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Abstract

We announce our recent result on the characterization of closed forms on configuration

spaces associated to interacting particle systems. In the context of the study of hydrodynamic
limit, closed forms on an infinite configuration space in a  L^{2} space are well studied and their
characterization theorem plays an essential role if our model is non‐gradient. In this article, we
report that closed forms in the set of local functions can be characterized by a similar way as
 L^{2} functions but its proof is very simple and completely different from that for  L^{2} functions.
With this new observation, we also have an alternative proof of the original characterization
theorem in the  L^{2} space, which does not require the sharp estimate of the spectral ap, for the
class of lattice gases that are reversible under the Bernoulli measures. Moreover, we extend
these characterization theorems for the models in a crystal lattice from  Z^{d}.

§1. Introduction

This article is a research announcement on our study about a new aspect of one‐

forms on configuration spaces. The goal of the study is to find a simpler and intuitive

proof of the hydrodynamic limit for non‐gradient models.

To prove the hydrodynamic limit for non‐gradient models, applying the gradient

replacement, introduced by Varadhan and Quastel in [10] and [6], is a standard and
unique strategy so far. Its essential part is the so‐called characterization of closed forms

(cf. [1], [3]). This part requires a very complicated argument with a sharp spectral gap
estimate. Even though the statement of the characterization theorem of closed forms

Received February 12, 2016. Revised March 19, 2016.
2010 Mathematics Subject Classification(s): primary  60K35 , secondary  51H99

Key Words: non‐gradient model, closed form, cohomology, configuration space.
Supported  b JSPS Grant‐in‐Aid for Youn Scientists B Grant Number 25800068.

 *

Keio University, 3‐14‐1, Hiyoshi, Kohoku‐ku, Yokohama‐shi, Kanagawa, 223‐8522, Japan.
 e‐mail: kametani@math. keio. ac. jp

 **

The University of Tokyo, 3‐8‐1 Komaba, Meguro‐ku, Tokyo 606‐8502, Japan.
 e‐mail: sasada@ms.  u‐tokyo. ac. jp

© 2016 Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



2 Yukio Kametani and Makiko ASADA

is almost same for a wide class of models, we need to change the details of the proo

depending on the specific model and it is not straightforward. Also, to show the sharp

spectral gap estimate for each model is usually a tough work.

In this article, we aim to understand the common structure of the characterization

of closed forms among different models. In particular, we reveal why the dimension and

the explicit expression of the set of harmonic forms (namely closed but not exact forms)
do not depend on the details of the model, which we can guess from the previous works

on the non‐gradient models ([1],[2],[3],[7],[10]). For this purpose, we introducing a CW
complex (or de Rham complex) associated to the configuration space and reconsider
the characterization of closed forms from algebraic and geometric points of view. We

do not give the definition of the complex in this article, but we report new observations

and results obtained by the study of this complex. They are the followings:

(i) The typical characterization theorem of closed forms required in the context  0

hydrodynamic limit is about the closed forms in  L^{2} (v) where  v is a probability measure
on a configuration space. The theorem claims that any closed form (precisely any germ
of closed form, see below) is decomposed as a sum of an exact form and a harmonic
form. Moreover, the space of harmonic forms is explicitly given. In this article, we study

the closed forms which are local functions, and prove the similar decomposition of them

by the exact forms and the harmonic forms. The space of harmonic forms are common

for  L^{2} functions and local functions. The proof is very simple and able to apply very

general models directly.

(ii) The statement and the proof of the characterization theorem for local functions
do not relate to the probability measure  v nor the spectral gap estimate, so it turns out

to be purely an algebraic problem.

(iii) From the characterization theorem for local functions, we know the dimension
and the explicit expression of the set of harmonic forms. In fact, the dimension is exactly

the first cohomology group of an abelian group acting the configuration space.

