=0 7=0

=0 n=0
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and so, by (4), (¢¢) and Lemma 2.5, we have {v}(z) € O, U Og. In the same way, we can show
that {v}(z) € On U Opg for any right extremal sequence xz € M. O

Remark 6.5. By Lemma 6.3, the map {v} : M — [0,1) is at most 2-to-1: more precisely

we have (with Lemma 6.4)

{€€lo, ) [#{r} () =2}
c{£€[0,1)]| & ={v}(x)={v}(y) for some doubleton {x,y}}
C{{vH(z) | x € M : left extremal} N{{v}(y) |y € M : right extremal}
C{{vi(z) | x € M : left extremal} U{{v}(y) |y € M : right extremal}
C Oy U Op.

—_— —

§7. Odometer on M

In this section, we introduce the odometer H : M — M and study its properties.

Definition 7.1.  Define the sequences ¢ and a — ¢ by

and (a—¢)p = ap — Cp.

an — Ly if n is even
Cn = . .
Ln if n is odd

for each n € Ny. Thus, ¢ = (ag — to)t1(az — t2)t3--- and a — ¢ = to(a; — t1)ea(as —t3) - - -.

Note a,, — ¢, = {LJ > 0. Recall conditions (1), and (2),, in Definition 3.1:

An

(1)n T, =0 = Tn41 an bn+1 —ln

(2)n Ty = Qp — Tn+1 § bn+1 +in.

ln

Lemma 7.2. {¢, a—c} C M.

Proof. Since a,, # tn, it suffices to show ¢ (resp. a — ¢) satisfies conditions (1)25,41, (2)2n (resp.
(1)an, (2)2n+1) for each n € Ng. We can show them by using following claim.

Claim: ¢, = 0 = tn+1 < bpg1 < Gpy1 — tn+1- Indeed, when ¢, = 0, we have, by
Proposition 2.7 and Remark 2.8, 0 < b, 11 < an4+1 and if ¢, 41 = 1 then b,11 € {0, an41}- O

For each sequence x = xgx122--- and each k € Ny, define

x[k,00) = TpXpr1Thao - -

Definition 7.3 (Odometer). For each z € M, define a sequence H(z) (= Hyg(x)) as
follows. Define
H(c)=a—c.

Let ¢ # x € M and define

L =L(z)=min{n € Ny | x,, # ¢, }
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Case (1): L =0, or L > 0is even with x > by. Define

(a =)0, L — 2(ar 1 — 7T, + ValL +1,)
ifep <ap—1lorifep =ar —1and xpy1 <bpys
(a o C) [07 L] ('TL-l-l - 1).I‘[L + 2, OO)

otherwise.

H(z) =

Case (2): L >0 1is even with x;, < br,. Define
H(x) = (a—¢)[0,L—3] 72 0 z[L, o0).
Case (3) : L is odd with x;, < by. Define

(a—0)0,L —2] =7 (xr — D)z[L 4+ 1,00)

ifexp >lorifey =1and xp41 > b4
(a — )]0, L)(xr4+1 + 1)z[L + 2,00)

otherwise.

H(z)=

Case (4) : L is odd with x;, > by. Define
H(z)=(a—¢)[0,L —3|(ar,—2 —Tr—2)ar—1x[L,c0).

Note. Consider the case § = 0. For all n € Ny, ¢, = b, = 0and M = M* = {z €
[l,en 10,1, yan} | @ = an = w41 = 0} recall Section 1. Hence ¢ = ag0az0- - and the
case (1) in Definition 7.3 only occurs. So H = H,, (dual Ostrowski odometer).

Example (continued). Let « =2 —1and f =1 — % In this example, ¢, =0, a,, =2 and
b, = 1 for each n € Ny: recall Section 1. So ¢ =2020--- and a—c = 0202---. Since ¢, = 0 (Vn),
cases (2) and (4) in Definition 7.3 do not occur by Claim 7.4 (i) (see below). Let ¢ # x € M and

L = L(x). When L is even (so x # 2 and if L > 0 then zj # 0)

H(x) = 0202---0201(zr + 1)z[L+1,00)if L=0and 2o =0orifzy =1and x4 <1
~ 1 0202---0201z[L + 2, 00) otherwise (that is, xpxp41 = 12),

and when L is odd (so zz, = 1)

(z) 0202---021(xy — V)z[L+1,00)if x, =1 and 41 > 1
€Tr) =
0202 --021z[L + 2, 0) otherwise (that is, zpz4+1 = 10).

In order to show H (M) C M, we prepare the following technical claim.

Claim 7.4. Letc#x € M and L = L(z).
(i) In case (2) or (4) (i.e. when L > 0 is even and zj, < by, or when L is odd and =y, > by,),

< bj_oif L is even
>br_oif L > 1 1is odd.

xy_1 — 1if L is even

1=1 H -1 =
LL—1 , H(z)p— {xL_l+1ifLisodd.

and H(x)r_o {
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(4i) When L > 0 is even with ay, — 1 >z, > by, or when L is odd with 1 <z < by,

> by _qif L is even

H(z)r_
@)z {g b1 if L is odd.

(7i1) When L is even with xj, = ay, or when L is odd with zj, =0,

> br41if L is even
YUY < bpayif L s odd.

Proof. (i) We show t,_1 =1 in case (2) or (4). Indeed suppose L > 0 and ¢;,_1 = 0. Then, by

definitions of L(z) and ¢,
0 if L is even
T[_1=C[_1 =
LU= =0 L if L ds odd.

Since z satisfies conditions (1)1 and (2)5_1,

> by if L is even
X
LY < by if L is odd.

Hence, in case (2) or (4), t5,—1 =1 and ;1 = 1if L is even; ;1 = ar,—1 — 1 if L is odd. So,
in these cases, H(z),—1 =0=2zy_1 —1if Liseven; H(z)L1 =ar_1 =1 + 1if L is odd.
Consider the case (2). Then by, # 0 (since 0 < zj, < br) and hence by,_» > 1 by Remark
2.8. So H(z)r—o = T1=3 < br_o.
Consider the case (4) with L > 1. Then by, # ar (since ar > zp > by) and hence
br—2 <ap_2—1by Remark 2.8. So H(z)p—2 =ar_2 —Tp—2 > br_o.
(4i) If L > 0 is even with ap, — 1 > xp, > by, then H(z)p—1 > a1 —land a1 —1 > b1 by
Remark 2.8. Similarly, if L is odd with 1 <z < by, then H(z)p_1 <1 <bp_;.
(747) Suppose L is even with x; = ap. Since xp # ¢p = ar — tp, we have ¢, = 1 and so
xp+1 > bry1 + 1 because x satisfies condition (2),. The proof in case that L is odd with xy =0
is similar. O
Now we show H (M) C M; the proof may look somewhat tedious.

Lemma 7.5. For eachx € M, H(zx) € M. We call H: M — M the (o, )-odometer.
Proof. Tt suffices to consider the case = # c. Let L = L(z).

Case (1): L=0,or L > 0is even and x, > by.
Subcase (1)-1: zy, < ap —1,0or x;, = ayp — 1 with z141 < br41.
In this subcase,

H(z)=(a—¢)[0,L —2)(ar—1 —z=1)(zr + Dz[L + 1, 00).

