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On the derivation of the laws of macroscopic diffusion

By

Yann CHIFFAUDEL* and Raphaël LEFEVERE**

Abstract

We report recent rigorous and numerical results obtained on the derivation of Fick’s law
for deterministic dynamics in random environment.

§1. Introduction

Ever since the works of the founding fathers of statistical mechanics, the derivation

of the macroscopic laws of physics as the result of the motion of the microscopic compo‐

nents has been a major challenge which remains largely unsolved to this day. Fick’s law

is one of those central laws of macroscopic physics. It states that, after some transient

time, the current of particles crossing an extended macroscopic system of length  L de‐

creases like the inverse power of  L . A paradigmatic model in this context is provided by

the Lorentz gas: it consists of tracer particles moving freely in a box and colliding with

fixed obstacles. The only rigorous derivation of Fick’s law was achieved by Bunimovich

and Sinai in [1] for a finite horizon Lorentz gas when the scatterers have a specific
shape that gives rise to a strongly chaotic dynamics. However, it is unlikely that the

microscopic dynamics of a typical material possess the special properties of a strongly

chaotic billiard. A more satisfactory result from a conceptual point of view would be to

establish diffusion in a random Lorentz gas. In that case, obstacles of arbitrary shape
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are thrown at random in a box. The goal is to show that, after a diffusive rescaling  0

space and time is performed, macroscopic observables obey the laws of diffusion with

very large probability with respect to the distribution of the obstacles. If one looks at

Fick’s law for the macroscopic current, this requires to control not only its average but

also, at least, its variance. In contrast to the the Bunimovich‐Sinai case, the randomness

of the scatterers induce correlations between the trajectories and therefore also between

occupation numbers (or local empirical densities) at different points in space. We report
here the results of [3] and [2] on the derivation of Fick’s law in the context of random
Lorentz gas on a lattice also called the mirrors model. In [3], the model consists of a
simplification of the original mirrors model. One direction of the lattice is special in the

sense that the motion of every particle in that direction takes place at constant speed
in that direction.

We recall now briefly the set‐up of the original mirrors model. Particles travel on

the edges of  \mathbb{Z}^{2} with unit speed. Mirrors are located at some vertices of the lattice and

take two possible angular orientations :   \{ \frac{\pi}{4}, \frac{3\pi}{4}\} . When a particle hits a mirror, it gets

deflected according to the laws of specular reflection, see Figure 2 for sample trajectories

of particles. It is convenient to think that every particle starts at time zero with a given

velocity at a vertex of the lattice  \mathcal{Q} that is obtained by taking the middle point  0

every edge of  \mathbb{Z}^{2} . As all particles move with unit velocity, one can simply observe the

evolution of the system at discrete times  t  \in N. At those times, the particles will be

always located at one of the vertices of the new lattice  \mathcal{Q} with a well‐defined velocity.

In general, the orientation of the mirrors is picked randomly. It is obvious that the

motion of a single particle can not be described as a Markov process. When a particle

hits a mirror for the second time, no matter how far back in the past the first visit

occurred, its reflection is strongly affected by the way its was reflected at the first visit.

For instance in Figure 2, the two orientations of the mirrors are picked at random, and

in that case, at the second visit the reflection is always deterministic.

We come now to a more general definition of the dynamics in  d dimensions. We

denote by  z  =  (z1, :::, z_{d}) a generic element of  \mathbb{Z}^{d} . As for  \mathbb{Z}^{2} , we consider the set  0

midpoints of edges of an hypercube of  \mathbb{Z}^{d} of side  N and with periodic conditions in all

but the first direction. We call this set  \mathcal{Q} . It may be described as follows :   \mathcal{Q}=\bigcup_{i=1}^{d}L_{i}
where  L_{i}  =   \{z+\frac{1}{2}e_{i} : 0\leq z_{1} \leq N-1, (z2, :::, z_{d})\in (\mathbb{Z}/N
\mathbb{Z})^{d-1}\} . Let (e1, :::,  e_{d} )
the canonical basis of  \mathbb{R}^{d} , the space of possible velocities is  \mathcal{P}  =   \{\pm\frac{e_{1}}{2}, :::, \pm\frac{e_{d}}{2}\} and

the phase space of the dynamics is

 \mathcal{M}= {  (q, p) :  q\in  \mathcal{Q},  p\in \mathcal{P}s.  t . if  q\in L_{i} then   p=\pm\frac{e_{i}}{2} }.

We denote a generic point of  \mathcal{M} by  (q, p) . The set of points in  \mathcal{M} whose spatial
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coordinate belongs to the boundaries of the system is  B=B_{-}\cup B_{+} , with

 B_{-}= \{x=(q, p)\in \mathcal{M} :q=(q_{1}, \ldots, q_{d})\in L_{1}, q_{1} =
\frac{1}{2}\}
 B_{+}= \{x=(q, p)\in \mathcal{M} :q=(q_{1}, \ldots, q_{d})\in L_{1}, q_{1} =N-
\frac{1}{2}\}.