(iv) Using the idea of the proof of the characterization theorem for local functions,
for the case where the model has a good duality, we give an alternative proof of the

characterization theorem for  L^{2} (v) functions where we do not use the spectral gap
estimate. The example of the model having a nice duality is the lattice gas reversible

under Bernoulli measures studied in [1].
(v) With our new observations, we can generalize these results of the characteri‐

zation theorem of closed forms for the interacting particle systems in a crystal lattice

instead of  Z^{d} . As mentioned in [9], the hydrodynamic limit for a non‐gradient system
in a crystal lattice is an important open problem. Our result gives a way to attack the

problem.

The rest of this article is organized as follows. In Section 2, we give the precise state‐
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ment of the above observations in the context of lattice gas reversible under Bernoulli

measures. In Section 3, we give other examples where we can apply our results on
the characterization theorems for local functions. For the models with a discrete state

space, we can directly apply the method in Section 2. For the models with a continuous

state space, we need to change the framework slightly but the main ideas work in the

same way. In Section 4, we give the conclusion and some remarks.

§2. lattice gas reversible under Bernoulli measures

§2.1. Characterization theorems in  Z^{d}

Let  S=\{0 , 1  \},  d\in N . We denote the infinite configuration space of the lattice gas

by  \chi  =  S^{z^{d}} and the set of all bonds in  Z^{d} by  (Z^{d})^{*} . An element of the configuration

space is denoted by  \eta=(\eta_{x})_{x\in Z^{d}}  \in\chi .

For  x\in Z^{d} , define the shift operator  \tau_{x} :  Z^{d}arrow Z^{d} as the  (-x) ‐shift of  Z^{d} , that is,

 \tau_{x}(i)=i-x . For a bond   b=\{x, y\}\in  (Z^{d})^{*} , define the exchange operator  \pi_{b} :  Z^{d}arrow Z^{d}

as the exchange of  x and  y . Then  \tau_{x} and  \pi_{b} naturally induce automorphisms of  \{0, 1\}^{Z^{d}}
Precisely,  (\tau_{x}\eta)_{y}=\eta_{y-x} and for  b=\{x, y\}

 (\pi_{b}\eta)_{z}=  \{\begin{array}{ll}
\eta_{z}   if z\neq x, y
\eta_{y}   if z=x
\eta_{x}   if z=y.
\end{array}
For  f :  \chiarrow R , let  \nabla_{b}f be the partial difference of  f with respect to  b defined by

 \nabla_{b}f=\pi_{b}f-f

where  \pi_{b}f(\eta)=f(\pi_{b}\eta) .

Now, we introduce closed forms and exact forms on  \chi with respect to these partial

differences. For this purpose, we first define chains and closed chains in  \chi.

Definition 2.1. A finite sequence  (\eta(k))_{k=0}^{n}(n=1,2, \ldots) in  \chi is called a chain,

if there exist  n bonds  b(1) ,  b(2) , :::,  b(n) in  (Z^{d})^{*} such that

(2.1)  \eta(k)=\pi_{b(k)}\eta(k-1)  k=1 , 2, :::,  n.

Moreover, if  \eta(0)=\eta(n) , the sequence is called a closed chain.

Definition 2.2. A family of functions  (\Psi^{b})_{b\in(Z^{d})^{*}} on  \chi is called a closed form

or closed if for every closed chain  (\eta(k))_{k=0}^{n}(n=1,2, :::) satisfying (2.1),

  \sum_{k=1}^{n}\Psi^{b(k)}(\eta(k-1))=0.
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Definition 2.3. A family of functions  (\Psi^{b})_{b\in(Z^{d})^{*}} on  \chi is called an exact form
or exact if there exists a function  F such that

 \Psi^{b}=\nabla_{b}F

for all   b\in  (Z^{d})^{*}

Then, by the definition, the following lemma holds.

Lemma 2.4. A family of functions  (\Psi^{b})_{b\in(Z^{d})^{*}} is closed if and only if it is exact.

We have a following useful lemma to check the closedness of a given family  0

functions and also to see the similarity of the definition of closedness for continuous

configuration spaces.