Note that (@ — ¢)p—2 = 1o if L > 0. It suffices to show that H(z) satisfies (2)y, and
(1)p-1,(2)p—1,(1)p—2 if L > 0. Indeed suppose H(z);, = ar. Then x; = ar, — 1 and so we have
xr4+1 < bpy1 and v, = 0 (because zp, # ¢p, = ap — tp). Therefore H(x)r4+1 <,, br4+1 + t1, that
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is, (2)r holds. Suppose L > 0. Since xj, > by, we can see that H(x) satisfies (1)r-1,(2)r—1
(note a1 —7p—1 =0= 11 =0, because a1 > 1). If H(x)p_o =0, then ¢;,_s = 0 and so
H(z)p—1 > br,—1 — tr,—2 by Claim 7.4 (i7), that is, (1)1_2 holds.

Subcase (1)-2: xp =ar, — 1 with zp 11 > bp41, or xp = ay.

L —2

In this subcase,

H(z)=(a—0)[0,L)(xr+1 — 1)z[L + 2, 00).

Note that (¢ — ¢)r = ¢, and zp41 > br41 by Claim 7.4 (i4i). It suffices to show that H(x)
satisfies (1)1 and (1)z. Suppose H(z)r+1 = 0. Then by 41 =0 (since z,41 —1 > br41). So by
Remark 2.8, we have 741 = 0 = bp42. Hence H(x)r42 >,,,, 0 = br42 — tp41, that is, (1)r41
holds. Since x 1 —1 > br41, we can see that H(z) satisfies (1)y,.

Case (2): L > 0is even and xj, < by..

In this case,

H(z) =(a—1¢)[0,L—3] =2 0 z[L, 0).

Note that (a—c)p—3 = ap—3—tp—3 if L > 2. It suffices to show that H (z) satisfies (1)r—1, (1)r—2, (2)r—2
and (2)_3 if L > 2. Since t,_1 =1 (by Claim 7.4 (7)) and x, < by,

we can see that H(z) satisfies (1)_1. Suppose H(z)r—2 =0. Then ¢f,_o =1 and so H(z)r_1 =
0>,, , br—1 — tr—2 (by Proposition 2.7), that is, (1)L_2 holds. We can see that H(x) sat-
isfies (2)p_2 (note 73 = ar_2 = (2 = 0, because ar,_o > 1). Suppose L > 2 and
H(x)p—3 = ar—3. Then ¢,_3 =0 and so H(x)r—2 <,, , br.—2 + t,—3 by Claim 7.4 (i), that is,
(2)—3 holds.

Case (3): L is odd and xj, < by,.

Subcase (3)-1: xy > 1, or x;, = 1 with zp41 > br41.

In this subcase,

H(z)=(a—¢)[0,L—2] 71 (xp — 1)z[L + 1, 00).

We can see that H(z) € M by the similar argument to Subcase (1)-1.
Subcase (3)-2: xp =1 with xp 1 < bp4q, or xp = 0.
In this subcase,

H(z) = (a—0c)[0,L}(xr+1 + 1)z[L + 2, 00).

We can see that H(z) € M by the similar argument to Subcase (1)-2.
Case (4): L is odd and xy, > by,.
In this case,

H(z) = (a—¢)[0,L—3](ar—2 —tr—2)ar—1x[L, o).

We can see that H(x) € M by the similar argument to Case (2). O

Here we equip the space [],cy,{0,1, -+ ,an} with a usual metric d defined by d(x,y) =
(1 + min{n € Ng | @, # yn})~! for & # y. Then M is compact and moreover by the definition
of L(x), we have

Remark 7.6. H: M — M is continuous.
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Now we introduce carry formula:

Carry formula
(Cov(z) =1+ v((zo — ap)(z1 — 1)x[2,00))
(C)n v(z) = V(I[O,n — (@ + (=1 1) (zn — ap)(@ng1 — Dafn + 2, oo)) for n € N

Proof of Carry formula. Recall the definition of v, (x,) in Definition 3.3. First, by ey =

0, e; = 1o and recursive equation (1), we have

1+ Vo(IL'O — ao) + 1/1(1‘1 — 1) =1+ Vo(l'o) — apo + Vl(xl) — (—1)L0(l/10z0 = I/()(:L’()) + V1(£L‘1)

and so carry formula (C)g holds. Let n € N. By multiplying both sides of recursive equation (1)
into (—1)» [[}_, j, we have

n+1

(=D [ ey
j=0

(_1 Ln 1

enllla]_an

(recall (—1)¢+t = (—1)¢»(—1)"). Hence

e”H
(6%
]

Vn—1<xn—1 + (_1)%,1) + Vn<xn an) + Vn+1(-77n+1 - 1) = Vn—l(-rn—l) + Vn(xn) + Vn+1(-77n+1)

and so carry formula (C),, also holds. O
Define = by
r =y <= {vi=z)={wiQy)
Then we can rewrite carry formula as
(C)g = = (o — ap)(z1 — 1)x[2, 00)
O) = = (xo + ap)(z1 + 1)z[2, 00)
(O),, x = z[0,n — 2)(xp—1 + (1) *)(xp, — apn)(Tpt1 — z[n +2,00) forn € N
O x = z[0,n —2/(xp_1 — (1)) (Tp + an)(Tps1 + 1)x[n + 2,00) for n € N.
By using carry formula, we have carry operation: Typical operation is as follows. (Note

5=s+ (—1)° for each s € {0,1}.)
(co+1)c[l,00) =(ap +75) « (ag —t2) 13 (ag —tq) c[5,00)
= 70 (—21) (az —t2) L3 (a4 — 1) c[5,00) by (C)y
= w (@-m)(e2+m) (a1 )5 00)by (O)F
f Lo (a1 — Ll) > (_E) (CL4 - [,4) 0[57 OO) by (0)2_
f Lo (a1 — Ll) ) (CL3 - E) (CL4 + E) 6[57 OO) by (C)gr

and so on. Now we can show

{v}oH = R, o{v}.

Lemma 7.7.
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Proof. Note that for each x € M

Ro({rh()) = {v(@) + a} = {v}( (@0 + a1, 00)).

It is sufficient to show (xg + 1)z[1,00) = H(z). First we have (co+ 1)¢[l,00) = a— ¢ = H(c) by
v v
using the above carry operation indefinitely.

Next let ¢ #x € M and L = L(z).
Case 1: L =0.
o If xg <ap—1orifxzy=ay—1and zq <by, then (29 + 1)z[l,00) = H(x) by definition.
o If 1o = ap — 1 and 7 > by or if g = ag, then xg = ap — 7y (because xg # cg = ag — tp) and so
by carry formula (C)g
(o + 1)z[1,00) = (ag + to)x[l,00) = to(x1 — 1)x[2,00) = (a — ¢)o(x1 — 1)z[2,00) = H(x).

v

Case 2: L > 1.
Then (zo+1)z[1,00) = (co+1)c[1, L—1]x[L, 00). By carry operation as above (via carry formulas
(C)a’ (C)i’—7 Ty (0)2:_2), we have

(a —¢)]0, L —3Jtp—2(—tr—1)x[L, 00) if L is even
(a—0o)0,L —3|(ap—2 —Tr—2)(ar—1 +Tr_1)z[L,00)if L is odd.