See Figure 1.

Figure 1. The spatial component of the phase space  \mathcal{M} and of the sets  B_{-} and  B_{+} in
 2D.

For each  z\in \mathbb{Z}^{d} , we define the action of a “mirror” on the velocity of an incoming

particle by  \pi(z;\cdot) which is a bijection of  \mathcal{P} into itself. It satisfies the following conditions
:

(1.1)  \{\begin{array}{l}
\pi(z;-\pi(z;p))=-p, \forall z\in \mathbb{Z}^{d}, \forall p\in \mathcal{P}
\pi(0, z_{2}, \ldots, z_{d};-\frac{e_{1}}{2})= \frac{e_{1}}{2}
\pi (N, z2, . . . , z_{d};\frac{e_{1}}{2})=-\frac{e_{1}}{2}, (z2, . . . , z_{d})
\in (\mathbb{Z}/N\mathbb{Z})^{d-1}
\end{array}
The dynamics is defined on  \mathcal{M} in the following way. For any  (q, p)  \in \mathcal{M} :

 F(q, p)=(q+p+\pi(q+p;p), \pi(q+p;p)) .

The map  F is a bijection on  \mathcal{M}.

As we are interested in the transport of particles, we define occupation variables

 \sigma(q, p;t)  \in  \{0 , 1  \} that record the absence or presence of a particle at position  q with

velocity  p at time  t\in \mathbb{N} . When connecting the system to external particles reservoirs,

we obtain the following evolution rule : given  \sigma(\cdot;t-1) , we define  \sigma(\cdot;t) for all  t\in \mathbb{N}^{*}
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by

 \sigma(x;t)=  \{\begin{array}{l}
\sigma(F^{-1}(x);t-1) if x\not\in B_{-}\cup B_{+}
\sigma_{\overline{x}}(t-1) if x\in B_{-}
\sigma_{x}^{+}(t-1) if x\in B_{+}.
\end{array}
The families of random variables  \{\sigma_{\overline{x}}(t) : x\in B_{-}, t\in \mathbb{N}\} and  \{\sigma_{x}^{+}(t) : x\in B_{+}, t\in \mathbb{N}\}
consist of independent Bernoulli variables with respective parameters  \rho_{-} and  \rho+\cdot I

one chooses  \{\sigma(x;0) : x \in \mathcal{M}\} to be a collection of independent random variables,

then it is easy to see by induction that at any  t  \geq  0,  \{\sigma(x;t) : x \in \mathcal{M}\} is a collection

of i.i.  d Bernoulli random variables. To simplify a bit the discussion, we choose an

homogeneous initial distribution, i.e. all Bernoulli random variables have a common

parameter  \rho_{I} . We define the average current of particles that crosses the hyperplane
 \mathcal{Q}^{l}  = \{q\in \mathcal{Q} : q_{1} =l+\frac{1}{2}\},  l\in\{1, :::, N-2\} during a diffusive time interval  N^{2} :

(1.2)  J(l, t)=  \frac{1}{N^{d+1}}\sum_{s=t+1}^{t+N^{2}}\sum_{x\in \mathcal{M}}
\sigma(x;s)\triangle(x, l)
where  \triangle(x, l)  =2(p\cdot e_{1})1_{q\in \mathcal{Q}^{l}} ,withx  =  (q, p) . Thus  \triangle(x, l) takes the value  +1 (resp.
 -1) if  x crosses the slice  \mathcal{Q}^{l} from left to right (resp. from right to left). We denote by

 \mathcal{N}_{\pm} the numbers of crossings from   B\pm to  B induced by  F , i.e.  \mathcal{N}_{\pm}  =  |s_{\pm}| where  s_{\pm}

is given by

 s_{\pm}=\{x\in B\pm : \exists s>0, \forall 0< <s, F^{j}(x) \not\in B\pm, F^{s}
(x) \in B \} :

One notes that  \mathcal{N}_{+}  =  \mathcal{N}_{-} . Indeed, since every orbit is closed, it must contain

as many left‐to‐right than right‐to‐left crossings. Thus, we set  \mathcal{N}  =  \mathcal{N}_{+}  =  \mathcal{N}_{-}.  A

completely analogous definition for the current can be given for the current of particles

for the rings model [3]. In both the mirrors model and the rings model, it is possible to
obtain the

Theorem 1.1. For any   t\geq  |\mathcal{M}|,  E[J(l, t)]  =   \frac{\mathcal{N}}{N^{d-1}}(\rho_{-}-\rho_{+}) .

Moreover, for every  \delta>0 , any   t\geq  |\mathcal{M}| and   l\in  \{1, :::, N-2\},

(1.3)   \mathbb{P}[|J(l, t)-\frac{\mathcal{N}}{N^{d-1}}(\rho_{-}-\rho_{+})| 
\geq\delta] \leq 2\exp(-\delta^{2}N^{d+1}) .