Lemma 2.5. A family of functions  (\Psi^{b})_{b\in(Z^{d})^{*}} is closed if and only if

(2.2)  \nabla_{b}\Psi^{b}=-2\Psi^{b}

for any   b\in  (Z^{d})^{*} and

(2.3)  \nabla_{b}\Psi^{b\prime}=\nabla_{b'}\Psi^{b}

for any  b,   b'\in  (Z^{d})^{*}

Next, we introduce the notion of germs of closed forms and exact forms, which

correspond one‐to‐one with shift‐invariant forms.
Let  e_{i} stands for the unit vector to the i‐th direction and  e_{i}^{*}  =\{0, e_{i}\}  \in  (Z^{d})^{*} for

 i=1 , 2, . . . ,  d.

Definition 2.6. A family of functions  \xi  =  (\xi^{e_{i}^{*}})_{i=1}^{d} on  \chi is called a germ  0

closed form if the family of functions  (\xi^{b})_{b\in(Z^{d})^{*}} is closed where

 \xi^{b}=\tau_{x}\xi^{e_{i}^{*}} i b=\{x, x+e_{i}\}.

To introduce the notion of germs of exact forms, we first introduce that notion  0

local functions. We say a function  f :  \chi  arrow  R is local if  f depends only on a finite

number of occupation variables of  \eta.

Definition 2.7. A family of functions  \xi  =  (\xi^{e_{i}^{*}})_{i=1}^{d} is called a germ of exact
form if there exists a local function  F such that

  \xi^{e_{i}^{*}} =\nabla_{e_{i}^{*}}(\sum_{x\in Z^{d}}\tau_{x}F)
for all  i=1 , 2, :::,  d.
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Remark. Though  ( \sum_{x\in Z}{}_{d}T_{x}F) is not well defined,   \nabla_{e_{i}^{*}}(\sum_{x\in Z}\tau_{x}F) is well de‐
fined since  F is a local function.

Denote the set of local functions on  \chi by  C_{\ell}(\chi) and the set of all  d‐tuple of local

functions by  (C_{\ell}(\chi))^{d} , the set of all germs of closed forms by  C and that of exact forms

by  \mathcal{E} . Notice that  \mathcal{E}\subset  (C_{\ell}(\chi))^{d} . Define  \Phi_{i}=(\Phi_{i}^{e_{j}^{*}})_{j=1}^{d}  \in  (C_{\ell}(\chi))^{d} by

  \Phi_{i}^{e_{j}^{*}} =\nabla_{e_{j}^{*}}(\sum_{x\in Z^{d}}x_{i}\eta_{x}) =
\delta_{i,j}(\eta_{e_{i}}-\eta_{0}) .

One of our main results is the following characterization theorem of germs of closed
forms in  C_{\ell}(\chi) .

Theorem 2.8. Let  \xi  =  (\xi^{e_{i}^{*}})_{i=1}^{d}  \in  (C_{\ell}(\chi))^{d} be a germ of closed form. Then,

there exist real numbers  a_{1},  a_{2} , :::,  a_{d} and a local function  F such that

  \xi^{e_{i}^{*}} =\sum_{j=1}^{d}a_{j}\Phi_{j}^{e_{i}^{*}} +\nabla_{e_{i}^{*}}
(\sum_{x\in Z^{d}}\tau_{x}F)
 = \nabla_{e_{i}^{*}}(\sum_{x\in Z^{d}}\sum_{j=1}^{d}a_{j}x_{j}\eta_{x}+
\sum_{x\in Z^{d}}\tau_{x}F) .