(xo + 1)z[1, 00) = {

Subcase 2-1: L is even.

o If x;, < by (i.e. Case (2) in Definition 7.3), then ¢t;,_1 = 1 by Claim 7.4 (i) and so we have
(xo + 1)z[1, 00) = (a —¢)[0,L —3]iz=2 0 z[L,00) = H(x).

e Suppose xy, > by. By carry formula (C’)’LL_1

(xo + 1)zx[l,00) =(a —¢)[0,L — 3]tr—2(ar—1 —7=1)(zr + 1)x[L + 1,00)

v

=(a—¢)[0,L —2](ap—1 —7p—1)(zr + 1)z[L + 1,00).

x Ifep <ap—1lorifxr, =ap —1and xpy1 <bpiq, then (zg + 1)z[l,00) = H(x).
x Ifxp, =ar, —1and xpy1 > bpyq orif x, = ap, then xp = ap — 7 (since xy, # ¢, = ar, — )
and so

(xo + 1)x[l,00) =(a —¢)[0,L —2](ap—1 —z—1)(ar + tr)x[L + 1, 00)

v

=(a—0o)[0,L—-2)(ap—1 — tp—1)tr(xp+1 — )z[L +2,00) by (C)]

v

=(a—0)[0,L)(zp+1 — 1)x[L + 2,00) = H(z).

Subcase 2-2: L is odd.

Similarly we can show (zg + 1)z[1, 00) = H(x). O
Discussion. In the above proof, we used carry operation. Remenber the outline of this proof:
First consider the sequence (g + 1)z[l,00) (naive adding 1). We applied carry operation to
(xo+1)z[l,00) in order to make the deformed sequence belong to M (normalization by carry),
and then the normalized sequence is H(x). In this process, we used carry operation at most
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L(x) 4+ 1 times (precisely, L(z) — 1, L(x) or L(z) + 1 times). Moreover we will see (by theorem
1.1) that, among deformed-by-carry-operation sequences of (zg + 1)z[1,00), H(x) is the unique
sequence which belongs to M. O

Next we show H : M — M is a bijection. Before making a formal definition of the inverse
H~! we give another carry operation, by using carry formulas (C){, (C);,(C)3 and (C)3, in
the following way:

((@a=c)o—1)(a—c)[l,00)= (=7o) (a1 —t1) 2 (az—13) ta (a—c)[500)

=(a0 —n) (@ +m) 2 (a3—w3) t (a—c)[500)
= < o (-2) (a3 —13) s (a—c)[5,00)
= < c1 (a2 —72) (a3 +73) s (a—c)[b,00)
= c1 C2 3 (1) (a—c)[5,00)

and so on. This is the inverse operation of adding 1 (i.e. H), that is, adding (—1).
Definition 7.8.  For each x € M, define a sequence K (x) as follows. Define firstly
K(a—c)=c.
Let a — ¢ # x € M and define
J =J(x) =min{n € Ny | x,, # a,, — cn}.
Case (I): J =0, or J>0is even with z; < b;. Define

C[Oa J — 2] Lj—1 (xJ - 1)33[‘]_'— 1,00)
K(x) = ifry>lorifr;=1and x;41 > by
) 0, TN + DT + 2, 00)

otherwise.

Case (II): J > 0is even with z; > b;. Define
K(x) =¢[0,J —3|(aj_2 —Tj—2)aj_12[J,0).
Case (III): Jis odd with z; > b;. Define

cl0,J —2](aj-1 —tj=1)(zg + 1)x[J + 1, 00)

K() ifa:J<aJ—1oriijzaj—landxjﬂSbJH
T) =
cl0, JJ(xyp1 — D[] + 2,00)
otherwise.

Case (IV): Jis odd with z; < by. Define

K(xz) =c[0,J — 3] 77=2 0 z[J, 00).
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In the same way as the proofs in Claim 7.4 and Lemma 7.5, we can show the following:

Claim 7.9. Leta—c#x € M and J = J(x).
(i) In case (IT) or (IV') (i.e. when J > 0 is even with z; > by or J is odd with z; < b;),

ry_1+ 1if J is even
xry_1 — Llif J is odd.

>bjyj_oif J is even

1=1 K 1=
tj—1 , K(x)y—1 { < bj_qif J > 1 is odd.

and K(z)j_2 {

(24) When J > 0 is even with 1 < x; < by or J is odd with ay —1 > z; > by,

<by_q1if J is even

K(z) ;.
(@)1 {z by if J is odd.

(71) When J is even with z; = 0 or J is odd with z; = ay,

< bjy1if J is even
ZJj+1 oo
> by if J is odd.

Lemma 7.10.  For each x € M, K(z) € M.
Now we show

Lemma 7.11. H : M — M is bijective and H™! = K.

Proof. We show K o H =id);. By definition, K o H(c) = c.
Let x € M with « # ¢ and L = L(z). Write

j = J(H()).

Case (1): L=0,or L > 0is even and x; > b.
Subcase (1)-1: zp <ap —1,or xp =ap — 1 with xp41 < bpyq.
In this subcase,

H(z)=(a—0)[0,L—2](ap—1 —tz-1)(zr + 1)z[L + 1, 00).

Suppose L > 0. Then j = L — 1 because (a — ¢)r,—1 = ap—1 — tr—1. So since j is odd with
); > b; by Claim 7.4 (i7), we apply the case (III) in Definition 7.8 to H(z). Now since
)j =a; —7; and H(x)j41 = o +1 > bp, = bjy1, we have K(H(x)) = [0, j](H ()41 —
1)H(z)[j + 2,00) = [0, L — 1]zpz[L + 1,00) = x.

Suppose L = 0. Then H(z)y = x9 + 1, H(x); = x1. Moreover we have

H(x
H(x

. Jlifzg=0and ;=1
)= 0 otherwise.

(Indeed, notice that H(z)o = (a —¢)o (i.e. xg+1=19) <= 29 =0 and ((c = 1. If o = 0 and
tp = 1, then by < a; by Proposition 2.7 and so since z € M, H(z); < b <a; — 1< (a— )1,
hence j = 1.) In case j = 1, we apply the case (IV) to H(z) (since H(z); < by) and so
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K(H(z)) = 0z[j,00) = x (since 9 = 0). Next consider the case j = 0. Then we apply the
case (I) to H(x). Note that if H(x)g = 1, then zp = 0 and ¢y = 0 (because j = 0) and hence
H(z), > by (since x € M). Now we have K (H(z)) = (H(x); —1)H(z)[j + 1,00) = =.
Subcase (1)-2: z;, =ar — 1 with 41 > bp41, or zp, = ar.
In this subcase,

H(z) = (a—¢)[0,Ll(xp+1 — 1)z[L + 2, 00).

(Note that z;, = ar, — 71, because zy, # cr.) Then

. L+2ifo+1:aL+1 and ¢ty =1
| L + 1otherwise.

(Indeed, H(x)p+1 = (a —¢)py1 (ie. zpy1 — 1 =apy1 —tpy1) <= xp41 = apy1 and tp41 = 1.
If zpv1 = apyq and ¢4 = 1, then bypyo > 0 by Proposition 2.7 and H(x)p412 > brio >
1 > (a—c¢)py2, hence j = L 4+ 2.) In case j = L + 2, we apply the case (/1) to H(z) (since
H(z)r+2 > br42) and so K(H(x)) = ¢[0,5 — 3](aj—2 — 5;—2)aj_1H(x)[j,00) = z (because
x, = ar —tf, and xpy1 = apy1). Consider the case j = L + 1. By Claim 7.4 (iii), we
apply the case (IIT) to H(x). Note that if H(z)p41 = ap41 — 1, then xp4; = apy; and
tr+1 = 0 (since j = L+ 1) and so H(x)p12 = 242 < bpio (since z € M). Now we have
K(H(z)) =¢[0,7 —2](aj—1 —;=1)(H(x); + 1)H(z)[j + 1,00) = = (because z1, = ar, — I1,).
Case (2): L > 0is even and xy, < by,.
In this case,

H(z) =(a—¢)[0,L—3]7p—2 0 z[L, c0).