We take now random configurations of reflectors  \{\pi(z;\cdot) : z\in \mathbb{Z}^{d}\} . The law of the

reflectors is denoted by  \mathbb{Q} . The map  F becomes now a random map.

Definition 1.2. The model satisfies Fick’s law if and only if there exists some
 \kappa>0 (the conductivity) such that  \forall\delta>0,

(1.4)   \lim_{Narrow\infty}\lim_{tarrow\infty}\mathbb{P}\cross \mathbb{Q}[|NJ(l, t)-
\kappa(\rho_{-}-\rho_{+})| >\delta]=0.
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Figure 2.  N  =  6 . Crossing orbits are coloured in purple, internal loops in black and

non‐crossing orbits are coloured in green. The travel direction given by the arrows is

arbitrary. Each edge of the crossing orbits will be used twice in a given orbit : once in

each direction. For this configuration of mirrors  \mathcal{N}=2.

It is easy to infer from (1.3) that the following theorem holds.

Theorem 1.3. Sufficient and Necessary Condition for Fick’s law : (1.4)
holds if and only if there exists  \kappa>0 such that for any  \delta>0,

(1.5)   \lim_{Narrow\infty}\mathbb{Q} [|\frac{\mathcal{N}}{N^{d-2}}-\kappa| >\delta] =
0.
To go further, it is important to note that, using the notationsO  =(( \frac{1}{2},0, \ldots, 0), \frac{e_{1}}{2})

and  S=S_{-} :

(1.6)   E[\frac{\mathcal{N}}{N^{d-2}}] =N\mathbb{Q}[O\in S]
and

Var  [ \frac{\mathcal{N}}{N^{d-2}}]  =   \frac{1}{N^{2d-4}}\sum_{\in x,B-}\delta(x, y)=   \frac{1}{N^{d-3}}\sum_{x\in B-}\delta(O, x)
(1.7)

with

(1.8)  \delta(x, y) =\mathbb{Q}[x\in S, y\in S]-\mathbb{Q}[x\in S]\mathbb{Q}[y\in S].
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Next observe that if the law of an orbit with respect to  \mathbb{Q} was similar to the law  0

a simple random walk, then there would be a  \kappa>0 such that   \lim_{Narrow\infty}N\mathbb{Q}[0\in S]  =\kappa,

this follows from the gambler’s ruin argument. Similarly, if the orbits were independent

objects, then the RHS of (1.7) would go to zero because the only non‐zero term would
be the one with  x=O and  \mathbb{Q}[O\in S]  \sim\kappa/N.

In [3], the equality (1.5) is proven for the rings model in  d  \geq  7 . This is done
by comparing the crossing probability  \mathbb{Q}[O \in S] to the crossing probability of a lazy

random walk. The correction due to the memory effect in the real orbits give rise to

a correction that decays in the size of the system faster than  1/N . Correlations are

treated in the same way.

In the mirrors model, we have tested the probability  \mathbb{Q}[O \in S] numerically [2].
The log‐log plot of this probability versus the size of the system  N is given in Figure

3. In order to show that the variance (1.7) goes to zero, we have also studied the

Figure 3.  \mathbb{Q}(O\in S) for  N from 5 to 420. The 95% confidence interval is about half the
size of a dot.

correlation functions  \delta(O, x) in  d=3 . For all but a few points, the correlations  \delta(O, x)
for  x  \neq  O are not only small but negative within confidence intervals, see Figure 4.

The only exceptions are points  ((1/2,1,0),  \frac{e_{1}}{2}) ,  ((1/2,0,1),  \frac{e_{1}}{2}) ,  ((1/2, N-1,0),  \frac{e_{1}}{2}) and

 ((1/2,0, N-1),  \frac{e_{1}}{2}) which give clearly positive correlations. However, we checked that for

 N=70,   \sum_{=1}^{N-1}\delta(O, ((1/2, y, 0), \frac{e_{1}}{2}))=-1.360\cross 10^{-04}
\pm 1.47\cross 10^{-05} , i.e. it is negative

with a margin of more than  9\sigma.   \sum_{z=1}^{N-1}\delta(O, ((1/2,0, z), \frac{e_{1}}{2})) must be equal by symmetry.

Increasing values of  N do not modify this behaviour. In particular, the number of points

with positive correlations do not increase. Since we know already that  \mathbb{Q}[O\in S]  \sim\kappa/N,
as  N  arrow  1 , we conclude with the same margin that   \sum_{x\in B-}\delta(O, x)  \leq  \kappa/N  arrow  0 , as
 Narrow 1 . We expect the same behaviour in  d>3.
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Figure 4.  \delta(O, x) for  x=((1/2, y, 0),  \frac{e_{1}}{2}) .  N=70 . We draw the 95% confidence interval.
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