Equivalently,

 C \cap(C_{\ell}(\chi))^{d}=\mathcal{E}+\{\sum_{i=1}^{d}a_{i}\Phi_{i}\}.
Idea of the proof. Let  \chi_{n}  =   \{\eta \in \chi;\sum_{x\in Z^{d}}\eta_{x} = n\} for  n  \geq  0 and  \chi_{f}  =  \{\eta  \in

  \chi;\sum_{x\in Z^{d}}\eta_{x}  <  \infty\}  = \bigcup_{n\geq 0\chi_{n}} . The key of the proof is that  \xi\in  (C_{\ell}(\chi))^{d} is completely

determined by the restriction of  \xi on  \chi_{f} . So, we may consider  \xi\in  (C_{\ell}(\chi_{f}))^{d} . Then,  i

 \xi\in  (C_{\ell}(\chi_{f}))^{d} is closed, from Lemma 2.4, we can integrate it along a chain and construct

a function  F_{n} :  \chi_{n}arrow R satisfying

 \nabla_{e_{i}^{*}}F_{n}=\xi^{e_{i}^{*}}

for  i=1 , 2, :::,  d on  \chi_{n} . By the construction, we can show that  \tau_{e_{i}}F_{n}-F_{n} is a constant

for each  i  =  1 , 2, :::,  d on  \chi_{n} . So, we denote it by  c_{n}^{i} . Using the locality of  \xi , we can
also show that  c_{n}^{i}=na_{i} where  a_{i}=c_{1}^{i} . Define a function  \overline{F}:\chi_{f}arrow R as

  \overline{F}=F_{n}-\sum_{i=1}^{d}a_{i}\sum_{x\in Z^{d}}x_{i}\eta_{x}
on  \chi_{n} . Then, we have  \tau_{x}\overline{F}=\overline{F} for all  x\in Z^{d} on  \chi_{f} . Since  \nabla_{e_{i}^{*}}\overline{F} is a local function, we

can conclude that there exists a local function  F such that  F=   \sum_{x\in Z}{}_{d}T_{x}F . Namely,
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we have real numbers  a_{1},  a_{2} , :::,  a_{d} and a local function  F such that

  \nabla_{e_{i}^{*}}(\sum_{x\in Z^{d}}\sum_{=1}^{d}a_{j}x_{j}\eta_{x}+\sum_{x\in
Z^{d}}\tau_{x}F)=\xi^{e_{i}^{*}}
for  i=1 , 2, :::,  d on  \chi_{f} . Since  \xi\in  (C_{\ell}(\chi))^{d} , the above equality also holds on  \chi.

Remark. Consider partial differential operators  \tilde{\nabla}_{b} defined for  b=\{x, x+e_{i}\} by

 \tilde{\nabla}_{b}=c_{e_{i}^{*}}(\tau_{x}\eta)\nabla_{b}

where  c_{e_{i}^{*}} :  \chiarrow R which does not depend on  \eta_{0} nor  \eta_{e_{i}} for  i  =  1 , 2, :::,  d . We define

closed forms and exact forms associated to them. Then, if  c_{e_{i}^{*}}(\eta)  >  0 for any  \eta  \in  \chi

and  i=1 , 2, :::,  d , the characterization of germs of closed forms in  C_{\ell}(\chi) for them also
follows form Theorem 2.8.

In the study of hydrodynamic limit of non‐gradient models, we need the character‐

ization of germs of closed forms in  L^{2} (v) where  v is a reversible or invariant measure
for the model. Here, we consider the model studied in [1]. For this, fix  \rho\in  [0 , 1  ] and let
 v=  v_{\rho} be a Bernoulli measure on  \chi such that  v_{\rho}  (\eta_{x} = 1)  =\rho for all  x  \in  Z^{d} . Denote

the set of all  d‐tuple of  L^{2} (v) functions by  (L^{2}(v))^{d} . Notice that  (L^{2}(v))^{d}  =\overline{(C_{\ell}(\chi))^{d}}
where the closure is taken in  (L^{2}(v))^{d}.

The next theorem is first proved in [1] with a sharp estimate of the spectral gap.
In our study, we find a new proof which does not require the spectral gap estimate. The

key idea is to use the duality of the partial differential operators with respect to the
measure  v.