Then j = L — 2 because (a — ¢)p—2 = tr—2. Since H(z); < b; by Claim 7.4 (i), we apply the
case (I) to H(x). Note that if H(z)r,_2 = 1 (that is, t,—o2 = 0), then ;2 = ¢p_2 = ar_»
and so by Claim 7.4 (i), we have H(x)j41 = 21 —1 < b1 — 1 (because z € M). Hence
K(H(x)) = 0, )(H (@)1 + DH @) +2,00) = .
Case (3): L is odd and z, < by,.
Subcase (3)-1: zp > 1, or xp =1 with 11 > br41.
In this subcase,

H(z)=(a—¢)[0,L—2] 7p—1 (xp — 1)z[L + 1, 0).

Then j = L — 1 because (a — ¢)p—1 = tr—1. We can see that K(H(x)) = x by the similar
argument to Subcase (1)-1 with L > 0.
Subcase (3)-2: z, = 1 with 41 < bpy1, or zp = 0.
In this subcase,
H(z) = (a—¢)[0,Ll(xp4+1 + 1)z[L + 2, 00).

(Note that z;, = 77, because x # cr.) Then

. JL+2itzpy=0and tp11 =1
J= L + 1 otherwise.

(Indeed, H(x)r+1 = (a — ¢)41 (that is, 41 +1 = tp41) <= 241 = 0 and ¢y = 1. If
xr4+1 =0 and ¢ty = 1, then by 4o < apy2 by Proposition 2.7 and so since x € M, H(x)p42 <
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br+2 < apyo —1 < (a—c)py2, hence j = L 4+ 2.) We can see that K(H(z)) = = by the similar
argument to Subcase (1)-2.

Case (4): L is odd and xp > by.

In this case,

H(z)=(a—¢)[0,L —3|(ar—2 —Tr—2)ar_1z[L, c0).

In case L > 1, we have j = L — 2 (because (¢ — ¢)p—2 = ar—2 — tr—2) and so K(H(z)) = «
by the similar argument to Case (2). Consider the case L = 1. Then j = 0. So we apply the
case (I) to H(z). Note H(z)g = ap = [L] + 10 > 1 because ¢c = 1 by Claim 7.4 (i). Hence
K(H(z)) = (H(z)o — 1)H(z)[1,00) = x (since H(x)g = xo + 1 by Claim 7.4 (7)).

We complete the proof of K o H = idj,;. Similarly we can show H o K =idj,. U

Proof of Theorem 1.1 (1) and (2).
Recall Remarks 6.5 and 7.6, Proposition 4.1, Lemmas 7.7 and 7.11. It suffices to show

0aU0s C Di={¢ € [0,1) | v} 1(€) > 2}.

Recall examples in the end of Section 3: if x is 0-left extremal or O-right extremal, then x € M and
{v}(x) = 0; when 5 > 0, if x is 1-left extremal with z¢ = by or 1-right extremal with zo = by — 1,
then x € M and {v}(z) = 5. Hence {0,5} C D. Since H is bijective and {v} o H = R, o {v},
we have O, UOg C D. O

Lemma 7.12.  We have the following:
(1) ¢ is left extremal <= a — c is left extremal.
(2) ¢ is right extremal <= a — c is right extremal.
(Hence, c is not extremal <= a — c is not extremal.)
Moreover when c is k-left or k-right extremal,

0 if k is even
bry1 = e
ap+1 if k is odd.

Proof. (1) Let k € Ny. First we show that if ¢ is k-left extremal, then for any n > k

1if £ is even 0 if k is even
ln = 07 €n = . . and bn+1 — . .
0if k is odd an+1 if k is odd.

Since ¢ = eray (and ag # 1), we see that

1if k£ is even

e = T ANG Ck {Oifkisodd.

Moreover e, = epyo because Cpio = €pi2aki2. S0 €x11 = |ex — tx| = €x = erio. Since
bi+1 = bpy1 — (1)1 = cpy1 and 111 = |egr1 — exs2| = 0, we have byq = 0 if k is even;
bi+1 = ag41 if k is odd. Now we have the desired result by Remark 2.8.
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Next we show that c is k-left extremal = a —cis (k + 1)-left extremal. By the above, we
have that for each n > k + 1 with n =k + 1 (mod 2)

ay if k is even
(CL - C)n - . . = €Enln
0 if k£ is odd

and

0 if k£ is even
—C)n = = bn = bn —(—=1)° ns
(4= o {anH if k is odd } 1= bn = (21

that is, a — ¢ is (k + 1)-left extremal.
Similarly, we can show that a — c is k-left extremal = ¢ is (k + 1)-left extremal. The proof of

(2) is also similar. O
Proposition 7.13.  The following conditions are equivalent:

(1) by € {0,ar} for some k > 1.

(2) p € O,.

(3) ¢ is extremal.
Proof. (1) = (2): Recall the equations in the proof of Proposition 2.7 (4), that is,

571 - (bn - Ln)an - (_1)Ln/8n+1an-
and
1- ap — Bn = (an - bn - Ln)an - (_1>Ln(1 — Op41 — 6n—|—1)an

(Recall 5y = 8, ap = a.) By induction on N, we can show that
N
B = Z )€ (b — L, 1_[04J —)N (= )6N+15N+1Haj
§=0
N
l—a-p= Z n—bn—tn Haj —1)NFH(— 1)6N+1(1—aN+1—6N+1)H043
§=0

(recall g =0, e; =19 and (—1)°m+* = (—1)°"(—1)"n). Taking N — oo, we have

i b—Lnli[

n=0
(i)l —a—p = Z ) (an — by —Lnﬁ

by Lemma 2.6.

Suppose by = 0 for some k. Then by Remark 2.8, we have b,, — ¢, =0 (¥n > k) and so by
Lemma 2.5 and (i), 8 € O,.

Suppose by = ay for some k > 1. Then by Remark 2.8, we have a,, — b, — t,, =0 (Vn > k)
and so by Lemma 2.5 and (i), l —a— 8 =qa+p (I¢,p € Z), and hence § € O,,.
(2) = (3): Firstly, consider the case § = 0 (i.e. dual Ostrowski case). In this case, ¢, = b, =



276 MASAMICHI YOSHIDA

en =0 (VYn) and so ¢ = ap0az0- - - is O-right extremal.
Let 0 < 8 € O,. It suffices to show if ¢ is not right extremal, then c is left extremal. Suppose ¢
is not right extremal. Here we use the following notations:

O,={H"(z)|ne€Z} forxeM

and let 1 be O-right extremal and b be 1-right extremal with by = by — 1. So 1,b € M and
{r}(1) =0,{r}(b) = 5.

Since c is not right extremal, a — ¢ is also not right extremal by Lemma 7.12. Therefore since 1
is O-right extremal, we have by the definition of H (and H~1!)

Vo € O1, dk € N : even such that z is k-right extremal.