Theorem 2.9. Let  \xi\in  (L^{2}(v))^{d} be a germ of closed form. Then, there exist rea

numbers  a_{1},  a_{2} , :::,  a_{d} and a sequence of local functions  F_{n} such that

  \xi^{e_{i}^{*}} =\sum_{=1}^{d}a_{j}\Phi^{e_{i}^{*}} +\lim_{narrow\infty}
\nabla_{e_{i}^{*}}(\sum_{x\in Z^{d}}\tau_{x}F_{n})
 = \lim_{narrow\infty}\nabla_{e_{i}^{*}}  (  \sum_{x\in Z^{d}}\sum_{j=1}^{d}a_{j}x_{j}\eta_{x}+\sum_{x\in Z^{d}}\tau_{x}
F_{n})  in  L^{2}(v) .

Equivalently,

 C \cap(L^{2}(v))^{d}=\overline{\mathcal{E}}+\{\sum_{i=1}^{d}a_{i}\Phi_{i}\}
where  \overline{\mathcal{E}} is the closure of  \mathcal{E} in  (L^{2}(v))^{d}.
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Idea of the new proof. We consider the set of functions   \{\prod_{x\in\Lambda}(\eta_{x}-\rho)\}_{\Lambda\subset\subset Z^{d}} as

the orthogonal basis of  L^{2}(v) . From the expansion of the germ of closed form in  L^{2} (v)
with respect to this basis, we can construct a closed form on  \chi_{f} . Then, from Lemma

2.4, it is integrable and we obtain a kind of “potential function” on  \chi_{f} in the same way

as the proof for local functions. This potential function is decomposed by the cost  0

shifts and the shit‐invariant function in the same way as for local functions again. But

this case, this closed form on  \chi_{f} is not local, so we approximate it by local functions

and we show that this approximation still holds if we reconstruct a germ of closed form

on  \chi from them using the orthogonal basis.

Remark. Precisely, we define  (\Psi^{b})_{b\in(Z^{d})^{*}}  \in  (L^{2}(v))^{(Z^{d})^{*}} is closed if they satisfy

(2.2) and (2.3) in  L^{2}(v) sense.

Remark. Since we have Theorem 2.8, to show Theorem 2.9, it is enough to prove

 C\cap(C_{\ell}(\chi))^{d}=C\cap(C_{\ell}(\chi))^{d}.

However, our new proof does not take this strategy.

Remark. Consider partial differential operators  \tilde{\nabla}_{b} defined in the above remark

again. Then, if there exist  C_{1},  C_{2}  >  0 such that  C_{1}  \leq  c_{e_{i}^{*}}(\eta)  \leq  C_{2} for any  \eta  \in  \chi

and  i=1 , 2, :::,  d , the characterization of germs of closed forms in  L^{2} (v) for them also
follows form Theorem 2.9.

§2.2. Characterization theorems in a crystal lattice

In this subsection, we extend the result in the last subsection to the model in a

crystal lattice.

Let  X be a crystal lattice, that is an infinite locally finite connected graph  X  =

 (V;, E) for which a free abelian group  \Gamma  \cong  Z^{d} acts freely, and its quotient graph  X_{0}  =

 (V_{0}, E_{0})  =G\backslash X is a finite graph. We refer [9] for examples and properties of crystal
lattices.

We denote the configuration space by  \chi  =  S^{V}  =  \{0, 1\}^{V} and an element of it by

 \eta=(\eta_{x})_{x\in V}  \in\chi as before.

By the definition, each  \sigma  \in  \Gamma defines a graph isomorphism  \tau_{\sigma} :  X  arrow  X . For an

edge  b=  \{x, y\}  \in  E we denote by  \pi_{b} :   Varrow  V the exchange of  x and  y . Then  \tau_{\sigma} and
 \pi_{b} naturally induce automorphisms of  \{0 , 1  \}^{V}.

For  f :  \chiarrow  R , let  \nabla_{b} be the partial difference of  f with respect to  b as same as

before. Also, the following notions are defined in a same way as before.

Definition 2.10. A finite sequence  (\eta(k))_{k=0}^{n}(n=1,2, :::) in  \chi is called a chain,

if there exist  n edges  b(1) ,  b(2) , :::,  b(n) in  E such that

(2.4)  \eta(k)=\pi_{b(k)}\eta(k-1)  k=1 , 2, :::,  n.
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Moreover, if  \eta(0)=\eta(n) , the sequence is called a closed chain.

Definition 2.11. A family of functions  (\Psi^{b})_{b\in E} on  \chi is called a closed form or

closed if for every finite chain  (\eta(k))_{k=0}^{n}(n=1,2, \ldots) satisfying (2.4),

  \sum_{k=1}^{n}\Psi^{b(k)}(\eta(k-1))=0.
Definition 2.12. A family of functions  (\Psi^{b})_{b\in E} on  \chi is called an exact form or

exact if there exists a function  F :  \chiarrow R such that

 \Psi^{b}=\nabla_{b}F

for all  b\in E.

Then, since the crystal lattice is connected, the following lemma holds.

Lemma 2.13. A family of functions  (\Psi^{b})_{b\in E} is closed if and only if it is exact.

Next, we introduce the notion of germs of closed forms and exact forms, which

correspond one‐to‐one with  \tau_{\sigma} ‐invariant forms.

Definition 2.14. A family of functions  \xi=  (\xi^{e})_{e\in E_{0}} is called a germ of closed

form if the family of functions  (\xi^{b}) is closed where

 \xi^{b}=\tau_{\sigma}\xi^{e} i b=\tau_{\sigma}e.

Definition 2.15. A family of functions  \xi  =  (\xi^{e})_{e\in E_{0}} is called a germ of exact
form if there exists a local function Fsuc  \subset that

  \xi^{e}=\nabla_{e}(\sum_{\sigma\in\Gamma}\tau_{\sigma}F)
for all  e\in E_{0}.

Denote the set of local functions on  \chi by  C_{\ell}(\chi) and the set of all  |E_{0}| ‐tuple of local

functions by  (C_{\ell}(\chi))^{|E_{0}|} , the set of all germs of closed forms by  C and that of exact

forms by  \mathcal{E} . Notice that  \mathcal{E}\subset  (C_{\ell}(\chi))^{|E_{0}|} . Define  \Phi_{i}=(\Phi_{i}^{e})_{e\in E_{0}}  \in  (C_{\ell}(\chi))^{|E_{0}|} by

  \Phi_{i}^{e}=\nabla_{e}(\sum_{v\in V_{0}}\sum_{\sigma\in\Gamma}\sigma_{i}\eta_
{\tau_{\sigma}v})
where  \sigma_{i}  \in Z is the i‐th element of  \sigma when we identify  \Gamma with  Z^{d}.

Now, we have the characterization of germs of closed forms.
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Theorem 2.16.

 C \cap(C_{\ell}(\chi))^{|E_{0}|} =\mathcal{E}+\{\sum_{i=1}^{d}a_{i}\Phi_{i}\}
The proof is almost same as that for  Z^{d} . With this theorem, the meaning of the

dimension of the set of harmonic forms and the role of  |E_{0}| and  |V_{0}| become clear.

Next, we consider germs of closed forms in  L^{2} (v) as before. Let  v  =  v_{\rho} be a
Bernoulli measure on  \chi such that  v_{\rho}  (\eta_{x} = 1)  =\rho for all  x  \in  V . Denote the set of all

 |E_{0}| ‐tuple of  L^{2} (v) functions by  (L^{2}(v))^{|E_{0}|} . Notice that  (L^{2}(v))^{|E_{0}|}  =(C_{\ell}(\chi))^{|E_{0}|}.
The next theorem is a completely new result, which is essential to study the hydro‐

dynamic limit for non‐gradient models in a crystal lattice. It seems very hard to apply

the standard strategy used in [1] to this model. On the other hand, our proof is easily
applied to this model.

Theorem 2.17.

 C \cap(L^{2}(v))^{|E_{0}|} =\overline{\mathcal{E}}+\{\sum_{i=1}^{d}a_{i}
\Phi_{i}\}
where  \overline{\mathcal{E}} is the closure of  \mathcal{E} in  (L^{2}(v))^{|E_{0}|}.