On the other hand {v}(b) = {v}(2*) for some z* € Oy because {v}(b) = 8 € On = Op31) =
{v}(01). Since b is right extremal, we have b = z* by Lemma 6.3. Thus b is 1-right and
k-right extremal for some even £ € N. Then by (ii) in the proof of Lemma 6.1, we have
tn =0, e, = ek, by =eran, (VYn > k). So clk,0) = ar0ax20--- and we can see that if e, = 0
then c is (k + 1)-left extremal; if e, = 1 then c is k-left extremal.

(3) = (1): by Lemma 7.12. O

In particular, we have that 8 ¢ O, if and only if 0 < b,, < a,, for each n > 1. In next section
we use the following:

Lemma 7.14. Let x € M. Then we have
(1) x is left extremal <= H(x) is left extremal.
(2) x is right extremal <= H(x) is right extremal.

(Hence, x is not extremal <= H(x) is not extremal.)

Proof. We also use the notation O, (the orbit of z under H) as above.

(1) It is sufficient to show if z € M is left extremal, then y is left extremal for each y € O,.
Suppose x € M is left extremal.

Case 1: c is not left extremal.

Then a — ¢ is also not left extremal by Lemma 7.12, and so we have, by the definition of H (and
H™1), y is left extremal for each y € O,.

Case 2: c is left extremal.

Then a — ¢ is also left extremal by Lemma 7.12, and hence z is left extremal for each z € O (by
the definition of H and H~!). Moreover 3 € O, by Proposition 7.13. Since x is left extremal
and so {v}(z) € On = Opye) = {¥}(O;), we have x € O, by Lemma 6.3, that is, O, = O..
Similarly we can show (2). O

§ 8. Odometer model theorem

In this section, we introduce the notion of Denjoy systems (cf. [4], [5]) and show the («, 5)-
odometer H : M — M is topologically conjugate to a Denjoy system with cut number 1 or
2.
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l
Let | € Ng and w = wowy ---w; € H{O,l,--- ,an}. We say w is («, §)-admissible if w
=0

satisfies conditions (1), (2), in Deﬁnitigr_l 3.1 for each 0 < n <[ — 1. For convenience’ sake,
we regard the empty word ¢ as an (o, f)-admissible word. When w = wow; ---wy; is («, 5)-
admissible, define

[w] = {x € M | z[0,]] = w}.

For each («, #)-admissible word w, we define associated extremal sequences, [ and %, as follows:

Definition 8.1 (I and 7).  Foreach k > 1 and each («, 3)-admissible word w = wowy « - - wk_1
of length k, define

[ ko if wy_q # ep—r1ap—1 R ko ifwp_y #ep_1ap—1
kE+1if w1 = ep—1ar-1, E+1if wp—1 =ep—1ak-1

and let [ = [{’l{ - - - be the L"-left extremal sequence with
10, L" — 1] = w if w1 # ex—1ax-1
’ w(by — (=1)%*1ep_1) if w1 = ep_1ar1

and ¥ = r{’ry’ --- be the R"-right extremal sequence with

w if w1 # €x—1ak-1
w(bk — (—l)ek_lbk_l) if w1 =ep_1ak_1.

r[0,RY — 1] = {

Denote the empty word by ¢ and let [? be 0-left extremal and % be 0O-right extremal.

Lemma 8.2. Let k € Ny and w = wow; - - - wg—1 be (a, B)-admissible. Then we have the
following:
(1) {1, r} C [w].
(2) v(I™) <v(r*). Write

Iy = [v(I"),v(r")] (CR)

and denote its length by |L,|. For any x € M, we have lllglo }Iﬂc[O,l}‘ =0.
(3) If wwy, is (o, B)-admissible, then Iy, C Iy.
(4) If wor, and wwy are (o, §)-admissible and v # wg, then Ly, Nint Ly, =0 where int I is

the interior of I.

Proof. (1) It suffices to show {I“, 7"} C M. The case w = ¢ or wi_1 ¢ {0,ax_1} is clear by
Lemma 3.6. Consider the case wi_1 = ex_1ap—1. We have, by Lemma 3.6, that [ = w(by —
(—1)¢ =ty _1)I"[k + 1,00) € M. In order to prove r¥ € M, it suffices to show r* = wr*[k, 0o)
satisfies the condition (1')x_; in Remark 3.2. Since 11 < by < ax — tkx—1 (by Proposition
2.7), we have 1}’ = egar >, b — (—1)%11_1, that is, 7" satisfies (1')x—1. The proof in case
Wg_1 — €p_10k_1 1S similar.
(2) First we show v(I*) < v(r*). By Lemma 3.5, v(I?) = 0 < 1 = v(r?). So suppose k € N and
write vy, = Zﬁ;é Un(wy,). When wi_1 ¢ {0,ar_1}, we have (by Lemma 3.5)

k—1 k—1 k—1

v(r?) —v(lY) = vy +ﬁHaj — (vw — ek Haj) = Haj > 0.
§=0 §=0

J=0
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Consider the case wi_1 = ex_1ax_1. Then

k
V(lw) = Uy + Vk(bk — (—1)%’1%_1) — €k+1 H Qi
j=0
k—1 k
v(r') = vy, + e H a; = vy +ex(ar + (—1)"*ag41) H «; (by recursive equation (1)).
j=0 Jj=0
So
v(r*) —v(I")
k
1 e
5=0

D

(ar + (=) agq1) — (=) bk — (=) 1g—1 — (=1)"* Br41) + €x41

=erar — (=) (b — (=1)*'1p_q1) + €x(—1)*ags1 + (=) (=1)"* Brr1 + €pt1-

Here recall that

€1 =Llp_1 < €. =0 <— €1 = Lk
(by the definition: e,, = |e,,—1 — t,—1|) and that
_(_1)619—1%71 — (_1)61@%71

(because (—1)¢ = (—1)¢-1(—1)*-1 and (—1)°s = —s for each s € {0,1}).
Therefore

v(r?) —v(™) ar —bg — tp—1 + (=) "* g1 + (—=1)"*Bry1 +tif e =0
(b) b — th—1 — (=1)"*Bry1 +xif e =1

7=0
—1
ak—bk—Lk_l-i-l—{ﬁk ife, =0
bk—Lk_l—l—l—{_—Bk ife,=1
O

(by Remark 2.2 and Lemma 2.4)

>0 (because tp—1 < bp < ap — tgp_1),
that is, v(I*) < v(r"). Notice that

1 — B

y(rv) — v(Iv) B o —tp_q1if e, =0
k

& + lg—1 ifep =1
Q ag

7=0
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by the above equality (T) and recursive equations (1) and (2). Thus
( k—1
(1 — Bk — kalak)H a if € = 0
_ §=0
v(r) = (") = -
(ﬁk —i—Lk,lOék)H Q; ife, =1
\ J=0
The proof in case wi_1 = €x_1ax_1 is similar. Now, by Lemma 2.6, we have that llim |Ix[0’l]‘ =0
—00

for any x € M.

(3) We show v(I*) < v(I***). The case w = ¢ is clear. Suppose k € N.
Case 1: wi_1 # €p_10k_1.

In this case

k—1
v(lY) = vy — ek H a;.
j=0

If w, = egayg, then [t = w(egag)(bpr1 — (—1)*,)l* [k +2,00) = I by definitions of [*** and

[, and so v(I*"*) = v (™).