§3. Other examples

In this section, we give examples where we can show the same result of Theorem 2.8

and 2.16. They are all new, even though it was known that the same result of Theorem

2.9 holds for some of the models. The idea of the proof for Theorem 2.8 works for all

models in this section directly.

§3.1. Examples with a discrete state space

Here, we give examples with a discrete configuration space. For simplicity, we only

give  S , the state space of one site or one particle, and the partial differential operators
 \nabla_{b} . Precise definition of chains, forms and the statement of theorems are given in our

papers in preparation or the reference or in the reference given for each model. Notice

that for general models,  \nabla_{x,y}\neq\nabla_{y,x}.

Example 3.1 (Generalized exclusion process,[3]).
 S=\{0 , 1, 2, :::,  \kappa\},  \nabla_{x,y}f(\eta)=1_{\{\eta_{x}\geq 1,\eta_{y}\leq\kappa-1\}}(f(\eta^{xarrow 
y})-f(\eta)) where

 (\eta^{xarrow y})_{z}=  \{\begin{array}{ll}
\eta_{z}   if z\neq x, y
\eta_{x}-1   if z=x
\eta_{y}+1   if z=y.
\end{array}
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Example 3.2 (Zero‐range process,[3]).

 S=N_{0}=\{0, 1, 2\ldots\},  \nabla_{x,y}f(\eta)=1_{\{\eta_{x}\geq 1\}}(f(\eta^{xarrow y})-f(\eta)) .

Remark. Though the zero‐range process is a gradient model, it may be interesting

to study the characterization theorem of germs of closed forms associated to the process.

§3.2. conservative Ginzburg‐Landau process

In this subsection, we consider a specific model with a continuous configuration

space. The model is called a conservative Ginzburg‐Landau process (cf.[10]). For sim‐
plicity, we consider the model in  Z^{d} , but we can extend it in a crystal lattice as same
as before.

Let  S  =  R,  \chi  =  R^{Z^{d}} . We denote by  S(\chi) the set of all functions on  \chi which

is smooth as a function of any fixed finite number of coordinates. We denote the

set of all oriented bonds by  E^{d} . For each oriented bond  (x, y)  \in  E^{d} and  f  \in  S(\chi) ,

 \nabla_{x,y}f  :=  (\partial_{\eta_{x}} -\partial_{\eta_{y}})f is in  S(\chi) .

Definition 3.3. A family of functions  (\Psi^{b})_{b\in E^{d}} in  S(\chi) is called a closed form
or closed  i

 \Psi^{\overline{b}}=-\Psi^{b}

for any  b,  \overline{b} for any  b\in E^{d} where  \overline{b} is the inverse of  b.

 \nabla_{b}\psi^{b'} =\nabla_{b'}\psi^{b}

for any  b,  b'\in E^{d}.

Definition 3.4. A family of functions  (\Psi^{b})_{b\in E^{d}} in  S(\chi) is called an exact form
or exact if there exists a function  F in  S(\chi) such that

 \Psi^{b}=\nabla_{b}F

for all  b\in E^{d}.

Then, by the definition and by a simple topological argument, we have the following

lemma again.

Lemma 3.5. A family of functions  (\Psi^{b})_{b\in E^{d}} is closed if and only if it is exact.

We introduce the notion of germs of closed forms and exact forms.
Let  e_{i} stands for the unit vector to the i‐th direction and  e_{i}^{*}  =  (0, e_{i})  \in  E^{d} for

 i=1 , 2, . . . ,  d.
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Definition 3.6. A family of functions  \xi  =  (\xi^{e_{i}^{*}})_{i=1}^{d} in  S(\chi) is called a germ  0

closed form if the family of functions  (\xi^{b})_{b\in E^{d}} is closed where

 \xi^{b}=\tau_{x}\xi^{e_{i}^{*}} i b=(x, x+e_{i})

and

 \xi^{b}=-\tau_{x}\xi^{e_{i}^{*}} i b=(x+e_{i}, x) .

Definition 3.7. A family of functions  \xi  =  (\xi^{e_{i}^{*}})_{i=1}^{d} is called a germ of exact
form if there exists a local function  F in  S(\chi) such that

  \xi^{e_{i}^{*}} =\nabla_{e_{i}^{*}}(\sum_{x\in Z^{d}}\tau_{x}F)
for all  i=1 , 2, :::,  d.

Denote the set of local functions on  \chi in  S(\chi) by  S_{\ell}(\chi) and the set of all  d‐tuple

of them by  (S_{\ell}(\chi))^{d} , the set of all germs of closed forms by  C and that of exact forms

by  \mathcal{E} . Notice that  \mathcal{E}\subset  (S_{\ell}(\chi))^{d} . Define  \Phi_{i}=(\Phi_{i}^{e_{j}^{*}})_{j=1}^{d} by

  \Phi_{i}^{e_{j}^{*}} =\nabla_{e_{j}^{*}}(\sum_{x\in Z^{d}}x_{i}\eta_{x}) =
\delta_{i,j}.
Then, we have the following characterization theorem of germs of closed forms in

 S_{\ell}(\chi) .

Theorem 3.8.

 C \cap(S_{\ell}(\chi))^{d}=\mathcal{E}+\{\sum_{i=1}^{d}a_{i}\Phi_{i}\}.
The characterization of germs of closed forms in  L^{2} (v) for this model is also shown

for a good class of product measure  v in [10] using the sharp estimate of the spectral
gap. So far, we do not know any alternative proof for this model.

§3.3. Other examples with a continuous state space

Here, we give other examples with a continuous configuration space.

Example 3.9 (Energy conserving Ginzburg‐Landau model, [4]).
 S=R+,  \nabla_{x,y}f=  (\partial_{\eta_{x}} -\partial_{\eta_{y}})f.

Example 3.10 (Energy conserving stochastic model,[2]).
Let  S=R,  \nabla_{x,y}f=  (\eta_{y}\partial_{\eta_{x}} -\eta_{x}\partial_{\eta_{y}})f.
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Remark. In the case of Example 3.10, since the conserved quantity is   \sum_{x}\eta_{x}^{2}
instead  0   \sum_{x}\eta_{x} , the harmonic forms are given as

  \Phi_{i}^{e_{j}^{*}} =\nabla_{e^{*}}(\sum_{x\in Z^{d}}x_{i}\eta_{x}^{2}) .

The role of the conserved quantity becomes also clear by our new proof.

§4. Conclusion and remarks on further extensions

Our study reveals universal properties of the first cohomology group of configuration

spaces associated to interacting particle systems. We summarize them here in a formal

way.

Consider an interacting particle system which is irreducible on a configuration space

with a fixed conserved quantity. Then, the set of closed forms and that of exact forms

associated to the model is identical because of the irreducibility. In other words, the

first cohomology group is zero. Under such a situation, if an abelian group  G acts on

the configuration space and the partial differential operators compatibly, then we may

consider closed (resp. exact) forms which are invariant by group actions. We call them
germs of closed (resp. exact) forms. Now, we should have the decomposition of germs
of closed forms into germs of exact forms and harmonic forms. The dimension of the set

of germs of harmonic forms are exactly given by the dimension of the first homology  0

the group  G . Formally, this property is well‐known in the cohomology theory. Notice

that our results and proofs are applicable even for finite configuration spaces such as

 \chi=  \mathbb{T}_{N}^{d} where  \mathbb{T}_{N}^{d} is the  d‐dimensional discrete torus with size  N.

Finally, we give some comments on possible extensions of our result. It is not

difficult to extend it to the models with two or more types of partial differential operators

such as the models studied in [5] and [8]. Moreover, we can extend it to the models
with two or more conserved quantities such as the model studied in [6]. For the latter
case, we can show that the dimension of the germs of harmonic forms are the dimension

of the first homology of the group  G times the number of conserved quantities. From

this, the role of the number of conserved quantities in the characterization theorem  0

closed forms becomes more clear.
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