Suppose wy # erak. Then by Lemma 3.5 and recursive equation (1)

k k—1
vl —v(1"Y) = v (wg) — ert1 H aj + ep H a;
j=0 §=0

k

k
= yk(wk) — €k+1 H Oéj + ek(ak + (—1)”“0%4_1) H aj.
7=0 7=0

Note that if e, = 0 then wy > 1; if e, = 1 then ap — wr > 1. Hence

¢

V(lwwk) _ I/(lw) B Wk — (_1)Lkﬁk+1 — Lk if exr =0 (SO €pi1 = bk)
A =
H A ( —wk + (1) Brgr — o + arp + (—1)"*pqr if e = 1 (s0 €pq1 = 1g)
7=0

( _
wk—{ﬂ} ifek:()
Qg

= (by Remark 2.2 and Lemma 2.4)

Qg

-1
ak—wk—{ﬁk }ifekzl
\

> 0.

Case 2: wip_1 = €x_1Qk_1.
In this case, since wwy, is (a, B)-admissible, we have by Remark 3.2

Wk Zek by, — (_1)ek_1bk_1 (: by, + (—1)ekbk_1).

We show ("% [k 4+ 1,00) = Y[k 4+ 1,00). It is clear if wy # erag. Suppose wy = erax. Then
exar = b + (=1)%1p—1 = by — (—=1)°*-11_1. By (4) in the proof of Lemma 6.1, we have
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tn, =0, e, = ek, by =era, (Vn > k). We can see that if e, = 0 then [*"*[k+1,00) =000--- =
[“[k+1,00); if e =1 then " [k + 1,00) = agq1ak42ak+3--- = 1"[k + 1,00). Now we have

I/(lwwk) — V(lw) = Vk(wk) - I/k(bk - (_1)61@—1%_1) Z 0.

(r*). Therefore L., C L.

Similarly we can show v(r*“*+) < v(r
< (—=1)*wg. Then vy # €xar and wy # erak. So we have

(4) Consider the case (—1)%wv

k k
vV — v (r?) = v (wk) — egt1 H a; — VE(vg) — €rt1 H a;
j=0 j=0
k
= ((—1) F(wg — vg) ) H a; >0
7=0
hence Iy, Nint Ly, = 0. The proof in case (—1)%* vy > (—1)% wy is similar. O

Now we have local version of tail inequality:

Proposition 8.3.  Letk € Ny, w = wows - - wi_1 be (o, §)-admissible and I, = [v(I*),v(r")].
Then
v(w])) =1, and y’l(z’nt L) = [w] \ {1, r*}.

Proof. First we show that v([w]) C I, and V([w]\{lw,rw}> C (v(I™),v(r™)) (ie. [w\{I¥,r"} C
v=t(int I,)). Let x € [w]. We show that v(z) > v(I%) and that if v(z) = v(I*) then x = V.
When w = ¢ or wi_1 # ex_1ar_1, by Proposition 5.2 and Lemma 3.5

oo oo

v() =) = valzn) = Y ve(lf) =0

and if v(x) = v(I*) then z[k,o0) = ["[k,00) and so x = [*.
Consider the case wi_1 = ex_1ak—1. Then we have xp >., by — (—1)%11;,_1 = [}’ by Remark
3.2 (because z € M and z;_1 = ep_1ar—1) and so

On the other hand, by Proposition 5.2 and Lemma 3.5

Z Un(2p) > Z Un (L),
n=k-+1 n=k+1
Therefore since v(x) — v(I") = v (k) — ve (1) + Z Un(Tp) — Z vn (1), we have that v(x) >
n=k+1 n=k+1

v(1") and that if v(x) = v(I") then x;, = [} and z[k+1,00) = ["*[k+1,00) (by Proposition 5.2),
thus = = {". Similarly we can show that v(z) < v(r") and that if v(x) = v(r") then x = r™.
Next we show the following claim (recall w = wowy - - - wg_1): for each (a, §)-admissible word v
of length k,

v #£w = v([v]) Nint I, = 0.



DENJOY ODOMETER WITH CUT NUMBER 1 OR 2 281

In case k = 0, there is nothing to prove and so suppose k € N. Let | = min{n | v, # w,} and
¢ = wow; ---wj—1. By Lemma 8.2 (3), we have v([v]) C I, C I, and int I,, C int I.,,. Hence
v([v]) Nint I, C Iy, Nint Iey, =0 by Lemma 8.2 (4).

Next we show v=1(int I,) C [w]\ {I¥,r*}. Let x € v=i(int I,). If 2[0,k — 1] # w, then
v(z) ¢ int I, by the above claim, and so it is a contradiction. Thus x € [w] \ {I*,r"}.

Finally we have v([w]) D I, because v : M — [0, 1] is surjective (by Proposition 4.1), v~ (int I,,) C
[w] \ {I*,r*} and v({I¥,r"}) C v([w]). O

Proof of Theorem 1.1 (3).
Let € M. By Proposition 8.3, v(z) € V([Q:[O,Z]D = I,j0,; and moreover we have

llim ‘Im[o,l]{ = 0 by Lemma 8.2 (2). Hence v : M — [0,1] is continuous, and eov : M — St is
—00
also continuous where e(n) = exp(27in). O

We recall the notion of Denjoy systems (cf. [4], [5]) and prove Theorem 1.2.
Suppose ¢ : St — S! is an orientation-preserving homeomorphism. (Naturally we identify S*
with [0,1) via e[p1).) Letting ¢ : R — R be a lift of ¢ and { € R, lim @ exists where
n—oo

™ is the n-th iteration of ¢, and moreover its fractional part o € [0,1) is independent of the

@
choices of ¢ and . We say p(p) := « is the rotation number of . One can show that p(y)
is irrational if and only if ¢ has no periodic points. Now we can state the Poincare’s rotation

number theorem:

Suppose the rotation number « of ¢ is irrational. Then there is a degree 1 map F' : S — S?
such that Flop = R, o F (such F is called a factor map of the dynamical system (S, ¢)).
Furthermore we have the following three properties.

(1) F is unique up to rotation (i.e. when G is a factor map, G = Ry o F' for some 6).
Define A = {¢ € St |fF1F(¢) = 1} (so p(A) = A and A is independent of the choice of factor
maps), and let

X =cl A (the closure of A).

(2) The following dichotomy holds: A = S, otherwise X is a Cantor set.

We say that ¢ is a Denjoy homeomorphism if the second case holds (i.e. A # S1). In this case,
denote the restriction of ¢ to X by ¢x : X — X. The subsystem (X, ¢x) is called a Denjoy
system, and a connected component of S\ X is called a cutout interval; in particular, a cutout
interval is an open arc.

(3) Suppose ¢ is a Denjoy homeomorphism. Then X is the unique minimal set under ¢ (here
we say X is minimal if closed p-invariant subset of X is () or X; it is clear that the minimality

of X is equivalent to the condition each y-orbit of X is dense in X) and furthermore we have
X\ A={¢e€S"|¢is an endpoint of some cutout interval}

and §F(cl I) = 1 for each cutout interval I. So, in particular, the restriction Fx : X — St of F
to X is surjective and $Fy ' Fx (&) = 2 for each & ¢ A. O

Let ¢ be a Denjoy homeomorphism. By the above third property (3), the following diagram
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commutes:

X&X

N

o ——

(e

and Fx is at most 2-to-1 surjective; precisely £ € X \ A if and only if £ is an endpoint of some
cutout interval 7, and in this case Fiy ' Fx (£) is the set of endpoints of I.

We say 1 € S* is a double point of Fx if n € Fx (X \ A). Since there is countably many cutout
intervals, the set Fx (X \ A) of double points is countable and R,(Fx (X \ A)) = Fx(X \ 4).
Therefore there is d € NU {oo} such that

U

(X \A) = U e (disjoint) for some {nz}{_; C S*

in other words, the set of double points is split into at most countably many R,-orbits (by the
above first property (1), we can suppose 11 = a without the loss of generality). Moreover note
that the cardinality d is independent of the choice of F'x’s. We call d the cut number of ¢ (or

x)-

For each closed arc I C S', we write I = [£,n] where ¢ (resp. 7) is the minimum (resp.
maximum) of [ in circular order (that is, the counterclockwise orientation of S') and so write
¢ =minl, n =maxI and int I = (£,n) where int I is the interior of I:

n = max [

I

& =min [

Remark 8.4. Let £,n € St be distinct double points of Fx (so F~Y(&) and F~1(n)
are disjoint closed arcs). Define & = max F~1(¢), § = min F~Y(n) and let I = [£,n]. Then
(&, UF (int T) = [¢,7] N X. (So, in particular, {£,7} U Fx'(int I) is closed.)

Proof. Since F : S1 — S! is degree 1 (hence F is (continuous) monotone non-decreasing), we
have F~(int T) = (&,7). So Fx'(int I) = (&,7) N X. O

Proof of Theorem 1.2.
Let (X, ¢x) be a Denjoy system with rotation number « and a factor map F' which satisfies
Fx(X \ A) = O, U Op where we identify F with (e|jp1)) "' o F' : S* — [0,1). Define

E={rx €M |x:extremal} and N=M\E.

Recall that the restriction, Fy : A — [0,1)\ O, UOg, of F to A is bijective and that O, UOg =
{v}(F) and the restriction, {v}y : N = [0,1)\O,UO3, of {v} to N is also bijective (by Theorem
1.1).
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Define v : X — M in the following way. For each £ € A, define

(&) = {v}y' o F(&).

Let ¢ € X \ A. Then F(§) € O, UOgs and F~1F(€) is the closure of a cutout interval. So by the
argument in the proof of Theorem 1.1 (1) and (2), we have F(§) = {v}(z) = {v}(y) for some
doubleton {x,y} where z is left extremal and y is right extremal. Define

_ Jzif £ =max F~1F(€)
vl = {yif§ — min F~1F(€).

First we show 9 : X — M is bijective. Indeed, we can naturally define the inverse 1~! :
M — X as follows. For each x € N, define

Y @) = Fito {v)(x)
and for each x € F, define

_ max F~ v} (z)if x is left extremal
() = { {v}(x)

min F~H{v}(z)if z is right extremal.

(Note {v} oy = Fx, ¢»(A) = N and (X \ A) = E by definition.)
Next we show 1 o = H o). For each £ € A,

o) ={viy' o Fop&) ={v}y o Rao F(§) = Ho{v}y' o F(§) = Hoy(§).

Since ¢ : 81 — S is orientation-preserving, notice that ¢ = max F~1F(£) if and only if p(£) =
max 1 Fp(€) for each € € X\ A. For each z € E, by Lemma 7.14, z is left extremal if and only
if H(z) is left extremal. Hence, for each £ € X \ A, we have that 1) o p(§) is left extremal if and
only if H o (&) is left extremal. Since {v}otpop(§) = Fop() = Rao F(§) = Ryo{v}oy(§) =
{v} o H o(§), we have (by Lemma 6.3) 1) o p(§) = H o (&) for each £ € X \ A.

Finally we show v : X — M is continuous. It suffices to show that =1 ([w]) C X is open
for each (o, 3)-admissible word w of length k > 1. At first, we show ¢ ~!([w]) is closed. By
Proposition 8.3, we have

{v}~int I,) = [w] \ {I“,7"}.
So
Fyl(int 1,) = ¢~ v} (int Ly) = ¢~ ([w] \ {1°,r}) = = ([w) \ {1 ("), ()}

Here, regarding I, = [v(I¥),v(rV)] as a closed arc in S!, the closed arc I, has {v}(I¥) as
its minimum and {v}(r*) as its maximum. Since ¢~1(I*) = max F~{v}(I*) and ¢~ 1(r*) =
min F~H{v}(r¥), we have, by Remark 8.4,

P ([w]) = {7 1), ()} U F(int 1) is closed.

Since

Y H[w]) = X\ U{@D‘l([v]) | v : (o, B)-admissible of length k with v # w},
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¥~ (Jw]) is open in X. Ol
p

89. Appendix: Proof of Lemma 2.5 and Lemma 2.6

First recall basic properties of general continued fractions. We use the following notation:
BO BO ‘ Bl ‘ Bn ‘
3 _ NI ——
1 |40 A4 | An
At o,
Definition 9.1.  Define sequences {Q;, }n>—_2 and {P,},>_2 by

P,P,\ (10
Q2Q_1) \o1

P, = AnPn—l + B, P2
Qn - AnQn—l + BnQn—Q-
We call {Qy,}n>—2 and {P,},>_2 the sequences associated with {4, },>0 and {By, }»>0-

Ap +

and for n > 0,

Claim 9.2. For each n > 0

P,  Bo| Bi] B, |
— =+ —F -+ —
Qn |4 |4 | An

Proof. 1t suffices to show that for each n > 0
B | B, |

AnPnfl + BTLPTL72 - BO ‘
AnQn—l + BnQn—Q ‘ AO

Indeed, it is clear when n = 0. Now suppose the above statement holds for n. Then

_|_

By| B Bus| Bo| Bi| B, B,
T4 — + 4+ o+ + 5
‘Ao ‘A1 ‘An+1 ‘Ao ‘A1 ‘An—l ‘An+”_+1
An—l—l
(A + 322) Pyt + By Pas
(An + —ﬁ;i )Qn-1+ BnQn-2
Bn 1
_ Pn + Filpnfl
Qn + 52 Qn
o An+1Pn + BnJranfl
An-i—lQn + Bn-i—lQn—l ’
So by induction on n, we have the desired result. O

Claim 9.3. Foreachn >0

QnPn—l - Qn_lpn = (—1)n+1BOB1 e Bn-
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Proof. First note that for each n >0

Qn Qn—l _ Qn—l Qn—Q An 1
Pn Pn—l Pn—l Pn—2 Bno .
So we have for each n > 0,

QnQn-1) (Aol Al Apl
P,P,1) \By0)\Bi0 B,0)"
By taking determinants, we obtain the claim. U
Claim 9.4. Let By = 1, and suppose that {7, },>0 C R satisfies the following conditions:

An’)/n + Bn+1’7n+17n =1 (n =0,1,... )

Then for each n > 0, we have

(1) ’YO(QTL + anan+1’7n+1) — Pn + Pnlen+1'7n+1

(2) Qnyo — Pn = <_1)n+1Bl o Bt 141V Y0

P, (=1)"™'By - Boy1Vna1

(3) v @ - Qn(Qn + anan+17n+1)

1
B Qn + Qn—an—f—l/YTL—i—l .

(4) ¥ 0
Proof. We show the following statement: for each n > 0

Qn% - Pn - _Bn—f—l/)/n—i—l(Qn—l/YO - Pn—l)‘

Indeed, we show by induction on n. First

Qovo — Po = Aoy — Bo =1— Biv170 — Bo = —Bimivo = —Bim(Q-17v — P-1).

Suppose the above statement holds for n. Then we have

Qn+170 — Pry1 = (An41Qn + By 1Qn-1)7v0 — (Ant1Pn + Bny1Po—1)
= An+1(Qnyo0 — Pn) + Bnt1(Qn-170 — Pa-1)
= —An1Bni1m+1(@n-170 — Po1) + Bny1(Qn-170 — Pr-1)
= (=An41Yn+1 + 1) Bng1(Qn-170 — Pn-1)
= Bny2Yn+2Yn+1Bnt1(@n-170 — Pa-1)
= —B12Yn+2(Qny0 — Pr),

that is, the above statement also holds for n + 1.
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Now (1) follows the above statement. Since Q_179 — P—1 = 70, (2) also follows the above. So
by (1) and Claim 9.3, we have

Pn  Po+PiBnpimmsr P
Qn B Qn + Qn—an+17n+1 Qn
_ Qn(Po+ Pac1Bos1vnt1) — Pu(@n + Qu-1Bnt1vn+41)
B Qn(Qn + Qn—an—l—l'YrH—l)
(QnPn1— PoQn_1)Bni1Vni1
Qn(Qn + Qn—an—H'Vn—H)
~ (=1)""By-- Bpy1Yns1
B Qn<Qn + Qn—an—l—l'Yn—i-l) ,

thus (3) holds. Finally (4) follows (2) and (3). O

Yo —

Now we prove Lemmas 2.5 and 2.6.
Recall definitions of {a, }n>0, {tn}n>—1 and {ay }n>o0.

Proof of Lemma 2.5.
Let A,, = a,, and B,, = (—1)"»—* for each n > 0 (in particilar By = 1 since ¢t_; = 0). Then
by recursive equation (1)

Anan + Bn—l—lan—l—lan =1

So letting {Qn}n>—_2 and {P,},>_2 be sequences associated with {A, },>0 and {B, }n>0, we
have by Claim 9.4 (2)

n+1

[T ey = ()" (=yototn(Qua - Py)
j=0

for each n > 0. O

In order to show Lemma 2.6, we need the following two propositions.

Proposition 9.5. Let N € Ny. For each n > 0, define
An = QN+n

and
By =1, B, = (1)1 (n>1).

Let {Qn}n>—2 and {P,}n,>_2 be the sequences associated with {A, }n>0 and {By}n>0. Then

P,
Qn-1<Qn (Vn>1), lim Q, =00 and lim — = ay.

n—oo n— o0 n

Proof. First (recall a, > 1 and) notice that if ¢, = 1 or ¢, = 1, then a,, > 2. Indeed

L

a |t > 1+ ¢, and moreover, by Proposition 2.7, we have a,, > b,, + ty,—1 > 2tp,_1.

ap =
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Next we show that {Qy, }n>0 is strictly increasing sequence in N (therefore lim @, = o0). Indeed,
= n— oo
by induction, we show @Q,, > @, _1 > 1 for each n > 1. Firstly Qo = ay > 1 and so

Q1 — Qo= (any1 —1)Qo+ (—=1)""Q_1 = (ant1 — L)an + (=1)"~.
Soif txy =0 then Q1 — Qo > (—1)'N =1; if ey =1 then Q1 — Qo > an + (—1)'~¥ > 1.

Let n > 2 and suppose Q1 > Q,_2 > 1. Here

Qn - Qn—l - (aN—i—n - 1)Qn—1 + (_1>LN+nilQn—2-

So if tnNyp—1 = 0 then @, — Qp_1 > (—1)“\”’"_1@”_2 = Qn-2 > 1; if tnyp—1 = 1 then

Qn - Qn—l 2 Qn—l + (_1)LN+nilQn—2 = Qn—l - Qn—Q Z 1.
Next, define for each n > 0

Yn = AN+4n-

Then {7, },>0 satisfies the assumption in Claim 9.4 (by recursive equation (1)). Hence by Claim
9.4 (3), we have for each n > 1

P, (D)=L NNt N gy g

Qn B Qn(Qn + anl(_l)bN+"0‘N+n+1)

and so (since @, — Qp—1 > 1 and 0 < ayynt1 < 1)

aN —

Py
@n

AN +n+1 < 1

B Qn(Qn + Qn—l(_l)bN+"O‘N+n—|—l) Qn

aN —

Hence lim —2> = ay. O

n—oo (),
Note. In particular, by Proposition 9.5 and Claim 9.2, we have the semi-regular continued

fraction expansion of «:
1

(1"
1"
az + .

ag +
ai +

Proposition 9.6. Let N € Ny. Ifi, =1 for eachn > N, then a,, > 3 for some ng > N.

Proof. Note a, > 2 for each n > N (because a,, = {iJ + tn). We show by contradiction.
Assume a,, = 2 for each n > N. Following the setup in Proposition 9.5, define

A, =anin=2 (n>0)

and
By=1, B,=(-1)"N+r1t=—-1 (n>1)

and let {Q,}n>—2 and {P,},>_2 be the sequences associated with {4, },>0 and {B; }n>0. So

by Proposition 9.5
N
on = lm 5
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On the other hand, by Claim 9.2, for each n > 0

P 1 -1 -1
_n _‘ + _‘ 4+t _‘ .
Qn |2 |2 | 2
n times
Moreover we show for each n > 0
P, n+1
Qn n+2
Indeed, it is clear for n = 0. Let n > 0, and suppose that IQD—" = Z—E
representation of g:—fl in finite continued fraction form, we have
(1%)‘1 = 1| _ P _n+1
9 _ = "4+ 4.y
Qn+1 2|2 |2 Qn n+2
n times
and so gz—j: = Z—ﬁ
Therefore
lim L — 1
aN = - =
n—oo (.,

contradicting ay < 1.

Proof of Lemma 2.6.

Then by the above

First note that {o, - - ao}ln>0 is a strictly decreasing sequence in (0,1). So, in order to

prove lim a,, ---«ap = 0, it suffices to show there is a subsequence converging to zero. Following

the se’:up“ijn Proposition 9.5, define
A, =a, (n>0)

and
B, =(-1)""" (n>0)

(in particular By = 1 since ¢t—; = 0) and let {Q,, }n>_2 and {P, },,>_2 be the sequences associated
with {A, }n>0 and {B), }»n>0. Then we have by Claim 9.4 (4), for each n > 0

1
C Qu+ Quoa (D)

an---ao

Here let N = {n € Nqy | ¢,, = 0}.
Case 1: §N = oo.

For eachne N
1 1

= < —.
Qn + Qn—lan—l—l Qn

Hence the subsequence {a, - - - ap }nen converges to zero.

Case 2: N < oc.

an...ao

Then, letting L = {n € Ny | a,, > 3}, we have L = oo by Proposition 9.6. For each n € L

Qn + Qn—l(_l)bnan+1 - anQn—l + (_1)Ln_1Qn—2 + Qn—l(_l)bnan—kl > (an - 2)Qn—1 Z Qn—l
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and so
1 1

- Qn +Qn—1(_1)bnan+1 < Qn—l.

Hence the subsequence {«,, - - - g }ner converges to zero. O

an..-ao
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